Ard Biesheuvel | e59c1c9 | 2019-07-02 21:41:22 +0200 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2017-2019 Linaro Ltd <ard.biesheuvel@linaro.org> |
| 4 | */ |
| 5 | |
| 6 | #include <crypto/aes.h> |
| 7 | #include <linux/crypto.h> |
| 8 | #include <linux/module.h> |
| 9 | #include <asm/unaligned.h> |
| 10 | |
| 11 | /* |
| 12 | * Emit the sbox as volatile const to prevent the compiler from doing |
| 13 | * constant folding on sbox references involving fixed indexes. |
| 14 | */ |
| 15 | static volatile const u8 __cacheline_aligned aes_sbox[] = { |
| 16 | 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, |
| 17 | 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, |
| 18 | 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, |
| 19 | 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, |
| 20 | 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, |
| 21 | 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, |
| 22 | 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, |
| 23 | 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, |
| 24 | 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, |
| 25 | 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, |
| 26 | 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, |
| 27 | 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, |
| 28 | 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, |
| 29 | 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, |
| 30 | 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, |
| 31 | 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, |
| 32 | 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, |
| 33 | 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, |
| 34 | 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, |
| 35 | 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, |
| 36 | 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, |
| 37 | 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, |
| 38 | 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, |
| 39 | 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, |
| 40 | 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, |
| 41 | 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, |
| 42 | 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, |
| 43 | 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, |
| 44 | 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, |
| 45 | 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, |
| 46 | 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, |
| 47 | 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16, |
| 48 | }; |
| 49 | |
| 50 | static volatile const u8 __cacheline_aligned aes_inv_sbox[] = { |
| 51 | 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, |
| 52 | 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, |
| 53 | 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, |
| 54 | 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, |
| 55 | 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, |
| 56 | 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, |
| 57 | 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, |
| 58 | 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, |
| 59 | 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, |
| 60 | 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, |
| 61 | 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, |
| 62 | 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, |
| 63 | 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, |
| 64 | 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, |
| 65 | 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, |
| 66 | 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, |
| 67 | 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, |
| 68 | 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, |
| 69 | 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, |
| 70 | 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, |
| 71 | 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, |
| 72 | 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, |
| 73 | 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, |
| 74 | 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, |
| 75 | 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, |
| 76 | 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, |
| 77 | 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, |
| 78 | 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, |
| 79 | 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, |
| 80 | 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, |
| 81 | 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, |
| 82 | 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d, |
| 83 | }; |
| 84 | |
Ard Biesheuvel | 9467a31 | 2019-07-02 21:41:46 +0200 | [diff] [blame] | 85 | extern const u8 crypto_aes_sbox[256] __alias(aes_sbox); |
| 86 | extern const u8 crypto_aes_inv_sbox[256] __alias(aes_inv_sbox); |
| 87 | |
| 88 | EXPORT_SYMBOL(crypto_aes_sbox); |
| 89 | EXPORT_SYMBOL(crypto_aes_inv_sbox); |
| 90 | |
Ard Biesheuvel | e59c1c9 | 2019-07-02 21:41:22 +0200 | [diff] [blame] | 91 | static u32 mul_by_x(u32 w) |
| 92 | { |
| 93 | u32 x = w & 0x7f7f7f7f; |
| 94 | u32 y = w & 0x80808080; |
| 95 | |
| 96 | /* multiply by polynomial 'x' (0b10) in GF(2^8) */ |
| 97 | return (x << 1) ^ (y >> 7) * 0x1b; |
| 98 | } |
| 99 | |
| 100 | static u32 mul_by_x2(u32 w) |
| 101 | { |
| 102 | u32 x = w & 0x3f3f3f3f; |
| 103 | u32 y = w & 0x80808080; |
| 104 | u32 z = w & 0x40404040; |
| 105 | |
| 106 | /* multiply by polynomial 'x^2' (0b100) in GF(2^8) */ |
| 107 | return (x << 2) ^ (y >> 7) * 0x36 ^ (z >> 6) * 0x1b; |
| 108 | } |
| 109 | |
| 110 | static u32 mix_columns(u32 x) |
| 111 | { |
| 112 | /* |
| 113 | * Perform the following matrix multiplication in GF(2^8) |
| 114 | * |
| 115 | * | 0x2 0x3 0x1 0x1 | | x[0] | |
| 116 | * | 0x1 0x2 0x3 0x1 | | x[1] | |
| 117 | * | 0x1 0x1 0x2 0x3 | x | x[2] | |
| 118 | * | 0x3 0x1 0x1 0x2 | | x[3] | |
| 119 | */ |
| 120 | u32 y = mul_by_x(x) ^ ror32(x, 16); |
| 121 | |
| 122 | return y ^ ror32(x ^ y, 8); |
| 123 | } |
| 124 | |
| 125 | static u32 inv_mix_columns(u32 x) |
| 126 | { |
| 127 | /* |
| 128 | * Perform the following matrix multiplication in GF(2^8) |
| 129 | * |
| 130 | * | 0xe 0xb 0xd 0x9 | | x[0] | |
| 131 | * | 0x9 0xe 0xb 0xd | | x[1] | |
| 132 | * | 0xd 0x9 0xe 0xb | x | x[2] | |
| 133 | * | 0xb 0xd 0x9 0xe | | x[3] | |
| 134 | * |
| 135 | * which can conveniently be reduced to |
| 136 | * |
| 137 | * | 0x2 0x3 0x1 0x1 | | 0x5 0x0 0x4 0x0 | | x[0] | |
| 138 | * | 0x1 0x2 0x3 0x1 | | 0x0 0x5 0x0 0x4 | | x[1] | |
| 139 | * | 0x1 0x1 0x2 0x3 | x | 0x4 0x0 0x5 0x0 | x | x[2] | |
| 140 | * | 0x3 0x1 0x1 0x2 | | 0x0 0x4 0x0 0x5 | | x[3] | |
| 141 | */ |
| 142 | u32 y = mul_by_x2(x); |
| 143 | |
| 144 | return mix_columns(x ^ y ^ ror32(y, 16)); |
| 145 | } |
| 146 | |
| 147 | static __always_inline u32 subshift(u32 in[], int pos) |
| 148 | { |
| 149 | return (aes_sbox[in[pos] & 0xff]) ^ |
| 150 | (aes_sbox[(in[(pos + 1) % 4] >> 8) & 0xff] << 8) ^ |
| 151 | (aes_sbox[(in[(pos + 2) % 4] >> 16) & 0xff] << 16) ^ |
| 152 | (aes_sbox[(in[(pos + 3) % 4] >> 24) & 0xff] << 24); |
| 153 | } |
| 154 | |
| 155 | static __always_inline u32 inv_subshift(u32 in[], int pos) |
| 156 | { |
| 157 | return (aes_inv_sbox[in[pos] & 0xff]) ^ |
| 158 | (aes_inv_sbox[(in[(pos + 3) % 4] >> 8) & 0xff] << 8) ^ |
| 159 | (aes_inv_sbox[(in[(pos + 2) % 4] >> 16) & 0xff] << 16) ^ |
| 160 | (aes_inv_sbox[(in[(pos + 1) % 4] >> 24) & 0xff] << 24); |
| 161 | } |
| 162 | |
| 163 | static u32 subw(u32 in) |
| 164 | { |
| 165 | return (aes_sbox[in & 0xff]) ^ |
| 166 | (aes_sbox[(in >> 8) & 0xff] << 8) ^ |
| 167 | (aes_sbox[(in >> 16) & 0xff] << 16) ^ |
| 168 | (aes_sbox[(in >> 24) & 0xff] << 24); |
| 169 | } |
| 170 | |
| 171 | /** |
| 172 | * aes_expandkey - Expands the AES key as described in FIPS-197 |
| 173 | * @ctx: The location where the computed key will be stored. |
| 174 | * @in_key: The supplied key. |
| 175 | * @key_len: The length of the supplied key. |
| 176 | * |
| 177 | * Returns 0 on success. The function fails only if an invalid key size (or |
| 178 | * pointer) is supplied. |
| 179 | * The expanded key size is 240 bytes (max of 14 rounds with a unique 16 bytes |
| 180 | * key schedule plus a 16 bytes key which is used before the first round). |
| 181 | * The decryption key is prepared for the "Equivalent Inverse Cipher" as |
| 182 | * described in FIPS-197. The first slot (16 bytes) of each key (enc or dec) is |
| 183 | * for the initial combination, the second slot for the first round and so on. |
| 184 | */ |
| 185 | int aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key, |
| 186 | unsigned int key_len) |
| 187 | { |
| 188 | u32 kwords = key_len / sizeof(u32); |
| 189 | u32 rc, i, j; |
Iuliana Prodan | bc67d04 | 2019-07-31 16:05:55 +0300 | [diff] [blame] | 190 | int err; |
Ard Biesheuvel | e59c1c9 | 2019-07-02 21:41:22 +0200 | [diff] [blame] | 191 | |
Iuliana Prodan | bc67d04 | 2019-07-31 16:05:55 +0300 | [diff] [blame] | 192 | err = aes_check_keylen(key_len); |
| 193 | if (err) |
| 194 | return err; |
Ard Biesheuvel | e59c1c9 | 2019-07-02 21:41:22 +0200 | [diff] [blame] | 195 | |
| 196 | ctx->key_length = key_len; |
| 197 | |
| 198 | for (i = 0; i < kwords; i++) |
| 199 | ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32)); |
| 200 | |
| 201 | for (i = 0, rc = 1; i < 10; i++, rc = mul_by_x(rc)) { |
| 202 | u32 *rki = ctx->key_enc + (i * kwords); |
| 203 | u32 *rko = rki + kwords; |
| 204 | |
| 205 | rko[0] = ror32(subw(rki[kwords - 1]), 8) ^ rc ^ rki[0]; |
| 206 | rko[1] = rko[0] ^ rki[1]; |
| 207 | rko[2] = rko[1] ^ rki[2]; |
| 208 | rko[3] = rko[2] ^ rki[3]; |
| 209 | |
| 210 | if (key_len == AES_KEYSIZE_192) { |
| 211 | if (i >= 7) |
| 212 | break; |
| 213 | rko[4] = rko[3] ^ rki[4]; |
| 214 | rko[5] = rko[4] ^ rki[5]; |
| 215 | } else if (key_len == AES_KEYSIZE_256) { |
| 216 | if (i >= 6) |
| 217 | break; |
| 218 | rko[4] = subw(rko[3]) ^ rki[4]; |
| 219 | rko[5] = rko[4] ^ rki[5]; |
| 220 | rko[6] = rko[5] ^ rki[6]; |
| 221 | rko[7] = rko[6] ^ rki[7]; |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | /* |
| 226 | * Generate the decryption keys for the Equivalent Inverse Cipher. |
| 227 | * This involves reversing the order of the round keys, and applying |
| 228 | * the Inverse Mix Columns transformation to all but the first and |
| 229 | * the last one. |
| 230 | */ |
| 231 | ctx->key_dec[0] = ctx->key_enc[key_len + 24]; |
| 232 | ctx->key_dec[1] = ctx->key_enc[key_len + 25]; |
| 233 | ctx->key_dec[2] = ctx->key_enc[key_len + 26]; |
| 234 | ctx->key_dec[3] = ctx->key_enc[key_len + 27]; |
| 235 | |
| 236 | for (i = 4, j = key_len + 20; j > 0; i += 4, j -= 4) { |
| 237 | ctx->key_dec[i] = inv_mix_columns(ctx->key_enc[j]); |
| 238 | ctx->key_dec[i + 1] = inv_mix_columns(ctx->key_enc[j + 1]); |
| 239 | ctx->key_dec[i + 2] = inv_mix_columns(ctx->key_enc[j + 2]); |
| 240 | ctx->key_dec[i + 3] = inv_mix_columns(ctx->key_enc[j + 3]); |
| 241 | } |
| 242 | |
| 243 | ctx->key_dec[i] = ctx->key_enc[0]; |
| 244 | ctx->key_dec[i + 1] = ctx->key_enc[1]; |
| 245 | ctx->key_dec[i + 2] = ctx->key_enc[2]; |
| 246 | ctx->key_dec[i + 3] = ctx->key_enc[3]; |
| 247 | |
| 248 | return 0; |
| 249 | } |
| 250 | EXPORT_SYMBOL(aes_expandkey); |
| 251 | |
| 252 | /** |
| 253 | * aes_encrypt - Encrypt a single AES block |
| 254 | * @ctx: Context struct containing the key schedule |
| 255 | * @out: Buffer to store the ciphertext |
| 256 | * @in: Buffer containing the plaintext |
| 257 | */ |
| 258 | void aes_encrypt(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in) |
| 259 | { |
| 260 | const u32 *rkp = ctx->key_enc + 4; |
| 261 | int rounds = 6 + ctx->key_length / 4; |
| 262 | u32 st0[4], st1[4]; |
| 263 | int round; |
| 264 | |
| 265 | st0[0] = ctx->key_enc[0] ^ get_unaligned_le32(in); |
| 266 | st0[1] = ctx->key_enc[1] ^ get_unaligned_le32(in + 4); |
| 267 | st0[2] = ctx->key_enc[2] ^ get_unaligned_le32(in + 8); |
| 268 | st0[3] = ctx->key_enc[3] ^ get_unaligned_le32(in + 12); |
| 269 | |
| 270 | /* |
| 271 | * Force the compiler to emit data independent Sbox references, |
| 272 | * by xoring the input with Sbox values that are known to add up |
| 273 | * to zero. This pulls the entire Sbox into the D-cache before any |
| 274 | * data dependent lookups are done. |
| 275 | */ |
| 276 | st0[0] ^= aes_sbox[ 0] ^ aes_sbox[ 64] ^ aes_sbox[134] ^ aes_sbox[195]; |
| 277 | st0[1] ^= aes_sbox[16] ^ aes_sbox[ 82] ^ aes_sbox[158] ^ aes_sbox[221]; |
| 278 | st0[2] ^= aes_sbox[32] ^ aes_sbox[ 96] ^ aes_sbox[160] ^ aes_sbox[234]; |
| 279 | st0[3] ^= aes_sbox[48] ^ aes_sbox[112] ^ aes_sbox[186] ^ aes_sbox[241]; |
| 280 | |
| 281 | for (round = 0;; round += 2, rkp += 8) { |
| 282 | st1[0] = mix_columns(subshift(st0, 0)) ^ rkp[0]; |
| 283 | st1[1] = mix_columns(subshift(st0, 1)) ^ rkp[1]; |
| 284 | st1[2] = mix_columns(subshift(st0, 2)) ^ rkp[2]; |
| 285 | st1[3] = mix_columns(subshift(st0, 3)) ^ rkp[3]; |
| 286 | |
| 287 | if (round == rounds - 2) |
| 288 | break; |
| 289 | |
| 290 | st0[0] = mix_columns(subshift(st1, 0)) ^ rkp[4]; |
| 291 | st0[1] = mix_columns(subshift(st1, 1)) ^ rkp[5]; |
| 292 | st0[2] = mix_columns(subshift(st1, 2)) ^ rkp[6]; |
| 293 | st0[3] = mix_columns(subshift(st1, 3)) ^ rkp[7]; |
| 294 | } |
| 295 | |
| 296 | put_unaligned_le32(subshift(st1, 0) ^ rkp[4], out); |
| 297 | put_unaligned_le32(subshift(st1, 1) ^ rkp[5], out + 4); |
| 298 | put_unaligned_le32(subshift(st1, 2) ^ rkp[6], out + 8); |
| 299 | put_unaligned_le32(subshift(st1, 3) ^ rkp[7], out + 12); |
| 300 | } |
| 301 | EXPORT_SYMBOL(aes_encrypt); |
| 302 | |
| 303 | /** |
| 304 | * aes_decrypt - Decrypt a single AES block |
| 305 | * @ctx: Context struct containing the key schedule |
| 306 | * @out: Buffer to store the plaintext |
| 307 | * @in: Buffer containing the ciphertext |
| 308 | */ |
| 309 | void aes_decrypt(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in) |
| 310 | { |
| 311 | const u32 *rkp = ctx->key_dec + 4; |
| 312 | int rounds = 6 + ctx->key_length / 4; |
| 313 | u32 st0[4], st1[4]; |
| 314 | int round; |
| 315 | |
| 316 | st0[0] = ctx->key_dec[0] ^ get_unaligned_le32(in); |
| 317 | st0[1] = ctx->key_dec[1] ^ get_unaligned_le32(in + 4); |
| 318 | st0[2] = ctx->key_dec[2] ^ get_unaligned_le32(in + 8); |
| 319 | st0[3] = ctx->key_dec[3] ^ get_unaligned_le32(in + 12); |
| 320 | |
| 321 | /* |
| 322 | * Force the compiler to emit data independent Sbox references, |
| 323 | * by xoring the input with Sbox values that are known to add up |
| 324 | * to zero. This pulls the entire Sbox into the D-cache before any |
| 325 | * data dependent lookups are done. |
| 326 | */ |
| 327 | st0[0] ^= aes_inv_sbox[ 0] ^ aes_inv_sbox[ 64] ^ aes_inv_sbox[129] ^ aes_inv_sbox[200]; |
| 328 | st0[1] ^= aes_inv_sbox[16] ^ aes_inv_sbox[ 83] ^ aes_inv_sbox[150] ^ aes_inv_sbox[212]; |
| 329 | st0[2] ^= aes_inv_sbox[32] ^ aes_inv_sbox[ 96] ^ aes_inv_sbox[160] ^ aes_inv_sbox[236]; |
| 330 | st0[3] ^= aes_inv_sbox[48] ^ aes_inv_sbox[112] ^ aes_inv_sbox[187] ^ aes_inv_sbox[247]; |
| 331 | |
| 332 | for (round = 0;; round += 2, rkp += 8) { |
| 333 | st1[0] = inv_mix_columns(inv_subshift(st0, 0)) ^ rkp[0]; |
| 334 | st1[1] = inv_mix_columns(inv_subshift(st0, 1)) ^ rkp[1]; |
| 335 | st1[2] = inv_mix_columns(inv_subshift(st0, 2)) ^ rkp[2]; |
| 336 | st1[3] = inv_mix_columns(inv_subshift(st0, 3)) ^ rkp[3]; |
| 337 | |
| 338 | if (round == rounds - 2) |
| 339 | break; |
| 340 | |
| 341 | st0[0] = inv_mix_columns(inv_subshift(st1, 0)) ^ rkp[4]; |
| 342 | st0[1] = inv_mix_columns(inv_subshift(st1, 1)) ^ rkp[5]; |
| 343 | st0[2] = inv_mix_columns(inv_subshift(st1, 2)) ^ rkp[6]; |
| 344 | st0[3] = inv_mix_columns(inv_subshift(st1, 3)) ^ rkp[7]; |
| 345 | } |
| 346 | |
| 347 | put_unaligned_le32(inv_subshift(st1, 0) ^ rkp[4], out); |
| 348 | put_unaligned_le32(inv_subshift(st1, 1) ^ rkp[5], out + 4); |
| 349 | put_unaligned_le32(inv_subshift(st1, 2) ^ rkp[6], out + 8); |
| 350 | put_unaligned_le32(inv_subshift(st1, 3) ^ rkp[7], out + 12); |
| 351 | } |
| 352 | EXPORT_SYMBOL(aes_decrypt); |
| 353 | |
| 354 | MODULE_DESCRIPTION("Generic AES library"); |
| 355 | MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); |
| 356 | MODULE_LICENSE("GPL v2"); |