Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Fast Userspace Mutexes (which I call "Futexes!"). |
| 3 | * (C) Rusty Russell, IBM 2002 |
| 4 | * |
| 5 | * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar |
| 6 | * (C) Copyright 2003 Red Hat Inc, All Rights Reserved |
| 7 | * |
| 8 | * Removed page pinning, fix privately mapped COW pages and other cleanups |
| 9 | * (C) Copyright 2003, 2004 Jamie Lokier |
| 10 | * |
| 11 | * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly |
| 12 | * enough at me, Linus for the original (flawed) idea, Matthew |
| 13 | * Kirkwood for proof-of-concept implementation. |
| 14 | * |
| 15 | * "The futexes are also cursed." |
| 16 | * "But they come in a choice of three flavours!" |
| 17 | * |
| 18 | * This program is free software; you can redistribute it and/or modify |
| 19 | * it under the terms of the GNU General Public License as published by |
| 20 | * the Free Software Foundation; either version 2 of the License, or |
| 21 | * (at your option) any later version. |
| 22 | * |
| 23 | * This program is distributed in the hope that it will be useful, |
| 24 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 25 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 26 | * GNU General Public License for more details. |
| 27 | * |
| 28 | * You should have received a copy of the GNU General Public License |
| 29 | * along with this program; if not, write to the Free Software |
| 30 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 31 | */ |
| 32 | #include <linux/slab.h> |
| 33 | #include <linux/poll.h> |
| 34 | #include <linux/fs.h> |
| 35 | #include <linux/file.h> |
| 36 | #include <linux/jhash.h> |
| 37 | #include <linux/init.h> |
| 38 | #include <linux/futex.h> |
| 39 | #include <linux/mount.h> |
| 40 | #include <linux/pagemap.h> |
| 41 | #include <linux/syscalls.h> |
Jesper Juhl | 7ed20e1 | 2005-05-01 08:59:14 -0700 | [diff] [blame] | 42 | #include <linux/signal.h> |
Jakub Jelinek | 4732efbe | 2005-09-06 15:16:25 -0700 | [diff] [blame] | 43 | #include <asm/futex.h> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 44 | |
| 45 | #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8) |
| 46 | |
| 47 | /* |
| 48 | * Futexes are matched on equal values of this key. |
| 49 | * The key type depends on whether it's a shared or private mapping. |
| 50 | * Don't rearrange members without looking at hash_futex(). |
| 51 | * |
| 52 | * offset is aligned to a multiple of sizeof(u32) (== 4) by definition. |
| 53 | * We set bit 0 to indicate if it's an inode-based key. |
| 54 | */ |
| 55 | union futex_key { |
| 56 | struct { |
| 57 | unsigned long pgoff; |
| 58 | struct inode *inode; |
| 59 | int offset; |
| 60 | } shared; |
| 61 | struct { |
| 62 | unsigned long uaddr; |
| 63 | struct mm_struct *mm; |
| 64 | int offset; |
| 65 | } private; |
| 66 | struct { |
| 67 | unsigned long word; |
| 68 | void *ptr; |
| 69 | int offset; |
| 70 | } both; |
| 71 | }; |
| 72 | |
| 73 | /* |
| 74 | * We use this hashed waitqueue instead of a normal wait_queue_t, so |
| 75 | * we can wake only the relevant ones (hashed queues may be shared). |
| 76 | * |
| 77 | * A futex_q has a woken state, just like tasks have TASK_RUNNING. |
| 78 | * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0. |
| 79 | * The order of wakup is always to make the first condition true, then |
| 80 | * wake up q->waiters, then make the second condition true. |
| 81 | */ |
| 82 | struct futex_q { |
| 83 | struct list_head list; |
| 84 | wait_queue_head_t waiters; |
| 85 | |
| 86 | /* Which hash list lock to use. */ |
| 87 | spinlock_t *lock_ptr; |
| 88 | |
| 89 | /* Key which the futex is hashed on. */ |
| 90 | union futex_key key; |
| 91 | |
| 92 | /* For fd, sigio sent using these. */ |
| 93 | int fd; |
| 94 | struct file *filp; |
| 95 | }; |
| 96 | |
| 97 | /* |
| 98 | * Split the global futex_lock into every hash list lock. |
| 99 | */ |
| 100 | struct futex_hash_bucket { |
| 101 | spinlock_t lock; |
| 102 | struct list_head chain; |
| 103 | }; |
| 104 | |
| 105 | static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS]; |
| 106 | |
| 107 | /* Futex-fs vfsmount entry: */ |
| 108 | static struct vfsmount *futex_mnt; |
| 109 | |
| 110 | /* |
| 111 | * We hash on the keys returned from get_futex_key (see below). |
| 112 | */ |
| 113 | static struct futex_hash_bucket *hash_futex(union futex_key *key) |
| 114 | { |
| 115 | u32 hash = jhash2((u32*)&key->both.word, |
| 116 | (sizeof(key->both.word)+sizeof(key->both.ptr))/4, |
| 117 | key->both.offset); |
| 118 | return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)]; |
| 119 | } |
| 120 | |
| 121 | /* |
| 122 | * Return 1 if two futex_keys are equal, 0 otherwise. |
| 123 | */ |
| 124 | static inline int match_futex(union futex_key *key1, union futex_key *key2) |
| 125 | { |
| 126 | return (key1->both.word == key2->both.word |
| 127 | && key1->both.ptr == key2->both.ptr |
| 128 | && key1->both.offset == key2->both.offset); |
| 129 | } |
| 130 | |
| 131 | /* |
| 132 | * Get parameters which are the keys for a futex. |
| 133 | * |
| 134 | * For shared mappings, it's (page->index, vma->vm_file->f_dentry->d_inode, |
| 135 | * offset_within_page). For private mappings, it's (uaddr, current->mm). |
| 136 | * We can usually work out the index without swapping in the page. |
| 137 | * |
| 138 | * Returns: 0, or negative error code. |
| 139 | * The key words are stored in *key on success. |
| 140 | * |
| 141 | * Should be called with ¤t->mm->mmap_sem but NOT any spinlocks. |
| 142 | */ |
| 143 | static int get_futex_key(unsigned long uaddr, union futex_key *key) |
| 144 | { |
| 145 | struct mm_struct *mm = current->mm; |
| 146 | struct vm_area_struct *vma; |
| 147 | struct page *page; |
| 148 | int err; |
| 149 | |
| 150 | /* |
| 151 | * The futex address must be "naturally" aligned. |
| 152 | */ |
| 153 | key->both.offset = uaddr % PAGE_SIZE; |
| 154 | if (unlikely((key->both.offset % sizeof(u32)) != 0)) |
| 155 | return -EINVAL; |
| 156 | uaddr -= key->both.offset; |
| 157 | |
| 158 | /* |
| 159 | * The futex is hashed differently depending on whether |
| 160 | * it's in a shared or private mapping. So check vma first. |
| 161 | */ |
| 162 | vma = find_extend_vma(mm, uaddr); |
| 163 | if (unlikely(!vma)) |
| 164 | return -EFAULT; |
| 165 | |
| 166 | /* |
| 167 | * Permissions. |
| 168 | */ |
| 169 | if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ)) |
| 170 | return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES; |
| 171 | |
| 172 | /* |
| 173 | * Private mappings are handled in a simple way. |
| 174 | * |
| 175 | * NOTE: When userspace waits on a MAP_SHARED mapping, even if |
| 176 | * it's a read-only handle, it's expected that futexes attach to |
| 177 | * the object not the particular process. Therefore we use |
| 178 | * VM_MAYSHARE here, not VM_SHARED which is restricted to shared |
| 179 | * mappings of _writable_ handles. |
| 180 | */ |
| 181 | if (likely(!(vma->vm_flags & VM_MAYSHARE))) { |
| 182 | key->private.mm = mm; |
| 183 | key->private.uaddr = uaddr; |
| 184 | return 0; |
| 185 | } |
| 186 | |
| 187 | /* |
| 188 | * Linear file mappings are also simple. |
| 189 | */ |
| 190 | key->shared.inode = vma->vm_file->f_dentry->d_inode; |
| 191 | key->both.offset++; /* Bit 0 of offset indicates inode-based key. */ |
| 192 | if (likely(!(vma->vm_flags & VM_NONLINEAR))) { |
| 193 | key->shared.pgoff = (((uaddr - vma->vm_start) >> PAGE_SHIFT) |
| 194 | + vma->vm_pgoff); |
| 195 | return 0; |
| 196 | } |
| 197 | |
| 198 | /* |
| 199 | * We could walk the page table to read the non-linear |
| 200 | * pte, and get the page index without fetching the page |
| 201 | * from swap. But that's a lot of code to duplicate here |
| 202 | * for a rare case, so we simply fetch the page. |
| 203 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 204 | err = get_user_pages(current, mm, uaddr, 1, 0, 0, &page, NULL); |
| 205 | if (err >= 0) { |
| 206 | key->shared.pgoff = |
| 207 | page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
| 208 | put_page(page); |
| 209 | return 0; |
| 210 | } |
| 211 | return err; |
| 212 | } |
| 213 | |
| 214 | /* |
| 215 | * Take a reference to the resource addressed by a key. |
| 216 | * Can be called while holding spinlocks. |
| 217 | * |
| 218 | * NOTE: mmap_sem MUST be held between get_futex_key() and calling this |
| 219 | * function, if it is called at all. mmap_sem keeps key->shared.inode valid. |
| 220 | */ |
| 221 | static inline void get_key_refs(union futex_key *key) |
| 222 | { |
| 223 | if (key->both.ptr != 0) { |
| 224 | if (key->both.offset & 1) |
| 225 | atomic_inc(&key->shared.inode->i_count); |
| 226 | else |
| 227 | atomic_inc(&key->private.mm->mm_count); |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | /* |
| 232 | * Drop a reference to the resource addressed by a key. |
| 233 | * The hash bucket spinlock must not be held. |
| 234 | */ |
| 235 | static void drop_key_refs(union futex_key *key) |
| 236 | { |
| 237 | if (key->both.ptr != 0) { |
| 238 | if (key->both.offset & 1) |
| 239 | iput(key->shared.inode); |
| 240 | else |
| 241 | mmdrop(key->private.mm); |
| 242 | } |
| 243 | } |
| 244 | |
| 245 | static inline int get_futex_value_locked(int *dest, int __user *from) |
| 246 | { |
| 247 | int ret; |
| 248 | |
| 249 | inc_preempt_count(); |
| 250 | ret = __copy_from_user_inatomic(dest, from, sizeof(int)); |
| 251 | dec_preempt_count(); |
| 252 | |
| 253 | return ret ? -EFAULT : 0; |
| 254 | } |
| 255 | |
| 256 | /* |
| 257 | * The hash bucket lock must be held when this is called. |
| 258 | * Afterwards, the futex_q must not be accessed. |
| 259 | */ |
| 260 | static void wake_futex(struct futex_q *q) |
| 261 | { |
| 262 | list_del_init(&q->list); |
| 263 | if (q->filp) |
| 264 | send_sigio(&q->filp->f_owner, q->fd, POLL_IN); |
| 265 | /* |
| 266 | * The lock in wake_up_all() is a crucial memory barrier after the |
| 267 | * list_del_init() and also before assigning to q->lock_ptr. |
| 268 | */ |
| 269 | wake_up_all(&q->waiters); |
| 270 | /* |
| 271 | * The waiting task can free the futex_q as soon as this is written, |
| 272 | * without taking any locks. This must come last. |
Andrew Morton | 8e31108 | 2005-12-23 19:54:46 -0800 | [diff] [blame] | 273 | * |
| 274 | * A memory barrier is required here to prevent the following store |
| 275 | * to lock_ptr from getting ahead of the wakeup. Clearing the lock |
| 276 | * at the end of wake_up_all() does not prevent this store from |
| 277 | * moving. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 278 | */ |
Andrew Morton | 8e31108 | 2005-12-23 19:54:46 -0800 | [diff] [blame] | 279 | wmb(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 280 | q->lock_ptr = NULL; |
| 281 | } |
| 282 | |
| 283 | /* |
| 284 | * Wake up all waiters hashed on the physical page that is mapped |
| 285 | * to this virtual address: |
| 286 | */ |
| 287 | static int futex_wake(unsigned long uaddr, int nr_wake) |
| 288 | { |
| 289 | union futex_key key; |
| 290 | struct futex_hash_bucket *bh; |
| 291 | struct list_head *head; |
| 292 | struct futex_q *this, *next; |
| 293 | int ret; |
| 294 | |
| 295 | down_read(¤t->mm->mmap_sem); |
| 296 | |
| 297 | ret = get_futex_key(uaddr, &key); |
| 298 | if (unlikely(ret != 0)) |
| 299 | goto out; |
| 300 | |
| 301 | bh = hash_futex(&key); |
| 302 | spin_lock(&bh->lock); |
| 303 | head = &bh->chain; |
| 304 | |
| 305 | list_for_each_entry_safe(this, next, head, list) { |
| 306 | if (match_futex (&this->key, &key)) { |
| 307 | wake_futex(this); |
| 308 | if (++ret >= nr_wake) |
| 309 | break; |
| 310 | } |
| 311 | } |
| 312 | |
| 313 | spin_unlock(&bh->lock); |
| 314 | out: |
| 315 | up_read(¤t->mm->mmap_sem); |
| 316 | return ret; |
| 317 | } |
| 318 | |
| 319 | /* |
Jakub Jelinek | 4732efbe | 2005-09-06 15:16:25 -0700 | [diff] [blame] | 320 | * Wake up all waiters hashed on the physical page that is mapped |
| 321 | * to this virtual address: |
| 322 | */ |
| 323 | static int futex_wake_op(unsigned long uaddr1, unsigned long uaddr2, int nr_wake, int nr_wake2, int op) |
| 324 | { |
| 325 | union futex_key key1, key2; |
| 326 | struct futex_hash_bucket *bh1, *bh2; |
| 327 | struct list_head *head; |
| 328 | struct futex_q *this, *next; |
| 329 | int ret, op_ret, attempt = 0; |
| 330 | |
| 331 | retryfull: |
| 332 | down_read(¤t->mm->mmap_sem); |
| 333 | |
| 334 | ret = get_futex_key(uaddr1, &key1); |
| 335 | if (unlikely(ret != 0)) |
| 336 | goto out; |
| 337 | ret = get_futex_key(uaddr2, &key2); |
| 338 | if (unlikely(ret != 0)) |
| 339 | goto out; |
| 340 | |
| 341 | bh1 = hash_futex(&key1); |
| 342 | bh2 = hash_futex(&key2); |
| 343 | |
| 344 | retry: |
| 345 | if (bh1 < bh2) |
| 346 | spin_lock(&bh1->lock); |
| 347 | spin_lock(&bh2->lock); |
| 348 | if (bh1 > bh2) |
| 349 | spin_lock(&bh1->lock); |
| 350 | |
| 351 | op_ret = futex_atomic_op_inuser(op, (int __user *)uaddr2); |
| 352 | if (unlikely(op_ret < 0)) { |
| 353 | int dummy; |
| 354 | |
| 355 | spin_unlock(&bh1->lock); |
| 356 | if (bh1 != bh2) |
| 357 | spin_unlock(&bh2->lock); |
| 358 | |
David Howells | 7ee1dd3 | 2006-01-06 00:11:44 -0800 | [diff] [blame] | 359 | #ifndef CONFIG_MMU |
| 360 | /* we don't get EFAULT from MMU faults if we don't have an MMU, |
| 361 | * but we might get them from range checking */ |
| 362 | ret = op_ret; |
| 363 | goto out; |
| 364 | #endif |
| 365 | |
David Gibson | 796f8d9 | 2005-11-07 00:59:33 -0800 | [diff] [blame] | 366 | if (unlikely(op_ret != -EFAULT)) { |
| 367 | ret = op_ret; |
| 368 | goto out; |
| 369 | } |
| 370 | |
Jakub Jelinek | 4732efbe | 2005-09-06 15:16:25 -0700 | [diff] [blame] | 371 | /* futex_atomic_op_inuser needs to both read and write |
| 372 | * *(int __user *)uaddr2, but we can't modify it |
| 373 | * non-atomically. Therefore, if get_user below is not |
| 374 | * enough, we need to handle the fault ourselves, while |
| 375 | * still holding the mmap_sem. */ |
| 376 | if (attempt++) { |
| 377 | struct vm_area_struct * vma; |
| 378 | struct mm_struct *mm = current->mm; |
| 379 | |
| 380 | ret = -EFAULT; |
| 381 | if (attempt >= 2 || |
| 382 | !(vma = find_vma(mm, uaddr2)) || |
| 383 | vma->vm_start > uaddr2 || |
| 384 | !(vma->vm_flags & VM_WRITE)) |
| 385 | goto out; |
| 386 | |
| 387 | switch (handle_mm_fault(mm, vma, uaddr2, 1)) { |
| 388 | case VM_FAULT_MINOR: |
| 389 | current->min_flt++; |
| 390 | break; |
| 391 | case VM_FAULT_MAJOR: |
| 392 | current->maj_flt++; |
| 393 | break; |
| 394 | default: |
| 395 | goto out; |
| 396 | } |
| 397 | goto retry; |
| 398 | } |
| 399 | |
| 400 | /* If we would have faulted, release mmap_sem, |
| 401 | * fault it in and start all over again. */ |
| 402 | up_read(¤t->mm->mmap_sem); |
| 403 | |
| 404 | ret = get_user(dummy, (int __user *)uaddr2); |
| 405 | if (ret) |
| 406 | return ret; |
| 407 | |
| 408 | goto retryfull; |
| 409 | } |
| 410 | |
| 411 | head = &bh1->chain; |
| 412 | |
| 413 | list_for_each_entry_safe(this, next, head, list) { |
| 414 | if (match_futex (&this->key, &key1)) { |
| 415 | wake_futex(this); |
| 416 | if (++ret >= nr_wake) |
| 417 | break; |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | if (op_ret > 0) { |
| 422 | head = &bh2->chain; |
| 423 | |
| 424 | op_ret = 0; |
| 425 | list_for_each_entry_safe(this, next, head, list) { |
| 426 | if (match_futex (&this->key, &key2)) { |
| 427 | wake_futex(this); |
| 428 | if (++op_ret >= nr_wake2) |
| 429 | break; |
| 430 | } |
| 431 | } |
| 432 | ret += op_ret; |
| 433 | } |
| 434 | |
| 435 | spin_unlock(&bh1->lock); |
| 436 | if (bh1 != bh2) |
| 437 | spin_unlock(&bh2->lock); |
| 438 | out: |
| 439 | up_read(¤t->mm->mmap_sem); |
| 440 | return ret; |
| 441 | } |
| 442 | |
| 443 | /* |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 444 | * Requeue all waiters hashed on one physical page to another |
| 445 | * physical page. |
| 446 | */ |
| 447 | static int futex_requeue(unsigned long uaddr1, unsigned long uaddr2, |
| 448 | int nr_wake, int nr_requeue, int *valp) |
| 449 | { |
| 450 | union futex_key key1, key2; |
| 451 | struct futex_hash_bucket *bh1, *bh2; |
| 452 | struct list_head *head1; |
| 453 | struct futex_q *this, *next; |
| 454 | int ret, drop_count = 0; |
| 455 | |
| 456 | retry: |
| 457 | down_read(¤t->mm->mmap_sem); |
| 458 | |
| 459 | ret = get_futex_key(uaddr1, &key1); |
| 460 | if (unlikely(ret != 0)) |
| 461 | goto out; |
| 462 | ret = get_futex_key(uaddr2, &key2); |
| 463 | if (unlikely(ret != 0)) |
| 464 | goto out; |
| 465 | |
| 466 | bh1 = hash_futex(&key1); |
| 467 | bh2 = hash_futex(&key2); |
| 468 | |
| 469 | if (bh1 < bh2) |
| 470 | spin_lock(&bh1->lock); |
| 471 | spin_lock(&bh2->lock); |
| 472 | if (bh1 > bh2) |
| 473 | spin_lock(&bh1->lock); |
| 474 | |
| 475 | if (likely(valp != NULL)) { |
| 476 | int curval; |
| 477 | |
| 478 | ret = get_futex_value_locked(&curval, (int __user *)uaddr1); |
| 479 | |
| 480 | if (unlikely(ret)) { |
| 481 | spin_unlock(&bh1->lock); |
| 482 | if (bh1 != bh2) |
| 483 | spin_unlock(&bh2->lock); |
| 484 | |
| 485 | /* If we would have faulted, release mmap_sem, fault |
| 486 | * it in and start all over again. |
| 487 | */ |
| 488 | up_read(¤t->mm->mmap_sem); |
| 489 | |
| 490 | ret = get_user(curval, (int __user *)uaddr1); |
| 491 | |
| 492 | if (!ret) |
| 493 | goto retry; |
| 494 | |
| 495 | return ret; |
| 496 | } |
| 497 | if (curval != *valp) { |
| 498 | ret = -EAGAIN; |
| 499 | goto out_unlock; |
| 500 | } |
| 501 | } |
| 502 | |
| 503 | head1 = &bh1->chain; |
| 504 | list_for_each_entry_safe(this, next, head1, list) { |
| 505 | if (!match_futex (&this->key, &key1)) |
| 506 | continue; |
| 507 | if (++ret <= nr_wake) { |
| 508 | wake_futex(this); |
| 509 | } else { |
| 510 | list_move_tail(&this->list, &bh2->chain); |
| 511 | this->lock_ptr = &bh2->lock; |
| 512 | this->key = key2; |
| 513 | get_key_refs(&key2); |
| 514 | drop_count++; |
| 515 | |
| 516 | if (ret - nr_wake >= nr_requeue) |
| 517 | break; |
| 518 | /* Make sure to stop if key1 == key2 */ |
| 519 | if (head1 == &bh2->chain && head1 != &next->list) |
| 520 | head1 = &this->list; |
| 521 | } |
| 522 | } |
| 523 | |
| 524 | out_unlock: |
| 525 | spin_unlock(&bh1->lock); |
| 526 | if (bh1 != bh2) |
| 527 | spin_unlock(&bh2->lock); |
| 528 | |
| 529 | /* drop_key_refs() must be called outside the spinlocks. */ |
| 530 | while (--drop_count >= 0) |
| 531 | drop_key_refs(&key1); |
| 532 | |
| 533 | out: |
| 534 | up_read(¤t->mm->mmap_sem); |
| 535 | return ret; |
| 536 | } |
| 537 | |
| 538 | /* The key must be already stored in q->key. */ |
| 539 | static inline struct futex_hash_bucket * |
| 540 | queue_lock(struct futex_q *q, int fd, struct file *filp) |
| 541 | { |
| 542 | struct futex_hash_bucket *bh; |
| 543 | |
| 544 | q->fd = fd; |
| 545 | q->filp = filp; |
| 546 | |
| 547 | init_waitqueue_head(&q->waiters); |
| 548 | |
| 549 | get_key_refs(&q->key); |
| 550 | bh = hash_futex(&q->key); |
| 551 | q->lock_ptr = &bh->lock; |
| 552 | |
| 553 | spin_lock(&bh->lock); |
| 554 | return bh; |
| 555 | } |
| 556 | |
| 557 | static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *bh) |
| 558 | { |
| 559 | list_add_tail(&q->list, &bh->chain); |
| 560 | spin_unlock(&bh->lock); |
| 561 | } |
| 562 | |
| 563 | static inline void |
| 564 | queue_unlock(struct futex_q *q, struct futex_hash_bucket *bh) |
| 565 | { |
| 566 | spin_unlock(&bh->lock); |
| 567 | drop_key_refs(&q->key); |
| 568 | } |
| 569 | |
| 570 | /* |
| 571 | * queue_me and unqueue_me must be called as a pair, each |
| 572 | * exactly once. They are called with the hashed spinlock held. |
| 573 | */ |
| 574 | |
| 575 | /* The key must be already stored in q->key. */ |
| 576 | static void queue_me(struct futex_q *q, int fd, struct file *filp) |
| 577 | { |
| 578 | struct futex_hash_bucket *bh; |
| 579 | bh = queue_lock(q, fd, filp); |
| 580 | __queue_me(q, bh); |
| 581 | } |
| 582 | |
| 583 | /* Return 1 if we were still queued (ie. 0 means we were woken) */ |
| 584 | static int unqueue_me(struct futex_q *q) |
| 585 | { |
| 586 | int ret = 0; |
| 587 | spinlock_t *lock_ptr; |
| 588 | |
| 589 | /* In the common case we don't take the spinlock, which is nice. */ |
| 590 | retry: |
| 591 | lock_ptr = q->lock_ptr; |
| 592 | if (lock_ptr != 0) { |
| 593 | spin_lock(lock_ptr); |
| 594 | /* |
| 595 | * q->lock_ptr can change between reading it and |
| 596 | * spin_lock(), causing us to take the wrong lock. This |
| 597 | * corrects the race condition. |
| 598 | * |
| 599 | * Reasoning goes like this: if we have the wrong lock, |
| 600 | * q->lock_ptr must have changed (maybe several times) |
| 601 | * between reading it and the spin_lock(). It can |
| 602 | * change again after the spin_lock() but only if it was |
| 603 | * already changed before the spin_lock(). It cannot, |
| 604 | * however, change back to the original value. Therefore |
| 605 | * we can detect whether we acquired the correct lock. |
| 606 | */ |
| 607 | if (unlikely(lock_ptr != q->lock_ptr)) { |
| 608 | spin_unlock(lock_ptr); |
| 609 | goto retry; |
| 610 | } |
| 611 | WARN_ON(list_empty(&q->list)); |
| 612 | list_del(&q->list); |
| 613 | spin_unlock(lock_ptr); |
| 614 | ret = 1; |
| 615 | } |
| 616 | |
| 617 | drop_key_refs(&q->key); |
| 618 | return ret; |
| 619 | } |
| 620 | |
| 621 | static int futex_wait(unsigned long uaddr, int val, unsigned long time) |
| 622 | { |
| 623 | DECLARE_WAITQUEUE(wait, current); |
| 624 | int ret, curval; |
| 625 | struct futex_q q; |
| 626 | struct futex_hash_bucket *bh; |
| 627 | |
| 628 | retry: |
| 629 | down_read(¤t->mm->mmap_sem); |
| 630 | |
| 631 | ret = get_futex_key(uaddr, &q.key); |
| 632 | if (unlikely(ret != 0)) |
| 633 | goto out_release_sem; |
| 634 | |
| 635 | bh = queue_lock(&q, -1, NULL); |
| 636 | |
| 637 | /* |
| 638 | * Access the page AFTER the futex is queued. |
| 639 | * Order is important: |
| 640 | * |
| 641 | * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); |
| 642 | * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); } |
| 643 | * |
| 644 | * The basic logical guarantee of a futex is that it blocks ONLY |
| 645 | * if cond(var) is known to be true at the time of blocking, for |
| 646 | * any cond. If we queued after testing *uaddr, that would open |
| 647 | * a race condition where we could block indefinitely with |
| 648 | * cond(var) false, which would violate the guarantee. |
| 649 | * |
| 650 | * A consequence is that futex_wait() can return zero and absorb |
| 651 | * a wakeup when *uaddr != val on entry to the syscall. This is |
| 652 | * rare, but normal. |
| 653 | * |
| 654 | * We hold the mmap semaphore, so the mapping cannot have changed |
| 655 | * since we looked it up in get_futex_key. |
| 656 | */ |
| 657 | |
| 658 | ret = get_futex_value_locked(&curval, (int __user *)uaddr); |
| 659 | |
| 660 | if (unlikely(ret)) { |
| 661 | queue_unlock(&q, bh); |
| 662 | |
| 663 | /* If we would have faulted, release mmap_sem, fault it in and |
| 664 | * start all over again. |
| 665 | */ |
| 666 | up_read(¤t->mm->mmap_sem); |
| 667 | |
| 668 | ret = get_user(curval, (int __user *)uaddr); |
| 669 | |
| 670 | if (!ret) |
| 671 | goto retry; |
| 672 | return ret; |
| 673 | } |
| 674 | if (curval != val) { |
| 675 | ret = -EWOULDBLOCK; |
| 676 | queue_unlock(&q, bh); |
| 677 | goto out_release_sem; |
| 678 | } |
| 679 | |
| 680 | /* Only actually queue if *uaddr contained val. */ |
| 681 | __queue_me(&q, bh); |
| 682 | |
| 683 | /* |
| 684 | * Now the futex is queued and we have checked the data, we |
| 685 | * don't want to hold mmap_sem while we sleep. |
| 686 | */ |
| 687 | up_read(¤t->mm->mmap_sem); |
| 688 | |
| 689 | /* |
| 690 | * There might have been scheduling since the queue_me(), as we |
| 691 | * cannot hold a spinlock across the get_user() in case it |
| 692 | * faults, and we cannot just set TASK_INTERRUPTIBLE state when |
| 693 | * queueing ourselves into the futex hash. This code thus has to |
| 694 | * rely on the futex_wake() code removing us from hash when it |
| 695 | * wakes us up. |
| 696 | */ |
| 697 | |
| 698 | /* add_wait_queue is the barrier after __set_current_state. */ |
| 699 | __set_current_state(TASK_INTERRUPTIBLE); |
| 700 | add_wait_queue(&q.waiters, &wait); |
| 701 | /* |
| 702 | * !list_empty() is safe here without any lock. |
| 703 | * q.lock_ptr != 0 is not safe, because of ordering against wakeup. |
| 704 | */ |
| 705 | if (likely(!list_empty(&q.list))) |
| 706 | time = schedule_timeout(time); |
| 707 | __set_current_state(TASK_RUNNING); |
| 708 | |
| 709 | /* |
| 710 | * NOTE: we don't remove ourselves from the waitqueue because |
| 711 | * we are the only user of it. |
| 712 | */ |
| 713 | |
| 714 | /* If we were woken (and unqueued), we succeeded, whatever. */ |
| 715 | if (!unqueue_me(&q)) |
| 716 | return 0; |
| 717 | if (time == 0) |
| 718 | return -ETIMEDOUT; |
| 719 | /* We expect signal_pending(current), but another thread may |
| 720 | * have handled it for us already. */ |
| 721 | return -EINTR; |
| 722 | |
| 723 | out_release_sem: |
| 724 | up_read(¤t->mm->mmap_sem); |
| 725 | return ret; |
| 726 | } |
| 727 | |
| 728 | static int futex_close(struct inode *inode, struct file *filp) |
| 729 | { |
| 730 | struct futex_q *q = filp->private_data; |
| 731 | |
| 732 | unqueue_me(q); |
| 733 | kfree(q); |
| 734 | return 0; |
| 735 | } |
| 736 | |
| 737 | /* This is one-shot: once it's gone off you need a new fd */ |
| 738 | static unsigned int futex_poll(struct file *filp, |
| 739 | struct poll_table_struct *wait) |
| 740 | { |
| 741 | struct futex_q *q = filp->private_data; |
| 742 | int ret = 0; |
| 743 | |
| 744 | poll_wait(filp, &q->waiters, wait); |
| 745 | |
| 746 | /* |
| 747 | * list_empty() is safe here without any lock. |
| 748 | * q->lock_ptr != 0 is not safe, because of ordering against wakeup. |
| 749 | */ |
| 750 | if (list_empty(&q->list)) |
| 751 | ret = POLLIN | POLLRDNORM; |
| 752 | |
| 753 | return ret; |
| 754 | } |
| 755 | |
| 756 | static struct file_operations futex_fops = { |
| 757 | .release = futex_close, |
| 758 | .poll = futex_poll, |
| 759 | }; |
| 760 | |
| 761 | /* |
| 762 | * Signal allows caller to avoid the race which would occur if they |
| 763 | * set the sigio stuff up afterwards. |
| 764 | */ |
| 765 | static int futex_fd(unsigned long uaddr, int signal) |
| 766 | { |
| 767 | struct futex_q *q; |
| 768 | struct file *filp; |
| 769 | int ret, err; |
| 770 | |
| 771 | ret = -EINVAL; |
Jesper Juhl | 7ed20e1 | 2005-05-01 08:59:14 -0700 | [diff] [blame] | 772 | if (!valid_signal(signal)) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 773 | goto out; |
| 774 | |
| 775 | ret = get_unused_fd(); |
| 776 | if (ret < 0) |
| 777 | goto out; |
| 778 | filp = get_empty_filp(); |
| 779 | if (!filp) { |
| 780 | put_unused_fd(ret); |
| 781 | ret = -ENFILE; |
| 782 | goto out; |
| 783 | } |
| 784 | filp->f_op = &futex_fops; |
| 785 | filp->f_vfsmnt = mntget(futex_mnt); |
| 786 | filp->f_dentry = dget(futex_mnt->mnt_root); |
| 787 | filp->f_mapping = filp->f_dentry->d_inode->i_mapping; |
| 788 | |
| 789 | if (signal) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 790 | err = f_setown(filp, current->pid, 1); |
| 791 | if (err < 0) { |
Pekka Enberg | 39ed3fd | 2005-09-06 15:17:44 -0700 | [diff] [blame] | 792 | goto error; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 793 | } |
| 794 | filp->f_owner.signum = signal; |
| 795 | } |
| 796 | |
| 797 | q = kmalloc(sizeof(*q), GFP_KERNEL); |
| 798 | if (!q) { |
Pekka Enberg | 39ed3fd | 2005-09-06 15:17:44 -0700 | [diff] [blame] | 799 | err = -ENOMEM; |
| 800 | goto error; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 801 | } |
| 802 | |
| 803 | down_read(¤t->mm->mmap_sem); |
| 804 | err = get_futex_key(uaddr, &q->key); |
| 805 | |
| 806 | if (unlikely(err != 0)) { |
| 807 | up_read(¤t->mm->mmap_sem); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 808 | kfree(q); |
Pekka Enberg | 39ed3fd | 2005-09-06 15:17:44 -0700 | [diff] [blame] | 809 | goto error; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 810 | } |
| 811 | |
| 812 | /* |
| 813 | * queue_me() must be called before releasing mmap_sem, because |
| 814 | * key->shared.inode needs to be referenced while holding it. |
| 815 | */ |
| 816 | filp->private_data = q; |
| 817 | |
| 818 | queue_me(q, ret, filp); |
| 819 | up_read(¤t->mm->mmap_sem); |
| 820 | |
| 821 | /* Now we map fd to filp, so userspace can access it */ |
| 822 | fd_install(ret, filp); |
| 823 | out: |
| 824 | return ret; |
Pekka Enberg | 39ed3fd | 2005-09-06 15:17:44 -0700 | [diff] [blame] | 825 | error: |
| 826 | put_unused_fd(ret); |
| 827 | put_filp(filp); |
| 828 | ret = err; |
| 829 | goto out; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 830 | } |
| 831 | |
| 832 | long do_futex(unsigned long uaddr, int op, int val, unsigned long timeout, |
| 833 | unsigned long uaddr2, int val2, int val3) |
| 834 | { |
| 835 | int ret; |
| 836 | |
| 837 | switch (op) { |
| 838 | case FUTEX_WAIT: |
| 839 | ret = futex_wait(uaddr, val, timeout); |
| 840 | break; |
| 841 | case FUTEX_WAKE: |
| 842 | ret = futex_wake(uaddr, val); |
| 843 | break; |
| 844 | case FUTEX_FD: |
| 845 | /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */ |
| 846 | ret = futex_fd(uaddr, val); |
| 847 | break; |
| 848 | case FUTEX_REQUEUE: |
| 849 | ret = futex_requeue(uaddr, uaddr2, val, val2, NULL); |
| 850 | break; |
| 851 | case FUTEX_CMP_REQUEUE: |
| 852 | ret = futex_requeue(uaddr, uaddr2, val, val2, &val3); |
| 853 | break; |
Jakub Jelinek | 4732efbe | 2005-09-06 15:16:25 -0700 | [diff] [blame] | 854 | case FUTEX_WAKE_OP: |
| 855 | ret = futex_wake_op(uaddr, uaddr2, val, val2, val3); |
| 856 | break; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 857 | default: |
| 858 | ret = -ENOSYS; |
| 859 | } |
| 860 | return ret; |
| 861 | } |
| 862 | |
| 863 | |
| 864 | asmlinkage long sys_futex(u32 __user *uaddr, int op, int val, |
| 865 | struct timespec __user *utime, u32 __user *uaddr2, |
| 866 | int val3) |
| 867 | { |
| 868 | struct timespec t; |
| 869 | unsigned long timeout = MAX_SCHEDULE_TIMEOUT; |
| 870 | int val2 = 0; |
| 871 | |
| 872 | if ((op == FUTEX_WAIT) && utime) { |
| 873 | if (copy_from_user(&t, utime, sizeof(t)) != 0) |
| 874 | return -EFAULT; |
| 875 | timeout = timespec_to_jiffies(&t) + 1; |
| 876 | } |
| 877 | /* |
| 878 | * requeue parameter in 'utime' if op == FUTEX_REQUEUE. |
| 879 | */ |
| 880 | if (op >= FUTEX_REQUEUE) |
| 881 | val2 = (int) (unsigned long) utime; |
| 882 | |
| 883 | return do_futex((unsigned long)uaddr, op, val, timeout, |
| 884 | (unsigned long)uaddr2, val2, val3); |
| 885 | } |
| 886 | |
| 887 | static struct super_block * |
| 888 | futexfs_get_sb(struct file_system_type *fs_type, |
| 889 | int flags, const char *dev_name, void *data) |
| 890 | { |
| 891 | return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA); |
| 892 | } |
| 893 | |
| 894 | static struct file_system_type futex_fs_type = { |
| 895 | .name = "futexfs", |
| 896 | .get_sb = futexfs_get_sb, |
| 897 | .kill_sb = kill_anon_super, |
| 898 | }; |
| 899 | |
| 900 | static int __init init(void) |
| 901 | { |
| 902 | unsigned int i; |
| 903 | |
| 904 | register_filesystem(&futex_fs_type); |
| 905 | futex_mnt = kern_mount(&futex_fs_type); |
| 906 | |
| 907 | for (i = 0; i < ARRAY_SIZE(futex_queues); i++) { |
| 908 | INIT_LIST_HEAD(&futex_queues[i].chain); |
| 909 | spin_lock_init(&futex_queues[i].lock); |
| 910 | } |
| 911 | return 0; |
| 912 | } |
| 913 | __initcall(init); |