blob: f225a953ab4b9fb4891833872a1748d4c58d80a2 [file] [log] [blame]
Stephan Mueller3b72c812016-10-21 04:54:22 +02001Developing Cipher Algorithms
2============================
3
4Registering And Unregistering Transformation
5--------------------------------------------
6
7There are three distinct types of registration functions in the Crypto
8API. One is used to register a generic cryptographic transformation,
9while the other two are specific to HASH transformations and
10COMPRESSion. We will discuss the latter two in a separate chapter, here
11we will only look at the generic ones.
12
13Before discussing the register functions, the data structure to be
14filled with each, struct crypto_alg, must be considered -- see below
15for a description of this data structure.
16
17The generic registration functions can be found in
18include/linux/crypto.h and their definition can be seen below. The
19former function registers a single transformation, while the latter
20works on an array of transformation descriptions. The latter is useful
21when registering transformations in bulk, for example when a driver
22implements multiple transformations.
23
24::
25
26 int crypto_register_alg(struct crypto_alg *alg);
27 int crypto_register_algs(struct crypto_alg *algs, int count);
28
29
30The counterparts to those functions are listed below.
31
32::
33
Eric Biggersc6d633a2019-12-15 15:51:19 -080034 void crypto_unregister_alg(struct crypto_alg *alg);
35 void crypto_unregister_algs(struct crypto_alg *algs, int count);
Stephan Mueller3b72c812016-10-21 04:54:22 +020036
37
Eric Biggersc6d633a2019-12-15 15:51:19 -080038The registration functions return 0 on success, or a negative errno
39value on failure. crypto_register_algs() succeeds only if it
40successfully registered all the given algorithms; if it fails partway
41through, then any changes are rolled back.
Stephan Mueller3b72c812016-10-21 04:54:22 +020042
Eric Biggersc6d633a2019-12-15 15:51:19 -080043The unregistration functions always succeed, so they don't have a
44return value. Don't try to unregister algorithms that aren't
45currently registered.
Stephan Mueller3b72c812016-10-21 04:54:22 +020046
47Single-Block Symmetric Ciphers [CIPHER]
48---------------------------------------
49
Eric Biggers4a2abbc2019-12-06 20:19:37 -080050Example of transformations: aes, serpent, ...
Stephan Mueller3b72c812016-10-21 04:54:22 +020051
52This section describes the simplest of all transformation
53implementations, that being the CIPHER type used for symmetric ciphers.
54The CIPHER type is used for transformations which operate on exactly one
55block at a time and there are no dependencies between blocks at all.
56
57Registration specifics
58~~~~~~~~~~~~~~~~~~~~~~
59
60The registration of [CIPHER] algorithm is specific in that struct
61crypto_alg field .cra_type is empty. The .cra_u.cipher has to be
62filled in with proper callbacks to implement this transformation.
63
64See struct cipher_alg below.
65
66Cipher Definition With struct cipher_alg
67~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
68
69Struct cipher_alg defines a single block cipher.
70
71Here are schematics of how these functions are called when operated from
72other part of the kernel. Note that the .cia_setkey() call might happen
73before or after any of these schematics happen, but must not happen
74during any of these are in-flight.
75
76::
77
78 KEY ---. PLAINTEXT ---.
79 v v
80 .cia_setkey() -> .cia_encrypt()
81 |
82 '-----> CIPHERTEXT
83
84
85Please note that a pattern where .cia_setkey() is called multiple times
86is also valid:
87
88::
89
90
91 KEY1 --. PLAINTEXT1 --. KEY2 --. PLAINTEXT2 --.
92 v v v v
93 .cia_setkey() -> .cia_encrypt() -> .cia_setkey() -> .cia_encrypt()
94 | |
95 '---> CIPHERTEXT1 '---> CIPHERTEXT2
96
97
98Multi-Block Ciphers
99-------------------
100
Eric Biggers4a2abbc2019-12-06 20:19:37 -0800101Example of transformations: cbc(aes), chacha20, ...
Stephan Mueller3b72c812016-10-21 04:54:22 +0200102
103This section describes the multi-block cipher transformation
104implementations. The multi-block ciphers are used for transformations
105which operate on scatterlists of data supplied to the transformation
106functions. They output the result into a scatterlist of data as well.
107
108Registration Specifics
109~~~~~~~~~~~~~~~~~~~~~~
110
111The registration of multi-block cipher algorithms is one of the most
112standard procedures throughout the crypto API.
113
114Note, if a cipher implementation requires a proper alignment of data,
115the caller should use the functions of crypto_skcipher_alignmask() to
116identify a memory alignment mask. The kernel crypto API is able to
117process requests that are unaligned. This implies, however, additional
118overhead as the kernel crypto API needs to perform the realignment of
119the data which may imply moving of data.
120
Eric Biggersc65058b2019-10-25 12:41:12 -0700121Cipher Definition With struct skcipher_alg
122~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Stephan Mueller3b72c812016-10-21 04:54:22 +0200123
Eric Biggersc65058b2019-10-25 12:41:12 -0700124Struct skcipher_alg defines a multi-block cipher, or more generally, a
125length-preserving symmetric cipher algorithm.
Stephan Mueller3b72c812016-10-21 04:54:22 +0200126
Eric Biggersc65058b2019-10-25 12:41:12 -0700127Scatterlist handling
128~~~~~~~~~~~~~~~~~~~~
Stephan Mueller3b72c812016-10-21 04:54:22 +0200129
Eric Biggersc65058b2019-10-25 12:41:12 -0700130Some drivers will want to use the Generic ScatterWalk in case the
131hardware needs to be fed separate chunks of the scatterlist which
132contains the plaintext and will contain the ciphertext. Please refer
133to the ScatterWalk interface offered by the Linux kernel scatter /
134gather list implementation.
Stephan Mueller3b72c812016-10-21 04:54:22 +0200135
136Hashing [HASH]
137--------------
138
139Example of transformations: crc32, md5, sha1, sha256,...
140
141Registering And Unregistering The Transformation
142~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
143
144There are multiple ways to register a HASH transformation, depending on
145whether the transformation is synchronous [SHASH] or asynchronous
146[AHASH] and the amount of HASH transformations we are registering. You
147can find the prototypes defined in include/crypto/internal/hash.h:
148
149::
150
151 int crypto_register_ahash(struct ahash_alg *alg);
152
153 int crypto_register_shash(struct shash_alg *alg);
154 int crypto_register_shashes(struct shash_alg *algs, int count);
155
156
157The respective counterparts for unregistering the HASH transformation
158are as follows:
159
160::
161
Eric Biggersc6d633a2019-12-15 15:51:19 -0800162 void crypto_unregister_ahash(struct ahash_alg *alg);
Stephan Mueller3b72c812016-10-21 04:54:22 +0200163
Eric Biggersc6d633a2019-12-15 15:51:19 -0800164 void crypto_unregister_shash(struct shash_alg *alg);
165 void crypto_unregister_shashes(struct shash_alg *algs, int count);
Stephan Mueller3b72c812016-10-21 04:54:22 +0200166
167
168Cipher Definition With struct shash_alg and ahash_alg
169~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
170
171Here are schematics of how these functions are called when operated from
172other part of the kernel. Note that the .setkey() call might happen
173before or after any of these schematics happen, but must not happen
174during any of these are in-flight. Please note that calling .init()
175followed immediately by .finish() is also a perfectly valid
176transformation.
177
178::
179
180 I) DATA -----------.
181 v
182 .init() -> .update() -> .final() ! .update() might not be called
183 ^ | | at all in this scenario.
184 '----' '---> HASH
185
186 II) DATA -----------.-----------.
187 v v
188 .init() -> .update() -> .finup() ! .update() may not be called
189 ^ | | at all in this scenario.
190 '----' '---> HASH
191
192 III) DATA -----------.
193 v
194 .digest() ! The entire process is handled
195 | by the .digest() call.
196 '---------------> HASH
197
198
199Here is a schematic of how the .export()/.import() functions are called
200when used from another part of the kernel.
201
202::
203
204 KEY--. DATA--.
205 v v ! .update() may not be called
206 .setkey() -> .init() -> .update() -> .export() at all in this scenario.
207 ^ | |
208 '-----' '--> PARTIAL_HASH
209
210 ----------- other transformations happen here -----------
211
212 PARTIAL_HASH--. DATA1--.
213 v v
214 .import -> .update() -> .final() ! .update() may not be called
215 ^ | | at all in this scenario.
216 '----' '--> HASH1
217
218 PARTIAL_HASH--. DATA2-.
219 v v
220 .import -> .finup()
221 |
222 '---------------> HASH2
223
Horia Geantă0550f5a2018-03-20 09:56:12 +0200224Note that it is perfectly legal to "abandon" a request object:
225- call .init() and then (as many times) .update()
226- _not_ call any of .final(), .finup() or .export() at any point in future
227
228In other words implementations should mind the resource allocation and clean-up.
229No resources related to request objects should remain allocated after a call
230to .init() or .update(), since there might be no chance to free them.
231
Stephan Mueller3b72c812016-10-21 04:54:22 +0200232
233Specifics Of Asynchronous HASH Transformation
234~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
235
236Some of the drivers will want to use the Generic ScatterWalk in case the
237implementation needs to be fed separate chunks of the scatterlist which
238contains the input data. The buffer containing the resulting hash will
239always be properly aligned to .cra_alignmask so there is no need to
240worry about this.