Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/kernel/sys.c |
| 3 | * |
| 4 | * Copyright (C) 1991, 1992 Linus Torvalds |
| 5 | */ |
| 6 | |
| 7 | #include <linux/config.h> |
| 8 | #include <linux/module.h> |
| 9 | #include <linux/mm.h> |
| 10 | #include <linux/utsname.h> |
| 11 | #include <linux/mman.h> |
| 12 | #include <linux/smp_lock.h> |
| 13 | #include <linux/notifier.h> |
| 14 | #include <linux/reboot.h> |
| 15 | #include <linux/prctl.h> |
| 16 | #include <linux/init.h> |
| 17 | #include <linux/highuid.h> |
| 18 | #include <linux/fs.h> |
Eric W. Biederman | dc009d9 | 2005-06-25 14:57:52 -0700 | [diff] [blame] | 19 | #include <linux/kernel.h> |
| 20 | #include <linux/kexec.h> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 21 | #include <linux/workqueue.h> |
| 22 | #include <linux/device.h> |
| 23 | #include <linux/key.h> |
| 24 | #include <linux/times.h> |
| 25 | #include <linux/posix-timers.h> |
| 26 | #include <linux/security.h> |
| 27 | #include <linux/dcookies.h> |
| 28 | #include <linux/suspend.h> |
| 29 | #include <linux/tty.h> |
Jesper Juhl | 7ed20e1 | 2005-05-01 08:59:14 -0700 | [diff] [blame] | 30 | #include <linux/signal.h> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 31 | |
| 32 | #include <linux/compat.h> |
| 33 | #include <linux/syscalls.h> |
| 34 | |
| 35 | #include <asm/uaccess.h> |
| 36 | #include <asm/io.h> |
| 37 | #include <asm/unistd.h> |
| 38 | |
| 39 | #ifndef SET_UNALIGN_CTL |
| 40 | # define SET_UNALIGN_CTL(a,b) (-EINVAL) |
| 41 | #endif |
| 42 | #ifndef GET_UNALIGN_CTL |
| 43 | # define GET_UNALIGN_CTL(a,b) (-EINVAL) |
| 44 | #endif |
| 45 | #ifndef SET_FPEMU_CTL |
| 46 | # define SET_FPEMU_CTL(a,b) (-EINVAL) |
| 47 | #endif |
| 48 | #ifndef GET_FPEMU_CTL |
| 49 | # define GET_FPEMU_CTL(a,b) (-EINVAL) |
| 50 | #endif |
| 51 | #ifndef SET_FPEXC_CTL |
| 52 | # define SET_FPEXC_CTL(a,b) (-EINVAL) |
| 53 | #endif |
| 54 | #ifndef GET_FPEXC_CTL |
| 55 | # define GET_FPEXC_CTL(a,b) (-EINVAL) |
| 56 | #endif |
| 57 | |
| 58 | /* |
| 59 | * this is where the system-wide overflow UID and GID are defined, for |
| 60 | * architectures that now have 32-bit UID/GID but didn't in the past |
| 61 | */ |
| 62 | |
| 63 | int overflowuid = DEFAULT_OVERFLOWUID; |
| 64 | int overflowgid = DEFAULT_OVERFLOWGID; |
| 65 | |
| 66 | #ifdef CONFIG_UID16 |
| 67 | EXPORT_SYMBOL(overflowuid); |
| 68 | EXPORT_SYMBOL(overflowgid); |
| 69 | #endif |
| 70 | |
| 71 | /* |
| 72 | * the same as above, but for filesystems which can only store a 16-bit |
| 73 | * UID and GID. as such, this is needed on all architectures |
| 74 | */ |
| 75 | |
| 76 | int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; |
| 77 | int fs_overflowgid = DEFAULT_FS_OVERFLOWUID; |
| 78 | |
| 79 | EXPORT_SYMBOL(fs_overflowuid); |
| 80 | EXPORT_SYMBOL(fs_overflowgid); |
| 81 | |
| 82 | /* |
| 83 | * this indicates whether you can reboot with ctrl-alt-del: the default is yes |
| 84 | */ |
| 85 | |
| 86 | int C_A_D = 1; |
| 87 | int cad_pid = 1; |
| 88 | |
| 89 | /* |
| 90 | * Notifier list for kernel code which wants to be called |
| 91 | * at shutdown. This is used to stop any idling DMA operations |
| 92 | * and the like. |
| 93 | */ |
| 94 | |
| 95 | static struct notifier_block *reboot_notifier_list; |
| 96 | static DEFINE_RWLOCK(notifier_lock); |
| 97 | |
| 98 | /** |
| 99 | * notifier_chain_register - Add notifier to a notifier chain |
| 100 | * @list: Pointer to root list pointer |
| 101 | * @n: New entry in notifier chain |
| 102 | * |
| 103 | * Adds a notifier to a notifier chain. |
| 104 | * |
| 105 | * Currently always returns zero. |
| 106 | */ |
| 107 | |
| 108 | int notifier_chain_register(struct notifier_block **list, struct notifier_block *n) |
| 109 | { |
| 110 | write_lock(¬ifier_lock); |
| 111 | while(*list) |
| 112 | { |
| 113 | if(n->priority > (*list)->priority) |
| 114 | break; |
| 115 | list= &((*list)->next); |
| 116 | } |
| 117 | n->next = *list; |
| 118 | *list=n; |
| 119 | write_unlock(¬ifier_lock); |
| 120 | return 0; |
| 121 | } |
| 122 | |
| 123 | EXPORT_SYMBOL(notifier_chain_register); |
| 124 | |
| 125 | /** |
| 126 | * notifier_chain_unregister - Remove notifier from a notifier chain |
| 127 | * @nl: Pointer to root list pointer |
| 128 | * @n: New entry in notifier chain |
| 129 | * |
| 130 | * Removes a notifier from a notifier chain. |
| 131 | * |
| 132 | * Returns zero on success, or %-ENOENT on failure. |
| 133 | */ |
| 134 | |
| 135 | int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n) |
| 136 | { |
| 137 | write_lock(¬ifier_lock); |
| 138 | while((*nl)!=NULL) |
| 139 | { |
| 140 | if((*nl)==n) |
| 141 | { |
| 142 | *nl=n->next; |
| 143 | write_unlock(¬ifier_lock); |
| 144 | return 0; |
| 145 | } |
| 146 | nl=&((*nl)->next); |
| 147 | } |
| 148 | write_unlock(¬ifier_lock); |
| 149 | return -ENOENT; |
| 150 | } |
| 151 | |
| 152 | EXPORT_SYMBOL(notifier_chain_unregister); |
| 153 | |
| 154 | /** |
| 155 | * notifier_call_chain - Call functions in a notifier chain |
| 156 | * @n: Pointer to root pointer of notifier chain |
| 157 | * @val: Value passed unmodified to notifier function |
| 158 | * @v: Pointer passed unmodified to notifier function |
| 159 | * |
| 160 | * Calls each function in a notifier chain in turn. |
| 161 | * |
| 162 | * If the return value of the notifier can be and'd |
| 163 | * with %NOTIFY_STOP_MASK, then notifier_call_chain |
| 164 | * will return immediately, with the return value of |
| 165 | * the notifier function which halted execution. |
| 166 | * Otherwise, the return value is the return value |
| 167 | * of the last notifier function called. |
| 168 | */ |
| 169 | |
| 170 | int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v) |
| 171 | { |
| 172 | int ret=NOTIFY_DONE; |
| 173 | struct notifier_block *nb = *n; |
| 174 | |
| 175 | while(nb) |
| 176 | { |
| 177 | ret=nb->notifier_call(nb,val,v); |
| 178 | if(ret&NOTIFY_STOP_MASK) |
| 179 | { |
| 180 | return ret; |
| 181 | } |
| 182 | nb=nb->next; |
| 183 | } |
| 184 | return ret; |
| 185 | } |
| 186 | |
| 187 | EXPORT_SYMBOL(notifier_call_chain); |
| 188 | |
| 189 | /** |
| 190 | * register_reboot_notifier - Register function to be called at reboot time |
| 191 | * @nb: Info about notifier function to be called |
| 192 | * |
| 193 | * Registers a function with the list of functions |
| 194 | * to be called at reboot time. |
| 195 | * |
| 196 | * Currently always returns zero, as notifier_chain_register |
| 197 | * always returns zero. |
| 198 | */ |
| 199 | |
| 200 | int register_reboot_notifier(struct notifier_block * nb) |
| 201 | { |
| 202 | return notifier_chain_register(&reboot_notifier_list, nb); |
| 203 | } |
| 204 | |
| 205 | EXPORT_SYMBOL(register_reboot_notifier); |
| 206 | |
| 207 | /** |
| 208 | * unregister_reboot_notifier - Unregister previously registered reboot notifier |
| 209 | * @nb: Hook to be unregistered |
| 210 | * |
| 211 | * Unregisters a previously registered reboot |
| 212 | * notifier function. |
| 213 | * |
| 214 | * Returns zero on success, or %-ENOENT on failure. |
| 215 | */ |
| 216 | |
| 217 | int unregister_reboot_notifier(struct notifier_block * nb) |
| 218 | { |
| 219 | return notifier_chain_unregister(&reboot_notifier_list, nb); |
| 220 | } |
| 221 | |
| 222 | EXPORT_SYMBOL(unregister_reboot_notifier); |
| 223 | |
| 224 | static int set_one_prio(struct task_struct *p, int niceval, int error) |
| 225 | { |
| 226 | int no_nice; |
| 227 | |
| 228 | if (p->uid != current->euid && |
| 229 | p->euid != current->euid && !capable(CAP_SYS_NICE)) { |
| 230 | error = -EPERM; |
| 231 | goto out; |
| 232 | } |
Matt Mackall | e43379f | 2005-05-01 08:59:00 -0700 | [diff] [blame] | 233 | if (niceval < task_nice(p) && !can_nice(p, niceval)) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 234 | error = -EACCES; |
| 235 | goto out; |
| 236 | } |
| 237 | no_nice = security_task_setnice(p, niceval); |
| 238 | if (no_nice) { |
| 239 | error = no_nice; |
| 240 | goto out; |
| 241 | } |
| 242 | if (error == -ESRCH) |
| 243 | error = 0; |
| 244 | set_user_nice(p, niceval); |
| 245 | out: |
| 246 | return error; |
| 247 | } |
| 248 | |
| 249 | asmlinkage long sys_setpriority(int which, int who, int niceval) |
| 250 | { |
| 251 | struct task_struct *g, *p; |
| 252 | struct user_struct *user; |
| 253 | int error = -EINVAL; |
| 254 | |
| 255 | if (which > 2 || which < 0) |
| 256 | goto out; |
| 257 | |
| 258 | /* normalize: avoid signed division (rounding problems) */ |
| 259 | error = -ESRCH; |
| 260 | if (niceval < -20) |
| 261 | niceval = -20; |
| 262 | if (niceval > 19) |
| 263 | niceval = 19; |
| 264 | |
| 265 | read_lock(&tasklist_lock); |
| 266 | switch (which) { |
| 267 | case PRIO_PROCESS: |
| 268 | if (!who) |
| 269 | who = current->pid; |
| 270 | p = find_task_by_pid(who); |
| 271 | if (p) |
| 272 | error = set_one_prio(p, niceval, error); |
| 273 | break; |
| 274 | case PRIO_PGRP: |
| 275 | if (!who) |
| 276 | who = process_group(current); |
| 277 | do_each_task_pid(who, PIDTYPE_PGID, p) { |
| 278 | error = set_one_prio(p, niceval, error); |
| 279 | } while_each_task_pid(who, PIDTYPE_PGID, p); |
| 280 | break; |
| 281 | case PRIO_USER: |
| 282 | user = current->user; |
| 283 | if (!who) |
| 284 | who = current->uid; |
| 285 | else |
| 286 | if ((who != current->uid) && !(user = find_user(who))) |
| 287 | goto out_unlock; /* No processes for this user */ |
| 288 | |
| 289 | do_each_thread(g, p) |
| 290 | if (p->uid == who) |
| 291 | error = set_one_prio(p, niceval, error); |
| 292 | while_each_thread(g, p); |
| 293 | if (who != current->uid) |
| 294 | free_uid(user); /* For find_user() */ |
| 295 | break; |
| 296 | } |
| 297 | out_unlock: |
| 298 | read_unlock(&tasklist_lock); |
| 299 | out: |
| 300 | return error; |
| 301 | } |
| 302 | |
| 303 | /* |
| 304 | * Ugh. To avoid negative return values, "getpriority()" will |
| 305 | * not return the normal nice-value, but a negated value that |
| 306 | * has been offset by 20 (ie it returns 40..1 instead of -20..19) |
| 307 | * to stay compatible. |
| 308 | */ |
| 309 | asmlinkage long sys_getpriority(int which, int who) |
| 310 | { |
| 311 | struct task_struct *g, *p; |
| 312 | struct user_struct *user; |
| 313 | long niceval, retval = -ESRCH; |
| 314 | |
| 315 | if (which > 2 || which < 0) |
| 316 | return -EINVAL; |
| 317 | |
| 318 | read_lock(&tasklist_lock); |
| 319 | switch (which) { |
| 320 | case PRIO_PROCESS: |
| 321 | if (!who) |
| 322 | who = current->pid; |
| 323 | p = find_task_by_pid(who); |
| 324 | if (p) { |
| 325 | niceval = 20 - task_nice(p); |
| 326 | if (niceval > retval) |
| 327 | retval = niceval; |
| 328 | } |
| 329 | break; |
| 330 | case PRIO_PGRP: |
| 331 | if (!who) |
| 332 | who = process_group(current); |
| 333 | do_each_task_pid(who, PIDTYPE_PGID, p) { |
| 334 | niceval = 20 - task_nice(p); |
| 335 | if (niceval > retval) |
| 336 | retval = niceval; |
| 337 | } while_each_task_pid(who, PIDTYPE_PGID, p); |
| 338 | break; |
| 339 | case PRIO_USER: |
| 340 | user = current->user; |
| 341 | if (!who) |
| 342 | who = current->uid; |
| 343 | else |
| 344 | if ((who != current->uid) && !(user = find_user(who))) |
| 345 | goto out_unlock; /* No processes for this user */ |
| 346 | |
| 347 | do_each_thread(g, p) |
| 348 | if (p->uid == who) { |
| 349 | niceval = 20 - task_nice(p); |
| 350 | if (niceval > retval) |
| 351 | retval = niceval; |
| 352 | } |
| 353 | while_each_thread(g, p); |
| 354 | if (who != current->uid) |
| 355 | free_uid(user); /* for find_user() */ |
| 356 | break; |
| 357 | } |
| 358 | out_unlock: |
| 359 | read_unlock(&tasklist_lock); |
| 360 | |
| 361 | return retval; |
| 362 | } |
| 363 | |
Eric W. Biederman | e4c9433 | 2005-09-22 21:43:45 -0700 | [diff] [blame^] | 364 | /** |
| 365 | * emergency_restart - reboot the system |
| 366 | * |
| 367 | * Without shutting down any hardware or taking any locks |
| 368 | * reboot the system. This is called when we know we are in |
| 369 | * trouble so this is our best effort to reboot. This is |
| 370 | * safe to call in interrupt context. |
| 371 | */ |
Eric W. Biederman | 7c90347 | 2005-07-26 11:29:55 -0600 | [diff] [blame] | 372 | void emergency_restart(void) |
| 373 | { |
| 374 | machine_emergency_restart(); |
| 375 | } |
| 376 | EXPORT_SYMBOL_GPL(emergency_restart); |
| 377 | |
Eric W. Biederman | e4c9433 | 2005-09-22 21:43:45 -0700 | [diff] [blame^] | 378 | /** |
| 379 | * kernel_restart - reboot the system |
| 380 | * |
| 381 | * Shutdown everything and perform a clean reboot. |
| 382 | * This is not safe to call in interrupt context. |
| 383 | */ |
| 384 | void kernel_restart_prepare(char *cmd) |
Eric W. Biederman | 4a00ea1 | 2005-07-26 11:24:14 -0600 | [diff] [blame] | 385 | { |
| 386 | notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd); |
| 387 | system_state = SYSTEM_RESTART; |
Eric W. Biederman | 4a00ea1 | 2005-07-26 11:24:14 -0600 | [diff] [blame] | 388 | device_shutdown(); |
Eric W. Biederman | e4c9433 | 2005-09-22 21:43:45 -0700 | [diff] [blame^] | 389 | } |
| 390 | void kernel_restart(char *cmd) |
| 391 | { |
| 392 | kernel_restart_prepare(cmd); |
Eric W. Biederman | 4a00ea1 | 2005-07-26 11:24:14 -0600 | [diff] [blame] | 393 | if (!cmd) { |
| 394 | printk(KERN_EMERG "Restarting system.\n"); |
| 395 | } else { |
| 396 | printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd); |
| 397 | } |
| 398 | printk(".\n"); |
| 399 | machine_restart(cmd); |
| 400 | } |
| 401 | EXPORT_SYMBOL_GPL(kernel_restart); |
| 402 | |
Eric W. Biederman | e4c9433 | 2005-09-22 21:43:45 -0700 | [diff] [blame^] | 403 | /** |
| 404 | * kernel_kexec - reboot the system |
| 405 | * |
| 406 | * Move into place and start executing a preloaded standalone |
| 407 | * executable. If nothing was preloaded return an error. |
| 408 | */ |
Eric W. Biederman | 4a00ea1 | 2005-07-26 11:24:14 -0600 | [diff] [blame] | 409 | void kernel_kexec(void) |
| 410 | { |
| 411 | #ifdef CONFIG_KEXEC |
| 412 | struct kimage *image; |
| 413 | image = xchg(&kexec_image, 0); |
| 414 | if (!image) { |
| 415 | return; |
| 416 | } |
Eric W. Biederman | e4c9433 | 2005-09-22 21:43:45 -0700 | [diff] [blame^] | 417 | kernel_restart_prepare(NULL); |
Eric W. Biederman | 4a00ea1 | 2005-07-26 11:24:14 -0600 | [diff] [blame] | 418 | printk(KERN_EMERG "Starting new kernel\n"); |
| 419 | machine_shutdown(); |
| 420 | machine_kexec(image); |
| 421 | #endif |
| 422 | } |
| 423 | EXPORT_SYMBOL_GPL(kernel_kexec); |
| 424 | |
Eric W. Biederman | e4c9433 | 2005-09-22 21:43:45 -0700 | [diff] [blame^] | 425 | /** |
| 426 | * kernel_halt - halt the system |
| 427 | * |
| 428 | * Shutdown everything and perform a clean system halt. |
| 429 | */ |
| 430 | void kernel_halt_prepare(void) |
Eric W. Biederman | 4a00ea1 | 2005-07-26 11:24:14 -0600 | [diff] [blame] | 431 | { |
| 432 | notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL); |
| 433 | system_state = SYSTEM_HALT; |
Eric W. Biederman | 4a00ea1 | 2005-07-26 11:24:14 -0600 | [diff] [blame] | 434 | device_shutdown(); |
Eric W. Biederman | e4c9433 | 2005-09-22 21:43:45 -0700 | [diff] [blame^] | 435 | } |
| 436 | void kernel_halt(void) |
| 437 | { |
| 438 | kernel_halt_prepare(); |
Eric W. Biederman | 4a00ea1 | 2005-07-26 11:24:14 -0600 | [diff] [blame] | 439 | printk(KERN_EMERG "System halted.\n"); |
| 440 | machine_halt(); |
| 441 | } |
| 442 | EXPORT_SYMBOL_GPL(kernel_halt); |
| 443 | |
Eric W. Biederman | e4c9433 | 2005-09-22 21:43:45 -0700 | [diff] [blame^] | 444 | /** |
| 445 | * kernel_power_off - power_off the system |
| 446 | * |
| 447 | * Shutdown everything and perform a clean system power_off. |
| 448 | */ |
| 449 | void kernel_power_off_prepare(void) |
Eric W. Biederman | 4a00ea1 | 2005-07-26 11:24:14 -0600 | [diff] [blame] | 450 | { |
| 451 | notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL); |
| 452 | system_state = SYSTEM_POWER_OFF; |
Eric W. Biederman | 4a00ea1 | 2005-07-26 11:24:14 -0600 | [diff] [blame] | 453 | device_shutdown(); |
Eric W. Biederman | e4c9433 | 2005-09-22 21:43:45 -0700 | [diff] [blame^] | 454 | } |
| 455 | void kernel_power_off(void) |
| 456 | { |
| 457 | kernel_power_off_prepare(); |
Eric W. Biederman | 4a00ea1 | 2005-07-26 11:24:14 -0600 | [diff] [blame] | 458 | printk(KERN_EMERG "Power down.\n"); |
| 459 | machine_power_off(); |
| 460 | } |
| 461 | EXPORT_SYMBOL_GPL(kernel_power_off); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 462 | |
| 463 | /* |
| 464 | * Reboot system call: for obvious reasons only root may call it, |
| 465 | * and even root needs to set up some magic numbers in the registers |
| 466 | * so that some mistake won't make this reboot the whole machine. |
| 467 | * You can also set the meaning of the ctrl-alt-del-key here. |
| 468 | * |
| 469 | * reboot doesn't sync: do that yourself before calling this. |
| 470 | */ |
| 471 | asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg) |
| 472 | { |
| 473 | char buffer[256]; |
| 474 | |
| 475 | /* We only trust the superuser with rebooting the system. */ |
| 476 | if (!capable(CAP_SYS_BOOT)) |
| 477 | return -EPERM; |
| 478 | |
| 479 | /* For safety, we require "magic" arguments. */ |
| 480 | if (magic1 != LINUX_REBOOT_MAGIC1 || |
| 481 | (magic2 != LINUX_REBOOT_MAGIC2 && |
| 482 | magic2 != LINUX_REBOOT_MAGIC2A && |
| 483 | magic2 != LINUX_REBOOT_MAGIC2B && |
| 484 | magic2 != LINUX_REBOOT_MAGIC2C)) |
| 485 | return -EINVAL; |
| 486 | |
| 487 | lock_kernel(); |
| 488 | switch (cmd) { |
| 489 | case LINUX_REBOOT_CMD_RESTART: |
Eric W. Biederman | 4a00ea1 | 2005-07-26 11:24:14 -0600 | [diff] [blame] | 490 | kernel_restart(NULL); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 491 | break; |
| 492 | |
| 493 | case LINUX_REBOOT_CMD_CAD_ON: |
| 494 | C_A_D = 1; |
| 495 | break; |
| 496 | |
| 497 | case LINUX_REBOOT_CMD_CAD_OFF: |
| 498 | C_A_D = 0; |
| 499 | break; |
| 500 | |
| 501 | case LINUX_REBOOT_CMD_HALT: |
Eric W. Biederman | 4a00ea1 | 2005-07-26 11:24:14 -0600 | [diff] [blame] | 502 | kernel_halt(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 503 | unlock_kernel(); |
| 504 | do_exit(0); |
| 505 | break; |
| 506 | |
| 507 | case LINUX_REBOOT_CMD_POWER_OFF: |
Eric W. Biederman | 4a00ea1 | 2005-07-26 11:24:14 -0600 | [diff] [blame] | 508 | kernel_power_off(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 509 | unlock_kernel(); |
| 510 | do_exit(0); |
| 511 | break; |
| 512 | |
| 513 | case LINUX_REBOOT_CMD_RESTART2: |
| 514 | if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) { |
| 515 | unlock_kernel(); |
| 516 | return -EFAULT; |
| 517 | } |
| 518 | buffer[sizeof(buffer) - 1] = '\0'; |
| 519 | |
Eric W. Biederman | 4a00ea1 | 2005-07-26 11:24:14 -0600 | [diff] [blame] | 520 | kernel_restart(buffer); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 521 | break; |
| 522 | |
Eric W. Biederman | dc009d9 | 2005-06-25 14:57:52 -0700 | [diff] [blame] | 523 | case LINUX_REBOOT_CMD_KEXEC: |
Eric W. Biederman | 4a00ea1 | 2005-07-26 11:24:14 -0600 | [diff] [blame] | 524 | kernel_kexec(); |
| 525 | unlock_kernel(); |
| 526 | return -EINVAL; |
| 527 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 528 | #ifdef CONFIG_SOFTWARE_SUSPEND |
| 529 | case LINUX_REBOOT_CMD_SW_SUSPEND: |
| 530 | { |
| 531 | int ret = software_suspend(); |
| 532 | unlock_kernel(); |
| 533 | return ret; |
| 534 | } |
| 535 | #endif |
| 536 | |
| 537 | default: |
| 538 | unlock_kernel(); |
| 539 | return -EINVAL; |
| 540 | } |
| 541 | unlock_kernel(); |
| 542 | return 0; |
| 543 | } |
| 544 | |
| 545 | static void deferred_cad(void *dummy) |
| 546 | { |
Eric W. Biederman | abcd9e5 | 2005-07-26 11:27:34 -0600 | [diff] [blame] | 547 | kernel_restart(NULL); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 548 | } |
| 549 | |
| 550 | /* |
| 551 | * This function gets called by ctrl-alt-del - ie the keyboard interrupt. |
| 552 | * As it's called within an interrupt, it may NOT sync: the only choice |
| 553 | * is whether to reboot at once, or just ignore the ctrl-alt-del. |
| 554 | */ |
| 555 | void ctrl_alt_del(void) |
| 556 | { |
| 557 | static DECLARE_WORK(cad_work, deferred_cad, NULL); |
| 558 | |
| 559 | if (C_A_D) |
| 560 | schedule_work(&cad_work); |
| 561 | else |
| 562 | kill_proc(cad_pid, SIGINT, 1); |
| 563 | } |
| 564 | |
| 565 | |
| 566 | /* |
| 567 | * Unprivileged users may change the real gid to the effective gid |
| 568 | * or vice versa. (BSD-style) |
| 569 | * |
| 570 | * If you set the real gid at all, or set the effective gid to a value not |
| 571 | * equal to the real gid, then the saved gid is set to the new effective gid. |
| 572 | * |
| 573 | * This makes it possible for a setgid program to completely drop its |
| 574 | * privileges, which is often a useful assertion to make when you are doing |
| 575 | * a security audit over a program. |
| 576 | * |
| 577 | * The general idea is that a program which uses just setregid() will be |
| 578 | * 100% compatible with BSD. A program which uses just setgid() will be |
| 579 | * 100% compatible with POSIX with saved IDs. |
| 580 | * |
| 581 | * SMP: There are not races, the GIDs are checked only by filesystem |
| 582 | * operations (as far as semantic preservation is concerned). |
| 583 | */ |
| 584 | asmlinkage long sys_setregid(gid_t rgid, gid_t egid) |
| 585 | { |
| 586 | int old_rgid = current->gid; |
| 587 | int old_egid = current->egid; |
| 588 | int new_rgid = old_rgid; |
| 589 | int new_egid = old_egid; |
| 590 | int retval; |
| 591 | |
| 592 | retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE); |
| 593 | if (retval) |
| 594 | return retval; |
| 595 | |
| 596 | if (rgid != (gid_t) -1) { |
| 597 | if ((old_rgid == rgid) || |
| 598 | (current->egid==rgid) || |
| 599 | capable(CAP_SETGID)) |
| 600 | new_rgid = rgid; |
| 601 | else |
| 602 | return -EPERM; |
| 603 | } |
| 604 | if (egid != (gid_t) -1) { |
| 605 | if ((old_rgid == egid) || |
| 606 | (current->egid == egid) || |
| 607 | (current->sgid == egid) || |
| 608 | capable(CAP_SETGID)) |
| 609 | new_egid = egid; |
| 610 | else { |
| 611 | return -EPERM; |
| 612 | } |
| 613 | } |
| 614 | if (new_egid != old_egid) |
| 615 | { |
Alan Cox | d6e7114 | 2005-06-23 00:09:43 -0700 | [diff] [blame] | 616 | current->mm->dumpable = suid_dumpable; |
akpm@osdl.org | d59dd46 | 2005-05-01 08:58:47 -0700 | [diff] [blame] | 617 | smp_wmb(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 618 | } |
| 619 | if (rgid != (gid_t) -1 || |
| 620 | (egid != (gid_t) -1 && egid != old_rgid)) |
| 621 | current->sgid = new_egid; |
| 622 | current->fsgid = new_egid; |
| 623 | current->egid = new_egid; |
| 624 | current->gid = new_rgid; |
| 625 | key_fsgid_changed(current); |
| 626 | return 0; |
| 627 | } |
| 628 | |
| 629 | /* |
| 630 | * setgid() is implemented like SysV w/ SAVED_IDS |
| 631 | * |
| 632 | * SMP: Same implicit races as above. |
| 633 | */ |
| 634 | asmlinkage long sys_setgid(gid_t gid) |
| 635 | { |
| 636 | int old_egid = current->egid; |
| 637 | int retval; |
| 638 | |
| 639 | retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID); |
| 640 | if (retval) |
| 641 | return retval; |
| 642 | |
| 643 | if (capable(CAP_SETGID)) |
| 644 | { |
| 645 | if(old_egid != gid) |
| 646 | { |
Alan Cox | d6e7114 | 2005-06-23 00:09:43 -0700 | [diff] [blame] | 647 | current->mm->dumpable = suid_dumpable; |
akpm@osdl.org | d59dd46 | 2005-05-01 08:58:47 -0700 | [diff] [blame] | 648 | smp_wmb(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 649 | } |
| 650 | current->gid = current->egid = current->sgid = current->fsgid = gid; |
| 651 | } |
| 652 | else if ((gid == current->gid) || (gid == current->sgid)) |
| 653 | { |
| 654 | if(old_egid != gid) |
| 655 | { |
Alan Cox | d6e7114 | 2005-06-23 00:09:43 -0700 | [diff] [blame] | 656 | current->mm->dumpable = suid_dumpable; |
akpm@osdl.org | d59dd46 | 2005-05-01 08:58:47 -0700 | [diff] [blame] | 657 | smp_wmb(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 658 | } |
| 659 | current->egid = current->fsgid = gid; |
| 660 | } |
| 661 | else |
| 662 | return -EPERM; |
| 663 | |
| 664 | key_fsgid_changed(current); |
| 665 | return 0; |
| 666 | } |
| 667 | |
| 668 | static int set_user(uid_t new_ruid, int dumpclear) |
| 669 | { |
| 670 | struct user_struct *new_user; |
| 671 | |
| 672 | new_user = alloc_uid(new_ruid); |
| 673 | if (!new_user) |
| 674 | return -EAGAIN; |
| 675 | |
| 676 | if (atomic_read(&new_user->processes) >= |
| 677 | current->signal->rlim[RLIMIT_NPROC].rlim_cur && |
| 678 | new_user != &root_user) { |
| 679 | free_uid(new_user); |
| 680 | return -EAGAIN; |
| 681 | } |
| 682 | |
| 683 | switch_uid(new_user); |
| 684 | |
| 685 | if(dumpclear) |
| 686 | { |
Alan Cox | d6e7114 | 2005-06-23 00:09:43 -0700 | [diff] [blame] | 687 | current->mm->dumpable = suid_dumpable; |
akpm@osdl.org | d59dd46 | 2005-05-01 08:58:47 -0700 | [diff] [blame] | 688 | smp_wmb(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 689 | } |
| 690 | current->uid = new_ruid; |
| 691 | return 0; |
| 692 | } |
| 693 | |
| 694 | /* |
| 695 | * Unprivileged users may change the real uid to the effective uid |
| 696 | * or vice versa. (BSD-style) |
| 697 | * |
| 698 | * If you set the real uid at all, or set the effective uid to a value not |
| 699 | * equal to the real uid, then the saved uid is set to the new effective uid. |
| 700 | * |
| 701 | * This makes it possible for a setuid program to completely drop its |
| 702 | * privileges, which is often a useful assertion to make when you are doing |
| 703 | * a security audit over a program. |
| 704 | * |
| 705 | * The general idea is that a program which uses just setreuid() will be |
| 706 | * 100% compatible with BSD. A program which uses just setuid() will be |
| 707 | * 100% compatible with POSIX with saved IDs. |
| 708 | */ |
| 709 | asmlinkage long sys_setreuid(uid_t ruid, uid_t euid) |
| 710 | { |
| 711 | int old_ruid, old_euid, old_suid, new_ruid, new_euid; |
| 712 | int retval; |
| 713 | |
| 714 | retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE); |
| 715 | if (retval) |
| 716 | return retval; |
| 717 | |
| 718 | new_ruid = old_ruid = current->uid; |
| 719 | new_euid = old_euid = current->euid; |
| 720 | old_suid = current->suid; |
| 721 | |
| 722 | if (ruid != (uid_t) -1) { |
| 723 | new_ruid = ruid; |
| 724 | if ((old_ruid != ruid) && |
| 725 | (current->euid != ruid) && |
| 726 | !capable(CAP_SETUID)) |
| 727 | return -EPERM; |
| 728 | } |
| 729 | |
| 730 | if (euid != (uid_t) -1) { |
| 731 | new_euid = euid; |
| 732 | if ((old_ruid != euid) && |
| 733 | (current->euid != euid) && |
| 734 | (current->suid != euid) && |
| 735 | !capable(CAP_SETUID)) |
| 736 | return -EPERM; |
| 737 | } |
| 738 | |
| 739 | if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0) |
| 740 | return -EAGAIN; |
| 741 | |
| 742 | if (new_euid != old_euid) |
| 743 | { |
Alan Cox | d6e7114 | 2005-06-23 00:09:43 -0700 | [diff] [blame] | 744 | current->mm->dumpable = suid_dumpable; |
akpm@osdl.org | d59dd46 | 2005-05-01 08:58:47 -0700 | [diff] [blame] | 745 | smp_wmb(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 746 | } |
| 747 | current->fsuid = current->euid = new_euid; |
| 748 | if (ruid != (uid_t) -1 || |
| 749 | (euid != (uid_t) -1 && euid != old_ruid)) |
| 750 | current->suid = current->euid; |
| 751 | current->fsuid = current->euid; |
| 752 | |
| 753 | key_fsuid_changed(current); |
| 754 | |
| 755 | return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE); |
| 756 | } |
| 757 | |
| 758 | |
| 759 | |
| 760 | /* |
| 761 | * setuid() is implemented like SysV with SAVED_IDS |
| 762 | * |
| 763 | * Note that SAVED_ID's is deficient in that a setuid root program |
| 764 | * like sendmail, for example, cannot set its uid to be a normal |
| 765 | * user and then switch back, because if you're root, setuid() sets |
| 766 | * the saved uid too. If you don't like this, blame the bright people |
| 767 | * in the POSIX committee and/or USG. Note that the BSD-style setreuid() |
| 768 | * will allow a root program to temporarily drop privileges and be able to |
| 769 | * regain them by swapping the real and effective uid. |
| 770 | */ |
| 771 | asmlinkage long sys_setuid(uid_t uid) |
| 772 | { |
| 773 | int old_euid = current->euid; |
| 774 | int old_ruid, old_suid, new_ruid, new_suid; |
| 775 | int retval; |
| 776 | |
| 777 | retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID); |
| 778 | if (retval) |
| 779 | return retval; |
| 780 | |
| 781 | old_ruid = new_ruid = current->uid; |
| 782 | old_suid = current->suid; |
| 783 | new_suid = old_suid; |
| 784 | |
| 785 | if (capable(CAP_SETUID)) { |
| 786 | if (uid != old_ruid && set_user(uid, old_euid != uid) < 0) |
| 787 | return -EAGAIN; |
| 788 | new_suid = uid; |
| 789 | } else if ((uid != current->uid) && (uid != new_suid)) |
| 790 | return -EPERM; |
| 791 | |
| 792 | if (old_euid != uid) |
| 793 | { |
Alan Cox | d6e7114 | 2005-06-23 00:09:43 -0700 | [diff] [blame] | 794 | current->mm->dumpable = suid_dumpable; |
akpm@osdl.org | d59dd46 | 2005-05-01 08:58:47 -0700 | [diff] [blame] | 795 | smp_wmb(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 796 | } |
| 797 | current->fsuid = current->euid = uid; |
| 798 | current->suid = new_suid; |
| 799 | |
| 800 | key_fsuid_changed(current); |
| 801 | |
| 802 | return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID); |
| 803 | } |
| 804 | |
| 805 | |
| 806 | /* |
| 807 | * This function implements a generic ability to update ruid, euid, |
| 808 | * and suid. This allows you to implement the 4.4 compatible seteuid(). |
| 809 | */ |
| 810 | asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid) |
| 811 | { |
| 812 | int old_ruid = current->uid; |
| 813 | int old_euid = current->euid; |
| 814 | int old_suid = current->suid; |
| 815 | int retval; |
| 816 | |
| 817 | retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES); |
| 818 | if (retval) |
| 819 | return retval; |
| 820 | |
| 821 | if (!capable(CAP_SETUID)) { |
| 822 | if ((ruid != (uid_t) -1) && (ruid != current->uid) && |
| 823 | (ruid != current->euid) && (ruid != current->suid)) |
| 824 | return -EPERM; |
| 825 | if ((euid != (uid_t) -1) && (euid != current->uid) && |
| 826 | (euid != current->euid) && (euid != current->suid)) |
| 827 | return -EPERM; |
| 828 | if ((suid != (uid_t) -1) && (suid != current->uid) && |
| 829 | (suid != current->euid) && (suid != current->suid)) |
| 830 | return -EPERM; |
| 831 | } |
| 832 | if (ruid != (uid_t) -1) { |
| 833 | if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0) |
| 834 | return -EAGAIN; |
| 835 | } |
| 836 | if (euid != (uid_t) -1) { |
| 837 | if (euid != current->euid) |
| 838 | { |
Alan Cox | d6e7114 | 2005-06-23 00:09:43 -0700 | [diff] [blame] | 839 | current->mm->dumpable = suid_dumpable; |
akpm@osdl.org | d59dd46 | 2005-05-01 08:58:47 -0700 | [diff] [blame] | 840 | smp_wmb(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 841 | } |
| 842 | current->euid = euid; |
| 843 | } |
| 844 | current->fsuid = current->euid; |
| 845 | if (suid != (uid_t) -1) |
| 846 | current->suid = suid; |
| 847 | |
| 848 | key_fsuid_changed(current); |
| 849 | |
| 850 | return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES); |
| 851 | } |
| 852 | |
| 853 | asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid) |
| 854 | { |
| 855 | int retval; |
| 856 | |
| 857 | if (!(retval = put_user(current->uid, ruid)) && |
| 858 | !(retval = put_user(current->euid, euid))) |
| 859 | retval = put_user(current->suid, suid); |
| 860 | |
| 861 | return retval; |
| 862 | } |
| 863 | |
| 864 | /* |
| 865 | * Same as above, but for rgid, egid, sgid. |
| 866 | */ |
| 867 | asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid) |
| 868 | { |
| 869 | int retval; |
| 870 | |
| 871 | retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES); |
| 872 | if (retval) |
| 873 | return retval; |
| 874 | |
| 875 | if (!capable(CAP_SETGID)) { |
| 876 | if ((rgid != (gid_t) -1) && (rgid != current->gid) && |
| 877 | (rgid != current->egid) && (rgid != current->sgid)) |
| 878 | return -EPERM; |
| 879 | if ((egid != (gid_t) -1) && (egid != current->gid) && |
| 880 | (egid != current->egid) && (egid != current->sgid)) |
| 881 | return -EPERM; |
| 882 | if ((sgid != (gid_t) -1) && (sgid != current->gid) && |
| 883 | (sgid != current->egid) && (sgid != current->sgid)) |
| 884 | return -EPERM; |
| 885 | } |
| 886 | if (egid != (gid_t) -1) { |
| 887 | if (egid != current->egid) |
| 888 | { |
Alan Cox | d6e7114 | 2005-06-23 00:09:43 -0700 | [diff] [blame] | 889 | current->mm->dumpable = suid_dumpable; |
akpm@osdl.org | d59dd46 | 2005-05-01 08:58:47 -0700 | [diff] [blame] | 890 | smp_wmb(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 891 | } |
| 892 | current->egid = egid; |
| 893 | } |
| 894 | current->fsgid = current->egid; |
| 895 | if (rgid != (gid_t) -1) |
| 896 | current->gid = rgid; |
| 897 | if (sgid != (gid_t) -1) |
| 898 | current->sgid = sgid; |
| 899 | |
| 900 | key_fsgid_changed(current); |
| 901 | return 0; |
| 902 | } |
| 903 | |
| 904 | asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid) |
| 905 | { |
| 906 | int retval; |
| 907 | |
| 908 | if (!(retval = put_user(current->gid, rgid)) && |
| 909 | !(retval = put_user(current->egid, egid))) |
| 910 | retval = put_user(current->sgid, sgid); |
| 911 | |
| 912 | return retval; |
| 913 | } |
| 914 | |
| 915 | |
| 916 | /* |
| 917 | * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This |
| 918 | * is used for "access()" and for the NFS daemon (letting nfsd stay at |
| 919 | * whatever uid it wants to). It normally shadows "euid", except when |
| 920 | * explicitly set by setfsuid() or for access.. |
| 921 | */ |
| 922 | asmlinkage long sys_setfsuid(uid_t uid) |
| 923 | { |
| 924 | int old_fsuid; |
| 925 | |
| 926 | old_fsuid = current->fsuid; |
| 927 | if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS)) |
| 928 | return old_fsuid; |
| 929 | |
| 930 | if (uid == current->uid || uid == current->euid || |
| 931 | uid == current->suid || uid == current->fsuid || |
| 932 | capable(CAP_SETUID)) |
| 933 | { |
| 934 | if (uid != old_fsuid) |
| 935 | { |
Alan Cox | d6e7114 | 2005-06-23 00:09:43 -0700 | [diff] [blame] | 936 | current->mm->dumpable = suid_dumpable; |
akpm@osdl.org | d59dd46 | 2005-05-01 08:58:47 -0700 | [diff] [blame] | 937 | smp_wmb(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 938 | } |
| 939 | current->fsuid = uid; |
| 940 | } |
| 941 | |
| 942 | key_fsuid_changed(current); |
| 943 | |
| 944 | security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS); |
| 945 | |
| 946 | return old_fsuid; |
| 947 | } |
| 948 | |
| 949 | /* |
| 950 | * Samma på svenska.. |
| 951 | */ |
| 952 | asmlinkage long sys_setfsgid(gid_t gid) |
| 953 | { |
| 954 | int old_fsgid; |
| 955 | |
| 956 | old_fsgid = current->fsgid; |
| 957 | if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS)) |
| 958 | return old_fsgid; |
| 959 | |
| 960 | if (gid == current->gid || gid == current->egid || |
| 961 | gid == current->sgid || gid == current->fsgid || |
| 962 | capable(CAP_SETGID)) |
| 963 | { |
| 964 | if (gid != old_fsgid) |
| 965 | { |
Alan Cox | d6e7114 | 2005-06-23 00:09:43 -0700 | [diff] [blame] | 966 | current->mm->dumpable = suid_dumpable; |
akpm@osdl.org | d59dd46 | 2005-05-01 08:58:47 -0700 | [diff] [blame] | 967 | smp_wmb(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 968 | } |
| 969 | current->fsgid = gid; |
| 970 | key_fsgid_changed(current); |
| 971 | } |
| 972 | return old_fsgid; |
| 973 | } |
| 974 | |
| 975 | asmlinkage long sys_times(struct tms __user * tbuf) |
| 976 | { |
| 977 | /* |
| 978 | * In the SMP world we might just be unlucky and have one of |
| 979 | * the times increment as we use it. Since the value is an |
| 980 | * atomically safe type this is just fine. Conceptually its |
| 981 | * as if the syscall took an instant longer to occur. |
| 982 | */ |
| 983 | if (tbuf) { |
| 984 | struct tms tmp; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 985 | cputime_t utime, stime, cutime, cstime; |
| 986 | |
Christoph Lameter | 71a2224 | 2005-06-23 00:10:05 -0700 | [diff] [blame] | 987 | #ifdef CONFIG_SMP |
| 988 | if (thread_group_empty(current)) { |
| 989 | /* |
| 990 | * Single thread case without the use of any locks. |
| 991 | * |
| 992 | * We may race with release_task if two threads are |
| 993 | * executing. However, release task first adds up the |
| 994 | * counters (__exit_signal) before removing the task |
| 995 | * from the process tasklist (__unhash_process). |
| 996 | * __exit_signal also acquires and releases the |
| 997 | * siglock which results in the proper memory ordering |
| 998 | * so that the list modifications are always visible |
| 999 | * after the counters have been updated. |
| 1000 | * |
| 1001 | * If the counters have been updated by the second thread |
| 1002 | * but the thread has not yet been removed from the list |
| 1003 | * then the other branch will be executing which will |
| 1004 | * block on tasklist_lock until the exit handling of the |
| 1005 | * other task is finished. |
| 1006 | * |
| 1007 | * This also implies that the sighand->siglock cannot |
| 1008 | * be held by another processor. So we can also |
| 1009 | * skip acquiring that lock. |
| 1010 | */ |
| 1011 | utime = cputime_add(current->signal->utime, current->utime); |
| 1012 | stime = cputime_add(current->signal->utime, current->stime); |
| 1013 | cutime = current->signal->cutime; |
| 1014 | cstime = current->signal->cstime; |
| 1015 | } else |
| 1016 | #endif |
| 1017 | { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1018 | |
Christoph Lameter | 71a2224 | 2005-06-23 00:10:05 -0700 | [diff] [blame] | 1019 | /* Process with multiple threads */ |
| 1020 | struct task_struct *tsk = current; |
| 1021 | struct task_struct *t; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1022 | |
Christoph Lameter | 71a2224 | 2005-06-23 00:10:05 -0700 | [diff] [blame] | 1023 | read_lock(&tasklist_lock); |
| 1024 | utime = tsk->signal->utime; |
| 1025 | stime = tsk->signal->stime; |
| 1026 | t = tsk; |
| 1027 | do { |
| 1028 | utime = cputime_add(utime, t->utime); |
| 1029 | stime = cputime_add(stime, t->stime); |
| 1030 | t = next_thread(t); |
| 1031 | } while (t != tsk); |
| 1032 | |
| 1033 | /* |
| 1034 | * While we have tasklist_lock read-locked, no dying thread |
| 1035 | * can be updating current->signal->[us]time. Instead, |
| 1036 | * we got their counts included in the live thread loop. |
| 1037 | * However, another thread can come in right now and |
| 1038 | * do a wait call that updates current->signal->c[us]time. |
| 1039 | * To make sure we always see that pair updated atomically, |
| 1040 | * we take the siglock around fetching them. |
| 1041 | */ |
| 1042 | spin_lock_irq(&tsk->sighand->siglock); |
| 1043 | cutime = tsk->signal->cutime; |
| 1044 | cstime = tsk->signal->cstime; |
| 1045 | spin_unlock_irq(&tsk->sighand->siglock); |
| 1046 | read_unlock(&tasklist_lock); |
| 1047 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1048 | tmp.tms_utime = cputime_to_clock_t(utime); |
| 1049 | tmp.tms_stime = cputime_to_clock_t(stime); |
| 1050 | tmp.tms_cutime = cputime_to_clock_t(cutime); |
| 1051 | tmp.tms_cstime = cputime_to_clock_t(cstime); |
| 1052 | if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) |
| 1053 | return -EFAULT; |
| 1054 | } |
| 1055 | return (long) jiffies_64_to_clock_t(get_jiffies_64()); |
| 1056 | } |
| 1057 | |
| 1058 | /* |
| 1059 | * This needs some heavy checking ... |
| 1060 | * I just haven't the stomach for it. I also don't fully |
| 1061 | * understand sessions/pgrp etc. Let somebody who does explain it. |
| 1062 | * |
| 1063 | * OK, I think I have the protection semantics right.... this is really |
| 1064 | * only important on a multi-user system anyway, to make sure one user |
| 1065 | * can't send a signal to a process owned by another. -TYT, 12/12/91 |
| 1066 | * |
| 1067 | * Auch. Had to add the 'did_exec' flag to conform completely to POSIX. |
| 1068 | * LBT 04.03.94 |
| 1069 | */ |
| 1070 | |
| 1071 | asmlinkage long sys_setpgid(pid_t pid, pid_t pgid) |
| 1072 | { |
| 1073 | struct task_struct *p; |
| 1074 | int err = -EINVAL; |
| 1075 | |
| 1076 | if (!pid) |
| 1077 | pid = current->pid; |
| 1078 | if (!pgid) |
| 1079 | pgid = pid; |
| 1080 | if (pgid < 0) |
| 1081 | return -EINVAL; |
| 1082 | |
| 1083 | /* From this point forward we keep holding onto the tasklist lock |
| 1084 | * so that our parent does not change from under us. -DaveM |
| 1085 | */ |
| 1086 | write_lock_irq(&tasklist_lock); |
| 1087 | |
| 1088 | err = -ESRCH; |
| 1089 | p = find_task_by_pid(pid); |
| 1090 | if (!p) |
| 1091 | goto out; |
| 1092 | |
| 1093 | err = -EINVAL; |
| 1094 | if (!thread_group_leader(p)) |
| 1095 | goto out; |
| 1096 | |
| 1097 | if (p->parent == current || p->real_parent == current) { |
| 1098 | err = -EPERM; |
| 1099 | if (p->signal->session != current->signal->session) |
| 1100 | goto out; |
| 1101 | err = -EACCES; |
| 1102 | if (p->did_exec) |
| 1103 | goto out; |
| 1104 | } else { |
| 1105 | err = -ESRCH; |
| 1106 | if (p != current) |
| 1107 | goto out; |
| 1108 | } |
| 1109 | |
| 1110 | err = -EPERM; |
| 1111 | if (p->signal->leader) |
| 1112 | goto out; |
| 1113 | |
| 1114 | if (pgid != pid) { |
| 1115 | struct task_struct *p; |
| 1116 | |
| 1117 | do_each_task_pid(pgid, PIDTYPE_PGID, p) { |
| 1118 | if (p->signal->session == current->signal->session) |
| 1119 | goto ok_pgid; |
| 1120 | } while_each_task_pid(pgid, PIDTYPE_PGID, p); |
| 1121 | goto out; |
| 1122 | } |
| 1123 | |
| 1124 | ok_pgid: |
| 1125 | err = security_task_setpgid(p, pgid); |
| 1126 | if (err) |
| 1127 | goto out; |
| 1128 | |
| 1129 | if (process_group(p) != pgid) { |
| 1130 | detach_pid(p, PIDTYPE_PGID); |
| 1131 | p->signal->pgrp = pgid; |
| 1132 | attach_pid(p, PIDTYPE_PGID, pgid); |
| 1133 | } |
| 1134 | |
| 1135 | err = 0; |
| 1136 | out: |
| 1137 | /* All paths lead to here, thus we are safe. -DaveM */ |
| 1138 | write_unlock_irq(&tasklist_lock); |
| 1139 | return err; |
| 1140 | } |
| 1141 | |
| 1142 | asmlinkage long sys_getpgid(pid_t pid) |
| 1143 | { |
| 1144 | if (!pid) { |
| 1145 | return process_group(current); |
| 1146 | } else { |
| 1147 | int retval; |
| 1148 | struct task_struct *p; |
| 1149 | |
| 1150 | read_lock(&tasklist_lock); |
| 1151 | p = find_task_by_pid(pid); |
| 1152 | |
| 1153 | retval = -ESRCH; |
| 1154 | if (p) { |
| 1155 | retval = security_task_getpgid(p); |
| 1156 | if (!retval) |
| 1157 | retval = process_group(p); |
| 1158 | } |
| 1159 | read_unlock(&tasklist_lock); |
| 1160 | return retval; |
| 1161 | } |
| 1162 | } |
| 1163 | |
| 1164 | #ifdef __ARCH_WANT_SYS_GETPGRP |
| 1165 | |
| 1166 | asmlinkage long sys_getpgrp(void) |
| 1167 | { |
| 1168 | /* SMP - assuming writes are word atomic this is fine */ |
| 1169 | return process_group(current); |
| 1170 | } |
| 1171 | |
| 1172 | #endif |
| 1173 | |
| 1174 | asmlinkage long sys_getsid(pid_t pid) |
| 1175 | { |
| 1176 | if (!pid) { |
| 1177 | return current->signal->session; |
| 1178 | } else { |
| 1179 | int retval; |
| 1180 | struct task_struct *p; |
| 1181 | |
| 1182 | read_lock(&tasklist_lock); |
| 1183 | p = find_task_by_pid(pid); |
| 1184 | |
| 1185 | retval = -ESRCH; |
| 1186 | if(p) { |
| 1187 | retval = security_task_getsid(p); |
| 1188 | if (!retval) |
| 1189 | retval = p->signal->session; |
| 1190 | } |
| 1191 | read_unlock(&tasklist_lock); |
| 1192 | return retval; |
| 1193 | } |
| 1194 | } |
| 1195 | |
| 1196 | asmlinkage long sys_setsid(void) |
| 1197 | { |
| 1198 | struct pid *pid; |
| 1199 | int err = -EPERM; |
| 1200 | |
| 1201 | if (!thread_group_leader(current)) |
| 1202 | return -EINVAL; |
| 1203 | |
| 1204 | down(&tty_sem); |
| 1205 | write_lock_irq(&tasklist_lock); |
| 1206 | |
| 1207 | pid = find_pid(PIDTYPE_PGID, current->pid); |
| 1208 | if (pid) |
| 1209 | goto out; |
| 1210 | |
| 1211 | current->signal->leader = 1; |
| 1212 | __set_special_pids(current->pid, current->pid); |
| 1213 | current->signal->tty = NULL; |
| 1214 | current->signal->tty_old_pgrp = 0; |
| 1215 | err = process_group(current); |
| 1216 | out: |
| 1217 | write_unlock_irq(&tasklist_lock); |
| 1218 | up(&tty_sem); |
| 1219 | return err; |
| 1220 | } |
| 1221 | |
| 1222 | /* |
| 1223 | * Supplementary group IDs |
| 1224 | */ |
| 1225 | |
| 1226 | /* init to 2 - one for init_task, one to ensure it is never freed */ |
| 1227 | struct group_info init_groups = { .usage = ATOMIC_INIT(2) }; |
| 1228 | |
| 1229 | struct group_info *groups_alloc(int gidsetsize) |
| 1230 | { |
| 1231 | struct group_info *group_info; |
| 1232 | int nblocks; |
| 1233 | int i; |
| 1234 | |
| 1235 | nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK; |
| 1236 | /* Make sure we always allocate at least one indirect block pointer */ |
| 1237 | nblocks = nblocks ? : 1; |
| 1238 | group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); |
| 1239 | if (!group_info) |
| 1240 | return NULL; |
| 1241 | group_info->ngroups = gidsetsize; |
| 1242 | group_info->nblocks = nblocks; |
| 1243 | atomic_set(&group_info->usage, 1); |
| 1244 | |
| 1245 | if (gidsetsize <= NGROUPS_SMALL) { |
| 1246 | group_info->blocks[0] = group_info->small_block; |
| 1247 | } else { |
| 1248 | for (i = 0; i < nblocks; i++) { |
| 1249 | gid_t *b; |
| 1250 | b = (void *)__get_free_page(GFP_USER); |
| 1251 | if (!b) |
| 1252 | goto out_undo_partial_alloc; |
| 1253 | group_info->blocks[i] = b; |
| 1254 | } |
| 1255 | } |
| 1256 | return group_info; |
| 1257 | |
| 1258 | out_undo_partial_alloc: |
| 1259 | while (--i >= 0) { |
| 1260 | free_page((unsigned long)group_info->blocks[i]); |
| 1261 | } |
| 1262 | kfree(group_info); |
| 1263 | return NULL; |
| 1264 | } |
| 1265 | |
| 1266 | EXPORT_SYMBOL(groups_alloc); |
| 1267 | |
| 1268 | void groups_free(struct group_info *group_info) |
| 1269 | { |
| 1270 | if (group_info->blocks[0] != group_info->small_block) { |
| 1271 | int i; |
| 1272 | for (i = 0; i < group_info->nblocks; i++) |
| 1273 | free_page((unsigned long)group_info->blocks[i]); |
| 1274 | } |
| 1275 | kfree(group_info); |
| 1276 | } |
| 1277 | |
| 1278 | EXPORT_SYMBOL(groups_free); |
| 1279 | |
| 1280 | /* export the group_info to a user-space array */ |
| 1281 | static int groups_to_user(gid_t __user *grouplist, |
| 1282 | struct group_info *group_info) |
| 1283 | { |
| 1284 | int i; |
| 1285 | int count = group_info->ngroups; |
| 1286 | |
| 1287 | for (i = 0; i < group_info->nblocks; i++) { |
| 1288 | int cp_count = min(NGROUPS_PER_BLOCK, count); |
| 1289 | int off = i * NGROUPS_PER_BLOCK; |
| 1290 | int len = cp_count * sizeof(*grouplist); |
| 1291 | |
| 1292 | if (copy_to_user(grouplist+off, group_info->blocks[i], len)) |
| 1293 | return -EFAULT; |
| 1294 | |
| 1295 | count -= cp_count; |
| 1296 | } |
| 1297 | return 0; |
| 1298 | } |
| 1299 | |
| 1300 | /* fill a group_info from a user-space array - it must be allocated already */ |
| 1301 | static int groups_from_user(struct group_info *group_info, |
| 1302 | gid_t __user *grouplist) |
| 1303 | { |
| 1304 | int i; |
| 1305 | int count = group_info->ngroups; |
| 1306 | |
| 1307 | for (i = 0; i < group_info->nblocks; i++) { |
| 1308 | int cp_count = min(NGROUPS_PER_BLOCK, count); |
| 1309 | int off = i * NGROUPS_PER_BLOCK; |
| 1310 | int len = cp_count * sizeof(*grouplist); |
| 1311 | |
| 1312 | if (copy_from_user(group_info->blocks[i], grouplist+off, len)) |
| 1313 | return -EFAULT; |
| 1314 | |
| 1315 | count -= cp_count; |
| 1316 | } |
| 1317 | return 0; |
| 1318 | } |
| 1319 | |
Domen Puncer | ebe8b54 | 2005-05-05 16:16:19 -0700 | [diff] [blame] | 1320 | /* a simple Shell sort */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1321 | static void groups_sort(struct group_info *group_info) |
| 1322 | { |
| 1323 | int base, max, stride; |
| 1324 | int gidsetsize = group_info->ngroups; |
| 1325 | |
| 1326 | for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1) |
| 1327 | ; /* nothing */ |
| 1328 | stride /= 3; |
| 1329 | |
| 1330 | while (stride) { |
| 1331 | max = gidsetsize - stride; |
| 1332 | for (base = 0; base < max; base++) { |
| 1333 | int left = base; |
| 1334 | int right = left + stride; |
| 1335 | gid_t tmp = GROUP_AT(group_info, right); |
| 1336 | |
| 1337 | while (left >= 0 && GROUP_AT(group_info, left) > tmp) { |
| 1338 | GROUP_AT(group_info, right) = |
| 1339 | GROUP_AT(group_info, left); |
| 1340 | right = left; |
| 1341 | left -= stride; |
| 1342 | } |
| 1343 | GROUP_AT(group_info, right) = tmp; |
| 1344 | } |
| 1345 | stride /= 3; |
| 1346 | } |
| 1347 | } |
| 1348 | |
| 1349 | /* a simple bsearch */ |
David Howells | 3e30148 | 2005-06-23 22:00:56 -0700 | [diff] [blame] | 1350 | int groups_search(struct group_info *group_info, gid_t grp) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1351 | { |
| 1352 | int left, right; |
| 1353 | |
| 1354 | if (!group_info) |
| 1355 | return 0; |
| 1356 | |
| 1357 | left = 0; |
| 1358 | right = group_info->ngroups; |
| 1359 | while (left < right) { |
| 1360 | int mid = (left+right)/2; |
| 1361 | int cmp = grp - GROUP_AT(group_info, mid); |
| 1362 | if (cmp > 0) |
| 1363 | left = mid + 1; |
| 1364 | else if (cmp < 0) |
| 1365 | right = mid; |
| 1366 | else |
| 1367 | return 1; |
| 1368 | } |
| 1369 | return 0; |
| 1370 | } |
| 1371 | |
| 1372 | /* validate and set current->group_info */ |
| 1373 | int set_current_groups(struct group_info *group_info) |
| 1374 | { |
| 1375 | int retval; |
| 1376 | struct group_info *old_info; |
| 1377 | |
| 1378 | retval = security_task_setgroups(group_info); |
| 1379 | if (retval) |
| 1380 | return retval; |
| 1381 | |
| 1382 | groups_sort(group_info); |
| 1383 | get_group_info(group_info); |
| 1384 | |
| 1385 | task_lock(current); |
| 1386 | old_info = current->group_info; |
| 1387 | current->group_info = group_info; |
| 1388 | task_unlock(current); |
| 1389 | |
| 1390 | put_group_info(old_info); |
| 1391 | |
| 1392 | return 0; |
| 1393 | } |
| 1394 | |
| 1395 | EXPORT_SYMBOL(set_current_groups); |
| 1396 | |
| 1397 | asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist) |
| 1398 | { |
| 1399 | int i = 0; |
| 1400 | |
| 1401 | /* |
| 1402 | * SMP: Nobody else can change our grouplist. Thus we are |
| 1403 | * safe. |
| 1404 | */ |
| 1405 | |
| 1406 | if (gidsetsize < 0) |
| 1407 | return -EINVAL; |
| 1408 | |
| 1409 | /* no need to grab task_lock here; it cannot change */ |
| 1410 | get_group_info(current->group_info); |
| 1411 | i = current->group_info->ngroups; |
| 1412 | if (gidsetsize) { |
| 1413 | if (i > gidsetsize) { |
| 1414 | i = -EINVAL; |
| 1415 | goto out; |
| 1416 | } |
| 1417 | if (groups_to_user(grouplist, current->group_info)) { |
| 1418 | i = -EFAULT; |
| 1419 | goto out; |
| 1420 | } |
| 1421 | } |
| 1422 | out: |
| 1423 | put_group_info(current->group_info); |
| 1424 | return i; |
| 1425 | } |
| 1426 | |
| 1427 | /* |
| 1428 | * SMP: Our groups are copy-on-write. We can set them safely |
| 1429 | * without another task interfering. |
| 1430 | */ |
| 1431 | |
| 1432 | asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist) |
| 1433 | { |
| 1434 | struct group_info *group_info; |
| 1435 | int retval; |
| 1436 | |
| 1437 | if (!capable(CAP_SETGID)) |
| 1438 | return -EPERM; |
| 1439 | if ((unsigned)gidsetsize > NGROUPS_MAX) |
| 1440 | return -EINVAL; |
| 1441 | |
| 1442 | group_info = groups_alloc(gidsetsize); |
| 1443 | if (!group_info) |
| 1444 | return -ENOMEM; |
| 1445 | retval = groups_from_user(group_info, grouplist); |
| 1446 | if (retval) { |
| 1447 | put_group_info(group_info); |
| 1448 | return retval; |
| 1449 | } |
| 1450 | |
| 1451 | retval = set_current_groups(group_info); |
| 1452 | put_group_info(group_info); |
| 1453 | |
| 1454 | return retval; |
| 1455 | } |
| 1456 | |
| 1457 | /* |
| 1458 | * Check whether we're fsgid/egid or in the supplemental group.. |
| 1459 | */ |
| 1460 | int in_group_p(gid_t grp) |
| 1461 | { |
| 1462 | int retval = 1; |
| 1463 | if (grp != current->fsgid) { |
| 1464 | get_group_info(current->group_info); |
| 1465 | retval = groups_search(current->group_info, grp); |
| 1466 | put_group_info(current->group_info); |
| 1467 | } |
| 1468 | return retval; |
| 1469 | } |
| 1470 | |
| 1471 | EXPORT_SYMBOL(in_group_p); |
| 1472 | |
| 1473 | int in_egroup_p(gid_t grp) |
| 1474 | { |
| 1475 | int retval = 1; |
| 1476 | if (grp != current->egid) { |
| 1477 | get_group_info(current->group_info); |
| 1478 | retval = groups_search(current->group_info, grp); |
| 1479 | put_group_info(current->group_info); |
| 1480 | } |
| 1481 | return retval; |
| 1482 | } |
| 1483 | |
| 1484 | EXPORT_SYMBOL(in_egroup_p); |
| 1485 | |
| 1486 | DECLARE_RWSEM(uts_sem); |
| 1487 | |
| 1488 | EXPORT_SYMBOL(uts_sem); |
| 1489 | |
| 1490 | asmlinkage long sys_newuname(struct new_utsname __user * name) |
| 1491 | { |
| 1492 | int errno = 0; |
| 1493 | |
| 1494 | down_read(&uts_sem); |
| 1495 | if (copy_to_user(name,&system_utsname,sizeof *name)) |
| 1496 | errno = -EFAULT; |
| 1497 | up_read(&uts_sem); |
| 1498 | return errno; |
| 1499 | } |
| 1500 | |
| 1501 | asmlinkage long sys_sethostname(char __user *name, int len) |
| 1502 | { |
| 1503 | int errno; |
| 1504 | char tmp[__NEW_UTS_LEN]; |
| 1505 | |
| 1506 | if (!capable(CAP_SYS_ADMIN)) |
| 1507 | return -EPERM; |
| 1508 | if (len < 0 || len > __NEW_UTS_LEN) |
| 1509 | return -EINVAL; |
| 1510 | down_write(&uts_sem); |
| 1511 | errno = -EFAULT; |
| 1512 | if (!copy_from_user(tmp, name, len)) { |
| 1513 | memcpy(system_utsname.nodename, tmp, len); |
| 1514 | system_utsname.nodename[len] = 0; |
| 1515 | errno = 0; |
| 1516 | } |
| 1517 | up_write(&uts_sem); |
| 1518 | return errno; |
| 1519 | } |
| 1520 | |
| 1521 | #ifdef __ARCH_WANT_SYS_GETHOSTNAME |
| 1522 | |
| 1523 | asmlinkage long sys_gethostname(char __user *name, int len) |
| 1524 | { |
| 1525 | int i, errno; |
| 1526 | |
| 1527 | if (len < 0) |
| 1528 | return -EINVAL; |
| 1529 | down_read(&uts_sem); |
| 1530 | i = 1 + strlen(system_utsname.nodename); |
| 1531 | if (i > len) |
| 1532 | i = len; |
| 1533 | errno = 0; |
| 1534 | if (copy_to_user(name, system_utsname.nodename, i)) |
| 1535 | errno = -EFAULT; |
| 1536 | up_read(&uts_sem); |
| 1537 | return errno; |
| 1538 | } |
| 1539 | |
| 1540 | #endif |
| 1541 | |
| 1542 | /* |
| 1543 | * Only setdomainname; getdomainname can be implemented by calling |
| 1544 | * uname() |
| 1545 | */ |
| 1546 | asmlinkage long sys_setdomainname(char __user *name, int len) |
| 1547 | { |
| 1548 | int errno; |
| 1549 | char tmp[__NEW_UTS_LEN]; |
| 1550 | |
| 1551 | if (!capable(CAP_SYS_ADMIN)) |
| 1552 | return -EPERM; |
| 1553 | if (len < 0 || len > __NEW_UTS_LEN) |
| 1554 | return -EINVAL; |
| 1555 | |
| 1556 | down_write(&uts_sem); |
| 1557 | errno = -EFAULT; |
| 1558 | if (!copy_from_user(tmp, name, len)) { |
| 1559 | memcpy(system_utsname.domainname, tmp, len); |
| 1560 | system_utsname.domainname[len] = 0; |
| 1561 | errno = 0; |
| 1562 | } |
| 1563 | up_write(&uts_sem); |
| 1564 | return errno; |
| 1565 | } |
| 1566 | |
| 1567 | asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim) |
| 1568 | { |
| 1569 | if (resource >= RLIM_NLIMITS) |
| 1570 | return -EINVAL; |
| 1571 | else { |
| 1572 | struct rlimit value; |
| 1573 | task_lock(current->group_leader); |
| 1574 | value = current->signal->rlim[resource]; |
| 1575 | task_unlock(current->group_leader); |
| 1576 | return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; |
| 1577 | } |
| 1578 | } |
| 1579 | |
| 1580 | #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT |
| 1581 | |
| 1582 | /* |
| 1583 | * Back compatibility for getrlimit. Needed for some apps. |
| 1584 | */ |
| 1585 | |
| 1586 | asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim) |
| 1587 | { |
| 1588 | struct rlimit x; |
| 1589 | if (resource >= RLIM_NLIMITS) |
| 1590 | return -EINVAL; |
| 1591 | |
| 1592 | task_lock(current->group_leader); |
| 1593 | x = current->signal->rlim[resource]; |
| 1594 | task_unlock(current->group_leader); |
| 1595 | if(x.rlim_cur > 0x7FFFFFFF) |
| 1596 | x.rlim_cur = 0x7FFFFFFF; |
| 1597 | if(x.rlim_max > 0x7FFFFFFF) |
| 1598 | x.rlim_max = 0x7FFFFFFF; |
| 1599 | return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0; |
| 1600 | } |
| 1601 | |
| 1602 | #endif |
| 1603 | |
| 1604 | asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim) |
| 1605 | { |
| 1606 | struct rlimit new_rlim, *old_rlim; |
| 1607 | int retval; |
| 1608 | |
| 1609 | if (resource >= RLIM_NLIMITS) |
| 1610 | return -EINVAL; |
| 1611 | if(copy_from_user(&new_rlim, rlim, sizeof(*rlim))) |
| 1612 | return -EFAULT; |
| 1613 | if (new_rlim.rlim_cur > new_rlim.rlim_max) |
| 1614 | return -EINVAL; |
| 1615 | old_rlim = current->signal->rlim + resource; |
| 1616 | if ((new_rlim.rlim_max > old_rlim->rlim_max) && |
| 1617 | !capable(CAP_SYS_RESOURCE)) |
| 1618 | return -EPERM; |
| 1619 | if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN) |
| 1620 | return -EPERM; |
| 1621 | |
| 1622 | retval = security_task_setrlimit(resource, &new_rlim); |
| 1623 | if (retval) |
| 1624 | return retval; |
| 1625 | |
| 1626 | task_lock(current->group_leader); |
| 1627 | *old_rlim = new_rlim; |
| 1628 | task_unlock(current->group_leader); |
| 1629 | |
| 1630 | if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY && |
| 1631 | (cputime_eq(current->signal->it_prof_expires, cputime_zero) || |
| 1632 | new_rlim.rlim_cur <= cputime_to_secs( |
| 1633 | current->signal->it_prof_expires))) { |
| 1634 | cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur); |
| 1635 | read_lock(&tasklist_lock); |
| 1636 | spin_lock_irq(¤t->sighand->siglock); |
| 1637 | set_process_cpu_timer(current, CPUCLOCK_PROF, |
| 1638 | &cputime, NULL); |
| 1639 | spin_unlock_irq(¤t->sighand->siglock); |
| 1640 | read_unlock(&tasklist_lock); |
| 1641 | } |
| 1642 | |
| 1643 | return 0; |
| 1644 | } |
| 1645 | |
| 1646 | /* |
| 1647 | * It would make sense to put struct rusage in the task_struct, |
| 1648 | * except that would make the task_struct be *really big*. After |
| 1649 | * task_struct gets moved into malloc'ed memory, it would |
| 1650 | * make sense to do this. It will make moving the rest of the information |
| 1651 | * a lot simpler! (Which we're not doing right now because we're not |
| 1652 | * measuring them yet). |
| 1653 | * |
| 1654 | * This expects to be called with tasklist_lock read-locked or better, |
| 1655 | * and the siglock not locked. It may momentarily take the siglock. |
| 1656 | * |
| 1657 | * When sampling multiple threads for RUSAGE_SELF, under SMP we might have |
| 1658 | * races with threads incrementing their own counters. But since word |
| 1659 | * reads are atomic, we either get new values or old values and we don't |
| 1660 | * care which for the sums. We always take the siglock to protect reading |
| 1661 | * the c* fields from p->signal from races with exit.c updating those |
| 1662 | * fields when reaping, so a sample either gets all the additions of a |
| 1663 | * given child after it's reaped, or none so this sample is before reaping. |
| 1664 | */ |
| 1665 | |
| 1666 | static void k_getrusage(struct task_struct *p, int who, struct rusage *r) |
| 1667 | { |
| 1668 | struct task_struct *t; |
| 1669 | unsigned long flags; |
| 1670 | cputime_t utime, stime; |
| 1671 | |
| 1672 | memset((char *) r, 0, sizeof *r); |
| 1673 | |
| 1674 | if (unlikely(!p->signal)) |
| 1675 | return; |
| 1676 | |
| 1677 | switch (who) { |
| 1678 | case RUSAGE_CHILDREN: |
| 1679 | spin_lock_irqsave(&p->sighand->siglock, flags); |
| 1680 | utime = p->signal->cutime; |
| 1681 | stime = p->signal->cstime; |
| 1682 | r->ru_nvcsw = p->signal->cnvcsw; |
| 1683 | r->ru_nivcsw = p->signal->cnivcsw; |
| 1684 | r->ru_minflt = p->signal->cmin_flt; |
| 1685 | r->ru_majflt = p->signal->cmaj_flt; |
| 1686 | spin_unlock_irqrestore(&p->sighand->siglock, flags); |
| 1687 | cputime_to_timeval(utime, &r->ru_utime); |
| 1688 | cputime_to_timeval(stime, &r->ru_stime); |
| 1689 | break; |
| 1690 | case RUSAGE_SELF: |
| 1691 | spin_lock_irqsave(&p->sighand->siglock, flags); |
| 1692 | utime = stime = cputime_zero; |
| 1693 | goto sum_group; |
| 1694 | case RUSAGE_BOTH: |
| 1695 | spin_lock_irqsave(&p->sighand->siglock, flags); |
| 1696 | utime = p->signal->cutime; |
| 1697 | stime = p->signal->cstime; |
| 1698 | r->ru_nvcsw = p->signal->cnvcsw; |
| 1699 | r->ru_nivcsw = p->signal->cnivcsw; |
| 1700 | r->ru_minflt = p->signal->cmin_flt; |
| 1701 | r->ru_majflt = p->signal->cmaj_flt; |
| 1702 | sum_group: |
| 1703 | utime = cputime_add(utime, p->signal->utime); |
| 1704 | stime = cputime_add(stime, p->signal->stime); |
| 1705 | r->ru_nvcsw += p->signal->nvcsw; |
| 1706 | r->ru_nivcsw += p->signal->nivcsw; |
| 1707 | r->ru_minflt += p->signal->min_flt; |
| 1708 | r->ru_majflt += p->signal->maj_flt; |
| 1709 | t = p; |
| 1710 | do { |
| 1711 | utime = cputime_add(utime, t->utime); |
| 1712 | stime = cputime_add(stime, t->stime); |
| 1713 | r->ru_nvcsw += t->nvcsw; |
| 1714 | r->ru_nivcsw += t->nivcsw; |
| 1715 | r->ru_minflt += t->min_flt; |
| 1716 | r->ru_majflt += t->maj_flt; |
| 1717 | t = next_thread(t); |
| 1718 | } while (t != p); |
| 1719 | spin_unlock_irqrestore(&p->sighand->siglock, flags); |
| 1720 | cputime_to_timeval(utime, &r->ru_utime); |
| 1721 | cputime_to_timeval(stime, &r->ru_stime); |
| 1722 | break; |
| 1723 | default: |
| 1724 | BUG(); |
| 1725 | } |
| 1726 | } |
| 1727 | |
| 1728 | int getrusage(struct task_struct *p, int who, struct rusage __user *ru) |
| 1729 | { |
| 1730 | struct rusage r; |
| 1731 | read_lock(&tasklist_lock); |
| 1732 | k_getrusage(p, who, &r); |
| 1733 | read_unlock(&tasklist_lock); |
| 1734 | return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; |
| 1735 | } |
| 1736 | |
| 1737 | asmlinkage long sys_getrusage(int who, struct rusage __user *ru) |
| 1738 | { |
| 1739 | if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN) |
| 1740 | return -EINVAL; |
| 1741 | return getrusage(current, who, ru); |
| 1742 | } |
| 1743 | |
| 1744 | asmlinkage long sys_umask(int mask) |
| 1745 | { |
| 1746 | mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); |
| 1747 | return mask; |
| 1748 | } |
| 1749 | |
| 1750 | asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3, |
| 1751 | unsigned long arg4, unsigned long arg5) |
| 1752 | { |
| 1753 | long error; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1754 | |
| 1755 | error = security_task_prctl(option, arg2, arg3, arg4, arg5); |
| 1756 | if (error) |
| 1757 | return error; |
| 1758 | |
| 1759 | switch (option) { |
| 1760 | case PR_SET_PDEATHSIG: |
Jesper Juhl | 0730ded | 2005-09-06 15:17:37 -0700 | [diff] [blame] | 1761 | if (!valid_signal(arg2)) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1762 | error = -EINVAL; |
| 1763 | break; |
| 1764 | } |
Jesper Juhl | 0730ded | 2005-09-06 15:17:37 -0700 | [diff] [blame] | 1765 | current->pdeath_signal = arg2; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1766 | break; |
| 1767 | case PR_GET_PDEATHSIG: |
| 1768 | error = put_user(current->pdeath_signal, (int __user *)arg2); |
| 1769 | break; |
| 1770 | case PR_GET_DUMPABLE: |
Michael Kerrisk | 2030c0f | 2005-09-16 19:28:02 -0700 | [diff] [blame] | 1771 | error = current->mm->dumpable; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1772 | break; |
| 1773 | case PR_SET_DUMPABLE: |
Alan Cox | d6e7114 | 2005-06-23 00:09:43 -0700 | [diff] [blame] | 1774 | if (arg2 < 0 || arg2 > 2) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1775 | error = -EINVAL; |
| 1776 | break; |
| 1777 | } |
| 1778 | current->mm->dumpable = arg2; |
| 1779 | break; |
| 1780 | |
| 1781 | case PR_SET_UNALIGN: |
| 1782 | error = SET_UNALIGN_CTL(current, arg2); |
| 1783 | break; |
| 1784 | case PR_GET_UNALIGN: |
| 1785 | error = GET_UNALIGN_CTL(current, arg2); |
| 1786 | break; |
| 1787 | case PR_SET_FPEMU: |
| 1788 | error = SET_FPEMU_CTL(current, arg2); |
| 1789 | break; |
| 1790 | case PR_GET_FPEMU: |
| 1791 | error = GET_FPEMU_CTL(current, arg2); |
| 1792 | break; |
| 1793 | case PR_SET_FPEXC: |
| 1794 | error = SET_FPEXC_CTL(current, arg2); |
| 1795 | break; |
| 1796 | case PR_GET_FPEXC: |
| 1797 | error = GET_FPEXC_CTL(current, arg2); |
| 1798 | break; |
| 1799 | case PR_GET_TIMING: |
| 1800 | error = PR_TIMING_STATISTICAL; |
| 1801 | break; |
| 1802 | case PR_SET_TIMING: |
| 1803 | if (arg2 == PR_TIMING_STATISTICAL) |
| 1804 | error = 0; |
| 1805 | else |
| 1806 | error = -EINVAL; |
| 1807 | break; |
| 1808 | |
| 1809 | case PR_GET_KEEPCAPS: |
| 1810 | if (current->keep_capabilities) |
| 1811 | error = 1; |
| 1812 | break; |
| 1813 | case PR_SET_KEEPCAPS: |
| 1814 | if (arg2 != 0 && arg2 != 1) { |
| 1815 | error = -EINVAL; |
| 1816 | break; |
| 1817 | } |
| 1818 | current->keep_capabilities = arg2; |
| 1819 | break; |
| 1820 | case PR_SET_NAME: { |
| 1821 | struct task_struct *me = current; |
| 1822 | unsigned char ncomm[sizeof(me->comm)]; |
| 1823 | |
| 1824 | ncomm[sizeof(me->comm)-1] = 0; |
| 1825 | if (strncpy_from_user(ncomm, (char __user *)arg2, |
| 1826 | sizeof(me->comm)-1) < 0) |
| 1827 | return -EFAULT; |
| 1828 | set_task_comm(me, ncomm); |
| 1829 | return 0; |
| 1830 | } |
| 1831 | case PR_GET_NAME: { |
| 1832 | struct task_struct *me = current; |
| 1833 | unsigned char tcomm[sizeof(me->comm)]; |
| 1834 | |
| 1835 | get_task_comm(tcomm, me); |
| 1836 | if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm))) |
| 1837 | return -EFAULT; |
| 1838 | return 0; |
| 1839 | } |
| 1840 | default: |
| 1841 | error = -EINVAL; |
| 1842 | break; |
| 1843 | } |
| 1844 | return error; |
| 1845 | } |