blob: da676b0d016b360bdcbb2f172de27f75e597806f [file] [log] [blame]
Paul E. McKenneydad81a22017-03-25 17:23:44 -07001/*
2 * Sleepable Read-Copy Update mechanism for mutual exclusion.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright (C) IBM Corporation, 2006
19 * Copyright (C) Fujitsu, 2012
20 *
21 * Author: Paul McKenney <paulmck@us.ibm.com>
22 * Lai Jiangshan <laijs@cn.fujitsu.com>
23 *
24 * For detailed explanation of Read-Copy Update mechanism see -
25 * Documentation/RCU/ *.txt
26 *
27 */
28
29#include <linux/export.h>
30#include <linux/mutex.h>
31#include <linux/percpu.h>
32#include <linux/preempt.h>
33#include <linux/rcupdate_wait.h>
34#include <linux/sched.h>
35#include <linux/smp.h>
36#include <linux/delay.h>
37#include <linux/srcu.h>
38
39#include <linux/rcu_node_tree.h>
40#include "rcu.h"
41
42static int init_srcu_struct_fields(struct srcu_struct *sp)
43{
44 sp->completed = 0;
45 sp->srcu_gp_seq = 0;
46 atomic_set(&sp->srcu_exp_cnt, 0);
47 spin_lock_init(&sp->queue_lock);
48 rcu_segcblist_init(&sp->srcu_cblist);
49 INIT_DELAYED_WORK(&sp->work, process_srcu);
50 sp->per_cpu_ref = alloc_percpu(struct srcu_array);
51 return sp->per_cpu_ref ? 0 : -ENOMEM;
52}
53
54#ifdef CONFIG_DEBUG_LOCK_ALLOC
55
56int __init_srcu_struct(struct srcu_struct *sp, const char *name,
57 struct lock_class_key *key)
58{
59 /* Don't re-initialize a lock while it is held. */
60 debug_check_no_locks_freed((void *)sp, sizeof(*sp));
61 lockdep_init_map(&sp->dep_map, name, key, 0);
62 return init_srcu_struct_fields(sp);
63}
64EXPORT_SYMBOL_GPL(__init_srcu_struct);
65
66#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
67
68/**
69 * init_srcu_struct - initialize a sleep-RCU structure
70 * @sp: structure to initialize.
71 *
72 * Must invoke this on a given srcu_struct before passing that srcu_struct
73 * to any other function. Each srcu_struct represents a separate domain
74 * of SRCU protection.
75 */
76int init_srcu_struct(struct srcu_struct *sp)
77{
78 return init_srcu_struct_fields(sp);
79}
80EXPORT_SYMBOL_GPL(init_srcu_struct);
81
82#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
83
84/*
85 * Returns approximate total of the readers' ->lock_count[] values for the
86 * rank of per-CPU counters specified by idx.
87 */
88static unsigned long srcu_readers_lock_idx(struct srcu_struct *sp, int idx)
89{
90 int cpu;
91 unsigned long sum = 0;
92
93 for_each_possible_cpu(cpu) {
94 struct srcu_array *cpuc = per_cpu_ptr(sp->per_cpu_ref, cpu);
95
96 sum += READ_ONCE(cpuc->lock_count[idx]);
97 }
98 return sum;
99}
100
101/*
102 * Returns approximate total of the readers' ->unlock_count[] values for the
103 * rank of per-CPU counters specified by idx.
104 */
105static unsigned long srcu_readers_unlock_idx(struct srcu_struct *sp, int idx)
106{
107 int cpu;
108 unsigned long sum = 0;
109
110 for_each_possible_cpu(cpu) {
111 struct srcu_array *cpuc = per_cpu_ptr(sp->per_cpu_ref, cpu);
112
113 sum += READ_ONCE(cpuc->unlock_count[idx]);
114 }
115 return sum;
116}
117
118/*
119 * Return true if the number of pre-existing readers is determined to
120 * be zero.
121 */
122static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx)
123{
124 unsigned long unlocks;
125
126 unlocks = srcu_readers_unlock_idx(sp, idx);
127
128 /*
129 * Make sure that a lock is always counted if the corresponding
130 * unlock is counted. Needs to be a smp_mb() as the read side may
131 * contain a read from a variable that is written to before the
132 * synchronize_srcu() in the write side. In this case smp_mb()s
133 * A and B act like the store buffering pattern.
134 *
135 * This smp_mb() also pairs with smp_mb() C to prevent accesses
136 * after the synchronize_srcu() from being executed before the
137 * grace period ends.
138 */
139 smp_mb(); /* A */
140
141 /*
142 * If the locks are the same as the unlocks, then there must have
143 * been no readers on this index at some time in between. This does
144 * not mean that there are no more readers, as one could have read
145 * the current index but not have incremented the lock counter yet.
146 *
147 * Possible bug: There is no guarantee that there haven't been
148 * ULONG_MAX increments of ->lock_count[] since the unlocks were
149 * counted, meaning that this could return true even if there are
150 * still active readers. Since there are no memory barriers around
151 * srcu_flip(), the CPU is not required to increment ->completed
152 * before running srcu_readers_unlock_idx(), which means that there
153 * could be an arbitrarily large number of critical sections that
154 * execute after srcu_readers_unlock_idx() but use the old value
155 * of ->completed.
156 */
157 return srcu_readers_lock_idx(sp, idx) == unlocks;
158}
159
160/**
161 * srcu_readers_active - returns true if there are readers. and false
162 * otherwise
163 * @sp: which srcu_struct to count active readers (holding srcu_read_lock).
164 *
165 * Note that this is not an atomic primitive, and can therefore suffer
166 * severe errors when invoked on an active srcu_struct. That said, it
167 * can be useful as an error check at cleanup time.
168 */
169static bool srcu_readers_active(struct srcu_struct *sp)
170{
171 int cpu;
172 unsigned long sum = 0;
173
174 for_each_possible_cpu(cpu) {
175 struct srcu_array *cpuc = per_cpu_ptr(sp->per_cpu_ref, cpu);
176
177 sum += READ_ONCE(cpuc->lock_count[0]);
178 sum += READ_ONCE(cpuc->lock_count[1]);
179 sum -= READ_ONCE(cpuc->unlock_count[0]);
180 sum -= READ_ONCE(cpuc->unlock_count[1]);
181 }
182 return sum;
183}
184
185#define SRCU_INTERVAL 1
186
187/**
188 * cleanup_srcu_struct - deconstruct a sleep-RCU structure
189 * @sp: structure to clean up.
190 *
191 * Must invoke this after you are finished using a given srcu_struct that
192 * was initialized via init_srcu_struct(), else you leak memory.
193 */
194void cleanup_srcu_struct(struct srcu_struct *sp)
195{
196 WARN_ON_ONCE(atomic_read(&sp->srcu_exp_cnt));
197 if (WARN_ON(srcu_readers_active(sp)))
198 return; /* Leakage unless caller handles error. */
199 if (WARN_ON(!rcu_segcblist_empty(&sp->srcu_cblist)))
200 return; /* Leakage unless caller handles error. */
201 flush_delayed_work(&sp->work);
202 if (WARN_ON(rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) != SRCU_STATE_IDLE)) {
203 pr_info("cleanup_srcu_struct: Active srcu_struct %lu CBs %c state: %d\n", rcu_segcblist_n_cbs(&sp->srcu_cblist), ".E"[rcu_segcblist_empty(&sp->srcu_cblist)], rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)));
204 return; /* Caller forgot to stop doing call_srcu()? */
205 }
206 free_percpu(sp->per_cpu_ref);
207 sp->per_cpu_ref = NULL;
208}
209EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
210
211/*
212 * Counts the new reader in the appropriate per-CPU element of the
213 * srcu_struct. Must be called from process context.
214 * Returns an index that must be passed to the matching srcu_read_unlock().
215 */
216int __srcu_read_lock(struct srcu_struct *sp)
217{
218 int idx;
219
220 idx = READ_ONCE(sp->completed) & 0x1;
221 __this_cpu_inc(sp->per_cpu_ref->lock_count[idx]);
222 smp_mb(); /* B */ /* Avoid leaking the critical section. */
223 return idx;
224}
225EXPORT_SYMBOL_GPL(__srcu_read_lock);
226
227/*
228 * Removes the count for the old reader from the appropriate per-CPU
229 * element of the srcu_struct. Note that this may well be a different
230 * CPU than that which was incremented by the corresponding srcu_read_lock().
231 * Must be called from process context.
232 */
233void __srcu_read_unlock(struct srcu_struct *sp, int idx)
234{
235 smp_mb(); /* C */ /* Avoid leaking the critical section. */
236 this_cpu_inc(sp->per_cpu_ref->unlock_count[idx]);
237}
238EXPORT_SYMBOL_GPL(__srcu_read_unlock);
239
240/*
241 * We use an adaptive strategy for synchronize_srcu() and especially for
242 * synchronize_srcu_expedited(). We spin for a fixed time period
243 * (defined below) to allow SRCU readers to exit their read-side critical
244 * sections. If there are still some readers after a few microseconds,
245 * we repeatedly block for 1-millisecond time periods.
246 */
247#define SRCU_RETRY_CHECK_DELAY 5
248
249/*
250 * Start an SRCU grace period.
251 */
252static void srcu_gp_start(struct srcu_struct *sp)
253{
254 int state;
255
256 rcu_segcblist_accelerate(&sp->srcu_cblist,
257 rcu_seq_snap(&sp->srcu_gp_seq));
258 rcu_seq_start(&sp->srcu_gp_seq);
259 state = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
260 WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
261}
262
263/*
264 * Wait until all readers counted by array index idx complete, but
265 * loop an additional time if there is an expedited grace period pending.
266 * The caller must ensure that ->completed is not changed while checking.
267 */
268static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount)
269{
270 for (;;) {
271 if (srcu_readers_active_idx_check(sp, idx))
272 return true;
273 if (--trycount + !!atomic_read(&sp->srcu_exp_cnt) <= 0)
274 return false;
275 udelay(SRCU_RETRY_CHECK_DELAY);
276 }
277}
278
279/*
280 * Increment the ->completed counter so that future SRCU readers will
281 * use the other rank of the ->(un)lock_count[] arrays. This allows
282 * us to wait for pre-existing readers in a starvation-free manner.
283 */
284static void srcu_flip(struct srcu_struct *sp)
285{
286 WRITE_ONCE(sp->completed, sp->completed + 1);
287
288 /*
289 * Ensure that if the updater misses an __srcu_read_unlock()
290 * increment, that task's next __srcu_read_lock() will see the
291 * above counter update. Note that both this memory barrier
292 * and the one in srcu_readers_active_idx_check() provide the
293 * guarantee for __srcu_read_lock().
294 */
295 smp_mb(); /* D */ /* Pairs with C. */
296}
297
298/*
299 * End an SRCU grace period.
300 */
301static void srcu_gp_end(struct srcu_struct *sp)
302{
303 rcu_seq_end(&sp->srcu_gp_seq);
304
305 spin_lock_irq(&sp->queue_lock);
306 rcu_segcblist_advance(&sp->srcu_cblist,
307 rcu_seq_current(&sp->srcu_gp_seq));
308 spin_unlock_irq(&sp->queue_lock);
309}
310
311/*
312 * Enqueue an SRCU callback on the specified srcu_struct structure,
313 * initiating grace-period processing if it is not already running.
314 *
315 * Note that all CPUs must agree that the grace period extended beyond
316 * all pre-existing SRCU read-side critical section. On systems with
317 * more than one CPU, this means that when "func()" is invoked, each CPU
318 * is guaranteed to have executed a full memory barrier since the end of
319 * its last corresponding SRCU read-side critical section whose beginning
320 * preceded the call to call_rcu(). It also means that each CPU executing
321 * an SRCU read-side critical section that continues beyond the start of
322 * "func()" must have executed a memory barrier after the call_rcu()
323 * but before the beginning of that SRCU read-side critical section.
324 * Note that these guarantees include CPUs that are offline, idle, or
325 * executing in user mode, as well as CPUs that are executing in the kernel.
326 *
327 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
328 * resulting SRCU callback function "func()", then both CPU A and CPU
329 * B are guaranteed to execute a full memory barrier during the time
330 * interval between the call to call_rcu() and the invocation of "func()".
331 * This guarantee applies even if CPU A and CPU B are the same CPU (but
332 * again only if the system has more than one CPU).
333 *
334 * Of course, these guarantees apply only for invocations of call_srcu(),
335 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
336 * srcu_struct structure.
337 */
338void call_srcu(struct srcu_struct *sp, struct rcu_head *head,
339 rcu_callback_t func)
340{
341 unsigned long flags;
342
343 head->next = NULL;
344 head->func = func;
345 spin_lock_irqsave(&sp->queue_lock, flags);
346 smp_mb__after_unlock_lock(); /* Caller's prior accesses before GP. */
347 rcu_segcblist_enqueue(&sp->srcu_cblist, head, false);
348 if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_IDLE) {
349 srcu_gp_start(sp);
350 queue_delayed_work(system_power_efficient_wq, &sp->work, 0);
351 }
352 spin_unlock_irqrestore(&sp->queue_lock, flags);
353}
354EXPORT_SYMBOL_GPL(call_srcu);
355
356static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay);
357
358/*
359 * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
360 */
361static void __synchronize_srcu(struct srcu_struct *sp)
362{
363 struct rcu_synchronize rcu;
364 struct rcu_head *head = &rcu.head;
365
366 RCU_LOCKDEP_WARN(lock_is_held(&sp->dep_map) ||
367 lock_is_held(&rcu_bh_lock_map) ||
368 lock_is_held(&rcu_lock_map) ||
369 lock_is_held(&rcu_sched_lock_map),
370 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
371
372 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
373 return;
374 might_sleep();
375 init_completion(&rcu.completion);
376
377 head->next = NULL;
378 head->func = wakeme_after_rcu;
379 spin_lock_irq(&sp->queue_lock);
380 smp_mb__after_unlock_lock(); /* Caller's prior accesses before GP. */
381 if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_IDLE) {
382 /* steal the processing owner */
383 rcu_segcblist_enqueue(&sp->srcu_cblist, head, false);
384 srcu_gp_start(sp);
385 spin_unlock_irq(&sp->queue_lock);
386 /* give the processing owner to work_struct */
387 srcu_reschedule(sp, 0);
388 } else {
389 rcu_segcblist_enqueue(&sp->srcu_cblist, head, false);
390 spin_unlock_irq(&sp->queue_lock);
391 }
392
393 wait_for_completion(&rcu.completion);
394 smp_mb(); /* Caller's later accesses after GP. */
395}
396
397/**
398 * synchronize_srcu_expedited - Brute-force SRCU grace period
399 * @sp: srcu_struct with which to synchronize.
400 *
401 * Wait for an SRCU grace period to elapse, but be more aggressive about
402 * spinning rather than blocking when waiting.
403 *
404 * Note that synchronize_srcu_expedited() has the same deadlock and
405 * memory-ordering properties as does synchronize_srcu().
406 */
407void synchronize_srcu_expedited(struct srcu_struct *sp)
408{
409 bool do_norm = rcu_gp_is_normal();
410
411 if (!do_norm) {
412 atomic_inc(&sp->srcu_exp_cnt);
413 smp_mb__after_atomic(); /* increment before GP. */
414 }
415 __synchronize_srcu(sp);
416 if (!do_norm) {
417 smp_mb__before_atomic(); /* GP before decrement. */
418 atomic_dec(&sp->srcu_exp_cnt);
419 }
420}
421EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
422
423/**
424 * synchronize_srcu - wait for prior SRCU read-side critical-section completion
425 * @sp: srcu_struct with which to synchronize.
426 *
427 * Wait for the count to drain to zero of both indexes. To avoid the
428 * possible starvation of synchronize_srcu(), it waits for the count of
429 * the index=((->completed & 1) ^ 1) to drain to zero at first,
430 * and then flip the completed and wait for the count of the other index.
431 *
432 * Can block; must be called from process context.
433 *
434 * Note that it is illegal to call synchronize_srcu() from the corresponding
435 * SRCU read-side critical section; doing so will result in deadlock.
436 * However, it is perfectly legal to call synchronize_srcu() on one
437 * srcu_struct from some other srcu_struct's read-side critical section,
438 * as long as the resulting graph of srcu_structs is acyclic.
439 *
440 * There are memory-ordering constraints implied by synchronize_srcu().
441 * On systems with more than one CPU, when synchronize_srcu() returns,
442 * each CPU is guaranteed to have executed a full memory barrier since
443 * the end of its last corresponding SRCU-sched read-side critical section
444 * whose beginning preceded the call to synchronize_srcu(). In addition,
445 * each CPU having an SRCU read-side critical section that extends beyond
446 * the return from synchronize_srcu() is guaranteed to have executed a
447 * full memory barrier after the beginning of synchronize_srcu() and before
448 * the beginning of that SRCU read-side critical section. Note that these
449 * guarantees include CPUs that are offline, idle, or executing in user mode,
450 * as well as CPUs that are executing in the kernel.
451 *
452 * Furthermore, if CPU A invoked synchronize_srcu(), which returned
453 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
454 * to have executed a full memory barrier during the execution of
455 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B
456 * are the same CPU, but again only if the system has more than one CPU.
457 *
458 * Of course, these memory-ordering guarantees apply only when
459 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
460 * passed the same srcu_struct structure.
461 */
462void synchronize_srcu(struct srcu_struct *sp)
463{
464 if (rcu_gp_is_expedited())
465 synchronize_srcu_expedited(sp);
466 else
467 __synchronize_srcu(sp);
468}
469EXPORT_SYMBOL_GPL(synchronize_srcu);
470
471/**
472 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
473 * @sp: srcu_struct on which to wait for in-flight callbacks.
474 */
475void srcu_barrier(struct srcu_struct *sp)
476{
477 synchronize_srcu(sp);
478}
479EXPORT_SYMBOL_GPL(srcu_barrier);
480
481/**
482 * srcu_batches_completed - return batches completed.
483 * @sp: srcu_struct on which to report batch completion.
484 *
485 * Report the number of batches, correlated with, but not necessarily
486 * precisely the same as, the number of grace periods that have elapsed.
487 */
488unsigned long srcu_batches_completed(struct srcu_struct *sp)
489{
490 return sp->completed;
491}
492EXPORT_SYMBOL_GPL(srcu_batches_completed);
493
494/*
495 * Core SRCU state machine. Advance callbacks from ->batch_check0 to
496 * ->batch_check1 and then to ->batch_done as readers drain.
497 */
498static void srcu_advance_batches(struct srcu_struct *sp)
499{
500 int idx;
501
502 /*
503 * Because readers might be delayed for an extended period after
504 * fetching ->completed for their index, at any point in time there
505 * might well be readers using both idx=0 and idx=1. We therefore
506 * need to wait for readers to clear from both index values before
507 * invoking a callback.
508 *
509 * The load-acquire ensures that we see the accesses performed
510 * by the prior grace period.
511 */
512 idx = rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq)); /* ^^^ */
513 if (idx == SRCU_STATE_IDLE) {
514 spin_lock_irq(&sp->queue_lock);
515 if (rcu_segcblist_empty(&sp->srcu_cblist)) {
516 spin_unlock_irq(&sp->queue_lock);
517 return;
518 }
519 idx = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
520 if (idx == SRCU_STATE_IDLE)
521 srcu_gp_start(sp);
522 spin_unlock_irq(&sp->queue_lock);
523 if (idx != SRCU_STATE_IDLE)
524 return; /* Someone else started the grace period. */
525 }
526
527 if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
528 idx = 1 ^ (sp->completed & 1);
529 if (!try_check_zero(sp, idx, 1))
530 return; /* readers present, retry later. */
531 srcu_flip(sp);
532 rcu_seq_set_state(&sp->srcu_gp_seq, SRCU_STATE_SCAN2);
533 }
534
535 if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
536
537 /*
538 * SRCU read-side critical sections are normally short,
539 * so check at least twice in quick succession after a flip.
540 */
541 idx = 1 ^ (sp->completed & 1);
542 if (!try_check_zero(sp, idx, 2))
543 return; /* readers present, retry after later. */
544 srcu_gp_end(sp);
545 }
546}
547
548/*
549 * Invoke a limited number of SRCU callbacks that have passed through
550 * their grace period. If there are more to do, SRCU will reschedule
551 * the workqueue. Note that needed memory barriers have been executed
552 * in this task's context by srcu_readers_active_idx_check().
553 */
554static void srcu_invoke_callbacks(struct srcu_struct *sp)
555{
556 struct rcu_cblist ready_cbs;
557 struct rcu_head *rhp;
558
559 spin_lock_irq(&sp->queue_lock);
560 if (!rcu_segcblist_ready_cbs(&sp->srcu_cblist)) {
561 spin_unlock_irq(&sp->queue_lock);
562 return;
563 }
564 rcu_cblist_init(&ready_cbs);
565 rcu_segcblist_extract_done_cbs(&sp->srcu_cblist, &ready_cbs);
566 spin_unlock_irq(&sp->queue_lock);
567 rhp = rcu_cblist_dequeue(&ready_cbs);
568 for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
569 local_bh_disable();
570 rhp->func(rhp);
571 local_bh_enable();
572 }
573 spin_lock_irq(&sp->queue_lock);
574 rcu_segcblist_insert_count(&sp->srcu_cblist, &ready_cbs);
575 spin_unlock_irq(&sp->queue_lock);
576}
577
578/*
579 * Finished one round of SRCU grace period. Start another if there are
580 * more SRCU callbacks queued, otherwise put SRCU into not-running state.
581 */
582static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay)
583{
584 bool pending = true;
585 int state;
586
587 if (rcu_segcblist_empty(&sp->srcu_cblist)) {
588 spin_lock_irq(&sp->queue_lock);
589 state = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
590 if (rcu_segcblist_empty(&sp->srcu_cblist) &&
591 state == SRCU_STATE_IDLE)
592 pending = false;
593 spin_unlock_irq(&sp->queue_lock);
594 }
595
596 if (pending)
597 queue_delayed_work(system_power_efficient_wq, &sp->work, delay);
598}
599
600/*
601 * This is the work-queue function that handles SRCU grace periods.
602 */
603void process_srcu(struct work_struct *work)
604{
605 struct srcu_struct *sp;
606
607 sp = container_of(work, struct srcu_struct, work.work);
608
609 srcu_advance_batches(sp);
610 srcu_invoke_callbacks(sp);
611 srcu_reschedule(sp, atomic_read(&sp->srcu_exp_cnt) ? 0 : SRCU_INTERVAL);
612}
613EXPORT_SYMBOL_GPL(process_srcu);