Jason Wessel | 53197fc | 2010-04-02 11:48:03 -0500 | [diff] [blame] | 1 | /* |
| 2 | * Kernel Debug Core |
| 3 | * |
| 4 | * Maintainer: Jason Wessel <jason.wessel@windriver.com> |
| 5 | * |
| 6 | * Copyright (C) 2000-2001 VERITAS Software Corporation. |
| 7 | * Copyright (C) 2002-2004 Timesys Corporation |
| 8 | * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com> |
| 9 | * Copyright (C) 2004 Pavel Machek <pavel@suse.cz> |
| 10 | * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org> |
| 11 | * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd. |
| 12 | * Copyright (C) 2005-2009 Wind River Systems, Inc. |
| 13 | * Copyright (C) 2007 MontaVista Software, Inc. |
| 14 | * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> |
| 15 | * |
| 16 | * Contributors at various stages not listed above: |
| 17 | * Jason Wessel ( jason.wessel@windriver.com ) |
| 18 | * George Anzinger <george@mvista.com> |
| 19 | * Anurekh Saxena (anurekh.saxena@timesys.com) |
| 20 | * Lake Stevens Instrument Division (Glenn Engel) |
| 21 | * Jim Kingdon, Cygnus Support. |
| 22 | * |
| 23 | * Original KGDB stub: David Grothe <dave@gcom.com>, |
| 24 | * Tigran Aivazian <tigran@sco.com> |
| 25 | * |
| 26 | * This file is licensed under the terms of the GNU General Public License |
| 27 | * version 2. This program is licensed "as is" without any warranty of any |
| 28 | * kind, whether express or implied. |
| 29 | */ |
| 30 | |
| 31 | #include <linux/kernel.h> |
| 32 | #include <linux/kgdb.h> |
| 33 | #include <linux/reboot.h> |
| 34 | #include <linux/uaccess.h> |
| 35 | #include <asm/cacheflush.h> |
| 36 | #include <asm/unaligned.h> |
| 37 | #include "debug_core.h" |
| 38 | |
| 39 | #define KGDB_MAX_THREAD_QUERY 17 |
| 40 | |
| 41 | /* Our I/O buffers. */ |
| 42 | static char remcom_in_buffer[BUFMAX]; |
| 43 | static char remcom_out_buffer[BUFMAX]; |
| 44 | |
| 45 | /* Storage for the registers, in GDB format. */ |
| 46 | static unsigned long gdb_regs[(NUMREGBYTES + |
| 47 | sizeof(unsigned long) - 1) / |
| 48 | sizeof(unsigned long)]; |
| 49 | |
| 50 | /* |
| 51 | * GDB remote protocol parser: |
| 52 | */ |
| 53 | |
| 54 | static int hex(char ch) |
| 55 | { |
| 56 | if ((ch >= 'a') && (ch <= 'f')) |
| 57 | return ch - 'a' + 10; |
| 58 | if ((ch >= '0') && (ch <= '9')) |
| 59 | return ch - '0'; |
| 60 | if ((ch >= 'A') && (ch <= 'F')) |
| 61 | return ch - 'A' + 10; |
| 62 | return -1; |
| 63 | } |
| 64 | |
| 65 | /* scan for the sequence $<data>#<checksum> */ |
| 66 | static void get_packet(char *buffer) |
| 67 | { |
| 68 | unsigned char checksum; |
| 69 | unsigned char xmitcsum; |
| 70 | int count; |
| 71 | char ch; |
| 72 | |
| 73 | do { |
| 74 | /* |
| 75 | * Spin and wait around for the start character, ignore all |
| 76 | * other characters: |
| 77 | */ |
| 78 | while ((ch = (dbg_io_ops->read_char())) != '$') |
| 79 | /* nothing */; |
| 80 | |
| 81 | kgdb_connected = 1; |
| 82 | checksum = 0; |
| 83 | xmitcsum = -1; |
| 84 | |
| 85 | count = 0; |
| 86 | |
| 87 | /* |
| 88 | * now, read until a # or end of buffer is found: |
| 89 | */ |
| 90 | while (count < (BUFMAX - 1)) { |
| 91 | ch = dbg_io_ops->read_char(); |
| 92 | if (ch == '#') |
| 93 | break; |
| 94 | checksum = checksum + ch; |
| 95 | buffer[count] = ch; |
| 96 | count = count + 1; |
| 97 | } |
| 98 | buffer[count] = 0; |
| 99 | |
| 100 | if (ch == '#') { |
| 101 | xmitcsum = hex(dbg_io_ops->read_char()) << 4; |
| 102 | xmitcsum += hex(dbg_io_ops->read_char()); |
| 103 | |
| 104 | if (checksum != xmitcsum) |
| 105 | /* failed checksum */ |
| 106 | dbg_io_ops->write_char('-'); |
| 107 | else |
| 108 | /* successful transfer */ |
| 109 | dbg_io_ops->write_char('+'); |
| 110 | if (dbg_io_ops->flush) |
| 111 | dbg_io_ops->flush(); |
| 112 | } |
| 113 | } while (checksum != xmitcsum); |
| 114 | } |
| 115 | |
| 116 | /* |
| 117 | * Send the packet in buffer. |
| 118 | * Check for gdb connection if asked for. |
| 119 | */ |
| 120 | static void put_packet(char *buffer) |
| 121 | { |
| 122 | unsigned char checksum; |
| 123 | int count; |
| 124 | char ch; |
| 125 | |
| 126 | /* |
| 127 | * $<packet info>#<checksum>. |
| 128 | */ |
| 129 | while (1) { |
| 130 | dbg_io_ops->write_char('$'); |
| 131 | checksum = 0; |
| 132 | count = 0; |
| 133 | |
| 134 | while ((ch = buffer[count])) { |
| 135 | dbg_io_ops->write_char(ch); |
| 136 | checksum += ch; |
| 137 | count++; |
| 138 | } |
| 139 | |
| 140 | dbg_io_ops->write_char('#'); |
| 141 | dbg_io_ops->write_char(hex_asc_hi(checksum)); |
| 142 | dbg_io_ops->write_char(hex_asc_lo(checksum)); |
| 143 | if (dbg_io_ops->flush) |
| 144 | dbg_io_ops->flush(); |
| 145 | |
| 146 | /* Now see what we get in reply. */ |
| 147 | ch = dbg_io_ops->read_char(); |
| 148 | |
| 149 | if (ch == 3) |
| 150 | ch = dbg_io_ops->read_char(); |
| 151 | |
| 152 | /* If we get an ACK, we are done. */ |
| 153 | if (ch == '+') |
| 154 | return; |
| 155 | |
| 156 | /* |
| 157 | * If we get the start of another packet, this means |
| 158 | * that GDB is attempting to reconnect. We will NAK |
| 159 | * the packet being sent, and stop trying to send this |
| 160 | * packet. |
| 161 | */ |
| 162 | if (ch == '$') { |
| 163 | dbg_io_ops->write_char('-'); |
| 164 | if (dbg_io_ops->flush) |
| 165 | dbg_io_ops->flush(); |
| 166 | return; |
| 167 | } |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | static char gdbmsgbuf[BUFMAX + 1]; |
| 172 | |
| 173 | void gdbstub_msg_write(const char *s, int len) |
| 174 | { |
| 175 | char *bufptr; |
| 176 | int wcount; |
| 177 | int i; |
| 178 | |
| 179 | /* 'O'utput */ |
| 180 | gdbmsgbuf[0] = 'O'; |
| 181 | |
| 182 | /* Fill and send buffers... */ |
| 183 | while (len > 0) { |
| 184 | bufptr = gdbmsgbuf + 1; |
| 185 | |
| 186 | /* Calculate how many this time */ |
| 187 | if ((len << 1) > (BUFMAX - 2)) |
| 188 | wcount = (BUFMAX - 2) >> 1; |
| 189 | else |
| 190 | wcount = len; |
| 191 | |
| 192 | /* Pack in hex chars */ |
| 193 | for (i = 0; i < wcount; i++) |
| 194 | bufptr = pack_hex_byte(bufptr, s[i]); |
| 195 | *bufptr = '\0'; |
| 196 | |
| 197 | /* Move up */ |
| 198 | s += wcount; |
| 199 | len -= wcount; |
| 200 | |
| 201 | /* Write packet */ |
| 202 | put_packet(gdbmsgbuf); |
| 203 | } |
| 204 | } |
| 205 | |
| 206 | /* |
| 207 | * Convert the memory pointed to by mem into hex, placing result in |
| 208 | * buf. Return a pointer to the last char put in buf (null). May |
| 209 | * return an error. |
| 210 | */ |
| 211 | int kgdb_mem2hex(char *mem, char *buf, int count) |
| 212 | { |
| 213 | char *tmp; |
| 214 | int err; |
| 215 | |
| 216 | /* |
| 217 | * We use the upper half of buf as an intermediate buffer for the |
| 218 | * raw memory copy. Hex conversion will work against this one. |
| 219 | */ |
| 220 | tmp = buf + count; |
| 221 | |
| 222 | err = probe_kernel_read(tmp, mem, count); |
| 223 | if (!err) { |
| 224 | while (count > 0) { |
| 225 | buf = pack_hex_byte(buf, *tmp); |
| 226 | tmp++; |
| 227 | count--; |
| 228 | } |
| 229 | |
| 230 | *buf = 0; |
| 231 | } |
| 232 | |
| 233 | return err; |
| 234 | } |
| 235 | |
| 236 | /* |
| 237 | * Convert the hex array pointed to by buf into binary to be placed in |
| 238 | * mem. Return a pointer to the character AFTER the last byte |
| 239 | * written. May return an error. |
| 240 | */ |
| 241 | int kgdb_hex2mem(char *buf, char *mem, int count) |
| 242 | { |
| 243 | char *tmp_raw; |
| 244 | char *tmp_hex; |
| 245 | |
| 246 | /* |
| 247 | * We use the upper half of buf as an intermediate buffer for the |
| 248 | * raw memory that is converted from hex. |
| 249 | */ |
| 250 | tmp_raw = buf + count * 2; |
| 251 | |
| 252 | tmp_hex = tmp_raw - 1; |
| 253 | while (tmp_hex >= buf) { |
| 254 | tmp_raw--; |
| 255 | *tmp_raw = hex(*tmp_hex--); |
| 256 | *tmp_raw |= hex(*tmp_hex--) << 4; |
| 257 | } |
| 258 | |
| 259 | return probe_kernel_write(mem, tmp_raw, count); |
| 260 | } |
| 261 | |
| 262 | /* |
| 263 | * While we find nice hex chars, build a long_val. |
| 264 | * Return number of chars processed. |
| 265 | */ |
| 266 | int kgdb_hex2long(char **ptr, unsigned long *long_val) |
| 267 | { |
| 268 | int hex_val; |
| 269 | int num = 0; |
| 270 | int negate = 0; |
| 271 | |
| 272 | *long_val = 0; |
| 273 | |
| 274 | if (**ptr == '-') { |
| 275 | negate = 1; |
| 276 | (*ptr)++; |
| 277 | } |
| 278 | while (**ptr) { |
| 279 | hex_val = hex(**ptr); |
| 280 | if (hex_val < 0) |
| 281 | break; |
| 282 | |
| 283 | *long_val = (*long_val << 4) | hex_val; |
| 284 | num++; |
| 285 | (*ptr)++; |
| 286 | } |
| 287 | |
| 288 | if (negate) |
| 289 | *long_val = -*long_val; |
| 290 | |
| 291 | return num; |
| 292 | } |
| 293 | |
| 294 | /* |
| 295 | * Copy the binary array pointed to by buf into mem. Fix $, #, and |
| 296 | * 0x7d escaped with 0x7d. Return -EFAULT on failure or 0 on success. |
| 297 | * The input buf is overwitten with the result to write to mem. |
| 298 | */ |
| 299 | static int kgdb_ebin2mem(char *buf, char *mem, int count) |
| 300 | { |
| 301 | int size = 0; |
| 302 | char *c = buf; |
| 303 | |
| 304 | while (count-- > 0) { |
| 305 | c[size] = *buf++; |
| 306 | if (c[size] == 0x7d) |
| 307 | c[size] = *buf++ ^ 0x20; |
| 308 | size++; |
| 309 | } |
| 310 | |
| 311 | return probe_kernel_write(mem, c, size); |
| 312 | } |
| 313 | |
| 314 | /* Write memory due to an 'M' or 'X' packet. */ |
| 315 | static int write_mem_msg(int binary) |
| 316 | { |
| 317 | char *ptr = &remcom_in_buffer[1]; |
| 318 | unsigned long addr; |
| 319 | unsigned long length; |
| 320 | int err; |
| 321 | |
| 322 | if (kgdb_hex2long(&ptr, &addr) > 0 && *(ptr++) == ',' && |
| 323 | kgdb_hex2long(&ptr, &length) > 0 && *(ptr++) == ':') { |
| 324 | if (binary) |
| 325 | err = kgdb_ebin2mem(ptr, (char *)addr, length); |
| 326 | else |
| 327 | err = kgdb_hex2mem(ptr, (char *)addr, length); |
| 328 | if (err) |
| 329 | return err; |
| 330 | if (CACHE_FLUSH_IS_SAFE) |
| 331 | flush_icache_range(addr, addr + length); |
| 332 | return 0; |
| 333 | } |
| 334 | |
| 335 | return -EINVAL; |
| 336 | } |
| 337 | |
| 338 | static void error_packet(char *pkt, int error) |
| 339 | { |
| 340 | error = -error; |
| 341 | pkt[0] = 'E'; |
| 342 | pkt[1] = hex_asc[(error / 10)]; |
| 343 | pkt[2] = hex_asc[(error % 10)]; |
| 344 | pkt[3] = '\0'; |
| 345 | } |
| 346 | |
| 347 | /* |
| 348 | * Thread ID accessors. We represent a flat TID space to GDB, where |
| 349 | * the per CPU idle threads (which under Linux all have PID 0) are |
| 350 | * remapped to negative TIDs. |
| 351 | */ |
| 352 | |
| 353 | #define BUF_THREAD_ID_SIZE 16 |
| 354 | |
| 355 | static char *pack_threadid(char *pkt, unsigned char *id) |
| 356 | { |
| 357 | char *limit; |
| 358 | |
| 359 | limit = pkt + BUF_THREAD_ID_SIZE; |
| 360 | while (pkt < limit) |
| 361 | pkt = pack_hex_byte(pkt, *id++); |
| 362 | |
| 363 | return pkt; |
| 364 | } |
| 365 | |
| 366 | static void int_to_threadref(unsigned char *id, int value) |
| 367 | { |
| 368 | unsigned char *scan; |
| 369 | int i = 4; |
| 370 | |
| 371 | scan = (unsigned char *)id; |
| 372 | while (i--) |
| 373 | *scan++ = 0; |
| 374 | put_unaligned_be32(value, scan); |
| 375 | } |
| 376 | |
| 377 | static struct task_struct *getthread(struct pt_regs *regs, int tid) |
| 378 | { |
| 379 | /* |
| 380 | * Non-positive TIDs are remapped to the cpu shadow information |
| 381 | */ |
| 382 | if (tid == 0 || tid == -1) |
| 383 | tid = -atomic_read(&kgdb_active) - 2; |
| 384 | if (tid < -1 && tid > -NR_CPUS - 2) { |
| 385 | if (kgdb_info[-tid - 2].task) |
| 386 | return kgdb_info[-tid - 2].task; |
| 387 | else |
| 388 | return idle_task(-tid - 2); |
| 389 | } |
| 390 | if (tid <= 0) { |
| 391 | printk(KERN_ERR "KGDB: Internal thread select error\n"); |
| 392 | dump_stack(); |
| 393 | return NULL; |
| 394 | } |
| 395 | |
| 396 | /* |
| 397 | * find_task_by_pid_ns() does not take the tasklist lock anymore |
| 398 | * but is nicely RCU locked - hence is a pretty resilient |
| 399 | * thing to use: |
| 400 | */ |
| 401 | return find_task_by_pid_ns(tid, &init_pid_ns); |
| 402 | } |
| 403 | |
| 404 | |
| 405 | /* |
| 406 | * Remap normal tasks to their real PID, |
| 407 | * CPU shadow threads are mapped to -CPU - 2 |
| 408 | */ |
| 409 | static inline int shadow_pid(int realpid) |
| 410 | { |
| 411 | if (realpid) |
| 412 | return realpid; |
| 413 | |
| 414 | return -raw_smp_processor_id() - 2; |
| 415 | } |
| 416 | |
| 417 | /* |
| 418 | * All the functions that start with gdb_cmd are the various |
| 419 | * operations to implement the handlers for the gdbserial protocol |
| 420 | * where KGDB is communicating with an external debugger |
| 421 | */ |
| 422 | |
| 423 | /* Handle the '?' status packets */ |
| 424 | static void gdb_cmd_status(struct kgdb_state *ks) |
| 425 | { |
| 426 | /* |
| 427 | * We know that this packet is only sent |
| 428 | * during initial connect. So to be safe, |
| 429 | * we clear out our breakpoints now in case |
| 430 | * GDB is reconnecting. |
| 431 | */ |
| 432 | dbg_remove_all_break(); |
| 433 | |
| 434 | remcom_out_buffer[0] = 'S'; |
| 435 | pack_hex_byte(&remcom_out_buffer[1], ks->signo); |
| 436 | } |
| 437 | |
| 438 | /* Handle the 'g' get registers request */ |
| 439 | static void gdb_cmd_getregs(struct kgdb_state *ks) |
| 440 | { |
| 441 | struct task_struct *thread; |
| 442 | void *local_debuggerinfo; |
| 443 | int i; |
| 444 | |
| 445 | thread = kgdb_usethread; |
| 446 | if (!thread) { |
| 447 | thread = kgdb_info[ks->cpu].task; |
| 448 | local_debuggerinfo = kgdb_info[ks->cpu].debuggerinfo; |
| 449 | } else { |
| 450 | local_debuggerinfo = NULL; |
| 451 | for_each_online_cpu(i) { |
| 452 | /* |
| 453 | * Try to find the task on some other |
| 454 | * or possibly this node if we do not |
| 455 | * find the matching task then we try |
| 456 | * to approximate the results. |
| 457 | */ |
| 458 | if (thread == kgdb_info[i].task) |
| 459 | local_debuggerinfo = kgdb_info[i].debuggerinfo; |
| 460 | } |
| 461 | } |
| 462 | |
| 463 | /* |
| 464 | * All threads that don't have debuggerinfo should be |
| 465 | * in schedule() sleeping, since all other CPUs |
| 466 | * are in kgdb_wait, and thus have debuggerinfo. |
| 467 | */ |
| 468 | if (local_debuggerinfo) { |
| 469 | pt_regs_to_gdb_regs(gdb_regs, local_debuggerinfo); |
| 470 | } else { |
| 471 | /* |
| 472 | * Pull stuff saved during switch_to; nothing |
| 473 | * else is accessible (or even particularly |
| 474 | * relevant). |
| 475 | * |
| 476 | * This should be enough for a stack trace. |
| 477 | */ |
| 478 | sleeping_thread_to_gdb_regs(gdb_regs, thread); |
| 479 | } |
| 480 | kgdb_mem2hex((char *)gdb_regs, remcom_out_buffer, NUMREGBYTES); |
| 481 | } |
| 482 | |
| 483 | /* Handle the 'G' set registers request */ |
| 484 | static void gdb_cmd_setregs(struct kgdb_state *ks) |
| 485 | { |
| 486 | kgdb_hex2mem(&remcom_in_buffer[1], (char *)gdb_regs, NUMREGBYTES); |
| 487 | |
| 488 | if (kgdb_usethread && kgdb_usethread != current) { |
| 489 | error_packet(remcom_out_buffer, -EINVAL); |
| 490 | } else { |
| 491 | gdb_regs_to_pt_regs(gdb_regs, ks->linux_regs); |
| 492 | strcpy(remcom_out_buffer, "OK"); |
| 493 | } |
| 494 | } |
| 495 | |
| 496 | /* Handle the 'm' memory read bytes */ |
| 497 | static void gdb_cmd_memread(struct kgdb_state *ks) |
| 498 | { |
| 499 | char *ptr = &remcom_in_buffer[1]; |
| 500 | unsigned long length; |
| 501 | unsigned long addr; |
| 502 | int err; |
| 503 | |
| 504 | if (kgdb_hex2long(&ptr, &addr) > 0 && *ptr++ == ',' && |
| 505 | kgdb_hex2long(&ptr, &length) > 0) { |
| 506 | err = kgdb_mem2hex((char *)addr, remcom_out_buffer, length); |
| 507 | if (err) |
| 508 | error_packet(remcom_out_buffer, err); |
| 509 | } else { |
| 510 | error_packet(remcom_out_buffer, -EINVAL); |
| 511 | } |
| 512 | } |
| 513 | |
| 514 | /* Handle the 'M' memory write bytes */ |
| 515 | static void gdb_cmd_memwrite(struct kgdb_state *ks) |
| 516 | { |
| 517 | int err = write_mem_msg(0); |
| 518 | |
| 519 | if (err) |
| 520 | error_packet(remcom_out_buffer, err); |
| 521 | else |
| 522 | strcpy(remcom_out_buffer, "OK"); |
| 523 | } |
| 524 | |
| 525 | /* Handle the 'X' memory binary write bytes */ |
| 526 | static void gdb_cmd_binwrite(struct kgdb_state *ks) |
| 527 | { |
| 528 | int err = write_mem_msg(1); |
| 529 | |
| 530 | if (err) |
| 531 | error_packet(remcom_out_buffer, err); |
| 532 | else |
| 533 | strcpy(remcom_out_buffer, "OK"); |
| 534 | } |
| 535 | |
| 536 | /* Handle the 'D' or 'k', detach or kill packets */ |
| 537 | static void gdb_cmd_detachkill(struct kgdb_state *ks) |
| 538 | { |
| 539 | int error; |
| 540 | |
| 541 | /* The detach case */ |
| 542 | if (remcom_in_buffer[0] == 'D') { |
| 543 | error = dbg_remove_all_break(); |
| 544 | if (error < 0) { |
| 545 | error_packet(remcom_out_buffer, error); |
| 546 | } else { |
| 547 | strcpy(remcom_out_buffer, "OK"); |
| 548 | kgdb_connected = 0; |
| 549 | } |
| 550 | put_packet(remcom_out_buffer); |
| 551 | } else { |
| 552 | /* |
| 553 | * Assume the kill case, with no exit code checking, |
| 554 | * trying to force detach the debugger: |
| 555 | */ |
| 556 | dbg_remove_all_break(); |
| 557 | kgdb_connected = 0; |
| 558 | } |
| 559 | } |
| 560 | |
| 561 | /* Handle the 'R' reboot packets */ |
| 562 | static int gdb_cmd_reboot(struct kgdb_state *ks) |
| 563 | { |
| 564 | /* For now, only honor R0 */ |
| 565 | if (strcmp(remcom_in_buffer, "R0") == 0) { |
| 566 | printk(KERN_CRIT "Executing emergency reboot\n"); |
| 567 | strcpy(remcom_out_buffer, "OK"); |
| 568 | put_packet(remcom_out_buffer); |
| 569 | |
| 570 | /* |
| 571 | * Execution should not return from |
| 572 | * machine_emergency_restart() |
| 573 | */ |
| 574 | machine_emergency_restart(); |
| 575 | kgdb_connected = 0; |
| 576 | |
| 577 | return 1; |
| 578 | } |
| 579 | return 0; |
| 580 | } |
| 581 | |
| 582 | /* Handle the 'q' query packets */ |
| 583 | static void gdb_cmd_query(struct kgdb_state *ks) |
| 584 | { |
| 585 | struct task_struct *g; |
| 586 | struct task_struct *p; |
| 587 | unsigned char thref[8]; |
| 588 | char *ptr; |
| 589 | int i; |
| 590 | int cpu; |
| 591 | int finished = 0; |
| 592 | |
| 593 | switch (remcom_in_buffer[1]) { |
| 594 | case 's': |
| 595 | case 'f': |
| 596 | if (memcmp(remcom_in_buffer + 2, "ThreadInfo", 10)) { |
| 597 | error_packet(remcom_out_buffer, -EINVAL); |
| 598 | break; |
| 599 | } |
| 600 | |
| 601 | i = 0; |
| 602 | remcom_out_buffer[0] = 'm'; |
| 603 | ptr = remcom_out_buffer + 1; |
| 604 | if (remcom_in_buffer[1] == 'f') { |
| 605 | /* Each cpu is a shadow thread */ |
| 606 | for_each_online_cpu(cpu) { |
| 607 | ks->thr_query = 0; |
| 608 | int_to_threadref(thref, -cpu - 2); |
| 609 | pack_threadid(ptr, thref); |
| 610 | ptr += BUF_THREAD_ID_SIZE; |
| 611 | *(ptr++) = ','; |
| 612 | i++; |
| 613 | } |
| 614 | } |
| 615 | |
| 616 | do_each_thread(g, p) { |
| 617 | if (i >= ks->thr_query && !finished) { |
| 618 | int_to_threadref(thref, p->pid); |
| 619 | pack_threadid(ptr, thref); |
| 620 | ptr += BUF_THREAD_ID_SIZE; |
| 621 | *(ptr++) = ','; |
| 622 | ks->thr_query++; |
| 623 | if (ks->thr_query % KGDB_MAX_THREAD_QUERY == 0) |
| 624 | finished = 1; |
| 625 | } |
| 626 | i++; |
| 627 | } while_each_thread(g, p); |
| 628 | |
| 629 | *(--ptr) = '\0'; |
| 630 | break; |
| 631 | |
| 632 | case 'C': |
| 633 | /* Current thread id */ |
| 634 | strcpy(remcom_out_buffer, "QC"); |
| 635 | ks->threadid = shadow_pid(current->pid); |
| 636 | int_to_threadref(thref, ks->threadid); |
| 637 | pack_threadid(remcom_out_buffer + 2, thref); |
| 638 | break; |
| 639 | case 'T': |
| 640 | if (memcmp(remcom_in_buffer + 1, "ThreadExtraInfo,", 16)) { |
| 641 | error_packet(remcom_out_buffer, -EINVAL); |
| 642 | break; |
| 643 | } |
| 644 | ks->threadid = 0; |
| 645 | ptr = remcom_in_buffer + 17; |
| 646 | kgdb_hex2long(&ptr, &ks->threadid); |
| 647 | if (!getthread(ks->linux_regs, ks->threadid)) { |
| 648 | error_packet(remcom_out_buffer, -EINVAL); |
| 649 | break; |
| 650 | } |
| 651 | if ((int)ks->threadid > 0) { |
| 652 | kgdb_mem2hex(getthread(ks->linux_regs, |
| 653 | ks->threadid)->comm, |
| 654 | remcom_out_buffer, 16); |
| 655 | } else { |
| 656 | static char tmpstr[23 + BUF_THREAD_ID_SIZE]; |
| 657 | |
| 658 | sprintf(tmpstr, "shadowCPU%d", |
| 659 | (int)(-ks->threadid - 2)); |
| 660 | kgdb_mem2hex(tmpstr, remcom_out_buffer, strlen(tmpstr)); |
| 661 | } |
| 662 | break; |
| 663 | } |
| 664 | } |
| 665 | |
| 666 | /* Handle the 'H' task query packets */ |
| 667 | static void gdb_cmd_task(struct kgdb_state *ks) |
| 668 | { |
| 669 | struct task_struct *thread; |
| 670 | char *ptr; |
| 671 | |
| 672 | switch (remcom_in_buffer[1]) { |
| 673 | case 'g': |
| 674 | ptr = &remcom_in_buffer[2]; |
| 675 | kgdb_hex2long(&ptr, &ks->threadid); |
| 676 | thread = getthread(ks->linux_regs, ks->threadid); |
| 677 | if (!thread && ks->threadid > 0) { |
| 678 | error_packet(remcom_out_buffer, -EINVAL); |
| 679 | break; |
| 680 | } |
| 681 | kgdb_usethread = thread; |
| 682 | ks->kgdb_usethreadid = ks->threadid; |
| 683 | strcpy(remcom_out_buffer, "OK"); |
| 684 | break; |
| 685 | case 'c': |
| 686 | ptr = &remcom_in_buffer[2]; |
| 687 | kgdb_hex2long(&ptr, &ks->threadid); |
| 688 | if (!ks->threadid) { |
| 689 | kgdb_contthread = NULL; |
| 690 | } else { |
| 691 | thread = getthread(ks->linux_regs, ks->threadid); |
| 692 | if (!thread && ks->threadid > 0) { |
| 693 | error_packet(remcom_out_buffer, -EINVAL); |
| 694 | break; |
| 695 | } |
| 696 | kgdb_contthread = thread; |
| 697 | } |
| 698 | strcpy(remcom_out_buffer, "OK"); |
| 699 | break; |
| 700 | } |
| 701 | } |
| 702 | |
| 703 | /* Handle the 'T' thread query packets */ |
| 704 | static void gdb_cmd_thread(struct kgdb_state *ks) |
| 705 | { |
| 706 | char *ptr = &remcom_in_buffer[1]; |
| 707 | struct task_struct *thread; |
| 708 | |
| 709 | kgdb_hex2long(&ptr, &ks->threadid); |
| 710 | thread = getthread(ks->linux_regs, ks->threadid); |
| 711 | if (thread) |
| 712 | strcpy(remcom_out_buffer, "OK"); |
| 713 | else |
| 714 | error_packet(remcom_out_buffer, -EINVAL); |
| 715 | } |
| 716 | |
| 717 | /* Handle the 'z' or 'Z' breakpoint remove or set packets */ |
| 718 | static void gdb_cmd_break(struct kgdb_state *ks) |
| 719 | { |
| 720 | /* |
| 721 | * Since GDB-5.3, it's been drafted that '0' is a software |
| 722 | * breakpoint, '1' is a hardware breakpoint, so let's do that. |
| 723 | */ |
| 724 | char *bpt_type = &remcom_in_buffer[1]; |
| 725 | char *ptr = &remcom_in_buffer[2]; |
| 726 | unsigned long addr; |
| 727 | unsigned long length; |
| 728 | int error = 0; |
| 729 | |
| 730 | if (arch_kgdb_ops.set_hw_breakpoint && *bpt_type >= '1') { |
| 731 | /* Unsupported */ |
| 732 | if (*bpt_type > '4') |
| 733 | return; |
| 734 | } else { |
| 735 | if (*bpt_type != '0' && *bpt_type != '1') |
| 736 | /* Unsupported. */ |
| 737 | return; |
| 738 | } |
| 739 | |
| 740 | /* |
| 741 | * Test if this is a hardware breakpoint, and |
| 742 | * if we support it: |
| 743 | */ |
| 744 | if (*bpt_type == '1' && !(arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT)) |
| 745 | /* Unsupported. */ |
| 746 | return; |
| 747 | |
| 748 | if (*(ptr++) != ',') { |
| 749 | error_packet(remcom_out_buffer, -EINVAL); |
| 750 | return; |
| 751 | } |
| 752 | if (!kgdb_hex2long(&ptr, &addr)) { |
| 753 | error_packet(remcom_out_buffer, -EINVAL); |
| 754 | return; |
| 755 | } |
| 756 | if (*(ptr++) != ',' || |
| 757 | !kgdb_hex2long(&ptr, &length)) { |
| 758 | error_packet(remcom_out_buffer, -EINVAL); |
| 759 | return; |
| 760 | } |
| 761 | |
| 762 | if (remcom_in_buffer[0] == 'Z' && *bpt_type == '0') |
| 763 | error = dbg_set_sw_break(addr); |
| 764 | else if (remcom_in_buffer[0] == 'z' && *bpt_type == '0') |
| 765 | error = dbg_remove_sw_break(addr); |
| 766 | else if (remcom_in_buffer[0] == 'Z') |
| 767 | error = arch_kgdb_ops.set_hw_breakpoint(addr, |
| 768 | (int)length, *bpt_type - '0'); |
| 769 | else if (remcom_in_buffer[0] == 'z') |
| 770 | error = arch_kgdb_ops.remove_hw_breakpoint(addr, |
| 771 | (int) length, *bpt_type - '0'); |
| 772 | |
| 773 | if (error == 0) |
| 774 | strcpy(remcom_out_buffer, "OK"); |
| 775 | else |
| 776 | error_packet(remcom_out_buffer, error); |
| 777 | } |
| 778 | |
| 779 | /* Handle the 'C' signal / exception passing packets */ |
| 780 | static int gdb_cmd_exception_pass(struct kgdb_state *ks) |
| 781 | { |
| 782 | /* C09 == pass exception |
| 783 | * C15 == detach kgdb, pass exception |
| 784 | */ |
| 785 | if (remcom_in_buffer[1] == '0' && remcom_in_buffer[2] == '9') { |
| 786 | |
| 787 | ks->pass_exception = 1; |
| 788 | remcom_in_buffer[0] = 'c'; |
| 789 | |
| 790 | } else if (remcom_in_buffer[1] == '1' && remcom_in_buffer[2] == '5') { |
| 791 | |
| 792 | ks->pass_exception = 1; |
| 793 | remcom_in_buffer[0] = 'D'; |
| 794 | dbg_remove_all_break(); |
| 795 | kgdb_connected = 0; |
| 796 | return 1; |
| 797 | |
| 798 | } else { |
| 799 | gdbstub_msg_write("KGDB only knows signal 9 (pass)" |
| 800 | " and 15 (pass and disconnect)\n" |
| 801 | "Executing a continue without signal passing\n", 0); |
| 802 | remcom_in_buffer[0] = 'c'; |
| 803 | } |
| 804 | |
| 805 | /* Indicate fall through */ |
| 806 | return -1; |
| 807 | } |
| 808 | |
| 809 | /* |
| 810 | * This function performs all gdbserial command procesing |
| 811 | */ |
| 812 | int gdb_serial_stub(struct kgdb_state *ks) |
| 813 | { |
| 814 | int error = 0; |
| 815 | int tmp; |
| 816 | |
| 817 | /* Clear the out buffer. */ |
| 818 | memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer)); |
| 819 | |
| 820 | if (kgdb_connected) { |
| 821 | unsigned char thref[8]; |
| 822 | char *ptr; |
| 823 | |
| 824 | /* Reply to host that an exception has occurred */ |
| 825 | ptr = remcom_out_buffer; |
| 826 | *ptr++ = 'T'; |
| 827 | ptr = pack_hex_byte(ptr, ks->signo); |
| 828 | ptr += strlen(strcpy(ptr, "thread:")); |
| 829 | int_to_threadref(thref, shadow_pid(current->pid)); |
| 830 | ptr = pack_threadid(ptr, thref); |
| 831 | *ptr++ = ';'; |
| 832 | put_packet(remcom_out_buffer); |
| 833 | } |
| 834 | |
| 835 | kgdb_usethread = kgdb_info[ks->cpu].task; |
| 836 | ks->kgdb_usethreadid = shadow_pid(kgdb_info[ks->cpu].task->pid); |
| 837 | ks->pass_exception = 0; |
| 838 | |
| 839 | while (1) { |
| 840 | error = 0; |
| 841 | |
| 842 | /* Clear the out buffer. */ |
| 843 | memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer)); |
| 844 | |
| 845 | get_packet(remcom_in_buffer); |
| 846 | |
| 847 | switch (remcom_in_buffer[0]) { |
| 848 | case '?': /* gdbserial status */ |
| 849 | gdb_cmd_status(ks); |
| 850 | break; |
| 851 | case 'g': /* return the value of the CPU registers */ |
| 852 | gdb_cmd_getregs(ks); |
| 853 | break; |
| 854 | case 'G': /* set the value of the CPU registers - return OK */ |
| 855 | gdb_cmd_setregs(ks); |
| 856 | break; |
| 857 | case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */ |
| 858 | gdb_cmd_memread(ks); |
| 859 | break; |
| 860 | case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA..AA */ |
| 861 | gdb_cmd_memwrite(ks); |
| 862 | break; |
| 863 | case 'X': /* XAA..AA,LLLL: Write LLLL bytes at address AA..AA */ |
| 864 | gdb_cmd_binwrite(ks); |
| 865 | break; |
| 866 | /* kill or detach. KGDB should treat this like a |
| 867 | * continue. |
| 868 | */ |
| 869 | case 'D': /* Debugger detach */ |
| 870 | case 'k': /* Debugger detach via kill */ |
| 871 | gdb_cmd_detachkill(ks); |
| 872 | goto default_handle; |
| 873 | case 'R': /* Reboot */ |
| 874 | if (gdb_cmd_reboot(ks)) |
| 875 | goto default_handle; |
| 876 | break; |
| 877 | case 'q': /* query command */ |
| 878 | gdb_cmd_query(ks); |
| 879 | break; |
| 880 | case 'H': /* task related */ |
| 881 | gdb_cmd_task(ks); |
| 882 | break; |
| 883 | case 'T': /* Query thread status */ |
| 884 | gdb_cmd_thread(ks); |
| 885 | break; |
| 886 | case 'z': /* Break point remove */ |
| 887 | case 'Z': /* Break point set */ |
| 888 | gdb_cmd_break(ks); |
| 889 | break; |
Jason Wessel | dcc7871 | 2010-05-20 21:04:21 -0500 | [diff] [blame^] | 890 | #ifdef CONFIG_KGDB_KDB |
| 891 | case '3': /* Escape into back into kdb */ |
| 892 | if (remcom_in_buffer[1] == '\0') { |
| 893 | gdb_cmd_detachkill(ks); |
| 894 | return DBG_PASS_EVENT; |
| 895 | } |
| 896 | #endif |
Jason Wessel | 53197fc | 2010-04-02 11:48:03 -0500 | [diff] [blame] | 897 | case 'C': /* Exception passing */ |
| 898 | tmp = gdb_cmd_exception_pass(ks); |
| 899 | if (tmp > 0) |
| 900 | goto default_handle; |
| 901 | if (tmp == 0) |
| 902 | break; |
| 903 | /* Fall through on tmp < 0 */ |
| 904 | case 'c': /* Continue packet */ |
| 905 | case 's': /* Single step packet */ |
| 906 | if (kgdb_contthread && kgdb_contthread != current) { |
| 907 | /* Can't switch threads in kgdb */ |
| 908 | error_packet(remcom_out_buffer, -EINVAL); |
| 909 | break; |
| 910 | } |
| 911 | dbg_activate_sw_breakpoints(); |
| 912 | /* Fall through to default processing */ |
| 913 | default: |
| 914 | default_handle: |
| 915 | error = kgdb_arch_handle_exception(ks->ex_vector, |
| 916 | ks->signo, |
| 917 | ks->err_code, |
| 918 | remcom_in_buffer, |
| 919 | remcom_out_buffer, |
| 920 | ks->linux_regs); |
| 921 | /* |
| 922 | * Leave cmd processing on error, detach, |
| 923 | * kill, continue, or single step. |
| 924 | */ |
| 925 | if (error >= 0 || remcom_in_buffer[0] == 'D' || |
| 926 | remcom_in_buffer[0] == 'k') { |
| 927 | error = 0; |
| 928 | goto kgdb_exit; |
| 929 | } |
| 930 | |
| 931 | } |
| 932 | |
| 933 | /* reply to the request */ |
| 934 | put_packet(remcom_out_buffer); |
| 935 | } |
| 936 | |
| 937 | kgdb_exit: |
| 938 | if (ks->pass_exception) |
| 939 | error = 1; |
| 940 | return error; |
| 941 | } |
Jason Wessel | dcc7871 | 2010-05-20 21:04:21 -0500 | [diff] [blame^] | 942 | |
| 943 | int gdbstub_state(struct kgdb_state *ks, char *cmd) |
| 944 | { |
| 945 | int error; |
| 946 | |
| 947 | switch (cmd[0]) { |
| 948 | case 'e': |
| 949 | error = kgdb_arch_handle_exception(ks->ex_vector, |
| 950 | ks->signo, |
| 951 | ks->err_code, |
| 952 | remcom_in_buffer, |
| 953 | remcom_out_buffer, |
| 954 | ks->linux_regs); |
| 955 | return error; |
| 956 | case 's': |
| 957 | case 'c': |
| 958 | strcpy(remcom_in_buffer, cmd); |
| 959 | return 0; |
| 960 | case '?': |
| 961 | gdb_cmd_status(ks); |
| 962 | break; |
| 963 | case '\0': |
| 964 | strcpy(remcom_out_buffer, ""); |
| 965 | break; |
| 966 | } |
| 967 | dbg_io_ops->write_char('+'); |
| 968 | put_packet(remcom_out_buffer); |
| 969 | return 0; |
| 970 | } |