blob: ba2c79e6a0ee74d5a9a48278dfb561c978e81356 [file] [log] [blame]
Michael Kelleyfd1fea62019-07-01 04:25:56 +00001// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * Clocksource driver for the synthetic counter and timers
5 * provided by the Hyper-V hypervisor to guest VMs, as described
6 * in the Hyper-V Top Level Functional Spec (TLFS). This driver
7 * is instruction set architecture independent.
8 *
9 * Copyright (C) 2019, Microsoft, Inc.
10 *
11 * Author: Michael Kelley <mikelley@microsoft.com>
12 */
13
14#include <linux/percpu.h>
15#include <linux/cpumask.h>
16#include <linux/clockchips.h>
Michael Kelleydd2cb342019-07-01 04:26:06 +000017#include <linux/clocksource.h>
18#include <linux/sched_clock.h>
Michael Kelleyfd1fea62019-07-01 04:25:56 +000019#include <linux/mm.h>
20#include <clocksource/hyperv_timer.h>
21#include <asm/hyperv-tlfs.h>
22#include <asm/mshyperv.h>
23
24static struct clock_event_device __percpu *hv_clock_event;
25
26/*
27 * If false, we're using the old mechanism for stimer0 interrupts
28 * where it sends a VMbus message when it expires. The old
29 * mechanism is used when running on older versions of Hyper-V
30 * that don't support Direct Mode. While Hyper-V provides
31 * four stimer's per CPU, Linux uses only stimer0.
32 */
33static bool direct_mode_enabled;
34
35static int stimer0_irq;
36static int stimer0_vector;
37static int stimer0_message_sint;
38
39/*
40 * ISR for when stimer0 is operating in Direct Mode. Direct Mode
41 * does not use VMbus or any VMbus messages, so process here and not
42 * in the VMbus driver code.
43 */
44void hv_stimer0_isr(void)
45{
46 struct clock_event_device *ce;
47
48 ce = this_cpu_ptr(hv_clock_event);
49 ce->event_handler(ce);
50}
51EXPORT_SYMBOL_GPL(hv_stimer0_isr);
52
53static int hv_ce_set_next_event(unsigned long delta,
54 struct clock_event_device *evt)
55{
56 u64 current_tick;
57
58 current_tick = hyperv_cs->read(NULL);
59 current_tick += delta;
60 hv_init_timer(0, current_tick);
61 return 0;
62}
63
64static int hv_ce_shutdown(struct clock_event_device *evt)
65{
66 hv_init_timer(0, 0);
67 hv_init_timer_config(0, 0);
68 if (direct_mode_enabled)
69 hv_disable_stimer0_percpu_irq(stimer0_irq);
70
71 return 0;
72}
73
74static int hv_ce_set_oneshot(struct clock_event_device *evt)
75{
76 union hv_stimer_config timer_cfg;
77
78 timer_cfg.as_uint64 = 0;
79 timer_cfg.enable = 1;
80 timer_cfg.auto_enable = 1;
81 if (direct_mode_enabled) {
82 /*
83 * When it expires, the timer will directly interrupt
84 * on the specified hardware vector/IRQ.
85 */
86 timer_cfg.direct_mode = 1;
87 timer_cfg.apic_vector = stimer0_vector;
88 hv_enable_stimer0_percpu_irq(stimer0_irq);
89 } else {
90 /*
91 * When it expires, the timer will generate a VMbus message,
92 * to be handled by the normal VMbus interrupt handler.
93 */
94 timer_cfg.direct_mode = 0;
95 timer_cfg.sintx = stimer0_message_sint;
96 }
97 hv_init_timer_config(0, timer_cfg.as_uint64);
98 return 0;
99}
100
101/*
102 * hv_stimer_init - Per-cpu initialization of the clockevent
103 */
104void hv_stimer_init(unsigned int cpu)
105{
106 struct clock_event_device *ce;
107
108 /*
109 * Synthetic timers are always available except on old versions of
110 * Hyper-V on x86. In that case, just return as Linux will use a
111 * clocksource based on emulated PIT or LAPIC timer hardware.
112 */
113 if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
114 return;
115
116 ce = per_cpu_ptr(hv_clock_event, cpu);
117 ce->name = "Hyper-V clockevent";
118 ce->features = CLOCK_EVT_FEAT_ONESHOT;
119 ce->cpumask = cpumask_of(cpu);
120 ce->rating = 1000;
121 ce->set_state_shutdown = hv_ce_shutdown;
122 ce->set_state_oneshot = hv_ce_set_oneshot;
123 ce->set_next_event = hv_ce_set_next_event;
124
125 clockevents_config_and_register(ce,
126 HV_CLOCK_HZ,
127 HV_MIN_DELTA_TICKS,
128 HV_MAX_MAX_DELTA_TICKS);
129}
130EXPORT_SYMBOL_GPL(hv_stimer_init);
131
132/*
133 * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
134 */
135void hv_stimer_cleanup(unsigned int cpu)
136{
137 struct clock_event_device *ce;
138
139 /* Turn off clockevent device */
140 if (ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE) {
141 ce = per_cpu_ptr(hv_clock_event, cpu);
142 hv_ce_shutdown(ce);
143 }
144}
145EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
146
147/* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
148int hv_stimer_alloc(int sint)
149{
150 int ret;
151
152 hv_clock_event = alloc_percpu(struct clock_event_device);
153 if (!hv_clock_event)
154 return -ENOMEM;
155
156 direct_mode_enabled = ms_hyperv.misc_features &
157 HV_STIMER_DIRECT_MODE_AVAILABLE;
158 if (direct_mode_enabled) {
159 ret = hv_setup_stimer0_irq(&stimer0_irq, &stimer0_vector,
160 hv_stimer0_isr);
161 if (ret) {
162 free_percpu(hv_clock_event);
163 hv_clock_event = NULL;
164 return ret;
165 }
166 }
167
168 stimer0_message_sint = sint;
169 return 0;
170}
171EXPORT_SYMBOL_GPL(hv_stimer_alloc);
172
173/* hv_stimer_free - Free global resources allocated by hv_stimer_alloc() */
174void hv_stimer_free(void)
175{
176 if (direct_mode_enabled && (stimer0_irq != 0)) {
177 hv_remove_stimer0_irq(stimer0_irq);
178 stimer0_irq = 0;
179 }
180 free_percpu(hv_clock_event);
181 hv_clock_event = NULL;
182}
183EXPORT_SYMBOL_GPL(hv_stimer_free);
184
185/*
186 * Do a global cleanup of clockevents for the cases of kexec and
187 * vmbus exit
188 */
189void hv_stimer_global_cleanup(void)
190{
191 int cpu;
192 struct clock_event_device *ce;
193
194 if (ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE) {
195 for_each_present_cpu(cpu) {
196 ce = per_cpu_ptr(hv_clock_event, cpu);
197 clockevents_unbind_device(ce, cpu);
198 }
199 }
200 hv_stimer_free();
201}
202EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
Michael Kelleydd2cb342019-07-01 04:26:06 +0000203
204/*
205 * Code and definitions for the Hyper-V clocksources. Two
206 * clocksources are defined: one that reads the Hyper-V defined MSR, and
207 * the other that uses the TSC reference page feature as defined in the
208 * TLFS. The MSR version is for compatibility with old versions of
209 * Hyper-V and 32-bit x86. The TSC reference page version is preferred.
210 */
211
212struct clocksource *hyperv_cs;
213EXPORT_SYMBOL_GPL(hyperv_cs);
214
215#ifdef CONFIG_HYPERV_TSCPAGE
216
217static struct ms_hyperv_tsc_page *tsc_pg;
218
219struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
220{
221 return tsc_pg;
222}
223EXPORT_SYMBOL_GPL(hv_get_tsc_page);
224
225static u64 notrace read_hv_sched_clock_tsc(void)
226{
227 u64 current_tick = hv_read_tsc_page(tsc_pg);
228
229 if (current_tick == U64_MAX)
230 hv_get_time_ref_count(current_tick);
231
232 return current_tick;
233}
234
235static u64 read_hv_clock_tsc(struct clocksource *arg)
236{
237 return read_hv_sched_clock_tsc();
238}
239
240static struct clocksource hyperv_cs_tsc = {
241 .name = "hyperv_clocksource_tsc_page",
242 .rating = 400,
243 .read = read_hv_clock_tsc,
244 .mask = CLOCKSOURCE_MASK(64),
245 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
246};
247#endif
248
249static u64 notrace read_hv_sched_clock_msr(void)
250{
251 u64 current_tick;
252 /*
253 * Read the partition counter to get the current tick count. This count
254 * is set to 0 when the partition is created and is incremented in
255 * 100 nanosecond units.
256 */
257 hv_get_time_ref_count(current_tick);
258 return current_tick;
259}
260
261static u64 read_hv_clock_msr(struct clocksource *arg)
262{
263 return read_hv_sched_clock_msr();
264}
265
266static struct clocksource hyperv_cs_msr = {
267 .name = "hyperv_clocksource_msr",
268 .rating = 400,
269 .read = read_hv_clock_msr,
270 .mask = CLOCKSOURCE_MASK(64),
271 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
272};
273
274#ifdef CONFIG_HYPERV_TSCPAGE
275static bool __init hv_init_tsc_clocksource(void)
276{
277 u64 tsc_msr;
278 phys_addr_t phys_addr;
279
280 if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
281 return false;
282
283 tsc_pg = vmalloc(PAGE_SIZE);
284 if (!tsc_pg)
285 return false;
286
287 hyperv_cs = &hyperv_cs_tsc;
288 phys_addr = page_to_phys(vmalloc_to_page(tsc_pg));
289
290 /*
291 * The Hyper-V TLFS specifies to preserve the value of reserved
292 * bits in registers. So read the existing value, preserve the
293 * low order 12 bits, and add in the guest physical address
294 * (which already has at least the low 12 bits set to zero since
295 * it is page aligned). Also set the "enable" bit, which is bit 0.
296 */
297 hv_get_reference_tsc(tsc_msr);
298 tsc_msr &= GENMASK_ULL(11, 0);
299 tsc_msr = tsc_msr | 0x1 | (u64)phys_addr;
300 hv_set_reference_tsc(tsc_msr);
301
302 hv_set_clocksource_vdso(hyperv_cs_tsc);
303 clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
304
305 /* sched_clock_register is needed on ARM64 but is a no-op on x86 */
306 sched_clock_register(read_hv_sched_clock_tsc, 64, HV_CLOCK_HZ);
307 return true;
308}
309#else
310static bool __init hv_init_tsc_clocksource(void)
311{
312 return false;
313}
314#endif
315
316
317void __init hv_init_clocksource(void)
318{
319 /*
320 * Try to set up the TSC page clocksource. If it succeeds, we're
321 * done. Otherwise, set up the MSR clocksoruce. At least one of
322 * these will always be available except on very old versions of
323 * Hyper-V on x86. In that case we won't have a Hyper-V
324 * clocksource, but Linux will still run with a clocksource based
325 * on the emulated PIT or LAPIC timer.
326 */
327 if (hv_init_tsc_clocksource())
328 return;
329
330 if (!(ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE))
331 return;
332
333 hyperv_cs = &hyperv_cs_msr;
334 clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
335
336 /* sched_clock_register is needed on ARM64 but is a no-op on x86 */
337 sched_clock_register(read_hv_sched_clock_msr, 64, HV_CLOCK_HZ);
338}
339EXPORT_SYMBOL_GPL(hv_init_clocksource);