Stephen Hemminger | df3271f | 2005-12-13 23:13:28 -0800 | [diff] [blame^] | 1 | /* |
| 2 | * TCP CUBIC: Binary Increase Congestion control for TCP v2.0 |
| 3 | * |
| 4 | * This is from the implementation of CUBIC TCP in |
| 5 | * Injong Rhee, Lisong Xu. |
| 6 | * "CUBIC: A New TCP-Friendly High-Speed TCP Variant |
| 7 | * in PFLDnet 2005 |
| 8 | * Available from: |
| 9 | * http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/cubic-paper.pdf |
| 10 | * |
| 11 | * Unless CUBIC is enabled and congestion window is large |
| 12 | * this behaves the same as the original Reno. |
| 13 | */ |
| 14 | |
| 15 | #include <linux/config.h> |
| 16 | #include <linux/mm.h> |
| 17 | #include <linux/module.h> |
| 18 | #include <net/tcp.h> |
| 19 | |
| 20 | |
| 21 | #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation |
| 22 | * max_cwnd = snd_cwnd * beta |
| 23 | */ |
| 24 | #define BICTCP_B 4 /* |
| 25 | * In binary search, |
| 26 | * go to point (max+min)/N |
| 27 | */ |
| 28 | #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */ |
| 29 | |
| 30 | static int fast_convergence = 1; |
| 31 | static int max_increment = 16; |
| 32 | static int beta = 819; /* = 819/1024 (BICTCP_BETA_SCALE) */ |
| 33 | static int initial_ssthresh = 100; |
| 34 | static int bic_scale = 41; |
| 35 | static int tcp_friendliness = 1; |
| 36 | |
| 37 | module_param(fast_convergence, int, 0644); |
| 38 | MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence"); |
| 39 | module_param(max_increment, int, 0644); |
| 40 | MODULE_PARM_DESC(max_increment, "Limit on increment allowed during binary search"); |
| 41 | module_param(beta, int, 0644); |
| 42 | MODULE_PARM_DESC(beta, "beta for multiplicative increase"); |
| 43 | module_param(initial_ssthresh, int, 0644); |
| 44 | MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold"); |
| 45 | module_param(bic_scale, int, 0644); |
| 46 | MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)"); |
| 47 | module_param(tcp_friendliness, int, 0644); |
| 48 | MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness"); |
| 49 | |
| 50 | |
| 51 | /* BIC TCP Parameters */ |
| 52 | struct bictcp { |
| 53 | u32 cnt; /* increase cwnd by 1 after ACKs */ |
| 54 | u32 last_max_cwnd; /* last maximum snd_cwnd */ |
| 55 | u32 loss_cwnd; /* congestion window at last loss */ |
| 56 | u32 last_cwnd; /* the last snd_cwnd */ |
| 57 | u32 last_time; /* time when updated last_cwnd */ |
| 58 | u32 bic_origin_point;/* origin point of bic function */ |
| 59 | u32 bic_K; /* time to origin point from the beginning of the current epoch */ |
| 60 | u32 delay_min; /* min delay */ |
| 61 | u32 epoch_start; /* beginning of an epoch */ |
| 62 | u32 ack_cnt; /* number of acks */ |
| 63 | u32 tcp_cwnd; /* estimated tcp cwnd */ |
| 64 | #define ACK_RATIO_SHIFT 4 |
| 65 | u32 delayed_ack; /* estimate the ratio of Packets/ACKs << 4 */ |
| 66 | }; |
| 67 | |
| 68 | static inline void bictcp_reset(struct bictcp *ca) |
| 69 | { |
| 70 | ca->cnt = 0; |
| 71 | ca->last_max_cwnd = 0; |
| 72 | ca->loss_cwnd = 0; |
| 73 | ca->last_cwnd = 0; |
| 74 | ca->last_time = 0; |
| 75 | ca->bic_origin_point = 0; |
| 76 | ca->bic_K = 0; |
| 77 | ca->delay_min = 0; |
| 78 | ca->epoch_start = 0; |
| 79 | ca->delayed_ack = 2 << ACK_RATIO_SHIFT; |
| 80 | ca->ack_cnt = 0; |
| 81 | ca->tcp_cwnd = 0; |
| 82 | } |
| 83 | |
| 84 | static void bictcp_init(struct sock *sk) |
| 85 | { |
| 86 | bictcp_reset(inet_csk_ca(sk)); |
| 87 | if (initial_ssthresh) |
| 88 | tcp_sk(sk)->snd_ssthresh = initial_ssthresh; |
| 89 | } |
| 90 | |
| 91 | /* 65536 times the cubic root */ |
| 92 | static const u64 cubic_table[8] |
| 93 | = {0, 65536, 82570, 94519, 104030, 112063, 119087, 125367}; |
| 94 | |
| 95 | /* |
| 96 | * calculate the cubic root of x |
| 97 | * the basic idea is that x can be expressed as i*8^j |
| 98 | * so cubic_root(x) = cubic_root(i)*2^j |
| 99 | * in the following code, x is i, and y is 2^j |
| 100 | * because of integer calculation, there are errors in calculation |
| 101 | * so finally use binary search to find out the exact solution |
| 102 | */ |
| 103 | static u32 cubic_root(u64 x) |
| 104 | { |
| 105 | u64 y, app, target, start, end, mid, start_diff, end_diff; |
| 106 | |
| 107 | if (x == 0) |
| 108 | return 0; |
| 109 | |
| 110 | target = x; |
| 111 | |
| 112 | /* first estimate lower and upper bound */ |
| 113 | y = 1; |
| 114 | while (x >= 8){ |
| 115 | x = (x >> 3); |
| 116 | y = (y << 1); |
| 117 | } |
| 118 | start = (y*cubic_table[x])>>16; |
| 119 | if (x==7) |
| 120 | end = (y<<1); |
| 121 | else |
| 122 | end = (y*cubic_table[x+1]+65535)>>16; |
| 123 | |
| 124 | /* binary search for more accurate one */ |
| 125 | while (start < end-1) { |
| 126 | mid = (start+end) >> 1; |
| 127 | app = mid*mid*mid; |
| 128 | if (app < target) |
| 129 | start = mid; |
| 130 | else if (app > target) |
| 131 | end = mid; |
| 132 | else |
| 133 | return mid; |
| 134 | } |
| 135 | |
| 136 | /* find the most accurate one from start and end */ |
| 137 | app = start*start*start; |
| 138 | if (app < target) |
| 139 | start_diff = target - app; |
| 140 | else |
| 141 | start_diff = app - target; |
| 142 | app = end*end*end; |
| 143 | if (app < target) |
| 144 | end_diff = target - app; |
| 145 | else |
| 146 | end_diff = app - target; |
| 147 | |
| 148 | if (start_diff < end_diff) |
| 149 | return (u32)start; |
| 150 | else |
| 151 | return (u32)end; |
| 152 | } |
| 153 | |
| 154 | static inline u32 bictcp_K(u32 dist, u32 srtt) |
| 155 | { |
| 156 | u64 d64; |
| 157 | u32 d32; |
| 158 | u32 count; |
| 159 | u32 result; |
| 160 | |
| 161 | /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3 |
| 162 | so K = cubic_root( (wmax-cwnd)*rtt/c ) |
| 163 | the unit of K is bictcp_HZ=2^10, not HZ |
| 164 | |
| 165 | c = bic_scale >> 10 |
| 166 | rtt = (tp->srtt >> 3 ) / HZ |
| 167 | |
| 168 | the following code has been designed and tested for |
| 169 | cwnd < 1 million packets |
| 170 | RTT < 100 seconds |
| 171 | HZ < 1,000,00 (corresponding to 10 nano-second) |
| 172 | |
| 173 | */ |
| 174 | |
| 175 | /* 1/c * 2^2*bictcp_HZ */ |
| 176 | d32 = (1 << (10+2*BICTCP_HZ)) / bic_scale; |
| 177 | d64 = (__u64)d32; |
| 178 | |
| 179 | /* srtt * 2^count / HZ |
| 180 | 1) to get a better accuracy of the following d32, |
| 181 | the larger the "count", the better the accuracy |
| 182 | 2) and avoid overflow of the following d64 |
| 183 | the larger the "count", the high possibility of overflow |
| 184 | 3) so find a "count" between bictcp_hz-3 and bictcp_hz |
| 185 | "count" may be less than bictcp_HZ, |
| 186 | then d64 becomes 0. that is OK |
| 187 | */ |
| 188 | d32 = srtt; |
| 189 | count = 0; |
| 190 | while (((d32 & 0x80000000)==0) && (count < BICTCP_HZ)){ |
| 191 | d32 = d32 << 1; |
| 192 | count++; |
| 193 | } |
| 194 | d32 = d32 / HZ; |
| 195 | |
| 196 | /* (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ) */ |
| 197 | d64 = (d64 * dist * d32) >> (count+3-BICTCP_HZ); |
| 198 | |
| 199 | /* cubic root */ |
| 200 | d64 = cubic_root(d64); |
| 201 | |
| 202 | result = (u32)d64; |
| 203 | return result; |
| 204 | } |
| 205 | |
| 206 | /* |
| 207 | * Compute congestion window to use. |
| 208 | */ |
| 209 | static inline void bictcp_update(struct bictcp *ca, u32 cwnd) |
| 210 | { |
| 211 | u64 d64; |
| 212 | u32 d32, t, srtt, bic_target, min_cnt, max_cnt; |
| 213 | |
| 214 | ca->ack_cnt++; /* count the number of ACKs */ |
| 215 | |
| 216 | if (ca->last_cwnd == cwnd && |
| 217 | (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32) |
| 218 | return; |
| 219 | |
| 220 | ca->last_cwnd = cwnd; |
| 221 | ca->last_time = tcp_time_stamp; |
| 222 | |
| 223 | srtt = (HZ << 3)/10; /* use real time-based growth function */ |
| 224 | |
| 225 | if (ca->epoch_start == 0) { |
| 226 | ca->epoch_start = tcp_time_stamp; /* record the beginning of an epoch */ |
| 227 | ca->ack_cnt = 1; /* start counting */ |
| 228 | ca->tcp_cwnd = cwnd; /* syn with cubic */ |
| 229 | |
| 230 | if (ca->last_max_cwnd <= cwnd) { |
| 231 | ca->bic_K = 0; |
| 232 | ca->bic_origin_point = cwnd; |
| 233 | } else { |
| 234 | ca->bic_K = bictcp_K(ca->last_max_cwnd-cwnd, srtt); |
| 235 | ca->bic_origin_point = ca->last_max_cwnd; |
| 236 | } |
| 237 | } |
| 238 | |
| 239 | /* cubic function - calc*/ |
| 240 | /* calculate c * time^3 / rtt, |
| 241 | * while considering overflow in calculation of time^3 |
| 242 | * (so time^3 is done by using d64) |
| 243 | * and without the support of division of 64bit numbers |
| 244 | * (so all divisions are done by using d32) |
| 245 | * also NOTE the unit of those veriables |
| 246 | * time = (t - K) / 2^bictcp_HZ |
| 247 | * c = bic_scale >> 10 |
| 248 | * rtt = (srtt >> 3) / HZ |
| 249 | * !!! The following code does not have overflow problems, |
| 250 | * if the cwnd < 1 million packets !!! |
| 251 | */ |
| 252 | |
| 253 | /* change the unit from HZ to bictcp_HZ */ |
| 254 | t = ((tcp_time_stamp + ca->delay_min - ca->epoch_start) |
| 255 | << BICTCP_HZ) / HZ; |
| 256 | |
| 257 | if (t < ca->bic_K) /* t - K */ |
| 258 | d32 = ca->bic_K - t; |
| 259 | else |
| 260 | d32 = t - ca->bic_K; |
| 261 | |
| 262 | d64 = (u64)d32; |
| 263 | d32 = (bic_scale << 3) * HZ / srtt; /* 1024*c/rtt */ |
| 264 | d64 = (d32 * d64 * d64 * d64) >> (10+3*BICTCP_HZ); /* c/rtt * (t-K)^3 */ |
| 265 | d32 = (u32)d64; |
| 266 | if (t < ca->bic_K) /* below origin*/ |
| 267 | bic_target = ca->bic_origin_point - d32; |
| 268 | else /* above origin*/ |
| 269 | bic_target = ca->bic_origin_point + d32; |
| 270 | |
| 271 | /* cubic function - calc bictcp_cnt*/ |
| 272 | if (bic_target > cwnd) { |
| 273 | ca->cnt = cwnd / (bic_target - cwnd); |
| 274 | } else { |
| 275 | ca->cnt = 100 * cwnd; /* very small increment*/ |
| 276 | } |
| 277 | |
| 278 | if (ca->delay_min > 0) { |
| 279 | /* max increment = Smax * rtt / 0.1 */ |
| 280 | min_cnt = (cwnd * HZ * 8)/(10 * max_increment * ca->delay_min); |
| 281 | if (ca->cnt < min_cnt) |
| 282 | ca->cnt = min_cnt; |
| 283 | } |
| 284 | |
| 285 | /* slow start and low utilization */ |
| 286 | if (ca->loss_cwnd == 0) /* could be aggressive in slow start */ |
| 287 | ca->cnt = 50; |
| 288 | |
| 289 | /* TCP Friendly */ |
| 290 | if (tcp_friendliness) { |
| 291 | u32 scale = 8*(BICTCP_BETA_SCALE+beta)/3/(BICTCP_BETA_SCALE-beta); |
| 292 | d32 = (cwnd * scale) >> 3; |
| 293 | while (ca->ack_cnt > d32) { /* update tcp cwnd */ |
| 294 | ca->ack_cnt -= d32; |
| 295 | ca->tcp_cwnd++; |
| 296 | } |
| 297 | |
| 298 | if (ca->tcp_cwnd > cwnd){ /* if bic is slower than tcp */ |
| 299 | d32 = ca->tcp_cwnd - cwnd; |
| 300 | max_cnt = cwnd / d32; |
| 301 | if (ca->cnt > max_cnt) |
| 302 | ca->cnt = max_cnt; |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack; |
| 307 | if (ca->cnt == 0) /* cannot be zero */ |
| 308 | ca->cnt = 1; |
| 309 | } |
| 310 | |
| 311 | |
| 312 | /* Keep track of minimum rtt */ |
| 313 | static inline void measure_delay(struct sock *sk) |
| 314 | { |
| 315 | const struct tcp_sock *tp = tcp_sk(sk); |
| 316 | struct bictcp *ca = inet_csk_ca(sk); |
| 317 | u32 delay; |
| 318 | |
| 319 | /* No time stamp */ |
| 320 | if (!(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) || |
| 321 | /* Discard delay samples right after fast recovery */ |
| 322 | (s32)(tcp_time_stamp - ca->epoch_start) < HZ) |
| 323 | return; |
| 324 | |
| 325 | delay = tcp_time_stamp - tp->rx_opt.rcv_tsecr; |
| 326 | if (delay == 0) |
| 327 | delay = 1; |
| 328 | |
| 329 | /* first time call or link delay decreases */ |
| 330 | if (ca->delay_min == 0 || ca->delay_min > delay) |
| 331 | ca->delay_min = delay; |
| 332 | } |
| 333 | |
| 334 | static void bictcp_cong_avoid(struct sock *sk, u32 ack, |
| 335 | u32 seq_rtt, u32 in_flight, int data_acked) |
| 336 | { |
| 337 | struct tcp_sock *tp = tcp_sk(sk); |
| 338 | struct bictcp *ca = inet_csk_ca(sk); |
| 339 | |
| 340 | if (data_acked) |
| 341 | measure_delay(sk); |
| 342 | |
| 343 | if (!tcp_is_cwnd_limited(sk, in_flight)) |
| 344 | return; |
| 345 | |
| 346 | if (tp->snd_cwnd <= tp->snd_ssthresh) |
| 347 | tcp_slow_start(tp); |
| 348 | else { |
| 349 | bictcp_update(ca, tp->snd_cwnd); |
| 350 | |
| 351 | /* In dangerous area, increase slowly. |
| 352 | * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd |
| 353 | */ |
| 354 | if (tp->snd_cwnd_cnt >= ca->cnt) { |
| 355 | if (tp->snd_cwnd < tp->snd_cwnd_clamp) |
| 356 | tp->snd_cwnd++; |
| 357 | tp->snd_cwnd_cnt = 0; |
| 358 | } else |
| 359 | tp->snd_cwnd_cnt++; |
| 360 | } |
| 361 | |
| 362 | } |
| 363 | |
| 364 | static u32 bictcp_recalc_ssthresh(struct sock *sk) |
| 365 | { |
| 366 | const struct tcp_sock *tp = tcp_sk(sk); |
| 367 | struct bictcp *ca = inet_csk_ca(sk); |
| 368 | |
| 369 | ca->epoch_start = 0; /* end of epoch */ |
| 370 | |
| 371 | /* Wmax and fast convergence */ |
| 372 | if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence) |
| 373 | ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta)) |
| 374 | / (2 * BICTCP_BETA_SCALE); |
| 375 | else |
| 376 | ca->last_max_cwnd = tp->snd_cwnd; |
| 377 | |
| 378 | ca->loss_cwnd = tp->snd_cwnd; |
| 379 | |
| 380 | return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U); |
| 381 | } |
| 382 | |
| 383 | static u32 bictcp_undo_cwnd(struct sock *sk) |
| 384 | { |
| 385 | struct bictcp *ca = inet_csk_ca(sk); |
| 386 | |
| 387 | return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd); |
| 388 | } |
| 389 | |
| 390 | static u32 bictcp_min_cwnd(struct sock *sk) |
| 391 | { |
| 392 | return tcp_sk(sk)->snd_ssthresh; |
| 393 | } |
| 394 | |
| 395 | static void bictcp_state(struct sock *sk, u8 new_state) |
| 396 | { |
| 397 | if (new_state == TCP_CA_Loss) |
| 398 | bictcp_reset(inet_csk_ca(sk)); |
| 399 | } |
| 400 | |
| 401 | /* Track delayed acknowledgment ratio using sliding window |
| 402 | * ratio = (15*ratio + sample) / 16 |
| 403 | */ |
| 404 | static void bictcp_acked(struct sock *sk, u32 cnt) |
| 405 | { |
| 406 | const struct inet_connection_sock *icsk = inet_csk(sk); |
| 407 | |
| 408 | if (cnt > 0 && icsk->icsk_ca_state == TCP_CA_Open) { |
| 409 | struct bictcp *ca = inet_csk_ca(sk); |
| 410 | cnt -= ca->delayed_ack >> ACK_RATIO_SHIFT; |
| 411 | ca->delayed_ack += cnt; |
| 412 | } |
| 413 | } |
| 414 | |
| 415 | |
| 416 | static struct tcp_congestion_ops cubictcp = { |
| 417 | .init = bictcp_init, |
| 418 | .ssthresh = bictcp_recalc_ssthresh, |
| 419 | .cong_avoid = bictcp_cong_avoid, |
| 420 | .set_state = bictcp_state, |
| 421 | .undo_cwnd = bictcp_undo_cwnd, |
| 422 | .min_cwnd = bictcp_min_cwnd, |
| 423 | .pkts_acked = bictcp_acked, |
| 424 | .owner = THIS_MODULE, |
| 425 | .name = "cubic", |
| 426 | }; |
| 427 | |
| 428 | static int __init cubictcp_register(void) |
| 429 | { |
| 430 | BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE); |
| 431 | return tcp_register_congestion_control(&cubictcp); |
| 432 | } |
| 433 | |
| 434 | static void __exit cubictcp_unregister(void) |
| 435 | { |
| 436 | tcp_unregister_congestion_control(&cubictcp); |
| 437 | } |
| 438 | |
| 439 | module_init(cubictcp_register); |
| 440 | module_exit(cubictcp_unregister); |
| 441 | |
| 442 | MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger"); |
| 443 | MODULE_LICENSE("GPL"); |
| 444 | MODULE_DESCRIPTION("CUBIC TCP"); |
| 445 | MODULE_VERSION("2.0"); |