blob: 0c2df7f737925b6d0bd5bf624ceb12e8a6d53d86 [file] [log] [blame]
Dave Younga43cac02015-09-09 15:38:51 -07001/*
2 * kexec: kexec_file_load system call
3 *
4 * Copyright (C) 2014 Red Hat Inc.
5 * Authors:
6 * Vivek Goyal <vgoyal@redhat.com>
7 *
8 * This source code is licensed under the GNU General Public License,
9 * Version 2. See the file COPYING for more details.
10 */
11
Minfei Huangde90a6b2015-11-06 16:32:45 -080012#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
Dave Younga43cac02015-09-09 15:38:51 -070014#include <linux/capability.h>
15#include <linux/mm.h>
16#include <linux/file.h>
17#include <linux/slab.h>
18#include <linux/kexec.h>
19#include <linux/mutex.h>
20#include <linux/list.h>
Mimi Zoharb804def2016-01-14 20:59:14 -050021#include <linux/fs.h>
Dave Younga43cac02015-09-09 15:38:51 -070022#include <crypto/hash.h>
23#include <crypto/sha.h>
24#include <linux/syscalls.h>
25#include <linux/vmalloc.h>
26#include "kexec_internal.h"
27
28/*
29 * Declare these symbols weak so that if architecture provides a purgatory,
30 * these will be overridden.
31 */
32char __weak kexec_purgatory[0];
33size_t __weak kexec_purgatory_size = 0;
34
35static int kexec_calculate_store_digests(struct kimage *image);
36
Dave Younga43cac02015-09-09 15:38:51 -070037/* Architectures can provide this probe function */
38int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
39 unsigned long buf_len)
40{
41 return -ENOEXEC;
42}
43
44void * __weak arch_kexec_kernel_image_load(struct kimage *image)
45{
46 return ERR_PTR(-ENOEXEC);
47}
48
49int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
50{
51 return -EINVAL;
52}
53
Xunlei Pang978e30c2016-01-20 15:00:36 -080054#ifdef CONFIG_KEXEC_VERIFY_SIG
Dave Younga43cac02015-09-09 15:38:51 -070055int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
56 unsigned long buf_len)
57{
58 return -EKEYREJECTED;
59}
Xunlei Pang978e30c2016-01-20 15:00:36 -080060#endif
Dave Younga43cac02015-09-09 15:38:51 -070061
62/* Apply relocations of type RELA */
63int __weak
64arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
65 unsigned int relsec)
66{
67 pr_err("RELA relocation unsupported.\n");
68 return -ENOEXEC;
69}
70
71/* Apply relocations of type REL */
72int __weak
73arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
74 unsigned int relsec)
75{
76 pr_err("REL relocation unsupported.\n");
77 return -ENOEXEC;
78}
79
80/*
81 * Free up memory used by kernel, initrd, and command line. This is temporary
82 * memory allocation which is not needed any more after these buffers have
83 * been loaded into separate segments and have been copied elsewhere.
84 */
85void kimage_file_post_load_cleanup(struct kimage *image)
86{
87 struct purgatory_info *pi = &image->purgatory_info;
88
89 vfree(image->kernel_buf);
90 image->kernel_buf = NULL;
91
92 vfree(image->initrd_buf);
93 image->initrd_buf = NULL;
94
95 kfree(image->cmdline_buf);
96 image->cmdline_buf = NULL;
97
98 vfree(pi->purgatory_buf);
99 pi->purgatory_buf = NULL;
100
101 vfree(pi->sechdrs);
102 pi->sechdrs = NULL;
103
104 /* See if architecture has anything to cleanup post load */
105 arch_kimage_file_post_load_cleanup(image);
106
107 /*
108 * Above call should have called into bootloader to free up
109 * any data stored in kimage->image_loader_data. It should
110 * be ok now to free it up.
111 */
112 kfree(image->image_loader_data);
113 image->image_loader_data = NULL;
114}
115
116/*
117 * In file mode list of segments is prepared by kernel. Copy relevant
118 * data from user space, do error checking, prepare segment list
119 */
120static int
121kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
122 const char __user *cmdline_ptr,
123 unsigned long cmdline_len, unsigned flags)
124{
125 int ret = 0;
126 void *ldata;
Mimi Zoharb804def2016-01-14 20:59:14 -0500127 loff_t size;
Dave Younga43cac02015-09-09 15:38:51 -0700128
Mimi Zoharb804def2016-01-14 20:59:14 -0500129 ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
130 &size, INT_MAX, READING_KEXEC_IMAGE);
Dave Younga43cac02015-09-09 15:38:51 -0700131 if (ret)
132 return ret;
Mimi Zoharb804def2016-01-14 20:59:14 -0500133 image->kernel_buf_len = size;
Dave Younga43cac02015-09-09 15:38:51 -0700134
135 /* Call arch image probe handlers */
136 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
137 image->kernel_buf_len);
Dave Younga43cac02015-09-09 15:38:51 -0700138 if (ret)
139 goto out;
140
141#ifdef CONFIG_KEXEC_VERIFY_SIG
142 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
143 image->kernel_buf_len);
144 if (ret) {
145 pr_debug("kernel signature verification failed.\n");
146 goto out;
147 }
148 pr_debug("kernel signature verification successful.\n");
149#endif
150 /* It is possible that there no initramfs is being loaded */
151 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
Mimi Zoharb804def2016-01-14 20:59:14 -0500152 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
153 &size, INT_MAX,
154 READING_KEXEC_INITRAMFS);
Dave Younga43cac02015-09-09 15:38:51 -0700155 if (ret)
156 goto out;
Mimi Zoharb804def2016-01-14 20:59:14 -0500157 image->initrd_buf_len = size;
Dave Younga43cac02015-09-09 15:38:51 -0700158 }
159
160 if (cmdline_len) {
161 image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
162 if (!image->cmdline_buf) {
163 ret = -ENOMEM;
164 goto out;
165 }
166
167 ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
168 cmdline_len);
169 if (ret) {
170 ret = -EFAULT;
171 goto out;
172 }
173
174 image->cmdline_buf_len = cmdline_len;
175
176 /* command line should be a string with last byte null */
177 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
178 ret = -EINVAL;
179 goto out;
180 }
181 }
182
183 /* Call arch image load handlers */
184 ldata = arch_kexec_kernel_image_load(image);
185
186 if (IS_ERR(ldata)) {
187 ret = PTR_ERR(ldata);
188 goto out;
189 }
190
191 image->image_loader_data = ldata;
192out:
193 /* In case of error, free up all allocated memory in this function */
194 if (ret)
195 kimage_file_post_load_cleanup(image);
196 return ret;
197}
198
199static int
200kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
201 int initrd_fd, const char __user *cmdline_ptr,
202 unsigned long cmdline_len, unsigned long flags)
203{
204 int ret;
205 struct kimage *image;
206 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
207
208 image = do_kimage_alloc_init();
209 if (!image)
210 return -ENOMEM;
211
212 image->file_mode = 1;
213
214 if (kexec_on_panic) {
215 /* Enable special crash kernel control page alloc policy. */
216 image->control_page = crashk_res.start;
217 image->type = KEXEC_TYPE_CRASH;
218 }
219
220 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
221 cmdline_ptr, cmdline_len, flags);
222 if (ret)
223 goto out_free_image;
224
225 ret = sanity_check_segment_list(image);
226 if (ret)
227 goto out_free_post_load_bufs;
228
229 ret = -ENOMEM;
230 image->control_code_page = kimage_alloc_control_pages(image,
231 get_order(KEXEC_CONTROL_PAGE_SIZE));
232 if (!image->control_code_page) {
233 pr_err("Could not allocate control_code_buffer\n");
234 goto out_free_post_load_bufs;
235 }
236
237 if (!kexec_on_panic) {
238 image->swap_page = kimage_alloc_control_pages(image, 0);
239 if (!image->swap_page) {
240 pr_err("Could not allocate swap buffer\n");
241 goto out_free_control_pages;
242 }
243 }
244
245 *rimage = image;
246 return 0;
247out_free_control_pages:
248 kimage_free_page_list(&image->control_pages);
249out_free_post_load_bufs:
250 kimage_file_post_load_cleanup(image);
251out_free_image:
252 kfree(image);
253 return ret;
254}
255
256SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
257 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
258 unsigned long, flags)
259{
260 int ret = 0, i;
261 struct kimage **dest_image, *image;
262
263 /* We only trust the superuser with rebooting the system. */
264 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
265 return -EPERM;
266
267 /* Make sure we have a legal set of flags */
268 if (flags != (flags & KEXEC_FILE_FLAGS))
269 return -EINVAL;
270
271 image = NULL;
272
273 if (!mutex_trylock(&kexec_mutex))
274 return -EBUSY;
275
276 dest_image = &kexec_image;
Xunlei Pang9b492cf2016-05-23 16:24:10 -0700277 if (flags & KEXEC_FILE_ON_CRASH) {
Dave Younga43cac02015-09-09 15:38:51 -0700278 dest_image = &kexec_crash_image;
Xunlei Pang9b492cf2016-05-23 16:24:10 -0700279 if (kexec_crash_image)
280 arch_kexec_unprotect_crashkres();
281 }
Dave Younga43cac02015-09-09 15:38:51 -0700282
283 if (flags & KEXEC_FILE_UNLOAD)
284 goto exchange;
285
286 /*
287 * In case of crash, new kernel gets loaded in reserved region. It is
288 * same memory where old crash kernel might be loaded. Free any
289 * current crash dump kernel before we corrupt it.
290 */
291 if (flags & KEXEC_FILE_ON_CRASH)
292 kimage_free(xchg(&kexec_crash_image, NULL));
293
294 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
295 cmdline_len, flags);
296 if (ret)
297 goto out;
298
299 ret = machine_kexec_prepare(image);
300 if (ret)
301 goto out;
302
303 ret = kexec_calculate_store_digests(image);
304 if (ret)
305 goto out;
306
307 for (i = 0; i < image->nr_segments; i++) {
308 struct kexec_segment *ksegment;
309
310 ksegment = &image->segment[i];
311 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
312 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
313 ksegment->memsz);
314
315 ret = kimage_load_segment(image, &image->segment[i]);
316 if (ret)
317 goto out;
318 }
319
320 kimage_terminate(image);
321
322 /*
323 * Free up any temporary buffers allocated which are not needed
324 * after image has been loaded
325 */
326 kimage_file_post_load_cleanup(image);
327exchange:
328 image = xchg(dest_image, image);
329out:
Xunlei Pang9b492cf2016-05-23 16:24:10 -0700330 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
331 arch_kexec_protect_crashkres();
332
Dave Younga43cac02015-09-09 15:38:51 -0700333 mutex_unlock(&kexec_mutex);
334 kimage_free(image);
335 return ret;
336}
337
338static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
339 struct kexec_buf *kbuf)
340{
341 struct kimage *image = kbuf->image;
342 unsigned long temp_start, temp_end;
343
344 temp_end = min(end, kbuf->buf_max);
345 temp_start = temp_end - kbuf->memsz;
346
347 do {
348 /* align down start */
349 temp_start = temp_start & (~(kbuf->buf_align - 1));
350
351 if (temp_start < start || temp_start < kbuf->buf_min)
352 return 0;
353
354 temp_end = temp_start + kbuf->memsz - 1;
355
356 /*
357 * Make sure this does not conflict with any of existing
358 * segments
359 */
360 if (kimage_is_destination_range(image, temp_start, temp_end)) {
361 temp_start = temp_start - PAGE_SIZE;
362 continue;
363 }
364
365 /* We found a suitable memory range */
366 break;
367 } while (1);
368
369 /* If we are here, we found a suitable memory range */
370 kbuf->mem = temp_start;
371
372 /* Success, stop navigating through remaining System RAM ranges */
373 return 1;
374}
375
376static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
377 struct kexec_buf *kbuf)
378{
379 struct kimage *image = kbuf->image;
380 unsigned long temp_start, temp_end;
381
382 temp_start = max(start, kbuf->buf_min);
383
384 do {
385 temp_start = ALIGN(temp_start, kbuf->buf_align);
386 temp_end = temp_start + kbuf->memsz - 1;
387
388 if (temp_end > end || temp_end > kbuf->buf_max)
389 return 0;
390 /*
391 * Make sure this does not conflict with any of existing
392 * segments
393 */
394 if (kimage_is_destination_range(image, temp_start, temp_end)) {
395 temp_start = temp_start + PAGE_SIZE;
396 continue;
397 }
398
399 /* We found a suitable memory range */
400 break;
401 } while (1);
402
403 /* If we are here, we found a suitable memory range */
404 kbuf->mem = temp_start;
405
406 /* Success, stop navigating through remaining System RAM ranges */
407 return 1;
408}
409
410static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
411{
412 struct kexec_buf *kbuf = (struct kexec_buf *)arg;
413 unsigned long sz = end - start + 1;
414
415 /* Returning 0 will take to next memory range */
416 if (sz < kbuf->memsz)
417 return 0;
418
419 if (end < kbuf->buf_min || start > kbuf->buf_max)
420 return 0;
421
422 /*
423 * Allocate memory top down with-in ram range. Otherwise bottom up
424 * allocation.
425 */
426 if (kbuf->top_down)
427 return locate_mem_hole_top_down(start, end, kbuf);
428 return locate_mem_hole_bottom_up(start, end, kbuf);
429}
430
Thiago Jung Bauermann60fe3912016-11-29 23:45:47 +1100431/**
432 * arch_kexec_walk_mem - call func(data) on free memory regions
433 * @kbuf: Context info for the search. Also passed to @func.
434 * @func: Function to call for each memory region.
435 *
436 * Return: The memory walk will stop when func returns a non-zero value
437 * and that value will be returned. If all free regions are visited without
438 * func returning non-zero, then zero will be returned.
439 */
440int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
441 int (*func)(u64, u64, void *))
442{
443 if (kbuf->image->type == KEXEC_TYPE_CRASH)
444 return walk_iomem_res_desc(crashk_res.desc,
445 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
446 crashk_res.start, crashk_res.end,
447 kbuf, func);
448 else
449 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
450}
451
Thiago Jung Bauermannec2b9bf2016-11-29 23:45:48 +1100452/**
Thiago Jung Bauermanne2e806f2016-11-29 23:45:49 +1100453 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
454 * @kbuf: Parameters for the memory search.
455 *
456 * On success, kbuf->mem will have the start address of the memory region found.
457 *
458 * Return: 0 on success, negative errno on error.
459 */
460int kexec_locate_mem_hole(struct kexec_buf *kbuf)
461{
462 int ret;
463
464 ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
465
466 return ret == 1 ? 0 : -EADDRNOTAVAIL;
467}
468
469/**
Thiago Jung Bauermannec2b9bf2016-11-29 23:45:48 +1100470 * kexec_add_buffer - place a buffer in a kexec segment
471 * @kbuf: Buffer contents and memory parameters.
472 *
473 * This function assumes that kexec_mutex is held.
474 * On successful return, @kbuf->mem will have the physical address of
475 * the buffer in memory.
476 *
477 * Return: 0 on success, negative errno on error.
Dave Younga43cac02015-09-09 15:38:51 -0700478 */
Thiago Jung Bauermannec2b9bf2016-11-29 23:45:48 +1100479int kexec_add_buffer(struct kexec_buf *kbuf)
Dave Younga43cac02015-09-09 15:38:51 -0700480{
481
482 struct kexec_segment *ksegment;
Dave Younga43cac02015-09-09 15:38:51 -0700483 int ret;
484
485 /* Currently adding segment this way is allowed only in file mode */
Thiago Jung Bauermannec2b9bf2016-11-29 23:45:48 +1100486 if (!kbuf->image->file_mode)
Dave Younga43cac02015-09-09 15:38:51 -0700487 return -EINVAL;
488
Thiago Jung Bauermannec2b9bf2016-11-29 23:45:48 +1100489 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
Dave Younga43cac02015-09-09 15:38:51 -0700490 return -EINVAL;
491
492 /*
493 * Make sure we are not trying to add buffer after allocating
494 * control pages. All segments need to be placed first before
495 * any control pages are allocated. As control page allocation
496 * logic goes through list of segments to make sure there are
497 * no destination overlaps.
498 */
Thiago Jung Bauermannec2b9bf2016-11-29 23:45:48 +1100499 if (!list_empty(&kbuf->image->control_pages)) {
Dave Younga43cac02015-09-09 15:38:51 -0700500 WARN_ON(1);
501 return -EINVAL;
502 }
503
Thiago Jung Bauermannec2b9bf2016-11-29 23:45:48 +1100504 /* Ensure minimum alignment needed for segments. */
505 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
506 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
Dave Younga43cac02015-09-09 15:38:51 -0700507
508 /* Walk the RAM ranges and allocate a suitable range for the buffer */
Thiago Jung Bauermanne2e806f2016-11-29 23:45:49 +1100509 ret = kexec_locate_mem_hole(kbuf);
510 if (ret)
511 return ret;
Dave Younga43cac02015-09-09 15:38:51 -0700512
513 /* Found a suitable memory range */
Thiago Jung Bauermannec2b9bf2016-11-29 23:45:48 +1100514 ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
Dave Younga43cac02015-09-09 15:38:51 -0700515 ksegment->kbuf = kbuf->buffer;
516 ksegment->bufsz = kbuf->bufsz;
517 ksegment->mem = kbuf->mem;
518 ksegment->memsz = kbuf->memsz;
Thiago Jung Bauermannec2b9bf2016-11-29 23:45:48 +1100519 kbuf->image->nr_segments++;
Dave Younga43cac02015-09-09 15:38:51 -0700520 return 0;
521}
522
523/* Calculate and store the digest of segments */
524static int kexec_calculate_store_digests(struct kimage *image)
525{
526 struct crypto_shash *tfm;
527 struct shash_desc *desc;
528 int ret = 0, i, j, zero_buf_sz, sha_region_sz;
529 size_t desc_size, nullsz;
530 char *digest;
531 void *zero_buf;
532 struct kexec_sha_region *sha_regions;
533 struct purgatory_info *pi = &image->purgatory_info;
534
535 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
536 zero_buf_sz = PAGE_SIZE;
537
538 tfm = crypto_alloc_shash("sha256", 0, 0);
539 if (IS_ERR(tfm)) {
540 ret = PTR_ERR(tfm);
541 goto out;
542 }
543
544 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
545 desc = kzalloc(desc_size, GFP_KERNEL);
546 if (!desc) {
547 ret = -ENOMEM;
548 goto out_free_tfm;
549 }
550
551 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
552 sha_regions = vzalloc(sha_region_sz);
553 if (!sha_regions)
554 goto out_free_desc;
555
556 desc->tfm = tfm;
557 desc->flags = 0;
558
559 ret = crypto_shash_init(desc);
560 if (ret < 0)
561 goto out_free_sha_regions;
562
563 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
564 if (!digest) {
565 ret = -ENOMEM;
566 goto out_free_sha_regions;
567 }
568
569 for (j = i = 0; i < image->nr_segments; i++) {
570 struct kexec_segment *ksegment;
571
572 ksegment = &image->segment[i];
573 /*
574 * Skip purgatory as it will be modified once we put digest
575 * info in purgatory.
576 */
577 if (ksegment->kbuf == pi->purgatory_buf)
578 continue;
579
580 ret = crypto_shash_update(desc, ksegment->kbuf,
581 ksegment->bufsz);
582 if (ret)
583 break;
584
585 /*
586 * Assume rest of the buffer is filled with zero and
587 * update digest accordingly.
588 */
589 nullsz = ksegment->memsz - ksegment->bufsz;
590 while (nullsz) {
591 unsigned long bytes = nullsz;
592
593 if (bytes > zero_buf_sz)
594 bytes = zero_buf_sz;
595 ret = crypto_shash_update(desc, zero_buf, bytes);
596 if (ret)
597 break;
598 nullsz -= bytes;
599 }
600
601 if (ret)
602 break;
603
604 sha_regions[j].start = ksegment->mem;
605 sha_regions[j].len = ksegment->memsz;
606 j++;
607 }
608
609 if (!ret) {
610 ret = crypto_shash_final(desc, digest);
611 if (ret)
612 goto out_free_digest;
613 ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
614 sha_regions, sha_region_sz, 0);
615 if (ret)
616 goto out_free_digest;
617
618 ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
619 digest, SHA256_DIGEST_SIZE, 0);
620 if (ret)
621 goto out_free_digest;
622 }
623
624out_free_digest:
625 kfree(digest);
626out_free_sha_regions:
627 vfree(sha_regions);
628out_free_desc:
629 kfree(desc);
630out_free_tfm:
631 kfree(tfm);
632out:
633 return ret;
634}
635
636/* Actually load purgatory. Lot of code taken from kexec-tools */
637static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
638 unsigned long max, int top_down)
639{
640 struct purgatory_info *pi = &image->purgatory_info;
Thiago Jung Bauermannec2b9bf2016-11-29 23:45:48 +1100641 unsigned long align, bss_align, bss_sz, bss_pad;
642 unsigned long entry, load_addr, curr_load_addr, bss_addr, offset;
Dave Younga43cac02015-09-09 15:38:51 -0700643 unsigned char *buf_addr, *src;
644 int i, ret = 0, entry_sidx = -1;
645 const Elf_Shdr *sechdrs_c;
646 Elf_Shdr *sechdrs = NULL;
Thiago Jung Bauermannec2b9bf2016-11-29 23:45:48 +1100647 struct kexec_buf kbuf = { .image = image, .bufsz = 0, .buf_align = 1,
648 .buf_min = min, .buf_max = max,
649 .top_down = top_down };
Dave Younga43cac02015-09-09 15:38:51 -0700650
651 /*
652 * sechdrs_c points to section headers in purgatory and are read
653 * only. No modifications allowed.
654 */
655 sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
656
657 /*
658 * We can not modify sechdrs_c[] and its fields. It is read only.
659 * Copy it over to a local copy where one can store some temporary
660 * data and free it at the end. We need to modify ->sh_addr and
661 * ->sh_offset fields to keep track of permanent and temporary
662 * locations of sections.
663 */
664 sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
665 if (!sechdrs)
666 return -ENOMEM;
667
668 memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
669
670 /*
671 * We seem to have multiple copies of sections. First copy is which
672 * is embedded in kernel in read only section. Some of these sections
673 * will be copied to a temporary buffer and relocated. And these
674 * sections will finally be copied to their final destination at
675 * segment load time.
676 *
677 * Use ->sh_offset to reflect section address in memory. It will
678 * point to original read only copy if section is not allocatable.
679 * Otherwise it will point to temporary copy which will be relocated.
680 *
681 * Use ->sh_addr to contain final address of the section where it
682 * will go during execution time.
683 */
684 for (i = 0; i < pi->ehdr->e_shnum; i++) {
685 if (sechdrs[i].sh_type == SHT_NOBITS)
686 continue;
687
688 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
689 sechdrs[i].sh_offset;
690 }
691
692 /*
693 * Identify entry point section and make entry relative to section
694 * start.
695 */
696 entry = pi->ehdr->e_entry;
697 for (i = 0; i < pi->ehdr->e_shnum; i++) {
698 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
699 continue;
700
701 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
702 continue;
703
704 /* Make entry section relative */
705 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
706 ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
707 pi->ehdr->e_entry)) {
708 entry_sidx = i;
709 entry -= sechdrs[i].sh_addr;
710 break;
711 }
712 }
713
714 /* Determine how much memory is needed to load relocatable object. */
Dave Younga43cac02015-09-09 15:38:51 -0700715 bss_align = 1;
Dave Younga43cac02015-09-09 15:38:51 -0700716 bss_sz = 0;
717
718 for (i = 0; i < pi->ehdr->e_shnum; i++) {
719 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
720 continue;
721
722 align = sechdrs[i].sh_addralign;
723 if (sechdrs[i].sh_type != SHT_NOBITS) {
Thiago Jung Bauermannec2b9bf2016-11-29 23:45:48 +1100724 if (kbuf.buf_align < align)
725 kbuf.buf_align = align;
726 kbuf.bufsz = ALIGN(kbuf.bufsz, align);
727 kbuf.bufsz += sechdrs[i].sh_size;
Dave Younga43cac02015-09-09 15:38:51 -0700728 } else {
729 /* bss section */
730 if (bss_align < align)
731 bss_align = align;
732 bss_sz = ALIGN(bss_sz, align);
733 bss_sz += sechdrs[i].sh_size;
734 }
735 }
736
737 /* Determine the bss padding required to align bss properly */
738 bss_pad = 0;
Thiago Jung Bauermannec2b9bf2016-11-29 23:45:48 +1100739 if (kbuf.bufsz & (bss_align - 1))
740 bss_pad = bss_align - (kbuf.bufsz & (bss_align - 1));
Dave Younga43cac02015-09-09 15:38:51 -0700741
Thiago Jung Bauermannec2b9bf2016-11-29 23:45:48 +1100742 kbuf.memsz = kbuf.bufsz + bss_pad + bss_sz;
Dave Younga43cac02015-09-09 15:38:51 -0700743
744 /* Allocate buffer for purgatory */
Thiago Jung Bauermannec2b9bf2016-11-29 23:45:48 +1100745 kbuf.buffer = vzalloc(kbuf.bufsz);
746 if (!kbuf.buffer) {
Dave Younga43cac02015-09-09 15:38:51 -0700747 ret = -ENOMEM;
748 goto out;
749 }
750
Thiago Jung Bauermannec2b9bf2016-11-29 23:45:48 +1100751 if (kbuf.buf_align < bss_align)
752 kbuf.buf_align = bss_align;
Dave Younga43cac02015-09-09 15:38:51 -0700753
754 /* Add buffer to segment list */
Thiago Jung Bauermannec2b9bf2016-11-29 23:45:48 +1100755 ret = kexec_add_buffer(&kbuf);
Dave Younga43cac02015-09-09 15:38:51 -0700756 if (ret)
757 goto out;
Thiago Jung Bauermannec2b9bf2016-11-29 23:45:48 +1100758 pi->purgatory_load_addr = kbuf.mem;
Dave Younga43cac02015-09-09 15:38:51 -0700759
760 /* Load SHF_ALLOC sections */
Thiago Jung Bauermannec2b9bf2016-11-29 23:45:48 +1100761 buf_addr = kbuf.buffer;
Dave Younga43cac02015-09-09 15:38:51 -0700762 load_addr = curr_load_addr = pi->purgatory_load_addr;
Thiago Jung Bauermannec2b9bf2016-11-29 23:45:48 +1100763 bss_addr = load_addr + kbuf.bufsz + bss_pad;
Dave Younga43cac02015-09-09 15:38:51 -0700764
765 for (i = 0; i < pi->ehdr->e_shnum; i++) {
766 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
767 continue;
768
769 align = sechdrs[i].sh_addralign;
770 if (sechdrs[i].sh_type != SHT_NOBITS) {
771 curr_load_addr = ALIGN(curr_load_addr, align);
772 offset = curr_load_addr - load_addr;
773 /* We already modifed ->sh_offset to keep src addr */
774 src = (char *) sechdrs[i].sh_offset;
775 memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
776
777 /* Store load address and source address of section */
778 sechdrs[i].sh_addr = curr_load_addr;
779
780 /*
781 * This section got copied to temporary buffer. Update
782 * ->sh_offset accordingly.
783 */
784 sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
785
786 /* Advance to the next address */
787 curr_load_addr += sechdrs[i].sh_size;
788 } else {
789 bss_addr = ALIGN(bss_addr, align);
790 sechdrs[i].sh_addr = bss_addr;
791 bss_addr += sechdrs[i].sh_size;
792 }
793 }
794
795 /* Update entry point based on load address of text section */
796 if (entry_sidx >= 0)
797 entry += sechdrs[entry_sidx].sh_addr;
798
799 /* Make kernel jump to purgatory after shutdown */
800 image->start = entry;
801
802 /* Used later to get/set symbol values */
803 pi->sechdrs = sechdrs;
804
805 /*
806 * Used later to identify which section is purgatory and skip it
807 * from checksumming.
808 */
Thiago Jung Bauermannec2b9bf2016-11-29 23:45:48 +1100809 pi->purgatory_buf = kbuf.buffer;
Dave Younga43cac02015-09-09 15:38:51 -0700810 return ret;
811out:
812 vfree(sechdrs);
Thiago Jung Bauermannec2b9bf2016-11-29 23:45:48 +1100813 vfree(kbuf.buffer);
Dave Younga43cac02015-09-09 15:38:51 -0700814 return ret;
815}
816
817static int kexec_apply_relocations(struct kimage *image)
818{
819 int i, ret;
820 struct purgatory_info *pi = &image->purgatory_info;
821 Elf_Shdr *sechdrs = pi->sechdrs;
822
823 /* Apply relocations */
824 for (i = 0; i < pi->ehdr->e_shnum; i++) {
825 Elf_Shdr *section, *symtab;
826
827 if (sechdrs[i].sh_type != SHT_RELA &&
828 sechdrs[i].sh_type != SHT_REL)
829 continue;
830
831 /*
832 * For section of type SHT_RELA/SHT_REL,
833 * ->sh_link contains section header index of associated
834 * symbol table. And ->sh_info contains section header
835 * index of section to which relocations apply.
836 */
837 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
838 sechdrs[i].sh_link >= pi->ehdr->e_shnum)
839 return -ENOEXEC;
840
841 section = &sechdrs[sechdrs[i].sh_info];
842 symtab = &sechdrs[sechdrs[i].sh_link];
843
844 if (!(section->sh_flags & SHF_ALLOC))
845 continue;
846
847 /*
848 * symtab->sh_link contain section header index of associated
849 * string table.
850 */
851 if (symtab->sh_link >= pi->ehdr->e_shnum)
852 /* Invalid section number? */
853 continue;
854
855 /*
856 * Respective architecture needs to provide support for applying
857 * relocations of type SHT_RELA/SHT_REL.
858 */
859 if (sechdrs[i].sh_type == SHT_RELA)
860 ret = arch_kexec_apply_relocations_add(pi->ehdr,
861 sechdrs, i);
862 else if (sechdrs[i].sh_type == SHT_REL)
863 ret = arch_kexec_apply_relocations(pi->ehdr,
864 sechdrs, i);
865 if (ret)
866 return ret;
867 }
868
869 return 0;
870}
871
872/* Load relocatable purgatory object and relocate it appropriately */
873int kexec_load_purgatory(struct kimage *image, unsigned long min,
874 unsigned long max, int top_down,
875 unsigned long *load_addr)
876{
877 struct purgatory_info *pi = &image->purgatory_info;
878 int ret;
879
880 if (kexec_purgatory_size <= 0)
881 return -EINVAL;
882
883 if (kexec_purgatory_size < sizeof(Elf_Ehdr))
884 return -ENOEXEC;
885
886 pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
887
888 if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
889 || pi->ehdr->e_type != ET_REL
890 || !elf_check_arch(pi->ehdr)
891 || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
892 return -ENOEXEC;
893
894 if (pi->ehdr->e_shoff >= kexec_purgatory_size
895 || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
896 kexec_purgatory_size - pi->ehdr->e_shoff))
897 return -ENOEXEC;
898
899 ret = __kexec_load_purgatory(image, min, max, top_down);
900 if (ret)
901 return ret;
902
903 ret = kexec_apply_relocations(image);
904 if (ret)
905 goto out;
906
907 *load_addr = pi->purgatory_load_addr;
908 return 0;
909out:
910 vfree(pi->sechdrs);
Thiago Jung Bauermann070c43e2016-09-01 16:14:44 -0700911 pi->sechdrs = NULL;
912
Dave Younga43cac02015-09-09 15:38:51 -0700913 vfree(pi->purgatory_buf);
Thiago Jung Bauermann070c43e2016-09-01 16:14:44 -0700914 pi->purgatory_buf = NULL;
Dave Younga43cac02015-09-09 15:38:51 -0700915 return ret;
916}
917
918static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
919 const char *name)
920{
921 Elf_Sym *syms;
922 Elf_Shdr *sechdrs;
923 Elf_Ehdr *ehdr;
924 int i, k;
925 const char *strtab;
926
927 if (!pi->sechdrs || !pi->ehdr)
928 return NULL;
929
930 sechdrs = pi->sechdrs;
931 ehdr = pi->ehdr;
932
933 for (i = 0; i < ehdr->e_shnum; i++) {
934 if (sechdrs[i].sh_type != SHT_SYMTAB)
935 continue;
936
937 if (sechdrs[i].sh_link >= ehdr->e_shnum)
938 /* Invalid strtab section number */
939 continue;
940 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
941 syms = (Elf_Sym *)sechdrs[i].sh_offset;
942
943 /* Go through symbols for a match */
944 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
945 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
946 continue;
947
948 if (strcmp(strtab + syms[k].st_name, name) != 0)
949 continue;
950
951 if (syms[k].st_shndx == SHN_UNDEF ||
952 syms[k].st_shndx >= ehdr->e_shnum) {
953 pr_debug("Symbol: %s has bad section index %d.\n",
954 name, syms[k].st_shndx);
955 return NULL;
956 }
957
958 /* Found the symbol we are looking for */
959 return &syms[k];
960 }
961 }
962
963 return NULL;
964}
965
966void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
967{
968 struct purgatory_info *pi = &image->purgatory_info;
969 Elf_Sym *sym;
970 Elf_Shdr *sechdr;
971
972 sym = kexec_purgatory_find_symbol(pi, name);
973 if (!sym)
974 return ERR_PTR(-EINVAL);
975
976 sechdr = &pi->sechdrs[sym->st_shndx];
977
978 /*
979 * Returns the address where symbol will finally be loaded after
980 * kexec_load_segment()
981 */
982 return (void *)(sechdr->sh_addr + sym->st_value);
983}
984
985/*
986 * Get or set value of a symbol. If "get_value" is true, symbol value is
987 * returned in buf otherwise symbol value is set based on value in buf.
988 */
989int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
990 void *buf, unsigned int size, bool get_value)
991{
992 Elf_Sym *sym;
993 Elf_Shdr *sechdrs;
994 struct purgatory_info *pi = &image->purgatory_info;
995 char *sym_buf;
996
997 sym = kexec_purgatory_find_symbol(pi, name);
998 if (!sym)
999 return -EINVAL;
1000
1001 if (sym->st_size != size) {
1002 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1003 name, (unsigned long)sym->st_size, size);
1004 return -EINVAL;
1005 }
1006
1007 sechdrs = pi->sechdrs;
1008
1009 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1010 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1011 get_value ? "get" : "set");
1012 return -EINVAL;
1013 }
1014
1015 sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1016 sym->st_value;
1017
1018 if (get_value)
1019 memcpy((void *)buf, sym_buf, size);
1020 else
1021 memcpy((void *)sym_buf, buf, size);
1022
1023 return 0;
1024}