Johannes Berg | e2ebc74 | 2007-07-27 15:43:22 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2002-2005, Instant802 Networks, Inc. |
| 3 | * Copyright 2005-2006, Devicescape Software, Inc. |
| 4 | * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> |
| 5 | * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License version 2 as |
| 9 | * published by the Free Software Foundation. |
| 10 | * |
| 11 | * |
| 12 | * Transmit and frame generation functions. |
| 13 | */ |
| 14 | |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/slab.h> |
| 17 | #include <linux/skbuff.h> |
| 18 | #include <linux/etherdevice.h> |
| 19 | #include <linux/bitmap.h> |
| 20 | #include <net/ieee80211_radiotap.h> |
| 21 | #include <net/cfg80211.h> |
| 22 | #include <net/mac80211.h> |
| 23 | #include <asm/unaligned.h> |
| 24 | |
| 25 | #include "ieee80211_i.h" |
| 26 | #include "ieee80211_led.h" |
| 27 | #include "wep.h" |
| 28 | #include "wpa.h" |
| 29 | #include "wme.h" |
| 30 | #include "ieee80211_rate.h" |
| 31 | |
| 32 | #define IEEE80211_TX_OK 0 |
| 33 | #define IEEE80211_TX_AGAIN 1 |
| 34 | #define IEEE80211_TX_FRAG_AGAIN 2 |
| 35 | |
| 36 | /* misc utils */ |
| 37 | |
| 38 | static inline void ieee80211_include_sequence(struct ieee80211_sub_if_data *sdata, |
| 39 | struct ieee80211_hdr *hdr) |
| 40 | { |
| 41 | /* Set the sequence number for this frame. */ |
| 42 | hdr->seq_ctrl = cpu_to_le16(sdata->sequence); |
| 43 | |
| 44 | /* Increase the sequence number. */ |
| 45 | sdata->sequence = (sdata->sequence + 0x10) & IEEE80211_SCTL_SEQ; |
| 46 | } |
| 47 | |
| 48 | #ifdef CONFIG_MAC80211_LOWTX_FRAME_DUMP |
| 49 | static void ieee80211_dump_frame(const char *ifname, const char *title, |
| 50 | const struct sk_buff *skb) |
| 51 | { |
| 52 | const struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| 53 | u16 fc; |
| 54 | int hdrlen; |
| 55 | |
| 56 | printk(KERN_DEBUG "%s: %s (len=%d)", ifname, title, skb->len); |
| 57 | if (skb->len < 4) { |
| 58 | printk("\n"); |
| 59 | return; |
| 60 | } |
| 61 | |
| 62 | fc = le16_to_cpu(hdr->frame_control); |
| 63 | hdrlen = ieee80211_get_hdrlen(fc); |
| 64 | if (hdrlen > skb->len) |
| 65 | hdrlen = skb->len; |
| 66 | if (hdrlen >= 4) |
| 67 | printk(" FC=0x%04x DUR=0x%04x", |
| 68 | fc, le16_to_cpu(hdr->duration_id)); |
| 69 | if (hdrlen >= 10) |
| 70 | printk(" A1=" MAC_FMT, MAC_ARG(hdr->addr1)); |
| 71 | if (hdrlen >= 16) |
| 72 | printk(" A2=" MAC_FMT, MAC_ARG(hdr->addr2)); |
| 73 | if (hdrlen >= 24) |
| 74 | printk(" A3=" MAC_FMT, MAC_ARG(hdr->addr3)); |
| 75 | if (hdrlen >= 30) |
| 76 | printk(" A4=" MAC_FMT, MAC_ARG(hdr->addr4)); |
| 77 | printk("\n"); |
| 78 | } |
| 79 | #else /* CONFIG_MAC80211_LOWTX_FRAME_DUMP */ |
| 80 | static inline void ieee80211_dump_frame(const char *ifname, const char *title, |
| 81 | struct sk_buff *skb) |
| 82 | { |
| 83 | } |
| 84 | #endif /* CONFIG_MAC80211_LOWTX_FRAME_DUMP */ |
| 85 | |
| 86 | static u16 ieee80211_duration(struct ieee80211_txrx_data *tx, int group_addr, |
| 87 | int next_frag_len) |
| 88 | { |
| 89 | int rate, mrate, erp, dur, i; |
| 90 | struct ieee80211_rate *txrate = tx->u.tx.rate; |
| 91 | struct ieee80211_local *local = tx->local; |
| 92 | struct ieee80211_hw_mode *mode = tx->u.tx.mode; |
| 93 | |
| 94 | erp = txrate->flags & IEEE80211_RATE_ERP; |
| 95 | |
| 96 | /* |
| 97 | * data and mgmt (except PS Poll): |
| 98 | * - during CFP: 32768 |
| 99 | * - during contention period: |
| 100 | * if addr1 is group address: 0 |
| 101 | * if more fragments = 0 and addr1 is individual address: time to |
| 102 | * transmit one ACK plus SIFS |
| 103 | * if more fragments = 1 and addr1 is individual address: time to |
| 104 | * transmit next fragment plus 2 x ACK plus 3 x SIFS |
| 105 | * |
| 106 | * IEEE 802.11, 9.6: |
| 107 | * - control response frame (CTS or ACK) shall be transmitted using the |
| 108 | * same rate as the immediately previous frame in the frame exchange |
| 109 | * sequence, if this rate belongs to the PHY mandatory rates, or else |
| 110 | * at the highest possible rate belonging to the PHY rates in the |
| 111 | * BSSBasicRateSet |
| 112 | */ |
| 113 | |
| 114 | if ((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) { |
| 115 | /* TODO: These control frames are not currently sent by |
| 116 | * 80211.o, but should they be implemented, this function |
| 117 | * needs to be updated to support duration field calculation. |
| 118 | * |
| 119 | * RTS: time needed to transmit pending data/mgmt frame plus |
| 120 | * one CTS frame plus one ACK frame plus 3 x SIFS |
| 121 | * CTS: duration of immediately previous RTS minus time |
| 122 | * required to transmit CTS and its SIFS |
| 123 | * ACK: 0 if immediately previous directed data/mgmt had |
| 124 | * more=0, with more=1 duration in ACK frame is duration |
| 125 | * from previous frame minus time needed to transmit ACK |
| 126 | * and its SIFS |
| 127 | * PS Poll: BIT(15) | BIT(14) | aid |
| 128 | */ |
| 129 | return 0; |
| 130 | } |
| 131 | |
| 132 | /* data/mgmt */ |
| 133 | if (0 /* FIX: data/mgmt during CFP */) |
| 134 | return 32768; |
| 135 | |
| 136 | if (group_addr) /* Group address as the destination - no ACK */ |
| 137 | return 0; |
| 138 | |
| 139 | /* Individual destination address: |
| 140 | * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes) |
| 141 | * CTS and ACK frames shall be transmitted using the highest rate in |
| 142 | * basic rate set that is less than or equal to the rate of the |
| 143 | * immediately previous frame and that is using the same modulation |
| 144 | * (CCK or OFDM). If no basic rate set matches with these requirements, |
| 145 | * the highest mandatory rate of the PHY that is less than or equal to |
| 146 | * the rate of the previous frame is used. |
| 147 | * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps |
| 148 | */ |
| 149 | rate = -1; |
| 150 | mrate = 10; /* use 1 Mbps if everything fails */ |
| 151 | for (i = 0; i < mode->num_rates; i++) { |
| 152 | struct ieee80211_rate *r = &mode->rates[i]; |
| 153 | if (r->rate > txrate->rate) |
| 154 | break; |
| 155 | |
| 156 | if (IEEE80211_RATE_MODULATION(txrate->flags) != |
| 157 | IEEE80211_RATE_MODULATION(r->flags)) |
| 158 | continue; |
| 159 | |
| 160 | if (r->flags & IEEE80211_RATE_BASIC) |
| 161 | rate = r->rate; |
| 162 | else if (r->flags & IEEE80211_RATE_MANDATORY) |
| 163 | mrate = r->rate; |
| 164 | } |
| 165 | if (rate == -1) { |
| 166 | /* No matching basic rate found; use highest suitable mandatory |
| 167 | * PHY rate */ |
| 168 | rate = mrate; |
| 169 | } |
| 170 | |
| 171 | /* Time needed to transmit ACK |
| 172 | * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up |
| 173 | * to closest integer */ |
| 174 | |
| 175 | dur = ieee80211_frame_duration(local, 10, rate, erp, |
| 176 | local->short_preamble); |
| 177 | |
| 178 | if (next_frag_len) { |
| 179 | /* Frame is fragmented: duration increases with time needed to |
| 180 | * transmit next fragment plus ACK and 2 x SIFS. */ |
| 181 | dur *= 2; /* ACK + SIFS */ |
| 182 | /* next fragment */ |
| 183 | dur += ieee80211_frame_duration(local, next_frag_len, |
| 184 | txrate->rate, erp, |
| 185 | local->short_preamble); |
| 186 | } |
| 187 | |
| 188 | return dur; |
| 189 | } |
| 190 | |
| 191 | static inline int __ieee80211_queue_stopped(const struct ieee80211_local *local, |
| 192 | int queue) |
| 193 | { |
| 194 | return test_bit(IEEE80211_LINK_STATE_XOFF, &local->state[queue]); |
| 195 | } |
| 196 | |
| 197 | static inline int __ieee80211_queue_pending(const struct ieee80211_local *local, |
| 198 | int queue) |
| 199 | { |
| 200 | return test_bit(IEEE80211_LINK_STATE_PENDING, &local->state[queue]); |
| 201 | } |
| 202 | |
| 203 | static int inline is_ieee80211_device(struct net_device *dev, |
| 204 | struct net_device *master) |
| 205 | { |
| 206 | return (wdev_priv(dev->ieee80211_ptr) == |
| 207 | wdev_priv(master->ieee80211_ptr)); |
| 208 | } |
| 209 | |
| 210 | /* tx handlers */ |
| 211 | |
| 212 | static ieee80211_txrx_result |
| 213 | ieee80211_tx_h_check_assoc(struct ieee80211_txrx_data *tx) |
| 214 | { |
| 215 | #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| 216 | struct sk_buff *skb = tx->skb; |
| 217 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| 218 | #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ |
| 219 | u32 sta_flags; |
| 220 | |
| 221 | if (unlikely(tx->local->sta_scanning != 0) && |
| 222 | ((tx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT || |
| 223 | (tx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PROBE_REQ)) |
| 224 | return TXRX_DROP; |
| 225 | |
| 226 | if (tx->u.tx.ps_buffered) |
| 227 | return TXRX_CONTINUE; |
| 228 | |
| 229 | sta_flags = tx->sta ? tx->sta->flags : 0; |
| 230 | |
| 231 | if (likely(tx->u.tx.unicast)) { |
| 232 | if (unlikely(!(sta_flags & WLAN_STA_ASSOC) && |
| 233 | tx->sdata->type != IEEE80211_IF_TYPE_IBSS && |
| 234 | (tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)) { |
| 235 | #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| 236 | printk(KERN_DEBUG "%s: dropped data frame to not " |
| 237 | "associated station " MAC_FMT "\n", |
| 238 | tx->dev->name, MAC_ARG(hdr->addr1)); |
| 239 | #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ |
| 240 | I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc); |
| 241 | return TXRX_DROP; |
| 242 | } |
| 243 | } else { |
| 244 | if (unlikely((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA && |
| 245 | tx->local->num_sta == 0 && |
| 246 | !tx->local->allow_broadcast_always && |
| 247 | tx->sdata->type != IEEE80211_IF_TYPE_IBSS)) { |
| 248 | /* |
| 249 | * No associated STAs - no need to send multicast |
| 250 | * frames. |
| 251 | */ |
| 252 | return TXRX_DROP; |
| 253 | } |
| 254 | return TXRX_CONTINUE; |
| 255 | } |
| 256 | |
| 257 | if (unlikely(!tx->u.tx.mgmt_interface && tx->sdata->ieee802_1x && |
| 258 | !(sta_flags & WLAN_STA_AUTHORIZED))) { |
| 259 | #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| 260 | printk(KERN_DEBUG "%s: dropped frame to " MAC_FMT |
| 261 | " (unauthorized port)\n", tx->dev->name, |
| 262 | MAC_ARG(hdr->addr1)); |
| 263 | #endif |
| 264 | I802_DEBUG_INC(tx->local->tx_handlers_drop_unauth_port); |
| 265 | return TXRX_DROP; |
| 266 | } |
| 267 | |
| 268 | return TXRX_CONTINUE; |
| 269 | } |
| 270 | |
| 271 | static ieee80211_txrx_result |
| 272 | ieee80211_tx_h_sequence(struct ieee80211_txrx_data *tx) |
| 273 | { |
| 274 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; |
| 275 | |
| 276 | if (ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control)) >= 24) |
| 277 | ieee80211_include_sequence(tx->sdata, hdr); |
| 278 | |
| 279 | return TXRX_CONTINUE; |
| 280 | } |
| 281 | |
| 282 | /* This function is called whenever the AP is about to exceed the maximum limit |
| 283 | * of buffered frames for power saving STAs. This situation should not really |
| 284 | * happen often during normal operation, so dropping the oldest buffered packet |
| 285 | * from each queue should be OK to make some room for new frames. */ |
| 286 | static void purge_old_ps_buffers(struct ieee80211_local *local) |
| 287 | { |
| 288 | int total = 0, purged = 0; |
| 289 | struct sk_buff *skb; |
| 290 | struct ieee80211_sub_if_data *sdata; |
| 291 | struct sta_info *sta; |
| 292 | |
| 293 | read_lock(&local->sub_if_lock); |
| 294 | list_for_each_entry(sdata, &local->sub_if_list, list) { |
| 295 | struct ieee80211_if_ap *ap; |
| 296 | if (sdata->dev == local->mdev || |
| 297 | sdata->type != IEEE80211_IF_TYPE_AP) |
| 298 | continue; |
| 299 | ap = &sdata->u.ap; |
| 300 | skb = skb_dequeue(&ap->ps_bc_buf); |
| 301 | if (skb) { |
| 302 | purged++; |
| 303 | dev_kfree_skb(skb); |
| 304 | } |
| 305 | total += skb_queue_len(&ap->ps_bc_buf); |
| 306 | } |
| 307 | read_unlock(&local->sub_if_lock); |
| 308 | |
Michael Wu | be8755e | 2007-07-27 15:43:23 +0200 | [diff] [blame] | 309 | read_lock_bh(&local->sta_lock); |
Johannes Berg | e2ebc74 | 2007-07-27 15:43:22 +0200 | [diff] [blame] | 310 | list_for_each_entry(sta, &local->sta_list, list) { |
| 311 | skb = skb_dequeue(&sta->ps_tx_buf); |
| 312 | if (skb) { |
| 313 | purged++; |
| 314 | dev_kfree_skb(skb); |
| 315 | } |
| 316 | total += skb_queue_len(&sta->ps_tx_buf); |
| 317 | } |
Michael Wu | be8755e | 2007-07-27 15:43:23 +0200 | [diff] [blame] | 318 | read_unlock_bh(&local->sta_lock); |
Johannes Berg | e2ebc74 | 2007-07-27 15:43:22 +0200 | [diff] [blame] | 319 | |
| 320 | local->total_ps_buffered = total; |
| 321 | printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n", |
| 322 | local->mdev->name, purged); |
| 323 | } |
| 324 | |
| 325 | static inline ieee80211_txrx_result |
| 326 | ieee80211_tx_h_multicast_ps_buf(struct ieee80211_txrx_data *tx) |
| 327 | { |
| 328 | /* broadcast/multicast frame */ |
| 329 | /* If any of the associated stations is in power save mode, |
| 330 | * the frame is buffered to be sent after DTIM beacon frame */ |
| 331 | if ((tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING) && |
| 332 | tx->sdata->type != IEEE80211_IF_TYPE_WDS && |
| 333 | tx->sdata->bss && atomic_read(&tx->sdata->bss->num_sta_ps) && |
| 334 | !(tx->fc & IEEE80211_FCTL_ORDER)) { |
| 335 | if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) |
| 336 | purge_old_ps_buffers(tx->local); |
| 337 | if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= |
| 338 | AP_MAX_BC_BUFFER) { |
| 339 | if (net_ratelimit()) { |
| 340 | printk(KERN_DEBUG "%s: BC TX buffer full - " |
| 341 | "dropping the oldest frame\n", |
| 342 | tx->dev->name); |
| 343 | } |
| 344 | dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf)); |
| 345 | } else |
| 346 | tx->local->total_ps_buffered++; |
| 347 | skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb); |
| 348 | return TXRX_QUEUED; |
| 349 | } |
| 350 | |
| 351 | return TXRX_CONTINUE; |
| 352 | } |
| 353 | |
| 354 | static inline ieee80211_txrx_result |
| 355 | ieee80211_tx_h_unicast_ps_buf(struct ieee80211_txrx_data *tx) |
| 356 | { |
| 357 | struct sta_info *sta = tx->sta; |
| 358 | |
| 359 | if (unlikely(!sta || |
| 360 | ((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && |
| 361 | (tx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP))) |
| 362 | return TXRX_CONTINUE; |
| 363 | |
| 364 | if (unlikely((sta->flags & WLAN_STA_PS) && !sta->pspoll)) { |
| 365 | struct ieee80211_tx_packet_data *pkt_data; |
| 366 | #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| 367 | printk(KERN_DEBUG "STA " MAC_FMT " aid %d: PS buffer (entries " |
| 368 | "before %d)\n", |
| 369 | MAC_ARG(sta->addr), sta->aid, |
| 370 | skb_queue_len(&sta->ps_tx_buf)); |
| 371 | #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ |
| 372 | sta->flags |= WLAN_STA_TIM; |
| 373 | if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) |
| 374 | purge_old_ps_buffers(tx->local); |
| 375 | if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) { |
| 376 | struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf); |
| 377 | if (net_ratelimit()) { |
| 378 | printk(KERN_DEBUG "%s: STA " MAC_FMT " TX " |
| 379 | "buffer full - dropping oldest frame\n", |
| 380 | tx->dev->name, MAC_ARG(sta->addr)); |
| 381 | } |
| 382 | dev_kfree_skb(old); |
| 383 | } else |
| 384 | tx->local->total_ps_buffered++; |
| 385 | /* Queue frame to be sent after STA sends an PS Poll frame */ |
| 386 | if (skb_queue_empty(&sta->ps_tx_buf)) { |
| 387 | if (tx->local->ops->set_tim) |
| 388 | tx->local->ops->set_tim(local_to_hw(tx->local), |
| 389 | sta->aid, 1); |
| 390 | if (tx->sdata->bss) |
| 391 | bss_tim_set(tx->local, tx->sdata->bss, sta->aid); |
| 392 | } |
| 393 | pkt_data = (struct ieee80211_tx_packet_data *)tx->skb->cb; |
| 394 | pkt_data->jiffies = jiffies; |
| 395 | skb_queue_tail(&sta->ps_tx_buf, tx->skb); |
| 396 | return TXRX_QUEUED; |
| 397 | } |
| 398 | #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| 399 | else if (unlikely(sta->flags & WLAN_STA_PS)) { |
| 400 | printk(KERN_DEBUG "%s: STA " MAC_FMT " in PS mode, but pspoll " |
| 401 | "set -> send frame\n", tx->dev->name, |
| 402 | MAC_ARG(sta->addr)); |
| 403 | } |
| 404 | #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ |
| 405 | sta->pspoll = 0; |
| 406 | |
| 407 | return TXRX_CONTINUE; |
| 408 | } |
| 409 | |
| 410 | |
| 411 | static ieee80211_txrx_result |
| 412 | ieee80211_tx_h_ps_buf(struct ieee80211_txrx_data *tx) |
| 413 | { |
| 414 | if (unlikely(tx->u.tx.ps_buffered)) |
| 415 | return TXRX_CONTINUE; |
| 416 | |
| 417 | if (tx->u.tx.unicast) |
| 418 | return ieee80211_tx_h_unicast_ps_buf(tx); |
| 419 | else |
| 420 | return ieee80211_tx_h_multicast_ps_buf(tx); |
| 421 | } |
| 422 | |
| 423 | |
| 424 | |
| 425 | |
| 426 | static ieee80211_txrx_result |
| 427 | ieee80211_tx_h_select_key(struct ieee80211_txrx_data *tx) |
| 428 | { |
| 429 | if (tx->sta) |
| 430 | tx->u.tx.control->key_idx = tx->sta->key_idx_compression; |
| 431 | else |
| 432 | tx->u.tx.control->key_idx = HW_KEY_IDX_INVALID; |
| 433 | |
| 434 | if (unlikely(tx->u.tx.control->flags & IEEE80211_TXCTL_DO_NOT_ENCRYPT)) |
| 435 | tx->key = NULL; |
| 436 | else if (tx->sta && tx->sta->key) |
| 437 | tx->key = tx->sta->key; |
| 438 | else if (tx->sdata->default_key) |
| 439 | tx->key = tx->sdata->default_key; |
| 440 | else if (tx->sdata->drop_unencrypted && |
| 441 | !(tx->sdata->eapol && ieee80211_is_eapol(tx->skb))) { |
| 442 | I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted); |
| 443 | return TXRX_DROP; |
| 444 | } else |
| 445 | tx->key = NULL; |
| 446 | |
| 447 | if (tx->key) { |
| 448 | tx->key->tx_rx_count++; |
| 449 | if (unlikely(tx->local->key_tx_rx_threshold && |
| 450 | tx->key->tx_rx_count > |
| 451 | tx->local->key_tx_rx_threshold)) { |
| 452 | ieee80211_key_threshold_notify(tx->dev, tx->key, |
| 453 | tx->sta); |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | return TXRX_CONTINUE; |
| 458 | } |
| 459 | |
| 460 | static ieee80211_txrx_result |
| 461 | ieee80211_tx_h_fragment(struct ieee80211_txrx_data *tx) |
| 462 | { |
| 463 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data; |
| 464 | size_t hdrlen, per_fragm, num_fragm, payload_len, left; |
| 465 | struct sk_buff **frags, *first, *frag; |
| 466 | int i; |
| 467 | u16 seq; |
| 468 | u8 *pos; |
| 469 | int frag_threshold = tx->local->fragmentation_threshold; |
| 470 | |
| 471 | if (!tx->fragmented) |
| 472 | return TXRX_CONTINUE; |
| 473 | |
| 474 | first = tx->skb; |
| 475 | |
| 476 | hdrlen = ieee80211_get_hdrlen(tx->fc); |
| 477 | payload_len = first->len - hdrlen; |
| 478 | per_fragm = frag_threshold - hdrlen - FCS_LEN; |
| 479 | num_fragm = (payload_len + per_fragm - 1) / per_fragm; |
| 480 | |
| 481 | frags = kzalloc(num_fragm * sizeof(struct sk_buff *), GFP_ATOMIC); |
| 482 | if (!frags) |
| 483 | goto fail; |
| 484 | |
| 485 | hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); |
| 486 | seq = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ; |
| 487 | pos = first->data + hdrlen + per_fragm; |
| 488 | left = payload_len - per_fragm; |
| 489 | for (i = 0; i < num_fragm - 1; i++) { |
| 490 | struct ieee80211_hdr *fhdr; |
| 491 | size_t copylen; |
| 492 | |
| 493 | if (left <= 0) |
| 494 | goto fail; |
| 495 | |
| 496 | /* reserve enough extra head and tail room for possible |
| 497 | * encryption */ |
| 498 | frag = frags[i] = |
| 499 | dev_alloc_skb(tx->local->tx_headroom + |
| 500 | frag_threshold + |
| 501 | IEEE80211_ENCRYPT_HEADROOM + |
| 502 | IEEE80211_ENCRYPT_TAILROOM); |
| 503 | if (!frag) |
| 504 | goto fail; |
| 505 | /* Make sure that all fragments use the same priority so |
| 506 | * that they end up using the same TX queue */ |
| 507 | frag->priority = first->priority; |
| 508 | skb_reserve(frag, tx->local->tx_headroom + |
| 509 | IEEE80211_ENCRYPT_HEADROOM); |
| 510 | fhdr = (struct ieee80211_hdr *) skb_put(frag, hdrlen); |
| 511 | memcpy(fhdr, first->data, hdrlen); |
| 512 | if (i == num_fragm - 2) |
| 513 | fhdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREFRAGS); |
| 514 | fhdr->seq_ctrl = cpu_to_le16(seq | ((i + 1) & IEEE80211_SCTL_FRAG)); |
| 515 | copylen = left > per_fragm ? per_fragm : left; |
| 516 | memcpy(skb_put(frag, copylen), pos, copylen); |
| 517 | |
| 518 | pos += copylen; |
| 519 | left -= copylen; |
| 520 | } |
| 521 | skb_trim(first, hdrlen + per_fragm); |
| 522 | |
| 523 | tx->u.tx.num_extra_frag = num_fragm - 1; |
| 524 | tx->u.tx.extra_frag = frags; |
| 525 | |
| 526 | return TXRX_CONTINUE; |
| 527 | |
| 528 | fail: |
| 529 | printk(KERN_DEBUG "%s: failed to fragment frame\n", tx->dev->name); |
| 530 | if (frags) { |
| 531 | for (i = 0; i < num_fragm - 1; i++) |
| 532 | if (frags[i]) |
| 533 | dev_kfree_skb(frags[i]); |
| 534 | kfree(frags); |
| 535 | } |
| 536 | I802_DEBUG_INC(tx->local->tx_handlers_drop_fragment); |
| 537 | return TXRX_DROP; |
| 538 | } |
| 539 | |
| 540 | static int wep_encrypt_skb(struct ieee80211_txrx_data *tx, struct sk_buff *skb) |
| 541 | { |
| 542 | if (tx->key->force_sw_encrypt) { |
| 543 | if (ieee80211_wep_encrypt(tx->local, skb, tx->key)) |
| 544 | return -1; |
| 545 | } else { |
| 546 | tx->u.tx.control->key_idx = tx->key->hw_key_idx; |
| 547 | if (tx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) { |
| 548 | if (ieee80211_wep_add_iv(tx->local, skb, tx->key) == |
| 549 | NULL) |
| 550 | return -1; |
| 551 | } |
| 552 | } |
| 553 | return 0; |
| 554 | } |
| 555 | |
| 556 | static ieee80211_txrx_result |
| 557 | ieee80211_tx_h_wep_encrypt(struct ieee80211_txrx_data *tx) |
| 558 | { |
| 559 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data; |
| 560 | u16 fc; |
| 561 | |
| 562 | fc = le16_to_cpu(hdr->frame_control); |
| 563 | |
| 564 | if (!tx->key || tx->key->alg != ALG_WEP || |
| 565 | ((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA && |
| 566 | ((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT || |
| 567 | (fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH))) |
| 568 | return TXRX_CONTINUE; |
| 569 | |
| 570 | tx->u.tx.control->iv_len = WEP_IV_LEN; |
| 571 | tx->u.tx.control->icv_len = WEP_ICV_LEN; |
| 572 | ieee80211_tx_set_iswep(tx); |
| 573 | |
| 574 | if (wep_encrypt_skb(tx, tx->skb) < 0) { |
| 575 | I802_DEBUG_INC(tx->local->tx_handlers_drop_wep); |
| 576 | return TXRX_DROP; |
| 577 | } |
| 578 | |
| 579 | if (tx->u.tx.extra_frag) { |
| 580 | int i; |
| 581 | for (i = 0; i < tx->u.tx.num_extra_frag; i++) { |
| 582 | if (wep_encrypt_skb(tx, tx->u.tx.extra_frag[i]) < 0) { |
| 583 | I802_DEBUG_INC(tx->local-> |
| 584 | tx_handlers_drop_wep); |
| 585 | return TXRX_DROP; |
| 586 | } |
| 587 | } |
| 588 | } |
| 589 | |
| 590 | return TXRX_CONTINUE; |
| 591 | } |
| 592 | |
| 593 | static ieee80211_txrx_result |
| 594 | ieee80211_tx_h_rate_ctrl(struct ieee80211_txrx_data *tx) |
| 595 | { |
| 596 | struct rate_control_extra extra; |
| 597 | |
| 598 | memset(&extra, 0, sizeof(extra)); |
| 599 | extra.mode = tx->u.tx.mode; |
| 600 | extra.mgmt_data = tx->sdata && |
| 601 | tx->sdata->type == IEEE80211_IF_TYPE_MGMT; |
| 602 | extra.ethertype = tx->ethertype; |
| 603 | |
| 604 | tx->u.tx.rate = rate_control_get_rate(tx->local, tx->dev, tx->skb, |
| 605 | &extra); |
| 606 | if (unlikely(extra.probe != NULL)) { |
| 607 | tx->u.tx.control->flags |= IEEE80211_TXCTL_RATE_CTRL_PROBE; |
| 608 | tx->u.tx.probe_last_frag = 1; |
| 609 | tx->u.tx.control->alt_retry_rate = tx->u.tx.rate->val; |
| 610 | tx->u.tx.rate = extra.probe; |
| 611 | } else { |
| 612 | tx->u.tx.control->alt_retry_rate = -1; |
| 613 | } |
| 614 | if (!tx->u.tx.rate) |
| 615 | return TXRX_DROP; |
| 616 | if (tx->u.tx.mode->mode == MODE_IEEE80211G && |
| 617 | tx->sdata->use_protection && tx->fragmented && |
| 618 | extra.nonerp) { |
| 619 | tx->u.tx.last_frag_rate = tx->u.tx.rate; |
| 620 | tx->u.tx.probe_last_frag = extra.probe ? 1 : 0; |
| 621 | |
| 622 | tx->u.tx.rate = extra.nonerp; |
| 623 | tx->u.tx.control->rate = extra.nonerp; |
| 624 | tx->u.tx.control->flags &= ~IEEE80211_TXCTL_RATE_CTRL_PROBE; |
| 625 | } else { |
| 626 | tx->u.tx.last_frag_rate = tx->u.tx.rate; |
| 627 | tx->u.tx.control->rate = tx->u.tx.rate; |
| 628 | } |
| 629 | tx->u.tx.control->tx_rate = tx->u.tx.rate->val; |
| 630 | if ((tx->u.tx.rate->flags & IEEE80211_RATE_PREAMBLE2) && |
| 631 | tx->local->short_preamble && |
| 632 | (!tx->sta || (tx->sta->flags & WLAN_STA_SHORT_PREAMBLE))) { |
| 633 | tx->u.tx.short_preamble = 1; |
| 634 | tx->u.tx.control->tx_rate = tx->u.tx.rate->val2; |
| 635 | } |
| 636 | |
| 637 | return TXRX_CONTINUE; |
| 638 | } |
| 639 | |
| 640 | static ieee80211_txrx_result |
| 641 | ieee80211_tx_h_misc(struct ieee80211_txrx_data *tx) |
| 642 | { |
| 643 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data; |
| 644 | u16 dur; |
| 645 | struct ieee80211_tx_control *control = tx->u.tx.control; |
| 646 | struct ieee80211_hw_mode *mode = tx->u.tx.mode; |
| 647 | |
| 648 | if (!is_multicast_ether_addr(hdr->addr1)) { |
| 649 | if (tx->skb->len + FCS_LEN > tx->local->rts_threshold && |
| 650 | tx->local->rts_threshold < IEEE80211_MAX_RTS_THRESHOLD) { |
| 651 | control->flags |= IEEE80211_TXCTL_USE_RTS_CTS; |
Ivo van Doorn | d5d08de | 2007-07-27 15:43:23 +0200 | [diff] [blame^] | 652 | control->flags |= IEEE80211_TXCTL_LONG_RETRY_LIMIT; |
Johannes Berg | e2ebc74 | 2007-07-27 15:43:22 +0200 | [diff] [blame] | 653 | control->retry_limit = |
| 654 | tx->local->long_retry_limit; |
| 655 | } else { |
| 656 | control->retry_limit = |
| 657 | tx->local->short_retry_limit; |
| 658 | } |
| 659 | } else { |
| 660 | control->retry_limit = 1; |
| 661 | } |
| 662 | |
| 663 | if (tx->fragmented) { |
| 664 | /* Do not use multiple retry rates when sending fragmented |
| 665 | * frames. |
| 666 | * TODO: The last fragment could still use multiple retry |
| 667 | * rates. */ |
| 668 | control->alt_retry_rate = -1; |
| 669 | } |
| 670 | |
| 671 | /* Use CTS protection for unicast frames sent using extended rates if |
| 672 | * there are associated non-ERP stations and RTS/CTS is not configured |
| 673 | * for the frame. */ |
| 674 | if (mode->mode == MODE_IEEE80211G && |
| 675 | (tx->u.tx.rate->flags & IEEE80211_RATE_ERP) && |
| 676 | tx->u.tx.unicast && tx->sdata->use_protection && |
| 677 | !(control->flags & IEEE80211_TXCTL_USE_RTS_CTS)) |
| 678 | control->flags |= IEEE80211_TXCTL_USE_CTS_PROTECT; |
| 679 | |
| 680 | /* Setup duration field for the first fragment of the frame. Duration |
| 681 | * for remaining fragments will be updated when they are being sent |
| 682 | * to low-level driver in ieee80211_tx(). */ |
| 683 | dur = ieee80211_duration(tx, is_multicast_ether_addr(hdr->addr1), |
| 684 | tx->fragmented ? tx->u.tx.extra_frag[0]->len : |
| 685 | 0); |
| 686 | hdr->duration_id = cpu_to_le16(dur); |
| 687 | |
| 688 | if ((control->flags & IEEE80211_TXCTL_USE_RTS_CTS) || |
| 689 | (control->flags & IEEE80211_TXCTL_USE_CTS_PROTECT)) { |
| 690 | struct ieee80211_rate *rate; |
| 691 | |
| 692 | /* Do not use multiple retry rates when using RTS/CTS */ |
| 693 | control->alt_retry_rate = -1; |
| 694 | |
| 695 | /* Use min(data rate, max base rate) as CTS/RTS rate */ |
| 696 | rate = tx->u.tx.rate; |
| 697 | while (rate > mode->rates && |
| 698 | !(rate->flags & IEEE80211_RATE_BASIC)) |
| 699 | rate--; |
| 700 | |
| 701 | control->rts_cts_rate = rate->val; |
| 702 | control->rts_rate = rate; |
| 703 | } |
| 704 | |
| 705 | if (tx->sta) { |
| 706 | tx->sta->tx_packets++; |
| 707 | tx->sta->tx_fragments++; |
| 708 | tx->sta->tx_bytes += tx->skb->len; |
| 709 | if (tx->u.tx.extra_frag) { |
| 710 | int i; |
| 711 | tx->sta->tx_fragments += tx->u.tx.num_extra_frag; |
| 712 | for (i = 0; i < tx->u.tx.num_extra_frag; i++) { |
| 713 | tx->sta->tx_bytes += |
| 714 | tx->u.tx.extra_frag[i]->len; |
| 715 | } |
| 716 | } |
| 717 | } |
| 718 | |
| 719 | return TXRX_CONTINUE; |
| 720 | } |
| 721 | |
| 722 | static ieee80211_txrx_result |
| 723 | ieee80211_tx_h_load_stats(struct ieee80211_txrx_data *tx) |
| 724 | { |
| 725 | struct ieee80211_local *local = tx->local; |
| 726 | struct ieee80211_hw_mode *mode = tx->u.tx.mode; |
| 727 | struct sk_buff *skb = tx->skb; |
| 728 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| 729 | u32 load = 0, hdrtime; |
| 730 | |
| 731 | /* TODO: this could be part of tx_status handling, so that the number |
| 732 | * of retries would be known; TX rate should in that case be stored |
| 733 | * somewhere with the packet */ |
| 734 | |
| 735 | /* Estimate total channel use caused by this frame */ |
| 736 | |
| 737 | /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values, |
| 738 | * 1 usec = 1/8 * (1080 / 10) = 13.5 */ |
| 739 | |
| 740 | if (mode->mode == MODE_IEEE80211A || |
| 741 | mode->mode == MODE_ATHEROS_TURBO || |
| 742 | mode->mode == MODE_ATHEROS_TURBOG || |
| 743 | (mode->mode == MODE_IEEE80211G && |
| 744 | tx->u.tx.rate->flags & IEEE80211_RATE_ERP)) |
| 745 | hdrtime = CHAN_UTIL_HDR_SHORT; |
| 746 | else |
| 747 | hdrtime = CHAN_UTIL_HDR_LONG; |
| 748 | |
| 749 | load = hdrtime; |
| 750 | if (!is_multicast_ether_addr(hdr->addr1)) |
| 751 | load += hdrtime; |
| 752 | |
| 753 | if (tx->u.tx.control->flags & IEEE80211_TXCTL_USE_RTS_CTS) |
| 754 | load += 2 * hdrtime; |
| 755 | else if (tx->u.tx.control->flags & IEEE80211_TXCTL_USE_CTS_PROTECT) |
| 756 | load += hdrtime; |
| 757 | |
| 758 | load += skb->len * tx->u.tx.rate->rate_inv; |
| 759 | |
| 760 | if (tx->u.tx.extra_frag) { |
| 761 | int i; |
| 762 | for (i = 0; i < tx->u.tx.num_extra_frag; i++) { |
| 763 | load += 2 * hdrtime; |
| 764 | load += tx->u.tx.extra_frag[i]->len * |
| 765 | tx->u.tx.rate->rate; |
| 766 | } |
| 767 | } |
| 768 | |
| 769 | /* Divide channel_use by 8 to avoid wrapping around the counter */ |
| 770 | load >>= CHAN_UTIL_SHIFT; |
| 771 | local->channel_use_raw += load; |
| 772 | if (tx->sta) |
| 773 | tx->sta->channel_use_raw += load; |
| 774 | tx->sdata->channel_use_raw += load; |
| 775 | |
| 776 | return TXRX_CONTINUE; |
| 777 | } |
| 778 | |
| 779 | /* TODO: implement register/unregister functions for adding TX/RX handlers |
| 780 | * into ordered list */ |
| 781 | |
| 782 | ieee80211_tx_handler ieee80211_tx_handlers[] = |
| 783 | { |
| 784 | ieee80211_tx_h_check_assoc, |
| 785 | ieee80211_tx_h_sequence, |
| 786 | ieee80211_tx_h_ps_buf, |
| 787 | ieee80211_tx_h_select_key, |
| 788 | ieee80211_tx_h_michael_mic_add, |
| 789 | ieee80211_tx_h_fragment, |
| 790 | ieee80211_tx_h_tkip_encrypt, |
| 791 | ieee80211_tx_h_ccmp_encrypt, |
| 792 | ieee80211_tx_h_wep_encrypt, |
| 793 | ieee80211_tx_h_rate_ctrl, |
| 794 | ieee80211_tx_h_misc, |
| 795 | ieee80211_tx_h_load_stats, |
| 796 | NULL |
| 797 | }; |
| 798 | |
| 799 | /* actual transmit path */ |
| 800 | |
| 801 | /* |
| 802 | * deal with packet injection down monitor interface |
| 803 | * with Radiotap Header -- only called for monitor mode interface |
| 804 | */ |
| 805 | static ieee80211_txrx_result |
| 806 | __ieee80211_parse_tx_radiotap( |
| 807 | struct ieee80211_txrx_data *tx, |
| 808 | struct sk_buff *skb, struct ieee80211_tx_control *control) |
| 809 | { |
| 810 | /* |
| 811 | * this is the moment to interpret and discard the radiotap header that |
| 812 | * must be at the start of the packet injected in Monitor mode |
| 813 | * |
| 814 | * Need to take some care with endian-ness since radiotap |
| 815 | * args are little-endian |
| 816 | */ |
| 817 | |
| 818 | struct ieee80211_radiotap_iterator iterator; |
| 819 | struct ieee80211_radiotap_header *rthdr = |
| 820 | (struct ieee80211_radiotap_header *) skb->data; |
| 821 | struct ieee80211_hw_mode *mode = tx->local->hw.conf.mode; |
| 822 | int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len); |
| 823 | |
| 824 | /* |
| 825 | * default control situation for all injected packets |
| 826 | * FIXME: this does not suit all usage cases, expand to allow control |
| 827 | */ |
| 828 | |
| 829 | control->retry_limit = 1; /* no retry */ |
| 830 | control->key_idx = -1; /* no encryption key */ |
| 831 | control->flags &= ~(IEEE80211_TXCTL_USE_RTS_CTS | |
| 832 | IEEE80211_TXCTL_USE_CTS_PROTECT); |
| 833 | control->flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT | |
| 834 | IEEE80211_TXCTL_NO_ACK; |
| 835 | control->antenna_sel_tx = 0; /* default to default antenna */ |
| 836 | |
| 837 | /* |
| 838 | * for every radiotap entry that is present |
| 839 | * (ieee80211_radiotap_iterator_next returns -ENOENT when no more |
| 840 | * entries present, or -EINVAL on error) |
| 841 | */ |
| 842 | |
| 843 | while (!ret) { |
| 844 | int i, target_rate; |
| 845 | |
| 846 | ret = ieee80211_radiotap_iterator_next(&iterator); |
| 847 | |
| 848 | if (ret) |
| 849 | continue; |
| 850 | |
| 851 | /* see if this argument is something we can use */ |
| 852 | switch (iterator.this_arg_index) { |
| 853 | /* |
| 854 | * You must take care when dereferencing iterator.this_arg |
| 855 | * for multibyte types... the pointer is not aligned. Use |
| 856 | * get_unaligned((type *)iterator.this_arg) to dereference |
| 857 | * iterator.this_arg for type "type" safely on all arches. |
| 858 | */ |
| 859 | case IEEE80211_RADIOTAP_RATE: |
| 860 | /* |
| 861 | * radiotap rate u8 is in 500kbps units eg, 0x02=1Mbps |
| 862 | * ieee80211 rate int is in 100kbps units eg, 0x0a=1Mbps |
| 863 | */ |
| 864 | target_rate = (*iterator.this_arg) * 5; |
| 865 | for (i = 0; i < mode->num_rates; i++) { |
| 866 | struct ieee80211_rate *r = &mode->rates[i]; |
| 867 | |
| 868 | if (r->rate > target_rate) |
| 869 | continue; |
| 870 | |
| 871 | control->rate = r; |
| 872 | |
| 873 | if (r->flags & IEEE80211_RATE_PREAMBLE2) |
| 874 | control->tx_rate = r->val2; |
| 875 | else |
| 876 | control->tx_rate = r->val; |
| 877 | |
| 878 | /* end on exact match */ |
| 879 | if (r->rate == target_rate) |
| 880 | i = mode->num_rates; |
| 881 | } |
| 882 | break; |
| 883 | |
| 884 | case IEEE80211_RADIOTAP_ANTENNA: |
| 885 | /* |
| 886 | * radiotap uses 0 for 1st ant, mac80211 is 1 for |
| 887 | * 1st ant |
| 888 | */ |
| 889 | control->antenna_sel_tx = (*iterator.this_arg) + 1; |
| 890 | break; |
| 891 | |
| 892 | case IEEE80211_RADIOTAP_DBM_TX_POWER: |
| 893 | control->power_level = *iterator.this_arg; |
| 894 | break; |
| 895 | |
| 896 | case IEEE80211_RADIOTAP_FLAGS: |
| 897 | if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) { |
| 898 | /* |
| 899 | * this indicates that the skb we have been |
| 900 | * handed has the 32-bit FCS CRC at the end... |
| 901 | * we should react to that by snipping it off |
| 902 | * because it will be recomputed and added |
| 903 | * on transmission |
| 904 | */ |
| 905 | if (skb->len < (iterator.max_length + FCS_LEN)) |
| 906 | return TXRX_DROP; |
| 907 | |
| 908 | skb_trim(skb, skb->len - FCS_LEN); |
| 909 | } |
| 910 | break; |
| 911 | |
| 912 | default: |
| 913 | break; |
| 914 | } |
| 915 | } |
| 916 | |
| 917 | if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */ |
| 918 | return TXRX_DROP; |
| 919 | |
| 920 | /* |
| 921 | * remove the radiotap header |
| 922 | * iterator->max_length was sanity-checked against |
| 923 | * skb->len by iterator init |
| 924 | */ |
| 925 | skb_pull(skb, iterator.max_length); |
| 926 | |
| 927 | return TXRX_CONTINUE; |
| 928 | } |
| 929 | |
| 930 | static ieee80211_txrx_result inline |
| 931 | __ieee80211_tx_prepare(struct ieee80211_txrx_data *tx, |
| 932 | struct sk_buff *skb, |
| 933 | struct net_device *dev, |
| 934 | struct ieee80211_tx_control *control) |
| 935 | { |
| 936 | struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| 937 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| 938 | struct ieee80211_sub_if_data *sdata; |
| 939 | ieee80211_txrx_result res = TXRX_CONTINUE; |
| 940 | |
| 941 | int hdrlen; |
| 942 | |
| 943 | memset(tx, 0, sizeof(*tx)); |
| 944 | tx->skb = skb; |
| 945 | tx->dev = dev; /* use original interface */ |
| 946 | tx->local = local; |
| 947 | tx->sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| 948 | tx->sta = sta_info_get(local, hdr->addr1); |
| 949 | tx->fc = le16_to_cpu(hdr->frame_control); |
| 950 | |
| 951 | /* |
| 952 | * set defaults for things that can be set by |
| 953 | * injected radiotap headers |
| 954 | */ |
| 955 | control->power_level = local->hw.conf.power_level; |
| 956 | control->antenna_sel_tx = local->hw.conf.antenna_sel_tx; |
| 957 | if (local->sta_antenna_sel != STA_ANTENNA_SEL_AUTO && tx->sta) |
| 958 | control->antenna_sel_tx = tx->sta->antenna_sel_tx; |
| 959 | |
| 960 | /* process and remove the injection radiotap header */ |
| 961 | sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| 962 | if (unlikely(sdata->type == IEEE80211_IF_TYPE_MNTR)) { |
| 963 | if (__ieee80211_parse_tx_radiotap(tx, skb, control) == |
| 964 | TXRX_DROP) { |
| 965 | return TXRX_DROP; |
| 966 | } |
| 967 | /* |
| 968 | * we removed the radiotap header after this point, |
| 969 | * we filled control with what we could use |
| 970 | * set to the actual ieee header now |
| 971 | */ |
| 972 | hdr = (struct ieee80211_hdr *) skb->data; |
| 973 | res = TXRX_QUEUED; /* indication it was monitor packet */ |
| 974 | } |
| 975 | |
| 976 | tx->u.tx.control = control; |
| 977 | tx->u.tx.unicast = !is_multicast_ether_addr(hdr->addr1); |
| 978 | if (is_multicast_ether_addr(hdr->addr1)) |
| 979 | control->flags |= IEEE80211_TXCTL_NO_ACK; |
| 980 | else |
| 981 | control->flags &= ~IEEE80211_TXCTL_NO_ACK; |
| 982 | tx->fragmented = local->fragmentation_threshold < |
| 983 | IEEE80211_MAX_FRAG_THRESHOLD && tx->u.tx.unicast && |
| 984 | skb->len + FCS_LEN > local->fragmentation_threshold && |
| 985 | (!local->ops->set_frag_threshold); |
| 986 | if (!tx->sta) |
| 987 | control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK; |
| 988 | else if (tx->sta->clear_dst_mask) { |
| 989 | control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK; |
| 990 | tx->sta->clear_dst_mask = 0; |
| 991 | } |
| 992 | hdrlen = ieee80211_get_hdrlen(tx->fc); |
| 993 | if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) { |
| 994 | u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)]; |
| 995 | tx->ethertype = (pos[0] << 8) | pos[1]; |
| 996 | } |
| 997 | control->flags |= IEEE80211_TXCTL_FIRST_FRAGMENT; |
| 998 | |
| 999 | return res; |
| 1000 | } |
| 1001 | |
| 1002 | /* Device in tx->dev has a reference added; use dev_put(tx->dev) when |
| 1003 | * finished with it. */ |
| 1004 | static int inline ieee80211_tx_prepare(struct ieee80211_txrx_data *tx, |
| 1005 | struct sk_buff *skb, |
| 1006 | struct net_device *mdev, |
| 1007 | struct ieee80211_tx_control *control) |
| 1008 | { |
| 1009 | struct ieee80211_tx_packet_data *pkt_data; |
| 1010 | struct net_device *dev; |
| 1011 | |
| 1012 | pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; |
| 1013 | dev = dev_get_by_index(pkt_data->ifindex); |
| 1014 | if (unlikely(dev && !is_ieee80211_device(dev, mdev))) { |
| 1015 | dev_put(dev); |
| 1016 | dev = NULL; |
| 1017 | } |
| 1018 | if (unlikely(!dev)) |
| 1019 | return -ENODEV; |
| 1020 | __ieee80211_tx_prepare(tx, skb, dev, control); |
| 1021 | return 0; |
| 1022 | } |
| 1023 | |
| 1024 | static int __ieee80211_tx(struct ieee80211_local *local, struct sk_buff *skb, |
| 1025 | struct ieee80211_txrx_data *tx) |
| 1026 | { |
| 1027 | struct ieee80211_tx_control *control = tx->u.tx.control; |
| 1028 | int ret, i; |
| 1029 | |
| 1030 | if (!ieee80211_qdisc_installed(local->mdev) && |
| 1031 | __ieee80211_queue_stopped(local, 0)) { |
| 1032 | netif_stop_queue(local->mdev); |
| 1033 | return IEEE80211_TX_AGAIN; |
| 1034 | } |
| 1035 | if (skb) { |
| 1036 | ieee80211_dump_frame(local->mdev->name, "TX to low-level driver", skb); |
| 1037 | ret = local->ops->tx(local_to_hw(local), skb, control); |
| 1038 | if (ret) |
| 1039 | return IEEE80211_TX_AGAIN; |
| 1040 | local->mdev->trans_start = jiffies; |
| 1041 | ieee80211_led_tx(local, 1); |
| 1042 | } |
| 1043 | if (tx->u.tx.extra_frag) { |
| 1044 | control->flags &= ~(IEEE80211_TXCTL_USE_RTS_CTS | |
| 1045 | IEEE80211_TXCTL_USE_CTS_PROTECT | |
| 1046 | IEEE80211_TXCTL_CLEAR_DST_MASK | |
| 1047 | IEEE80211_TXCTL_FIRST_FRAGMENT); |
| 1048 | for (i = 0; i < tx->u.tx.num_extra_frag; i++) { |
| 1049 | if (!tx->u.tx.extra_frag[i]) |
| 1050 | continue; |
| 1051 | if (__ieee80211_queue_stopped(local, control->queue)) |
| 1052 | return IEEE80211_TX_FRAG_AGAIN; |
| 1053 | if (i == tx->u.tx.num_extra_frag) { |
| 1054 | control->tx_rate = tx->u.tx.last_frag_hwrate; |
| 1055 | control->rate = tx->u.tx.last_frag_rate; |
| 1056 | if (tx->u.tx.probe_last_frag) |
| 1057 | control->flags |= |
| 1058 | IEEE80211_TXCTL_RATE_CTRL_PROBE; |
| 1059 | else |
| 1060 | control->flags &= |
| 1061 | ~IEEE80211_TXCTL_RATE_CTRL_PROBE; |
| 1062 | } |
| 1063 | |
| 1064 | ieee80211_dump_frame(local->mdev->name, |
| 1065 | "TX to low-level driver", |
| 1066 | tx->u.tx.extra_frag[i]); |
| 1067 | ret = local->ops->tx(local_to_hw(local), |
| 1068 | tx->u.tx.extra_frag[i], |
| 1069 | control); |
| 1070 | if (ret) |
| 1071 | return IEEE80211_TX_FRAG_AGAIN; |
| 1072 | local->mdev->trans_start = jiffies; |
| 1073 | ieee80211_led_tx(local, 1); |
| 1074 | tx->u.tx.extra_frag[i] = NULL; |
| 1075 | } |
| 1076 | kfree(tx->u.tx.extra_frag); |
| 1077 | tx->u.tx.extra_frag = NULL; |
| 1078 | } |
| 1079 | return IEEE80211_TX_OK; |
| 1080 | } |
| 1081 | |
| 1082 | static int ieee80211_tx(struct net_device *dev, struct sk_buff *skb, |
| 1083 | struct ieee80211_tx_control *control, int mgmt) |
| 1084 | { |
| 1085 | struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| 1086 | struct sta_info *sta; |
| 1087 | ieee80211_tx_handler *handler; |
| 1088 | struct ieee80211_txrx_data tx; |
| 1089 | ieee80211_txrx_result res = TXRX_DROP, res_prepare; |
| 1090 | int ret, i; |
| 1091 | |
| 1092 | WARN_ON(__ieee80211_queue_pending(local, control->queue)); |
| 1093 | |
| 1094 | if (unlikely(skb->len < 10)) { |
| 1095 | dev_kfree_skb(skb); |
| 1096 | return 0; |
| 1097 | } |
| 1098 | |
| 1099 | res_prepare = __ieee80211_tx_prepare(&tx, skb, dev, control); |
| 1100 | |
| 1101 | if (res_prepare == TXRX_DROP) { |
| 1102 | dev_kfree_skb(skb); |
| 1103 | return 0; |
| 1104 | } |
| 1105 | |
| 1106 | sta = tx.sta; |
| 1107 | tx.u.tx.mgmt_interface = mgmt; |
| 1108 | tx.u.tx.mode = local->hw.conf.mode; |
| 1109 | |
| 1110 | if (res_prepare == TXRX_QUEUED) { /* if it was an injected packet */ |
| 1111 | res = TXRX_CONTINUE; |
| 1112 | } else { |
| 1113 | for (handler = local->tx_handlers; *handler != NULL; |
| 1114 | handler++) { |
| 1115 | res = (*handler)(&tx); |
| 1116 | if (res != TXRX_CONTINUE) |
| 1117 | break; |
| 1118 | } |
| 1119 | } |
| 1120 | |
| 1121 | skb = tx.skb; /* handlers are allowed to change skb */ |
| 1122 | |
| 1123 | if (sta) |
| 1124 | sta_info_put(sta); |
| 1125 | |
| 1126 | if (unlikely(res == TXRX_DROP)) { |
| 1127 | I802_DEBUG_INC(local->tx_handlers_drop); |
| 1128 | goto drop; |
| 1129 | } |
| 1130 | |
| 1131 | if (unlikely(res == TXRX_QUEUED)) { |
| 1132 | I802_DEBUG_INC(local->tx_handlers_queued); |
| 1133 | return 0; |
| 1134 | } |
| 1135 | |
| 1136 | if (tx.u.tx.extra_frag) { |
| 1137 | for (i = 0; i < tx.u.tx.num_extra_frag; i++) { |
| 1138 | int next_len, dur; |
| 1139 | struct ieee80211_hdr *hdr = |
| 1140 | (struct ieee80211_hdr *) |
| 1141 | tx.u.tx.extra_frag[i]->data; |
| 1142 | |
| 1143 | if (i + 1 < tx.u.tx.num_extra_frag) { |
| 1144 | next_len = tx.u.tx.extra_frag[i + 1]->len; |
| 1145 | } else { |
| 1146 | next_len = 0; |
| 1147 | tx.u.tx.rate = tx.u.tx.last_frag_rate; |
| 1148 | tx.u.tx.last_frag_hwrate = tx.u.tx.rate->val; |
| 1149 | } |
| 1150 | dur = ieee80211_duration(&tx, 0, next_len); |
| 1151 | hdr->duration_id = cpu_to_le16(dur); |
| 1152 | } |
| 1153 | } |
| 1154 | |
| 1155 | retry: |
| 1156 | ret = __ieee80211_tx(local, skb, &tx); |
| 1157 | if (ret) { |
| 1158 | struct ieee80211_tx_stored_packet *store = |
| 1159 | &local->pending_packet[control->queue]; |
| 1160 | |
| 1161 | if (ret == IEEE80211_TX_FRAG_AGAIN) |
| 1162 | skb = NULL; |
| 1163 | set_bit(IEEE80211_LINK_STATE_PENDING, |
| 1164 | &local->state[control->queue]); |
| 1165 | smp_mb(); |
| 1166 | /* When the driver gets out of buffers during sending of |
| 1167 | * fragments and calls ieee80211_stop_queue, there is |
| 1168 | * a small window between IEEE80211_LINK_STATE_XOFF and |
| 1169 | * IEEE80211_LINK_STATE_PENDING flags are set. If a buffer |
| 1170 | * gets available in that window (i.e. driver calls |
| 1171 | * ieee80211_wake_queue), we would end up with ieee80211_tx |
| 1172 | * called with IEEE80211_LINK_STATE_PENDING. Prevent this by |
| 1173 | * continuing transmitting here when that situation is |
| 1174 | * possible to have happened. */ |
| 1175 | if (!__ieee80211_queue_stopped(local, control->queue)) { |
| 1176 | clear_bit(IEEE80211_LINK_STATE_PENDING, |
| 1177 | &local->state[control->queue]); |
| 1178 | goto retry; |
| 1179 | } |
| 1180 | memcpy(&store->control, control, |
| 1181 | sizeof(struct ieee80211_tx_control)); |
| 1182 | store->skb = skb; |
| 1183 | store->extra_frag = tx.u.tx.extra_frag; |
| 1184 | store->num_extra_frag = tx.u.tx.num_extra_frag; |
| 1185 | store->last_frag_hwrate = tx.u.tx.last_frag_hwrate; |
| 1186 | store->last_frag_rate = tx.u.tx.last_frag_rate; |
| 1187 | store->last_frag_rate_ctrl_probe = tx.u.tx.probe_last_frag; |
| 1188 | } |
| 1189 | return 0; |
| 1190 | |
| 1191 | drop: |
| 1192 | if (skb) |
| 1193 | dev_kfree_skb(skb); |
| 1194 | for (i = 0; i < tx.u.tx.num_extra_frag; i++) |
| 1195 | if (tx.u.tx.extra_frag[i]) |
| 1196 | dev_kfree_skb(tx.u.tx.extra_frag[i]); |
| 1197 | kfree(tx.u.tx.extra_frag); |
| 1198 | return 0; |
| 1199 | } |
| 1200 | |
| 1201 | /* device xmit handlers */ |
| 1202 | |
| 1203 | int ieee80211_master_start_xmit(struct sk_buff *skb, |
| 1204 | struct net_device *dev) |
| 1205 | { |
| 1206 | struct ieee80211_tx_control control; |
| 1207 | struct ieee80211_tx_packet_data *pkt_data; |
| 1208 | struct net_device *odev = NULL; |
| 1209 | struct ieee80211_sub_if_data *osdata; |
| 1210 | int headroom; |
| 1211 | int ret; |
| 1212 | |
| 1213 | /* |
| 1214 | * copy control out of the skb so other people can use skb->cb |
| 1215 | */ |
| 1216 | pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; |
| 1217 | memset(&control, 0, sizeof(struct ieee80211_tx_control)); |
| 1218 | |
| 1219 | if (pkt_data->ifindex) |
| 1220 | odev = dev_get_by_index(pkt_data->ifindex); |
| 1221 | if (unlikely(odev && !is_ieee80211_device(odev, dev))) { |
| 1222 | dev_put(odev); |
| 1223 | odev = NULL; |
| 1224 | } |
| 1225 | if (unlikely(!odev)) { |
| 1226 | #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| 1227 | printk(KERN_DEBUG "%s: Discarded packet with nonexistent " |
| 1228 | "originating device\n", dev->name); |
| 1229 | #endif |
| 1230 | dev_kfree_skb(skb); |
| 1231 | return 0; |
| 1232 | } |
| 1233 | osdata = IEEE80211_DEV_TO_SUB_IF(odev); |
| 1234 | |
| 1235 | headroom = osdata->local->tx_headroom + IEEE80211_ENCRYPT_HEADROOM; |
| 1236 | if (skb_headroom(skb) < headroom) { |
| 1237 | if (pskb_expand_head(skb, headroom, 0, GFP_ATOMIC)) { |
| 1238 | dev_kfree_skb(skb); |
| 1239 | dev_put(odev); |
| 1240 | return 0; |
| 1241 | } |
| 1242 | } |
| 1243 | |
| 1244 | control.ifindex = odev->ifindex; |
| 1245 | control.type = osdata->type; |
| 1246 | if (pkt_data->req_tx_status) |
| 1247 | control.flags |= IEEE80211_TXCTL_REQ_TX_STATUS; |
| 1248 | if (pkt_data->do_not_encrypt) |
| 1249 | control.flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT; |
| 1250 | if (pkt_data->requeue) |
| 1251 | control.flags |= IEEE80211_TXCTL_REQUEUE; |
| 1252 | control.queue = pkt_data->queue; |
| 1253 | |
| 1254 | ret = ieee80211_tx(odev, skb, &control, |
| 1255 | control.type == IEEE80211_IF_TYPE_MGMT); |
| 1256 | dev_put(odev); |
| 1257 | |
| 1258 | return ret; |
| 1259 | } |
| 1260 | |
| 1261 | int ieee80211_monitor_start_xmit(struct sk_buff *skb, |
| 1262 | struct net_device *dev) |
| 1263 | { |
| 1264 | struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| 1265 | struct ieee80211_tx_packet_data *pkt_data; |
| 1266 | struct ieee80211_radiotap_header *prthdr = |
| 1267 | (struct ieee80211_radiotap_header *)skb->data; |
| 1268 | u16 len; |
| 1269 | |
| 1270 | /* |
| 1271 | * there must be a radiotap header at the |
| 1272 | * start in this case |
| 1273 | */ |
| 1274 | if (unlikely(prthdr->it_version)) { |
| 1275 | /* only version 0 is supported */ |
| 1276 | dev_kfree_skb(skb); |
| 1277 | return NETDEV_TX_OK; |
| 1278 | } |
| 1279 | |
| 1280 | skb->dev = local->mdev; |
| 1281 | |
| 1282 | pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; |
| 1283 | memset(pkt_data, 0, sizeof(*pkt_data)); |
| 1284 | pkt_data->ifindex = dev->ifindex; |
| 1285 | pkt_data->mgmt_iface = 0; |
| 1286 | pkt_data->do_not_encrypt = 1; |
| 1287 | |
| 1288 | /* above needed because we set skb device to master */ |
| 1289 | |
| 1290 | /* |
| 1291 | * fix up the pointers accounting for the radiotap |
| 1292 | * header still being in there. We are being given |
| 1293 | * a precooked IEEE80211 header so no need for |
| 1294 | * normal processing |
| 1295 | */ |
| 1296 | len = le16_to_cpu(get_unaligned(&prthdr->it_len)); |
| 1297 | skb_set_mac_header(skb, len); |
| 1298 | skb_set_network_header(skb, len + sizeof(struct ieee80211_hdr)); |
| 1299 | skb_set_transport_header(skb, len + sizeof(struct ieee80211_hdr)); |
| 1300 | |
| 1301 | /* |
| 1302 | * pass the radiotap header up to |
| 1303 | * the next stage intact |
| 1304 | */ |
| 1305 | dev_queue_xmit(skb); |
| 1306 | |
| 1307 | return NETDEV_TX_OK; |
| 1308 | } |
| 1309 | |
| 1310 | /** |
| 1311 | * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type |
| 1312 | * subinterfaces (wlan#, WDS, and VLAN interfaces) |
| 1313 | * @skb: packet to be sent |
| 1314 | * @dev: incoming interface |
| 1315 | * |
| 1316 | * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will |
| 1317 | * not be freed, and caller is responsible for either retrying later or freeing |
| 1318 | * skb). |
| 1319 | * |
| 1320 | * This function takes in an Ethernet header and encapsulates it with suitable |
| 1321 | * IEEE 802.11 header based on which interface the packet is coming in. The |
| 1322 | * encapsulated packet will then be passed to master interface, wlan#.11, for |
| 1323 | * transmission (through low-level driver). |
| 1324 | */ |
| 1325 | int ieee80211_subif_start_xmit(struct sk_buff *skb, |
| 1326 | struct net_device *dev) |
| 1327 | { |
| 1328 | struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| 1329 | struct ieee80211_tx_packet_data *pkt_data; |
| 1330 | struct ieee80211_sub_if_data *sdata; |
| 1331 | int ret = 1, head_need; |
| 1332 | u16 ethertype, hdrlen, fc; |
| 1333 | struct ieee80211_hdr hdr; |
| 1334 | const u8 *encaps_data; |
| 1335 | int encaps_len, skip_header_bytes; |
| 1336 | int nh_pos, h_pos, no_encrypt = 0; |
| 1337 | struct sta_info *sta; |
| 1338 | |
| 1339 | sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| 1340 | if (unlikely(skb->len < ETH_HLEN)) { |
| 1341 | printk(KERN_DEBUG "%s: short skb (len=%d)\n", |
| 1342 | dev->name, skb->len); |
| 1343 | ret = 0; |
| 1344 | goto fail; |
| 1345 | } |
| 1346 | |
| 1347 | nh_pos = skb_network_header(skb) - skb->data; |
| 1348 | h_pos = skb_transport_header(skb) - skb->data; |
| 1349 | |
| 1350 | /* convert Ethernet header to proper 802.11 header (based on |
| 1351 | * operation mode) */ |
| 1352 | ethertype = (skb->data[12] << 8) | skb->data[13]; |
| 1353 | /* TODO: handling for 802.1x authorized/unauthorized port */ |
| 1354 | fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA; |
| 1355 | |
| 1356 | if (likely(sdata->type == IEEE80211_IF_TYPE_AP || |
| 1357 | sdata->type == IEEE80211_IF_TYPE_VLAN)) { |
| 1358 | fc |= IEEE80211_FCTL_FROMDS; |
| 1359 | /* DA BSSID SA */ |
| 1360 | memcpy(hdr.addr1, skb->data, ETH_ALEN); |
| 1361 | memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); |
| 1362 | memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); |
| 1363 | hdrlen = 24; |
| 1364 | } else if (sdata->type == IEEE80211_IF_TYPE_WDS) { |
| 1365 | fc |= IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS; |
| 1366 | /* RA TA DA SA */ |
| 1367 | memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN); |
| 1368 | memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); |
| 1369 | memcpy(hdr.addr3, skb->data, ETH_ALEN); |
| 1370 | memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); |
| 1371 | hdrlen = 30; |
| 1372 | } else if (sdata->type == IEEE80211_IF_TYPE_STA) { |
| 1373 | fc |= IEEE80211_FCTL_TODS; |
| 1374 | /* BSSID SA DA */ |
| 1375 | memcpy(hdr.addr1, sdata->u.sta.bssid, ETH_ALEN); |
| 1376 | memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); |
| 1377 | memcpy(hdr.addr3, skb->data, ETH_ALEN); |
| 1378 | hdrlen = 24; |
| 1379 | } else if (sdata->type == IEEE80211_IF_TYPE_IBSS) { |
| 1380 | /* DA SA BSSID */ |
| 1381 | memcpy(hdr.addr1, skb->data, ETH_ALEN); |
| 1382 | memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); |
| 1383 | memcpy(hdr.addr3, sdata->u.sta.bssid, ETH_ALEN); |
| 1384 | hdrlen = 24; |
| 1385 | } else { |
| 1386 | ret = 0; |
| 1387 | goto fail; |
| 1388 | } |
| 1389 | |
| 1390 | /* receiver is QoS enabled, use a QoS type frame */ |
| 1391 | sta = sta_info_get(local, hdr.addr1); |
| 1392 | if (sta) { |
| 1393 | if (sta->flags & WLAN_STA_WME) { |
| 1394 | fc |= IEEE80211_STYPE_QOS_DATA; |
| 1395 | hdrlen += 2; |
| 1396 | } |
| 1397 | sta_info_put(sta); |
| 1398 | } |
| 1399 | |
| 1400 | hdr.frame_control = cpu_to_le16(fc); |
| 1401 | hdr.duration_id = 0; |
| 1402 | hdr.seq_ctrl = 0; |
| 1403 | |
| 1404 | skip_header_bytes = ETH_HLEN; |
| 1405 | if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { |
| 1406 | encaps_data = bridge_tunnel_header; |
| 1407 | encaps_len = sizeof(bridge_tunnel_header); |
| 1408 | skip_header_bytes -= 2; |
| 1409 | } else if (ethertype >= 0x600) { |
| 1410 | encaps_data = rfc1042_header; |
| 1411 | encaps_len = sizeof(rfc1042_header); |
| 1412 | skip_header_bytes -= 2; |
| 1413 | } else { |
| 1414 | encaps_data = NULL; |
| 1415 | encaps_len = 0; |
| 1416 | } |
| 1417 | |
| 1418 | skb_pull(skb, skip_header_bytes); |
| 1419 | nh_pos -= skip_header_bytes; |
| 1420 | h_pos -= skip_header_bytes; |
| 1421 | |
| 1422 | /* TODO: implement support for fragments so that there is no need to |
| 1423 | * reallocate and copy payload; it might be enough to support one |
| 1424 | * extra fragment that would be copied in the beginning of the frame |
| 1425 | * data.. anyway, it would be nice to include this into skb structure |
| 1426 | * somehow |
| 1427 | * |
| 1428 | * There are few options for this: |
| 1429 | * use skb->cb as an extra space for 802.11 header |
| 1430 | * allocate new buffer if not enough headroom |
| 1431 | * make sure that there is enough headroom in every skb by increasing |
| 1432 | * build in headroom in __dev_alloc_skb() (linux/skbuff.h) and |
| 1433 | * alloc_skb() (net/core/skbuff.c) |
| 1434 | */ |
| 1435 | head_need = hdrlen + encaps_len + local->tx_headroom; |
| 1436 | head_need -= skb_headroom(skb); |
| 1437 | |
| 1438 | /* We are going to modify skb data, so make a copy of it if happens to |
| 1439 | * be cloned. This could happen, e.g., with Linux bridge code passing |
| 1440 | * us broadcast frames. */ |
| 1441 | |
| 1442 | if (head_need > 0 || skb_cloned(skb)) { |
| 1443 | #if 0 |
| 1444 | printk(KERN_DEBUG "%s: need to reallocate buffer for %d bytes " |
| 1445 | "of headroom\n", dev->name, head_need); |
| 1446 | #endif |
| 1447 | |
| 1448 | if (skb_cloned(skb)) |
| 1449 | I802_DEBUG_INC(local->tx_expand_skb_head_cloned); |
| 1450 | else |
| 1451 | I802_DEBUG_INC(local->tx_expand_skb_head); |
| 1452 | /* Since we have to reallocate the buffer, make sure that there |
| 1453 | * is enough room for possible WEP IV/ICV and TKIP (8 bytes |
| 1454 | * before payload and 12 after). */ |
| 1455 | if (pskb_expand_head(skb, (head_need > 0 ? head_need + 8 : 8), |
| 1456 | 12, GFP_ATOMIC)) { |
| 1457 | printk(KERN_DEBUG "%s: failed to reallocate TX buffer" |
| 1458 | "\n", dev->name); |
| 1459 | goto fail; |
| 1460 | } |
| 1461 | } |
| 1462 | |
| 1463 | if (encaps_data) { |
| 1464 | memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); |
| 1465 | nh_pos += encaps_len; |
| 1466 | h_pos += encaps_len; |
| 1467 | } |
| 1468 | memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); |
| 1469 | nh_pos += hdrlen; |
| 1470 | h_pos += hdrlen; |
| 1471 | |
| 1472 | pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; |
| 1473 | memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data)); |
| 1474 | pkt_data->ifindex = dev->ifindex; |
| 1475 | pkt_data->mgmt_iface = (sdata->type == IEEE80211_IF_TYPE_MGMT); |
| 1476 | pkt_data->do_not_encrypt = no_encrypt; |
| 1477 | |
| 1478 | skb->dev = local->mdev; |
| 1479 | sdata->stats.tx_packets++; |
| 1480 | sdata->stats.tx_bytes += skb->len; |
| 1481 | |
| 1482 | /* Update skb pointers to various headers since this modified frame |
| 1483 | * is going to go through Linux networking code that may potentially |
| 1484 | * need things like pointer to IP header. */ |
| 1485 | skb_set_mac_header(skb, 0); |
| 1486 | skb_set_network_header(skb, nh_pos); |
| 1487 | skb_set_transport_header(skb, h_pos); |
| 1488 | |
| 1489 | dev->trans_start = jiffies; |
| 1490 | dev_queue_xmit(skb); |
| 1491 | |
| 1492 | return 0; |
| 1493 | |
| 1494 | fail: |
| 1495 | if (!ret) |
| 1496 | dev_kfree_skb(skb); |
| 1497 | |
| 1498 | return ret; |
| 1499 | } |
| 1500 | |
| 1501 | /* |
| 1502 | * This is the transmit routine for the 802.11 type interfaces |
| 1503 | * called by upper layers of the linux networking |
| 1504 | * stack when it has a frame to transmit |
| 1505 | */ |
| 1506 | int ieee80211_mgmt_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| 1507 | { |
| 1508 | struct ieee80211_sub_if_data *sdata; |
| 1509 | struct ieee80211_tx_packet_data *pkt_data; |
| 1510 | struct ieee80211_hdr *hdr; |
| 1511 | u16 fc; |
| 1512 | |
| 1513 | sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| 1514 | |
| 1515 | if (skb->len < 10) { |
| 1516 | dev_kfree_skb(skb); |
| 1517 | return 0; |
| 1518 | } |
| 1519 | |
| 1520 | if (skb_headroom(skb) < sdata->local->tx_headroom) { |
| 1521 | if (pskb_expand_head(skb, sdata->local->tx_headroom, |
| 1522 | 0, GFP_ATOMIC)) { |
| 1523 | dev_kfree_skb(skb); |
| 1524 | return 0; |
| 1525 | } |
| 1526 | } |
| 1527 | |
| 1528 | hdr = (struct ieee80211_hdr *) skb->data; |
| 1529 | fc = le16_to_cpu(hdr->frame_control); |
| 1530 | |
| 1531 | pkt_data = (struct ieee80211_tx_packet_data *) skb->cb; |
| 1532 | memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data)); |
| 1533 | pkt_data->ifindex = sdata->dev->ifindex; |
| 1534 | pkt_data->mgmt_iface = (sdata->type == IEEE80211_IF_TYPE_MGMT); |
| 1535 | |
| 1536 | skb->priority = 20; /* use hardcoded priority for mgmt TX queue */ |
| 1537 | skb->dev = sdata->local->mdev; |
| 1538 | |
| 1539 | /* |
| 1540 | * We're using the protocol field of the the frame control header |
| 1541 | * to request TX callback for hostapd. BIT(1) is checked. |
| 1542 | */ |
| 1543 | if ((fc & BIT(1)) == BIT(1)) { |
| 1544 | pkt_data->req_tx_status = 1; |
| 1545 | fc &= ~BIT(1); |
| 1546 | hdr->frame_control = cpu_to_le16(fc); |
| 1547 | } |
| 1548 | |
| 1549 | pkt_data->do_not_encrypt = !(fc & IEEE80211_FCTL_PROTECTED); |
| 1550 | |
| 1551 | sdata->stats.tx_packets++; |
| 1552 | sdata->stats.tx_bytes += skb->len; |
| 1553 | |
| 1554 | dev_queue_xmit(skb); |
| 1555 | |
| 1556 | return 0; |
| 1557 | } |
| 1558 | |
| 1559 | /* helper functions for pending packets for when queues are stopped */ |
| 1560 | |
| 1561 | void ieee80211_clear_tx_pending(struct ieee80211_local *local) |
| 1562 | { |
| 1563 | int i, j; |
| 1564 | struct ieee80211_tx_stored_packet *store; |
| 1565 | |
| 1566 | for (i = 0; i < local->hw.queues; i++) { |
| 1567 | if (!__ieee80211_queue_pending(local, i)) |
| 1568 | continue; |
| 1569 | store = &local->pending_packet[i]; |
| 1570 | kfree_skb(store->skb); |
| 1571 | for (j = 0; j < store->num_extra_frag; j++) |
| 1572 | kfree_skb(store->extra_frag[j]); |
| 1573 | kfree(store->extra_frag); |
| 1574 | clear_bit(IEEE80211_LINK_STATE_PENDING, &local->state[i]); |
| 1575 | } |
| 1576 | } |
| 1577 | |
| 1578 | void ieee80211_tx_pending(unsigned long data) |
| 1579 | { |
| 1580 | struct ieee80211_local *local = (struct ieee80211_local *)data; |
| 1581 | struct net_device *dev = local->mdev; |
| 1582 | struct ieee80211_tx_stored_packet *store; |
| 1583 | struct ieee80211_txrx_data tx; |
| 1584 | int i, ret, reschedule = 0; |
| 1585 | |
| 1586 | netif_tx_lock_bh(dev); |
| 1587 | for (i = 0; i < local->hw.queues; i++) { |
| 1588 | if (__ieee80211_queue_stopped(local, i)) |
| 1589 | continue; |
| 1590 | if (!__ieee80211_queue_pending(local, i)) { |
| 1591 | reschedule = 1; |
| 1592 | continue; |
| 1593 | } |
| 1594 | store = &local->pending_packet[i]; |
| 1595 | tx.u.tx.control = &store->control; |
| 1596 | tx.u.tx.extra_frag = store->extra_frag; |
| 1597 | tx.u.tx.num_extra_frag = store->num_extra_frag; |
| 1598 | tx.u.tx.last_frag_hwrate = store->last_frag_hwrate; |
| 1599 | tx.u.tx.last_frag_rate = store->last_frag_rate; |
| 1600 | tx.u.tx.probe_last_frag = store->last_frag_rate_ctrl_probe; |
| 1601 | ret = __ieee80211_tx(local, store->skb, &tx); |
| 1602 | if (ret) { |
| 1603 | if (ret == IEEE80211_TX_FRAG_AGAIN) |
| 1604 | store->skb = NULL; |
| 1605 | } else { |
| 1606 | clear_bit(IEEE80211_LINK_STATE_PENDING, |
| 1607 | &local->state[i]); |
| 1608 | reschedule = 1; |
| 1609 | } |
| 1610 | } |
| 1611 | netif_tx_unlock_bh(dev); |
| 1612 | if (reschedule) { |
| 1613 | if (!ieee80211_qdisc_installed(dev)) { |
| 1614 | if (!__ieee80211_queue_stopped(local, 0)) |
| 1615 | netif_wake_queue(dev); |
| 1616 | } else |
| 1617 | netif_schedule(dev); |
| 1618 | } |
| 1619 | } |
| 1620 | |
| 1621 | /* functions for drivers to get certain frames */ |
| 1622 | |
| 1623 | static void ieee80211_beacon_add_tim(struct ieee80211_local *local, |
| 1624 | struct ieee80211_if_ap *bss, |
| 1625 | struct sk_buff *skb) |
| 1626 | { |
| 1627 | u8 *pos, *tim; |
| 1628 | int aid0 = 0; |
| 1629 | int i, have_bits = 0, n1, n2; |
| 1630 | |
| 1631 | /* Generate bitmap for TIM only if there are any STAs in power save |
| 1632 | * mode. */ |
Michael Wu | be8755e | 2007-07-27 15:43:23 +0200 | [diff] [blame] | 1633 | read_lock_bh(&local->sta_lock); |
Johannes Berg | e2ebc74 | 2007-07-27 15:43:22 +0200 | [diff] [blame] | 1634 | if (atomic_read(&bss->num_sta_ps) > 0) |
| 1635 | /* in the hope that this is faster than |
| 1636 | * checking byte-for-byte */ |
| 1637 | have_bits = !bitmap_empty((unsigned long*)bss->tim, |
| 1638 | IEEE80211_MAX_AID+1); |
| 1639 | |
| 1640 | if (bss->dtim_count == 0) |
| 1641 | bss->dtim_count = bss->dtim_period - 1; |
| 1642 | else |
| 1643 | bss->dtim_count--; |
| 1644 | |
| 1645 | tim = pos = (u8 *) skb_put(skb, 6); |
| 1646 | *pos++ = WLAN_EID_TIM; |
| 1647 | *pos++ = 4; |
| 1648 | *pos++ = bss->dtim_count; |
| 1649 | *pos++ = bss->dtim_period; |
| 1650 | |
| 1651 | if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf)) |
| 1652 | aid0 = 1; |
| 1653 | |
| 1654 | if (have_bits) { |
| 1655 | /* Find largest even number N1 so that bits numbered 1 through |
| 1656 | * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits |
| 1657 | * (N2 + 1) x 8 through 2007 are 0. */ |
| 1658 | n1 = 0; |
| 1659 | for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) { |
| 1660 | if (bss->tim[i]) { |
| 1661 | n1 = i & 0xfe; |
| 1662 | break; |
| 1663 | } |
| 1664 | } |
| 1665 | n2 = n1; |
| 1666 | for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) { |
| 1667 | if (bss->tim[i]) { |
| 1668 | n2 = i; |
| 1669 | break; |
| 1670 | } |
| 1671 | } |
| 1672 | |
| 1673 | /* Bitmap control */ |
| 1674 | *pos++ = n1 | aid0; |
| 1675 | /* Part Virt Bitmap */ |
| 1676 | memcpy(pos, bss->tim + n1, n2 - n1 + 1); |
| 1677 | |
| 1678 | tim[1] = n2 - n1 + 4; |
| 1679 | skb_put(skb, n2 - n1); |
| 1680 | } else { |
| 1681 | *pos++ = aid0; /* Bitmap control */ |
| 1682 | *pos++ = 0; /* Part Virt Bitmap */ |
| 1683 | } |
Michael Wu | be8755e | 2007-07-27 15:43:23 +0200 | [diff] [blame] | 1684 | read_unlock_bh(&local->sta_lock); |
Johannes Berg | e2ebc74 | 2007-07-27 15:43:22 +0200 | [diff] [blame] | 1685 | } |
| 1686 | |
| 1687 | struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw, int if_id, |
| 1688 | struct ieee80211_tx_control *control) |
| 1689 | { |
| 1690 | struct ieee80211_local *local = hw_to_local(hw); |
| 1691 | struct sk_buff *skb; |
| 1692 | struct net_device *bdev; |
| 1693 | struct ieee80211_sub_if_data *sdata = NULL; |
| 1694 | struct ieee80211_if_ap *ap = NULL; |
| 1695 | struct ieee80211_rate *rate; |
| 1696 | struct rate_control_extra extra; |
| 1697 | u8 *b_head, *b_tail; |
| 1698 | int bh_len, bt_len; |
| 1699 | |
| 1700 | bdev = dev_get_by_index(if_id); |
| 1701 | if (bdev) { |
| 1702 | sdata = IEEE80211_DEV_TO_SUB_IF(bdev); |
| 1703 | ap = &sdata->u.ap; |
| 1704 | dev_put(bdev); |
| 1705 | } |
| 1706 | |
| 1707 | if (!ap || sdata->type != IEEE80211_IF_TYPE_AP || |
| 1708 | !ap->beacon_head) { |
| 1709 | #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| 1710 | if (net_ratelimit()) |
| 1711 | printk(KERN_DEBUG "no beacon data avail for idx=%d " |
| 1712 | "(%s)\n", if_id, bdev ? bdev->name : "N/A"); |
| 1713 | #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ |
| 1714 | return NULL; |
| 1715 | } |
| 1716 | |
| 1717 | /* Assume we are generating the normal beacon locally */ |
| 1718 | b_head = ap->beacon_head; |
| 1719 | b_tail = ap->beacon_tail; |
| 1720 | bh_len = ap->beacon_head_len; |
| 1721 | bt_len = ap->beacon_tail_len; |
| 1722 | |
| 1723 | skb = dev_alloc_skb(local->tx_headroom + |
| 1724 | bh_len + bt_len + 256 /* maximum TIM len */); |
| 1725 | if (!skb) |
| 1726 | return NULL; |
| 1727 | |
| 1728 | skb_reserve(skb, local->tx_headroom); |
| 1729 | memcpy(skb_put(skb, bh_len), b_head, bh_len); |
| 1730 | |
| 1731 | ieee80211_include_sequence(sdata, (struct ieee80211_hdr *)skb->data); |
| 1732 | |
| 1733 | ieee80211_beacon_add_tim(local, ap, skb); |
| 1734 | |
| 1735 | if (b_tail) { |
| 1736 | memcpy(skb_put(skb, bt_len), b_tail, bt_len); |
| 1737 | } |
| 1738 | |
| 1739 | if (control) { |
| 1740 | memset(&extra, 0, sizeof(extra)); |
| 1741 | extra.mode = local->oper_hw_mode; |
| 1742 | |
| 1743 | rate = rate_control_get_rate(local, local->mdev, skb, &extra); |
| 1744 | if (!rate) { |
| 1745 | if (net_ratelimit()) { |
| 1746 | printk(KERN_DEBUG "%s: ieee80211_beacon_get: no rate " |
| 1747 | "found\n", local->mdev->name); |
| 1748 | } |
| 1749 | dev_kfree_skb(skb); |
| 1750 | return NULL; |
| 1751 | } |
| 1752 | |
| 1753 | control->tx_rate = (local->short_preamble && |
| 1754 | (rate->flags & IEEE80211_RATE_PREAMBLE2)) ? |
| 1755 | rate->val2 : rate->val; |
| 1756 | control->antenna_sel_tx = local->hw.conf.antenna_sel_tx; |
| 1757 | control->power_level = local->hw.conf.power_level; |
| 1758 | control->flags |= IEEE80211_TXCTL_NO_ACK; |
| 1759 | control->retry_limit = 1; |
| 1760 | control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK; |
| 1761 | } |
| 1762 | |
| 1763 | ap->num_beacons++; |
| 1764 | return skb; |
| 1765 | } |
| 1766 | EXPORT_SYMBOL(ieee80211_beacon_get); |
| 1767 | |
| 1768 | void ieee80211_rts_get(struct ieee80211_hw *hw, |
| 1769 | const void *frame, size_t frame_len, |
| 1770 | const struct ieee80211_tx_control *frame_txctl, |
| 1771 | struct ieee80211_rts *rts) |
| 1772 | { |
| 1773 | const struct ieee80211_hdr *hdr = frame; |
| 1774 | u16 fctl; |
| 1775 | |
| 1776 | fctl = IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS; |
| 1777 | rts->frame_control = cpu_to_le16(fctl); |
| 1778 | rts->duration = ieee80211_rts_duration(hw, frame_len, frame_txctl); |
| 1779 | memcpy(rts->ra, hdr->addr1, sizeof(rts->ra)); |
| 1780 | memcpy(rts->ta, hdr->addr2, sizeof(rts->ta)); |
| 1781 | } |
| 1782 | EXPORT_SYMBOL(ieee80211_rts_get); |
| 1783 | |
| 1784 | void ieee80211_ctstoself_get(struct ieee80211_hw *hw, |
| 1785 | const void *frame, size_t frame_len, |
| 1786 | const struct ieee80211_tx_control *frame_txctl, |
| 1787 | struct ieee80211_cts *cts) |
| 1788 | { |
| 1789 | const struct ieee80211_hdr *hdr = frame; |
| 1790 | u16 fctl; |
| 1791 | |
| 1792 | fctl = IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS; |
| 1793 | cts->frame_control = cpu_to_le16(fctl); |
| 1794 | cts->duration = ieee80211_ctstoself_duration(hw, frame_len, frame_txctl); |
| 1795 | memcpy(cts->ra, hdr->addr1, sizeof(cts->ra)); |
| 1796 | } |
| 1797 | EXPORT_SYMBOL(ieee80211_ctstoself_get); |
| 1798 | |
| 1799 | struct sk_buff * |
| 1800 | ieee80211_get_buffered_bc(struct ieee80211_hw *hw, int if_id, |
| 1801 | struct ieee80211_tx_control *control) |
| 1802 | { |
| 1803 | struct ieee80211_local *local = hw_to_local(hw); |
| 1804 | struct sk_buff *skb; |
| 1805 | struct sta_info *sta; |
| 1806 | ieee80211_tx_handler *handler; |
| 1807 | struct ieee80211_txrx_data tx; |
| 1808 | ieee80211_txrx_result res = TXRX_DROP; |
| 1809 | struct net_device *bdev; |
| 1810 | struct ieee80211_sub_if_data *sdata; |
| 1811 | struct ieee80211_if_ap *bss = NULL; |
| 1812 | |
| 1813 | bdev = dev_get_by_index(if_id); |
| 1814 | if (bdev) { |
| 1815 | sdata = IEEE80211_DEV_TO_SUB_IF(bdev); |
| 1816 | bss = &sdata->u.ap; |
| 1817 | dev_put(bdev); |
| 1818 | } |
| 1819 | if (!bss || sdata->type != IEEE80211_IF_TYPE_AP || !bss->beacon_head) |
| 1820 | return NULL; |
| 1821 | |
| 1822 | if (bss->dtim_count != 0) |
| 1823 | return NULL; /* send buffered bc/mc only after DTIM beacon */ |
| 1824 | memset(control, 0, sizeof(*control)); |
| 1825 | while (1) { |
| 1826 | skb = skb_dequeue(&bss->ps_bc_buf); |
| 1827 | if (!skb) |
| 1828 | return NULL; |
| 1829 | local->total_ps_buffered--; |
| 1830 | |
| 1831 | if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) { |
| 1832 | struct ieee80211_hdr *hdr = |
| 1833 | (struct ieee80211_hdr *) skb->data; |
| 1834 | /* more buffered multicast/broadcast frames ==> set |
| 1835 | * MoreData flag in IEEE 802.11 header to inform PS |
| 1836 | * STAs */ |
| 1837 | hdr->frame_control |= |
| 1838 | cpu_to_le16(IEEE80211_FCTL_MOREDATA); |
| 1839 | } |
| 1840 | |
| 1841 | if (ieee80211_tx_prepare(&tx, skb, local->mdev, control) == 0) |
| 1842 | break; |
| 1843 | dev_kfree_skb_any(skb); |
| 1844 | } |
| 1845 | sta = tx.sta; |
| 1846 | tx.u.tx.ps_buffered = 1; |
| 1847 | |
| 1848 | for (handler = local->tx_handlers; *handler != NULL; handler++) { |
| 1849 | res = (*handler)(&tx); |
| 1850 | if (res == TXRX_DROP || res == TXRX_QUEUED) |
| 1851 | break; |
| 1852 | } |
| 1853 | dev_put(tx.dev); |
| 1854 | skb = tx.skb; /* handlers are allowed to change skb */ |
| 1855 | |
| 1856 | if (res == TXRX_DROP) { |
| 1857 | I802_DEBUG_INC(local->tx_handlers_drop); |
| 1858 | dev_kfree_skb(skb); |
| 1859 | skb = NULL; |
| 1860 | } else if (res == TXRX_QUEUED) { |
| 1861 | I802_DEBUG_INC(local->tx_handlers_queued); |
| 1862 | skb = NULL; |
| 1863 | } |
| 1864 | |
| 1865 | if (sta) |
| 1866 | sta_info_put(sta); |
| 1867 | |
| 1868 | return skb; |
| 1869 | } |
| 1870 | EXPORT_SYMBOL(ieee80211_get_buffered_bc); |