Thomas Gleixner | 08dbd0f | 2019-05-29 07:12:41 -0700 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Richard Kuo | 71e4a47 | 2011-10-31 18:43:24 -0500 | [diff] [blame] | 2 | /* |
| 3 | * Time related functions for Hexagon architecture |
| 4 | * |
Richard Kuo | e1858b2 | 2012-09-19 16:22:02 -0500 | [diff] [blame] | 5 | * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved. |
Richard Kuo | 71e4a47 | 2011-10-31 18:43:24 -0500 | [diff] [blame] | 6 | */ |
| 7 | |
| 8 | #include <linux/init.h> |
| 9 | #include <linux/clockchips.h> |
| 10 | #include <linux/clocksource.h> |
| 11 | #include <linux/interrupt.h> |
| 12 | #include <linux/err.h> |
| 13 | #include <linux/platform_device.h> |
| 14 | #include <linux/ioport.h> |
| 15 | #include <linux/of.h> |
| 16 | #include <linux/of_address.h> |
| 17 | #include <linux/of_irq.h> |
Richard Kuo | 6bbbc30 | 2011-11-15 16:58:11 -0600 | [diff] [blame] | 18 | #include <linux/module.h> |
Richard Kuo | 71e4a47 | 2011-10-31 18:43:24 -0500 | [diff] [blame] | 19 | |
| 20 | #include <asm/timer-regs.h> |
| 21 | #include <asm/hexagon_vm.h> |
| 22 | |
| 23 | /* |
| 24 | * For the clocksource we need: |
| 25 | * pcycle frequency (600MHz) |
| 26 | * For the loops_per_jiffy we need: |
| 27 | * thread/cpu frequency (100MHz) |
| 28 | * And for the timer, we need: |
| 29 | * sleep clock rate |
| 30 | */ |
| 31 | |
| 32 | cycles_t pcycle_freq_mhz; |
| 33 | cycles_t thread_freq_mhz; |
| 34 | cycles_t sleep_clk_freq; |
| 35 | |
| 36 | static struct resource rtos_timer_resources[] = { |
| 37 | { |
| 38 | .start = RTOS_TIMER_REGS_ADDR, |
| 39 | .end = RTOS_TIMER_REGS_ADDR+PAGE_SIZE-1, |
| 40 | .flags = IORESOURCE_MEM, |
| 41 | }, |
| 42 | }; |
| 43 | |
| 44 | static struct platform_device rtos_timer_device = { |
| 45 | .name = "rtos_timer", |
| 46 | .id = -1, |
| 47 | .num_resources = ARRAY_SIZE(rtos_timer_resources), |
| 48 | .resource = rtos_timer_resources, |
| 49 | }; |
| 50 | |
| 51 | /* A lot of this stuff should move into a platform specific section. */ |
| 52 | struct adsp_hw_timer_struct { |
| 53 | u32 match; /* Match value */ |
| 54 | u32 count; |
| 55 | u32 enable; /* [1] - CLR_ON_MATCH_EN, [0] - EN */ |
| 56 | u32 clear; /* one-shot register that clears the count */ |
| 57 | }; |
| 58 | |
| 59 | /* Look for "TCX0" for related constants. */ |
| 60 | static __iomem struct adsp_hw_timer_struct *rtos_timer; |
| 61 | |
Thomas Gleixner | a5a1d1c | 2016-12-21 20:32:01 +0100 | [diff] [blame] | 62 | static u64 timer_get_cycles(struct clocksource *cs) |
Richard Kuo | 71e4a47 | 2011-10-31 18:43:24 -0500 | [diff] [blame] | 63 | { |
Thomas Gleixner | a5a1d1c | 2016-12-21 20:32:01 +0100 | [diff] [blame] | 64 | return (u64) __vmgettime(); |
Richard Kuo | 71e4a47 | 2011-10-31 18:43:24 -0500 | [diff] [blame] | 65 | } |
| 66 | |
| 67 | static struct clocksource hexagon_clocksource = { |
| 68 | .name = "pcycles", |
| 69 | .rating = 250, |
| 70 | .read = timer_get_cycles, |
| 71 | .mask = CLOCKSOURCE_MASK(64), |
| 72 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| 73 | }; |
| 74 | |
| 75 | static int set_next_event(unsigned long delta, struct clock_event_device *evt) |
| 76 | { |
| 77 | /* Assuming the timer will be disabled when we enter here. */ |
| 78 | |
| 79 | iowrite32(1, &rtos_timer->clear); |
| 80 | iowrite32(0, &rtos_timer->clear); |
| 81 | |
| 82 | iowrite32(delta, &rtos_timer->match); |
| 83 | iowrite32(1 << TIMER_ENABLE, &rtos_timer->enable); |
| 84 | return 0; |
| 85 | } |
| 86 | |
Richard Kuo | 71e4a47 | 2011-10-31 18:43:24 -0500 | [diff] [blame] | 87 | #ifdef CONFIG_SMP |
| 88 | /* Broadcast mechanism */ |
| 89 | static void broadcast(const struct cpumask *mask) |
| 90 | { |
| 91 | send_ipi(mask, IPI_TIMER); |
| 92 | } |
| 93 | #endif |
| 94 | |
Viresh Kumar | d70e22d | 2015-07-16 16:56:19 +0530 | [diff] [blame] | 95 | /* XXX Implement set_state_shutdown() */ |
Richard Kuo | 71e4a47 | 2011-10-31 18:43:24 -0500 | [diff] [blame] | 96 | static struct clock_event_device hexagon_clockevent_dev = { |
| 97 | .name = "clockevent", |
| 98 | .features = CLOCK_EVT_FEAT_ONESHOT, |
| 99 | .rating = 400, |
| 100 | .irq = RTOS_TIMER_INT, |
| 101 | .set_next_event = set_next_event, |
Richard Kuo | 71e4a47 | 2011-10-31 18:43:24 -0500 | [diff] [blame] | 102 | #ifdef CONFIG_SMP |
| 103 | .broadcast = broadcast, |
| 104 | #endif |
| 105 | }; |
| 106 | |
| 107 | #ifdef CONFIG_SMP |
| 108 | static DEFINE_PER_CPU(struct clock_event_device, clock_events); |
| 109 | |
| 110 | void setup_percpu_clockdev(void) |
| 111 | { |
| 112 | int cpu = smp_processor_id(); |
| 113 | struct clock_event_device *ce_dev = &hexagon_clockevent_dev; |
| 114 | struct clock_event_device *dummy_clock_dev = |
| 115 | &per_cpu(clock_events, cpu); |
| 116 | |
| 117 | memcpy(dummy_clock_dev, ce_dev, sizeof(*dummy_clock_dev)); |
| 118 | INIT_LIST_HEAD(&dummy_clock_dev->list); |
| 119 | |
| 120 | dummy_clock_dev->features = CLOCK_EVT_FEAT_DUMMY; |
| 121 | dummy_clock_dev->cpumask = cpumask_of(cpu); |
Richard Kuo | 71e4a47 | 2011-10-31 18:43:24 -0500 | [diff] [blame] | 122 | |
| 123 | clockevents_register_device(dummy_clock_dev); |
| 124 | } |
| 125 | |
| 126 | /* Called from smp.c for each CPU's timer ipi call */ |
| 127 | void ipi_timer(void) |
| 128 | { |
| 129 | int cpu = smp_processor_id(); |
| 130 | struct clock_event_device *ce_dev = &per_cpu(clock_events, cpu); |
| 131 | |
| 132 | ce_dev->event_handler(ce_dev); |
| 133 | } |
| 134 | #endif /* CONFIG_SMP */ |
| 135 | |
| 136 | static irqreturn_t timer_interrupt(int irq, void *devid) |
| 137 | { |
| 138 | struct clock_event_device *ce_dev = &hexagon_clockevent_dev; |
| 139 | |
| 140 | iowrite32(0, &rtos_timer->enable); |
| 141 | ce_dev->event_handler(ce_dev); |
| 142 | |
| 143 | return IRQ_HANDLED; |
| 144 | } |
| 145 | |
Richard Kuo | 71e4a47 | 2011-10-31 18:43:24 -0500 | [diff] [blame] | 146 | /* |
| 147 | * time_init_deferred - called by start_kernel to set up timer/clock source |
| 148 | * |
| 149 | * Install the IRQ handler for the clock, setup timers. |
| 150 | * This is done late, as that way, we can use ioremap(). |
| 151 | * |
| 152 | * This runs just before the delay loop is calibrated, and |
| 153 | * is used for delay calibration. |
| 154 | */ |
| 155 | void __init time_init_deferred(void) |
| 156 | { |
| 157 | struct resource *resource = NULL; |
| 158 | struct clock_event_device *ce_dev = &hexagon_clockevent_dev; |
afzal mohammed | 45b26dd | 2020-03-27 21:39:50 +0530 | [diff] [blame] | 159 | unsigned long flag = IRQF_TIMER | IRQF_TRIGGER_RISING; |
Richard Kuo | 71e4a47 | 2011-10-31 18:43:24 -0500 | [diff] [blame] | 160 | |
| 161 | ce_dev->cpumask = cpu_all_mask; |
| 162 | |
| 163 | if (!resource) |
| 164 | resource = rtos_timer_device.resource; |
| 165 | |
| 166 | /* ioremap here means this has to run later, after paging init */ |
Thomas Meyer | 3c0f13b | 2011-11-08 19:49:30 +0100 | [diff] [blame] | 167 | rtos_timer = ioremap(resource->start, resource_size(resource)); |
Richard Kuo | 71e4a47 | 2011-10-31 18:43:24 -0500 | [diff] [blame] | 168 | |
| 169 | if (!rtos_timer) { |
Thomas Meyer | 3c0f13b | 2011-11-08 19:49:30 +0100 | [diff] [blame] | 170 | release_mem_region(resource->start, resource_size(resource)); |
Richard Kuo | 71e4a47 | 2011-10-31 18:43:24 -0500 | [diff] [blame] | 171 | } |
| 172 | clocksource_register_khz(&hexagon_clocksource, pcycle_freq_mhz * 1000); |
| 173 | |
| 174 | /* Note: the sim generic RTOS clock is apparently really 18750Hz */ |
| 175 | |
| 176 | /* |
| 177 | * Last arg is some guaranteed seconds for which the conversion will |
| 178 | * work without overflow. |
| 179 | */ |
| 180 | clockevents_calc_mult_shift(ce_dev, sleep_clk_freq, 4); |
| 181 | |
| 182 | ce_dev->max_delta_ns = clockevent_delta2ns(0x7fffffff, ce_dev); |
Nicolai Stange | a60a9fb | 2017-03-30 21:43:32 +0200 | [diff] [blame] | 183 | ce_dev->max_delta_ticks = 0x7fffffff; |
Richard Kuo | 71e4a47 | 2011-10-31 18:43:24 -0500 | [diff] [blame] | 184 | ce_dev->min_delta_ns = clockevent_delta2ns(0xf, ce_dev); |
Nicolai Stange | a60a9fb | 2017-03-30 21:43:32 +0200 | [diff] [blame] | 185 | ce_dev->min_delta_ticks = 0xf; |
Richard Kuo | 71e4a47 | 2011-10-31 18:43:24 -0500 | [diff] [blame] | 186 | |
| 187 | #ifdef CONFIG_SMP |
| 188 | setup_percpu_clockdev(); |
| 189 | #endif |
| 190 | |
| 191 | clockevents_register_device(ce_dev); |
afzal mohammed | 45b26dd | 2020-03-27 21:39:50 +0530 | [diff] [blame] | 192 | if (request_irq(ce_dev->irq, timer_interrupt, flag, "rtos_timer", NULL)) |
| 193 | pr_err("Failed to register rtos_timer interrupt\n"); |
Richard Kuo | 71e4a47 | 2011-10-31 18:43:24 -0500 | [diff] [blame] | 194 | } |
| 195 | |
| 196 | void __init time_init(void) |
| 197 | { |
| 198 | late_time_init = time_init_deferred; |
| 199 | } |
| 200 | |
Chen Gang | 196b933 | 2013-11-19 11:10:43 +0800 | [diff] [blame] | 201 | void __delay(unsigned long cycles) |
| 202 | { |
| 203 | unsigned long long start = __vmgettime(); |
| 204 | |
| 205 | while ((__vmgettime() - start) < cycles) |
| 206 | cpu_relax(); |
| 207 | } |
| 208 | EXPORT_SYMBOL(__delay); |
| 209 | |
Richard Kuo | 71e4a47 | 2011-10-31 18:43:24 -0500 | [diff] [blame] | 210 | /* |
| 211 | * This could become parametric or perhaps even computed at run-time, |
| 212 | * but for now we take the observed simulator jitter. |
| 213 | */ |
| 214 | static long long fudgefactor = 350; /* Maybe lower if kernel optimized. */ |
| 215 | |
| 216 | void __udelay(unsigned long usecs) |
| 217 | { |
| 218 | unsigned long long start = __vmgettime(); |
| 219 | unsigned long long finish = (pcycle_freq_mhz * usecs) - fudgefactor; |
| 220 | |
| 221 | while ((__vmgettime() - start) < finish) |
| 222 | cpu_relax(); /* not sure how this improves readability */ |
| 223 | } |
| 224 | EXPORT_SYMBOL(__udelay); |