Edward Cree | 5a6681e | 2016-11-28 18:55:34 +0000 | [diff] [blame] | 1 | /**************************************************************************** |
| 2 | * Driver for Solarflare network controllers and boards |
| 3 | * Copyright 2005-2006 Fen Systems Ltd. |
| 4 | * Copyright 2005-2013 Solarflare Communications Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify it |
| 7 | * under the terms of the GNU General Public License version 2 as published |
| 8 | * by the Free Software Foundation, incorporated herein by reference. |
| 9 | */ |
| 10 | |
| 11 | #include <linux/module.h> |
| 12 | #include <linux/pci.h> |
| 13 | #include <linux/netdevice.h> |
| 14 | #include <linux/etherdevice.h> |
| 15 | #include <linux/delay.h> |
| 16 | #include <linux/notifier.h> |
| 17 | #include <linux/ip.h> |
| 18 | #include <linux/tcp.h> |
| 19 | #include <linux/in.h> |
| 20 | #include <linux/ethtool.h> |
| 21 | #include <linux/topology.h> |
| 22 | #include <linux/gfp.h> |
| 23 | #include <linux/aer.h> |
| 24 | #include <linux/interrupt.h> |
| 25 | #include "net_driver.h" |
| 26 | #include "efx.h" |
| 27 | #include "nic.h" |
| 28 | #include "selftest.h" |
| 29 | |
| 30 | #include "workarounds.h" |
| 31 | |
| 32 | /************************************************************************** |
| 33 | * |
| 34 | * Type name strings |
| 35 | * |
| 36 | ************************************************************************** |
| 37 | */ |
| 38 | |
| 39 | /* Loopback mode names (see LOOPBACK_MODE()) */ |
| 40 | const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX; |
| 41 | const char *const ef4_loopback_mode_names[] = { |
| 42 | [LOOPBACK_NONE] = "NONE", |
| 43 | [LOOPBACK_DATA] = "DATAPATH", |
| 44 | [LOOPBACK_GMAC] = "GMAC", |
| 45 | [LOOPBACK_XGMII] = "XGMII", |
| 46 | [LOOPBACK_XGXS] = "XGXS", |
| 47 | [LOOPBACK_XAUI] = "XAUI", |
| 48 | [LOOPBACK_GMII] = "GMII", |
| 49 | [LOOPBACK_SGMII] = "SGMII", |
| 50 | [LOOPBACK_XGBR] = "XGBR", |
| 51 | [LOOPBACK_XFI] = "XFI", |
| 52 | [LOOPBACK_XAUI_FAR] = "XAUI_FAR", |
| 53 | [LOOPBACK_GMII_FAR] = "GMII_FAR", |
| 54 | [LOOPBACK_SGMII_FAR] = "SGMII_FAR", |
| 55 | [LOOPBACK_XFI_FAR] = "XFI_FAR", |
| 56 | [LOOPBACK_GPHY] = "GPHY", |
| 57 | [LOOPBACK_PHYXS] = "PHYXS", |
| 58 | [LOOPBACK_PCS] = "PCS", |
| 59 | [LOOPBACK_PMAPMD] = "PMA/PMD", |
| 60 | [LOOPBACK_XPORT] = "XPORT", |
| 61 | [LOOPBACK_XGMII_WS] = "XGMII_WS", |
| 62 | [LOOPBACK_XAUI_WS] = "XAUI_WS", |
| 63 | [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", |
| 64 | [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", |
| 65 | [LOOPBACK_GMII_WS] = "GMII_WS", |
| 66 | [LOOPBACK_XFI_WS] = "XFI_WS", |
| 67 | [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", |
| 68 | [LOOPBACK_PHYXS_WS] = "PHYXS_WS", |
| 69 | }; |
| 70 | |
| 71 | const unsigned int ef4_reset_type_max = RESET_TYPE_MAX; |
| 72 | const char *const ef4_reset_type_names[] = { |
| 73 | [RESET_TYPE_INVISIBLE] = "INVISIBLE", |
| 74 | [RESET_TYPE_ALL] = "ALL", |
| 75 | [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL", |
| 76 | [RESET_TYPE_WORLD] = "WORLD", |
| 77 | [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE", |
| 78 | [RESET_TYPE_DATAPATH] = "DATAPATH", |
| 79 | [RESET_TYPE_DISABLE] = "DISABLE", |
| 80 | [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", |
| 81 | [RESET_TYPE_INT_ERROR] = "INT_ERROR", |
| 82 | [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY", |
| 83 | [RESET_TYPE_DMA_ERROR] = "DMA_ERROR", |
| 84 | [RESET_TYPE_TX_SKIP] = "TX_SKIP", |
| 85 | }; |
| 86 | |
| 87 | /* Reset workqueue. If any NIC has a hardware failure then a reset will be |
| 88 | * queued onto this work queue. This is not a per-nic work queue, because |
| 89 | * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised. |
| 90 | */ |
| 91 | static struct workqueue_struct *reset_workqueue; |
| 92 | |
| 93 | /* How often and how many times to poll for a reset while waiting for a |
| 94 | * BIST that another function started to complete. |
| 95 | */ |
| 96 | #define BIST_WAIT_DELAY_MS 100 |
| 97 | #define BIST_WAIT_DELAY_COUNT 100 |
| 98 | |
| 99 | /************************************************************************** |
| 100 | * |
| 101 | * Configurable values |
| 102 | * |
| 103 | *************************************************************************/ |
| 104 | |
| 105 | /* |
| 106 | * Use separate channels for TX and RX events |
| 107 | * |
| 108 | * Set this to 1 to use separate channels for TX and RX. It allows us |
| 109 | * to control interrupt affinity separately for TX and RX. |
| 110 | * |
| 111 | * This is only used in MSI-X interrupt mode |
| 112 | */ |
| 113 | bool ef4_separate_tx_channels; |
| 114 | module_param(ef4_separate_tx_channels, bool, 0444); |
| 115 | MODULE_PARM_DESC(ef4_separate_tx_channels, |
| 116 | "Use separate channels for TX and RX"); |
| 117 | |
| 118 | /* This is the weight assigned to each of the (per-channel) virtual |
| 119 | * NAPI devices. |
| 120 | */ |
| 121 | static int napi_weight = 64; |
| 122 | |
| 123 | /* This is the time (in jiffies) between invocations of the hardware |
| 124 | * monitor. |
| 125 | * On Falcon-based NICs, this will: |
| 126 | * - Check the on-board hardware monitor; |
| 127 | * - Poll the link state and reconfigure the hardware as necessary. |
| 128 | * On Siena-based NICs for power systems with EEH support, this will give EEH a |
| 129 | * chance to start. |
| 130 | */ |
| 131 | static unsigned int ef4_monitor_interval = 1 * HZ; |
| 132 | |
| 133 | /* Initial interrupt moderation settings. They can be modified after |
| 134 | * module load with ethtool. |
| 135 | * |
| 136 | * The default for RX should strike a balance between increasing the |
| 137 | * round-trip latency and reducing overhead. |
| 138 | */ |
| 139 | static unsigned int rx_irq_mod_usec = 60; |
| 140 | |
| 141 | /* Initial interrupt moderation settings. They can be modified after |
| 142 | * module load with ethtool. |
| 143 | * |
| 144 | * This default is chosen to ensure that a 10G link does not go idle |
| 145 | * while a TX queue is stopped after it has become full. A queue is |
| 146 | * restarted when it drops below half full. The time this takes (assuming |
| 147 | * worst case 3 descriptors per packet and 1024 descriptors) is |
| 148 | * 512 / 3 * 1.2 = 205 usec. |
| 149 | */ |
| 150 | static unsigned int tx_irq_mod_usec = 150; |
| 151 | |
| 152 | /* This is the first interrupt mode to try out of: |
| 153 | * 0 => MSI-X |
| 154 | * 1 => MSI |
| 155 | * 2 => legacy |
| 156 | */ |
| 157 | static unsigned int interrupt_mode; |
| 158 | |
| 159 | /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), |
| 160 | * i.e. the number of CPUs among which we may distribute simultaneous |
| 161 | * interrupt handling. |
| 162 | * |
| 163 | * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. |
| 164 | * The default (0) means to assign an interrupt to each core. |
| 165 | */ |
| 166 | static unsigned int rss_cpus; |
| 167 | module_param(rss_cpus, uint, 0444); |
| 168 | MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); |
| 169 | |
| 170 | static bool phy_flash_cfg; |
| 171 | module_param(phy_flash_cfg, bool, 0644); |
| 172 | MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); |
| 173 | |
| 174 | static unsigned irq_adapt_low_thresh = 8000; |
| 175 | module_param(irq_adapt_low_thresh, uint, 0644); |
| 176 | MODULE_PARM_DESC(irq_adapt_low_thresh, |
| 177 | "Threshold score for reducing IRQ moderation"); |
| 178 | |
| 179 | static unsigned irq_adapt_high_thresh = 16000; |
| 180 | module_param(irq_adapt_high_thresh, uint, 0644); |
| 181 | MODULE_PARM_DESC(irq_adapt_high_thresh, |
| 182 | "Threshold score for increasing IRQ moderation"); |
| 183 | |
| 184 | static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | |
| 185 | NETIF_MSG_LINK | NETIF_MSG_IFDOWN | |
| 186 | NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | |
| 187 | NETIF_MSG_TX_ERR | NETIF_MSG_HW); |
| 188 | module_param(debug, uint, 0); |
| 189 | MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); |
| 190 | |
| 191 | /************************************************************************** |
| 192 | * |
| 193 | * Utility functions and prototypes |
| 194 | * |
| 195 | *************************************************************************/ |
| 196 | |
| 197 | static int ef4_soft_enable_interrupts(struct ef4_nic *efx); |
| 198 | static void ef4_soft_disable_interrupts(struct ef4_nic *efx); |
| 199 | static void ef4_remove_channel(struct ef4_channel *channel); |
| 200 | static void ef4_remove_channels(struct ef4_nic *efx); |
| 201 | static const struct ef4_channel_type ef4_default_channel_type; |
| 202 | static void ef4_remove_port(struct ef4_nic *efx); |
| 203 | static void ef4_init_napi_channel(struct ef4_channel *channel); |
| 204 | static void ef4_fini_napi(struct ef4_nic *efx); |
| 205 | static void ef4_fini_napi_channel(struct ef4_channel *channel); |
| 206 | static void ef4_fini_struct(struct ef4_nic *efx); |
| 207 | static void ef4_start_all(struct ef4_nic *efx); |
| 208 | static void ef4_stop_all(struct ef4_nic *efx); |
| 209 | |
| 210 | #define EF4_ASSERT_RESET_SERIALISED(efx) \ |
| 211 | do { \ |
| 212 | if ((efx->state == STATE_READY) || \ |
| 213 | (efx->state == STATE_RECOVERY) || \ |
| 214 | (efx->state == STATE_DISABLED)) \ |
| 215 | ASSERT_RTNL(); \ |
| 216 | } while (0) |
| 217 | |
| 218 | static int ef4_check_disabled(struct ef4_nic *efx) |
| 219 | { |
| 220 | if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) { |
| 221 | netif_err(efx, drv, efx->net_dev, |
| 222 | "device is disabled due to earlier errors\n"); |
| 223 | return -EIO; |
| 224 | } |
| 225 | return 0; |
| 226 | } |
| 227 | |
| 228 | /************************************************************************** |
| 229 | * |
| 230 | * Event queue processing |
| 231 | * |
| 232 | *************************************************************************/ |
| 233 | |
| 234 | /* Process channel's event queue |
| 235 | * |
| 236 | * This function is responsible for processing the event queue of a |
| 237 | * single channel. The caller must guarantee that this function will |
| 238 | * never be concurrently called more than once on the same channel, |
| 239 | * though different channels may be being processed concurrently. |
| 240 | */ |
| 241 | static int ef4_process_channel(struct ef4_channel *channel, int budget) |
| 242 | { |
| 243 | struct ef4_tx_queue *tx_queue; |
| 244 | int spent; |
| 245 | |
| 246 | if (unlikely(!channel->enabled)) |
| 247 | return 0; |
| 248 | |
| 249 | ef4_for_each_channel_tx_queue(tx_queue, channel) { |
| 250 | tx_queue->pkts_compl = 0; |
| 251 | tx_queue->bytes_compl = 0; |
| 252 | } |
| 253 | |
| 254 | spent = ef4_nic_process_eventq(channel, budget); |
| 255 | if (spent && ef4_channel_has_rx_queue(channel)) { |
| 256 | struct ef4_rx_queue *rx_queue = |
| 257 | ef4_channel_get_rx_queue(channel); |
| 258 | |
| 259 | ef4_rx_flush_packet(channel); |
| 260 | ef4_fast_push_rx_descriptors(rx_queue, true); |
| 261 | } |
| 262 | |
| 263 | /* Update BQL */ |
| 264 | ef4_for_each_channel_tx_queue(tx_queue, channel) { |
| 265 | if (tx_queue->bytes_compl) { |
| 266 | netdev_tx_completed_queue(tx_queue->core_txq, |
| 267 | tx_queue->pkts_compl, tx_queue->bytes_compl); |
| 268 | } |
| 269 | } |
| 270 | |
| 271 | return spent; |
| 272 | } |
| 273 | |
| 274 | /* NAPI poll handler |
| 275 | * |
| 276 | * NAPI guarantees serialisation of polls of the same device, which |
| 277 | * provides the guarantee required by ef4_process_channel(). |
| 278 | */ |
| 279 | static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel) |
| 280 | { |
| 281 | int step = efx->irq_mod_step_us; |
| 282 | |
| 283 | if (channel->irq_mod_score < irq_adapt_low_thresh) { |
| 284 | if (channel->irq_moderation_us > step) { |
| 285 | channel->irq_moderation_us -= step; |
| 286 | efx->type->push_irq_moderation(channel); |
| 287 | } |
| 288 | } else if (channel->irq_mod_score > irq_adapt_high_thresh) { |
| 289 | if (channel->irq_moderation_us < |
| 290 | efx->irq_rx_moderation_us) { |
| 291 | channel->irq_moderation_us += step; |
| 292 | efx->type->push_irq_moderation(channel); |
| 293 | } |
| 294 | } |
| 295 | |
| 296 | channel->irq_count = 0; |
| 297 | channel->irq_mod_score = 0; |
| 298 | } |
| 299 | |
| 300 | static int ef4_poll(struct napi_struct *napi, int budget) |
| 301 | { |
| 302 | struct ef4_channel *channel = |
| 303 | container_of(napi, struct ef4_channel, napi_str); |
| 304 | struct ef4_nic *efx = channel->efx; |
| 305 | int spent; |
| 306 | |
Edward Cree | 5a6681e | 2016-11-28 18:55:34 +0000 | [diff] [blame] | 307 | netif_vdbg(efx, intr, efx->net_dev, |
| 308 | "channel %d NAPI poll executing on CPU %d\n", |
| 309 | channel->channel, raw_smp_processor_id()); |
| 310 | |
| 311 | spent = ef4_process_channel(channel, budget); |
| 312 | |
| 313 | if (spent < budget) { |
| 314 | if (ef4_channel_has_rx_queue(channel) && |
| 315 | efx->irq_rx_adaptive && |
| 316 | unlikely(++channel->irq_count == 1000)) { |
| 317 | ef4_update_irq_mod(efx, channel); |
| 318 | } |
| 319 | |
| 320 | ef4_filter_rfs_expire(channel); |
| 321 | |
| 322 | /* There is no race here; although napi_disable() will |
| 323 | * only wait for napi_complete(), this isn't a problem |
| 324 | * since ef4_nic_eventq_read_ack() will have no effect if |
| 325 | * interrupts have already been disabled. |
| 326 | */ |
Eric Dumazet | 6ad2016 | 2017-01-30 08:22:01 -0800 | [diff] [blame] | 327 | napi_complete_done(napi, spent); |
Edward Cree | 5a6681e | 2016-11-28 18:55:34 +0000 | [diff] [blame] | 328 | ef4_nic_eventq_read_ack(channel); |
| 329 | } |
| 330 | |
Edward Cree | 5a6681e | 2016-11-28 18:55:34 +0000 | [diff] [blame] | 331 | return spent; |
| 332 | } |
| 333 | |
| 334 | /* Create event queue |
| 335 | * Event queue memory allocations are done only once. If the channel |
| 336 | * is reset, the memory buffer will be reused; this guards against |
| 337 | * errors during channel reset and also simplifies interrupt handling. |
| 338 | */ |
| 339 | static int ef4_probe_eventq(struct ef4_channel *channel) |
| 340 | { |
| 341 | struct ef4_nic *efx = channel->efx; |
| 342 | unsigned long entries; |
| 343 | |
| 344 | netif_dbg(efx, probe, efx->net_dev, |
| 345 | "chan %d create event queue\n", channel->channel); |
| 346 | |
| 347 | /* Build an event queue with room for one event per tx and rx buffer, |
| 348 | * plus some extra for link state events and MCDI completions. */ |
| 349 | entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); |
| 350 | EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE); |
| 351 | channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1; |
| 352 | |
| 353 | return ef4_nic_probe_eventq(channel); |
| 354 | } |
| 355 | |
| 356 | /* Prepare channel's event queue */ |
| 357 | static int ef4_init_eventq(struct ef4_channel *channel) |
| 358 | { |
| 359 | struct ef4_nic *efx = channel->efx; |
| 360 | int rc; |
| 361 | |
| 362 | EF4_WARN_ON_PARANOID(channel->eventq_init); |
| 363 | |
| 364 | netif_dbg(efx, drv, efx->net_dev, |
| 365 | "chan %d init event queue\n", channel->channel); |
| 366 | |
| 367 | rc = ef4_nic_init_eventq(channel); |
| 368 | if (rc == 0) { |
| 369 | efx->type->push_irq_moderation(channel); |
| 370 | channel->eventq_read_ptr = 0; |
| 371 | channel->eventq_init = true; |
| 372 | } |
| 373 | return rc; |
| 374 | } |
| 375 | |
| 376 | /* Enable event queue processing and NAPI */ |
| 377 | void ef4_start_eventq(struct ef4_channel *channel) |
| 378 | { |
| 379 | netif_dbg(channel->efx, ifup, channel->efx->net_dev, |
| 380 | "chan %d start event queue\n", channel->channel); |
| 381 | |
| 382 | /* Make sure the NAPI handler sees the enabled flag set */ |
| 383 | channel->enabled = true; |
| 384 | smp_wmb(); |
| 385 | |
Edward Cree | 5a6681e | 2016-11-28 18:55:34 +0000 | [diff] [blame] | 386 | napi_enable(&channel->napi_str); |
| 387 | ef4_nic_eventq_read_ack(channel); |
| 388 | } |
| 389 | |
| 390 | /* Disable event queue processing and NAPI */ |
| 391 | void ef4_stop_eventq(struct ef4_channel *channel) |
| 392 | { |
| 393 | if (!channel->enabled) |
| 394 | return; |
| 395 | |
| 396 | napi_disable(&channel->napi_str); |
Edward Cree | 5a6681e | 2016-11-28 18:55:34 +0000 | [diff] [blame] | 397 | channel->enabled = false; |
| 398 | } |
| 399 | |
| 400 | static void ef4_fini_eventq(struct ef4_channel *channel) |
| 401 | { |
| 402 | if (!channel->eventq_init) |
| 403 | return; |
| 404 | |
| 405 | netif_dbg(channel->efx, drv, channel->efx->net_dev, |
| 406 | "chan %d fini event queue\n", channel->channel); |
| 407 | |
| 408 | ef4_nic_fini_eventq(channel); |
| 409 | channel->eventq_init = false; |
| 410 | } |
| 411 | |
| 412 | static void ef4_remove_eventq(struct ef4_channel *channel) |
| 413 | { |
| 414 | netif_dbg(channel->efx, drv, channel->efx->net_dev, |
| 415 | "chan %d remove event queue\n", channel->channel); |
| 416 | |
| 417 | ef4_nic_remove_eventq(channel); |
| 418 | } |
| 419 | |
| 420 | /************************************************************************** |
| 421 | * |
| 422 | * Channel handling |
| 423 | * |
| 424 | *************************************************************************/ |
| 425 | |
| 426 | /* Allocate and initialise a channel structure. */ |
| 427 | static struct ef4_channel * |
| 428 | ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel) |
| 429 | { |
| 430 | struct ef4_channel *channel; |
| 431 | struct ef4_rx_queue *rx_queue; |
| 432 | struct ef4_tx_queue *tx_queue; |
| 433 | int j; |
| 434 | |
| 435 | channel = kzalloc(sizeof(*channel), GFP_KERNEL); |
| 436 | if (!channel) |
| 437 | return NULL; |
| 438 | |
| 439 | channel->efx = efx; |
| 440 | channel->channel = i; |
| 441 | channel->type = &ef4_default_channel_type; |
| 442 | |
| 443 | for (j = 0; j < EF4_TXQ_TYPES; j++) { |
| 444 | tx_queue = &channel->tx_queue[j]; |
| 445 | tx_queue->efx = efx; |
| 446 | tx_queue->queue = i * EF4_TXQ_TYPES + j; |
| 447 | tx_queue->channel = channel; |
| 448 | } |
| 449 | |
| 450 | rx_queue = &channel->rx_queue; |
| 451 | rx_queue->efx = efx; |
| 452 | setup_timer(&rx_queue->slow_fill, ef4_rx_slow_fill, |
| 453 | (unsigned long)rx_queue); |
| 454 | |
| 455 | return channel; |
| 456 | } |
| 457 | |
| 458 | /* Allocate and initialise a channel structure, copying parameters |
| 459 | * (but not resources) from an old channel structure. |
| 460 | */ |
| 461 | static struct ef4_channel * |
| 462 | ef4_copy_channel(const struct ef4_channel *old_channel) |
| 463 | { |
| 464 | struct ef4_channel *channel; |
| 465 | struct ef4_rx_queue *rx_queue; |
| 466 | struct ef4_tx_queue *tx_queue; |
| 467 | int j; |
| 468 | |
| 469 | channel = kmalloc(sizeof(*channel), GFP_KERNEL); |
| 470 | if (!channel) |
| 471 | return NULL; |
| 472 | |
| 473 | *channel = *old_channel; |
| 474 | |
| 475 | channel->napi_dev = NULL; |
| 476 | INIT_HLIST_NODE(&channel->napi_str.napi_hash_node); |
| 477 | channel->napi_str.napi_id = 0; |
| 478 | channel->napi_str.state = 0; |
| 479 | memset(&channel->eventq, 0, sizeof(channel->eventq)); |
| 480 | |
| 481 | for (j = 0; j < EF4_TXQ_TYPES; j++) { |
| 482 | tx_queue = &channel->tx_queue[j]; |
| 483 | if (tx_queue->channel) |
| 484 | tx_queue->channel = channel; |
| 485 | tx_queue->buffer = NULL; |
| 486 | memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); |
| 487 | } |
| 488 | |
| 489 | rx_queue = &channel->rx_queue; |
| 490 | rx_queue->buffer = NULL; |
| 491 | memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); |
| 492 | setup_timer(&rx_queue->slow_fill, ef4_rx_slow_fill, |
| 493 | (unsigned long)rx_queue); |
| 494 | |
| 495 | return channel; |
| 496 | } |
| 497 | |
| 498 | static int ef4_probe_channel(struct ef4_channel *channel) |
| 499 | { |
| 500 | struct ef4_tx_queue *tx_queue; |
| 501 | struct ef4_rx_queue *rx_queue; |
| 502 | int rc; |
| 503 | |
| 504 | netif_dbg(channel->efx, probe, channel->efx->net_dev, |
| 505 | "creating channel %d\n", channel->channel); |
| 506 | |
| 507 | rc = channel->type->pre_probe(channel); |
| 508 | if (rc) |
| 509 | goto fail; |
| 510 | |
| 511 | rc = ef4_probe_eventq(channel); |
| 512 | if (rc) |
| 513 | goto fail; |
| 514 | |
| 515 | ef4_for_each_channel_tx_queue(tx_queue, channel) { |
| 516 | rc = ef4_probe_tx_queue(tx_queue); |
| 517 | if (rc) |
| 518 | goto fail; |
| 519 | } |
| 520 | |
| 521 | ef4_for_each_channel_rx_queue(rx_queue, channel) { |
| 522 | rc = ef4_probe_rx_queue(rx_queue); |
| 523 | if (rc) |
| 524 | goto fail; |
| 525 | } |
| 526 | |
| 527 | return 0; |
| 528 | |
| 529 | fail: |
| 530 | ef4_remove_channel(channel); |
| 531 | return rc; |
| 532 | } |
| 533 | |
| 534 | static void |
| 535 | ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len) |
| 536 | { |
| 537 | struct ef4_nic *efx = channel->efx; |
| 538 | const char *type; |
| 539 | int number; |
| 540 | |
| 541 | number = channel->channel; |
| 542 | if (efx->tx_channel_offset == 0) { |
| 543 | type = ""; |
| 544 | } else if (channel->channel < efx->tx_channel_offset) { |
| 545 | type = "-rx"; |
| 546 | } else { |
| 547 | type = "-tx"; |
| 548 | number -= efx->tx_channel_offset; |
| 549 | } |
| 550 | snprintf(buf, len, "%s%s-%d", efx->name, type, number); |
| 551 | } |
| 552 | |
| 553 | static void ef4_set_channel_names(struct ef4_nic *efx) |
| 554 | { |
| 555 | struct ef4_channel *channel; |
| 556 | |
| 557 | ef4_for_each_channel(channel, efx) |
| 558 | channel->type->get_name(channel, |
| 559 | efx->msi_context[channel->channel].name, |
| 560 | sizeof(efx->msi_context[0].name)); |
| 561 | } |
| 562 | |
| 563 | static int ef4_probe_channels(struct ef4_nic *efx) |
| 564 | { |
| 565 | struct ef4_channel *channel; |
| 566 | int rc; |
| 567 | |
| 568 | /* Restart special buffer allocation */ |
| 569 | efx->next_buffer_table = 0; |
| 570 | |
| 571 | /* Probe channels in reverse, so that any 'extra' channels |
| 572 | * use the start of the buffer table. This allows the traffic |
| 573 | * channels to be resized without moving them or wasting the |
| 574 | * entries before them. |
| 575 | */ |
| 576 | ef4_for_each_channel_rev(channel, efx) { |
| 577 | rc = ef4_probe_channel(channel); |
| 578 | if (rc) { |
| 579 | netif_err(efx, probe, efx->net_dev, |
| 580 | "failed to create channel %d\n", |
| 581 | channel->channel); |
| 582 | goto fail; |
| 583 | } |
| 584 | } |
| 585 | ef4_set_channel_names(efx); |
| 586 | |
| 587 | return 0; |
| 588 | |
| 589 | fail: |
| 590 | ef4_remove_channels(efx); |
| 591 | return rc; |
| 592 | } |
| 593 | |
| 594 | /* Channels are shutdown and reinitialised whilst the NIC is running |
| 595 | * to propagate configuration changes (mtu, checksum offload), or |
| 596 | * to clear hardware error conditions |
| 597 | */ |
| 598 | static void ef4_start_datapath(struct ef4_nic *efx) |
| 599 | { |
| 600 | netdev_features_t old_features = efx->net_dev->features; |
| 601 | bool old_rx_scatter = efx->rx_scatter; |
| 602 | struct ef4_tx_queue *tx_queue; |
| 603 | struct ef4_rx_queue *rx_queue; |
| 604 | struct ef4_channel *channel; |
| 605 | size_t rx_buf_len; |
| 606 | |
| 607 | /* Calculate the rx buffer allocation parameters required to |
| 608 | * support the current MTU, including padding for header |
| 609 | * alignment and overruns. |
| 610 | */ |
| 611 | efx->rx_dma_len = (efx->rx_prefix_size + |
| 612 | EF4_MAX_FRAME_LEN(efx->net_dev->mtu) + |
| 613 | efx->type->rx_buffer_padding); |
| 614 | rx_buf_len = (sizeof(struct ef4_rx_page_state) + |
| 615 | efx->rx_ip_align + efx->rx_dma_len); |
| 616 | if (rx_buf_len <= PAGE_SIZE) { |
| 617 | efx->rx_scatter = efx->type->always_rx_scatter; |
| 618 | efx->rx_buffer_order = 0; |
| 619 | } else if (efx->type->can_rx_scatter) { |
| 620 | BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES); |
| 621 | BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) + |
| 622 | 2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE, |
| 623 | EF4_RX_BUF_ALIGNMENT) > |
| 624 | PAGE_SIZE); |
| 625 | efx->rx_scatter = true; |
| 626 | efx->rx_dma_len = EF4_RX_USR_BUF_SIZE; |
| 627 | efx->rx_buffer_order = 0; |
| 628 | } else { |
| 629 | efx->rx_scatter = false; |
| 630 | efx->rx_buffer_order = get_order(rx_buf_len); |
| 631 | } |
| 632 | |
| 633 | ef4_rx_config_page_split(efx); |
| 634 | if (efx->rx_buffer_order) |
| 635 | netif_dbg(efx, drv, efx->net_dev, |
| 636 | "RX buf len=%u; page order=%u batch=%u\n", |
| 637 | efx->rx_dma_len, efx->rx_buffer_order, |
| 638 | efx->rx_pages_per_batch); |
| 639 | else |
| 640 | netif_dbg(efx, drv, efx->net_dev, |
| 641 | "RX buf len=%u step=%u bpp=%u; page batch=%u\n", |
| 642 | efx->rx_dma_len, efx->rx_page_buf_step, |
| 643 | efx->rx_bufs_per_page, efx->rx_pages_per_batch); |
| 644 | |
| 645 | /* Restore previously fixed features in hw_features and remove |
| 646 | * features which are fixed now |
| 647 | */ |
| 648 | efx->net_dev->hw_features |= efx->net_dev->features; |
| 649 | efx->net_dev->hw_features &= ~efx->fixed_features; |
| 650 | efx->net_dev->features |= efx->fixed_features; |
| 651 | if (efx->net_dev->features != old_features) |
| 652 | netdev_features_change(efx->net_dev); |
| 653 | |
| 654 | /* RX filters may also have scatter-enabled flags */ |
| 655 | if (efx->rx_scatter != old_rx_scatter) |
| 656 | efx->type->filter_update_rx_scatter(efx); |
| 657 | |
| 658 | /* We must keep at least one descriptor in a TX ring empty. |
| 659 | * We could avoid this when the queue size does not exactly |
| 660 | * match the hardware ring size, but it's not that important. |
| 661 | * Therefore we stop the queue when one more skb might fill |
| 662 | * the ring completely. We wake it when half way back to |
| 663 | * empty. |
| 664 | */ |
| 665 | efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx); |
| 666 | efx->txq_wake_thresh = efx->txq_stop_thresh / 2; |
| 667 | |
| 668 | /* Initialise the channels */ |
| 669 | ef4_for_each_channel(channel, efx) { |
| 670 | ef4_for_each_channel_tx_queue(tx_queue, channel) { |
| 671 | ef4_init_tx_queue(tx_queue); |
| 672 | atomic_inc(&efx->active_queues); |
| 673 | } |
| 674 | |
| 675 | ef4_for_each_channel_rx_queue(rx_queue, channel) { |
| 676 | ef4_init_rx_queue(rx_queue); |
| 677 | atomic_inc(&efx->active_queues); |
| 678 | ef4_stop_eventq(channel); |
| 679 | ef4_fast_push_rx_descriptors(rx_queue, false); |
| 680 | ef4_start_eventq(channel); |
| 681 | } |
| 682 | |
| 683 | WARN_ON(channel->rx_pkt_n_frags); |
| 684 | } |
| 685 | |
| 686 | if (netif_device_present(efx->net_dev)) |
| 687 | netif_tx_wake_all_queues(efx->net_dev); |
| 688 | } |
| 689 | |
| 690 | static void ef4_stop_datapath(struct ef4_nic *efx) |
| 691 | { |
| 692 | struct ef4_channel *channel; |
| 693 | struct ef4_tx_queue *tx_queue; |
| 694 | struct ef4_rx_queue *rx_queue; |
| 695 | int rc; |
| 696 | |
| 697 | EF4_ASSERT_RESET_SERIALISED(efx); |
| 698 | BUG_ON(efx->port_enabled); |
| 699 | |
| 700 | /* Stop RX refill */ |
| 701 | ef4_for_each_channel(channel, efx) { |
| 702 | ef4_for_each_channel_rx_queue(rx_queue, channel) |
| 703 | rx_queue->refill_enabled = false; |
| 704 | } |
| 705 | |
| 706 | ef4_for_each_channel(channel, efx) { |
| 707 | /* RX packet processing is pipelined, so wait for the |
| 708 | * NAPI handler to complete. At least event queue 0 |
| 709 | * might be kept active by non-data events, so don't |
| 710 | * use napi_synchronize() but actually disable NAPI |
| 711 | * temporarily. |
| 712 | */ |
| 713 | if (ef4_channel_has_rx_queue(channel)) { |
| 714 | ef4_stop_eventq(channel); |
| 715 | ef4_start_eventq(channel); |
| 716 | } |
| 717 | } |
| 718 | |
| 719 | rc = efx->type->fini_dmaq(efx); |
| 720 | if (rc && EF4_WORKAROUND_7803(efx)) { |
| 721 | /* Schedule a reset to recover from the flush failure. The |
| 722 | * descriptor caches reference memory we're about to free, |
| 723 | * but falcon_reconfigure_mac_wrapper() won't reconnect |
| 724 | * the MACs because of the pending reset. |
| 725 | */ |
| 726 | netif_err(efx, drv, efx->net_dev, |
| 727 | "Resetting to recover from flush failure\n"); |
| 728 | ef4_schedule_reset(efx, RESET_TYPE_ALL); |
| 729 | } else if (rc) { |
| 730 | netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); |
| 731 | } else { |
| 732 | netif_dbg(efx, drv, efx->net_dev, |
| 733 | "successfully flushed all queues\n"); |
| 734 | } |
| 735 | |
| 736 | ef4_for_each_channel(channel, efx) { |
| 737 | ef4_for_each_channel_rx_queue(rx_queue, channel) |
| 738 | ef4_fini_rx_queue(rx_queue); |
| 739 | ef4_for_each_possible_channel_tx_queue(tx_queue, channel) |
| 740 | ef4_fini_tx_queue(tx_queue); |
| 741 | } |
| 742 | } |
| 743 | |
| 744 | static void ef4_remove_channel(struct ef4_channel *channel) |
| 745 | { |
| 746 | struct ef4_tx_queue *tx_queue; |
| 747 | struct ef4_rx_queue *rx_queue; |
| 748 | |
| 749 | netif_dbg(channel->efx, drv, channel->efx->net_dev, |
| 750 | "destroy chan %d\n", channel->channel); |
| 751 | |
| 752 | ef4_for_each_channel_rx_queue(rx_queue, channel) |
| 753 | ef4_remove_rx_queue(rx_queue); |
| 754 | ef4_for_each_possible_channel_tx_queue(tx_queue, channel) |
| 755 | ef4_remove_tx_queue(tx_queue); |
| 756 | ef4_remove_eventq(channel); |
| 757 | channel->type->post_remove(channel); |
| 758 | } |
| 759 | |
| 760 | static void ef4_remove_channels(struct ef4_nic *efx) |
| 761 | { |
| 762 | struct ef4_channel *channel; |
| 763 | |
| 764 | ef4_for_each_channel(channel, efx) |
| 765 | ef4_remove_channel(channel); |
| 766 | } |
| 767 | |
| 768 | int |
| 769 | ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries) |
| 770 | { |
| 771 | struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel; |
| 772 | u32 old_rxq_entries, old_txq_entries; |
| 773 | unsigned i, next_buffer_table = 0; |
| 774 | int rc, rc2; |
| 775 | |
| 776 | rc = ef4_check_disabled(efx); |
| 777 | if (rc) |
| 778 | return rc; |
| 779 | |
| 780 | /* Not all channels should be reallocated. We must avoid |
| 781 | * reallocating their buffer table entries. |
| 782 | */ |
| 783 | ef4_for_each_channel(channel, efx) { |
| 784 | struct ef4_rx_queue *rx_queue; |
| 785 | struct ef4_tx_queue *tx_queue; |
| 786 | |
| 787 | if (channel->type->copy) |
| 788 | continue; |
| 789 | next_buffer_table = max(next_buffer_table, |
| 790 | channel->eventq.index + |
| 791 | channel->eventq.entries); |
| 792 | ef4_for_each_channel_rx_queue(rx_queue, channel) |
| 793 | next_buffer_table = max(next_buffer_table, |
| 794 | rx_queue->rxd.index + |
| 795 | rx_queue->rxd.entries); |
| 796 | ef4_for_each_channel_tx_queue(tx_queue, channel) |
| 797 | next_buffer_table = max(next_buffer_table, |
| 798 | tx_queue->txd.index + |
| 799 | tx_queue->txd.entries); |
| 800 | } |
| 801 | |
| 802 | ef4_device_detach_sync(efx); |
| 803 | ef4_stop_all(efx); |
| 804 | ef4_soft_disable_interrupts(efx); |
| 805 | |
| 806 | /* Clone channels (where possible) */ |
| 807 | memset(other_channel, 0, sizeof(other_channel)); |
| 808 | for (i = 0; i < efx->n_channels; i++) { |
| 809 | channel = efx->channel[i]; |
| 810 | if (channel->type->copy) |
| 811 | channel = channel->type->copy(channel); |
| 812 | if (!channel) { |
| 813 | rc = -ENOMEM; |
| 814 | goto out; |
| 815 | } |
| 816 | other_channel[i] = channel; |
| 817 | } |
| 818 | |
| 819 | /* Swap entry counts and channel pointers */ |
| 820 | old_rxq_entries = efx->rxq_entries; |
| 821 | old_txq_entries = efx->txq_entries; |
| 822 | efx->rxq_entries = rxq_entries; |
| 823 | efx->txq_entries = txq_entries; |
| 824 | for (i = 0; i < efx->n_channels; i++) { |
| 825 | channel = efx->channel[i]; |
| 826 | efx->channel[i] = other_channel[i]; |
| 827 | other_channel[i] = channel; |
| 828 | } |
| 829 | |
| 830 | /* Restart buffer table allocation */ |
| 831 | efx->next_buffer_table = next_buffer_table; |
| 832 | |
| 833 | for (i = 0; i < efx->n_channels; i++) { |
| 834 | channel = efx->channel[i]; |
| 835 | if (!channel->type->copy) |
| 836 | continue; |
| 837 | rc = ef4_probe_channel(channel); |
| 838 | if (rc) |
| 839 | goto rollback; |
| 840 | ef4_init_napi_channel(efx->channel[i]); |
| 841 | } |
| 842 | |
| 843 | out: |
| 844 | /* Destroy unused channel structures */ |
| 845 | for (i = 0; i < efx->n_channels; i++) { |
| 846 | channel = other_channel[i]; |
| 847 | if (channel && channel->type->copy) { |
| 848 | ef4_fini_napi_channel(channel); |
| 849 | ef4_remove_channel(channel); |
| 850 | kfree(channel); |
| 851 | } |
| 852 | } |
| 853 | |
| 854 | rc2 = ef4_soft_enable_interrupts(efx); |
| 855 | if (rc2) { |
| 856 | rc = rc ? rc : rc2; |
| 857 | netif_err(efx, drv, efx->net_dev, |
| 858 | "unable to restart interrupts on channel reallocation\n"); |
| 859 | ef4_schedule_reset(efx, RESET_TYPE_DISABLE); |
| 860 | } else { |
| 861 | ef4_start_all(efx); |
| 862 | netif_device_attach(efx->net_dev); |
| 863 | } |
| 864 | return rc; |
| 865 | |
| 866 | rollback: |
| 867 | /* Swap back */ |
| 868 | efx->rxq_entries = old_rxq_entries; |
| 869 | efx->txq_entries = old_txq_entries; |
| 870 | for (i = 0; i < efx->n_channels; i++) { |
| 871 | channel = efx->channel[i]; |
| 872 | efx->channel[i] = other_channel[i]; |
| 873 | other_channel[i] = channel; |
| 874 | } |
| 875 | goto out; |
| 876 | } |
| 877 | |
| 878 | void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue) |
| 879 | { |
| 880 | mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100)); |
| 881 | } |
| 882 | |
| 883 | static const struct ef4_channel_type ef4_default_channel_type = { |
| 884 | .pre_probe = ef4_channel_dummy_op_int, |
| 885 | .post_remove = ef4_channel_dummy_op_void, |
| 886 | .get_name = ef4_get_channel_name, |
| 887 | .copy = ef4_copy_channel, |
| 888 | .keep_eventq = false, |
| 889 | }; |
| 890 | |
| 891 | int ef4_channel_dummy_op_int(struct ef4_channel *channel) |
| 892 | { |
| 893 | return 0; |
| 894 | } |
| 895 | |
| 896 | void ef4_channel_dummy_op_void(struct ef4_channel *channel) |
| 897 | { |
| 898 | } |
| 899 | |
| 900 | /************************************************************************** |
| 901 | * |
| 902 | * Port handling |
| 903 | * |
| 904 | **************************************************************************/ |
| 905 | |
| 906 | /* This ensures that the kernel is kept informed (via |
| 907 | * netif_carrier_on/off) of the link status, and also maintains the |
| 908 | * link status's stop on the port's TX queue. |
| 909 | */ |
| 910 | void ef4_link_status_changed(struct ef4_nic *efx) |
| 911 | { |
| 912 | struct ef4_link_state *link_state = &efx->link_state; |
| 913 | |
| 914 | /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure |
| 915 | * that no events are triggered between unregister_netdev() and the |
| 916 | * driver unloading. A more general condition is that NETDEV_CHANGE |
| 917 | * can only be generated between NETDEV_UP and NETDEV_DOWN */ |
| 918 | if (!netif_running(efx->net_dev)) |
| 919 | return; |
| 920 | |
| 921 | if (link_state->up != netif_carrier_ok(efx->net_dev)) { |
| 922 | efx->n_link_state_changes++; |
| 923 | |
| 924 | if (link_state->up) |
| 925 | netif_carrier_on(efx->net_dev); |
| 926 | else |
| 927 | netif_carrier_off(efx->net_dev); |
| 928 | } |
| 929 | |
| 930 | /* Status message for kernel log */ |
| 931 | if (link_state->up) |
| 932 | netif_info(efx, link, efx->net_dev, |
| 933 | "link up at %uMbps %s-duplex (MTU %d)\n", |
| 934 | link_state->speed, link_state->fd ? "full" : "half", |
| 935 | efx->net_dev->mtu); |
| 936 | else |
| 937 | netif_info(efx, link, efx->net_dev, "link down\n"); |
| 938 | } |
| 939 | |
| 940 | void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising) |
| 941 | { |
| 942 | efx->link_advertising = advertising; |
| 943 | if (advertising) { |
| 944 | if (advertising & ADVERTISED_Pause) |
| 945 | efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX); |
| 946 | else |
| 947 | efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX); |
| 948 | if (advertising & ADVERTISED_Asym_Pause) |
| 949 | efx->wanted_fc ^= EF4_FC_TX; |
| 950 | } |
| 951 | } |
| 952 | |
| 953 | void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc) |
| 954 | { |
| 955 | efx->wanted_fc = wanted_fc; |
| 956 | if (efx->link_advertising) { |
| 957 | if (wanted_fc & EF4_FC_RX) |
| 958 | efx->link_advertising |= (ADVERTISED_Pause | |
| 959 | ADVERTISED_Asym_Pause); |
| 960 | else |
| 961 | efx->link_advertising &= ~(ADVERTISED_Pause | |
| 962 | ADVERTISED_Asym_Pause); |
| 963 | if (wanted_fc & EF4_FC_TX) |
| 964 | efx->link_advertising ^= ADVERTISED_Asym_Pause; |
| 965 | } |
| 966 | } |
| 967 | |
| 968 | static void ef4_fini_port(struct ef4_nic *efx); |
| 969 | |
| 970 | /* We assume that efx->type->reconfigure_mac will always try to sync RX |
| 971 | * filters and therefore needs to read-lock the filter table against freeing |
| 972 | */ |
| 973 | void ef4_mac_reconfigure(struct ef4_nic *efx) |
| 974 | { |
| 975 | down_read(&efx->filter_sem); |
| 976 | efx->type->reconfigure_mac(efx); |
| 977 | up_read(&efx->filter_sem); |
| 978 | } |
| 979 | |
| 980 | /* Push loopback/power/transmit disable settings to the PHY, and reconfigure |
| 981 | * the MAC appropriately. All other PHY configuration changes are pushed |
Philippe Reynes | e938ed1 | 2017-01-01 19:02:46 +0100 | [diff] [blame] | 982 | * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC |
Edward Cree | 5a6681e | 2016-11-28 18:55:34 +0000 | [diff] [blame] | 983 | * through ef4_monitor(). |
| 984 | * |
| 985 | * Callers must hold the mac_lock |
| 986 | */ |
| 987 | int __ef4_reconfigure_port(struct ef4_nic *efx) |
| 988 | { |
| 989 | enum ef4_phy_mode phy_mode; |
| 990 | int rc; |
| 991 | |
| 992 | WARN_ON(!mutex_is_locked(&efx->mac_lock)); |
| 993 | |
| 994 | /* Disable PHY transmit in mac level loopbacks */ |
| 995 | phy_mode = efx->phy_mode; |
| 996 | if (LOOPBACK_INTERNAL(efx)) |
| 997 | efx->phy_mode |= PHY_MODE_TX_DISABLED; |
| 998 | else |
| 999 | efx->phy_mode &= ~PHY_MODE_TX_DISABLED; |
| 1000 | |
| 1001 | rc = efx->type->reconfigure_port(efx); |
| 1002 | |
| 1003 | if (rc) |
| 1004 | efx->phy_mode = phy_mode; |
| 1005 | |
| 1006 | return rc; |
| 1007 | } |
| 1008 | |
| 1009 | /* Reinitialise the MAC to pick up new PHY settings, even if the port is |
| 1010 | * disabled. */ |
| 1011 | int ef4_reconfigure_port(struct ef4_nic *efx) |
| 1012 | { |
| 1013 | int rc; |
| 1014 | |
| 1015 | EF4_ASSERT_RESET_SERIALISED(efx); |
| 1016 | |
| 1017 | mutex_lock(&efx->mac_lock); |
| 1018 | rc = __ef4_reconfigure_port(efx); |
| 1019 | mutex_unlock(&efx->mac_lock); |
| 1020 | |
| 1021 | return rc; |
| 1022 | } |
| 1023 | |
| 1024 | /* Asynchronous work item for changing MAC promiscuity and multicast |
| 1025 | * hash. Avoid a drain/rx_ingress enable by reconfiguring the current |
| 1026 | * MAC directly. */ |
| 1027 | static void ef4_mac_work(struct work_struct *data) |
| 1028 | { |
| 1029 | struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work); |
| 1030 | |
| 1031 | mutex_lock(&efx->mac_lock); |
| 1032 | if (efx->port_enabled) |
| 1033 | ef4_mac_reconfigure(efx); |
| 1034 | mutex_unlock(&efx->mac_lock); |
| 1035 | } |
| 1036 | |
| 1037 | static int ef4_probe_port(struct ef4_nic *efx) |
| 1038 | { |
| 1039 | int rc; |
| 1040 | |
| 1041 | netif_dbg(efx, probe, efx->net_dev, "create port\n"); |
| 1042 | |
| 1043 | if (phy_flash_cfg) |
| 1044 | efx->phy_mode = PHY_MODE_SPECIAL; |
| 1045 | |
| 1046 | /* Connect up MAC/PHY operations table */ |
| 1047 | rc = efx->type->probe_port(efx); |
| 1048 | if (rc) |
| 1049 | return rc; |
| 1050 | |
| 1051 | /* Initialise MAC address to permanent address */ |
| 1052 | ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr); |
| 1053 | |
| 1054 | return 0; |
| 1055 | } |
| 1056 | |
| 1057 | static int ef4_init_port(struct ef4_nic *efx) |
| 1058 | { |
| 1059 | int rc; |
| 1060 | |
| 1061 | netif_dbg(efx, drv, efx->net_dev, "init port\n"); |
| 1062 | |
| 1063 | mutex_lock(&efx->mac_lock); |
| 1064 | |
| 1065 | rc = efx->phy_op->init(efx); |
| 1066 | if (rc) |
| 1067 | goto fail1; |
| 1068 | |
| 1069 | efx->port_initialized = true; |
| 1070 | |
| 1071 | /* Reconfigure the MAC before creating dma queues (required for |
| 1072 | * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ |
| 1073 | ef4_mac_reconfigure(efx); |
| 1074 | |
| 1075 | /* Ensure the PHY advertises the correct flow control settings */ |
| 1076 | rc = efx->phy_op->reconfigure(efx); |
| 1077 | if (rc && rc != -EPERM) |
| 1078 | goto fail2; |
| 1079 | |
| 1080 | mutex_unlock(&efx->mac_lock); |
| 1081 | return 0; |
| 1082 | |
| 1083 | fail2: |
| 1084 | efx->phy_op->fini(efx); |
| 1085 | fail1: |
| 1086 | mutex_unlock(&efx->mac_lock); |
| 1087 | return rc; |
| 1088 | } |
| 1089 | |
| 1090 | static void ef4_start_port(struct ef4_nic *efx) |
| 1091 | { |
| 1092 | netif_dbg(efx, ifup, efx->net_dev, "start port\n"); |
| 1093 | BUG_ON(efx->port_enabled); |
| 1094 | |
| 1095 | mutex_lock(&efx->mac_lock); |
| 1096 | efx->port_enabled = true; |
| 1097 | |
| 1098 | /* Ensure MAC ingress/egress is enabled */ |
| 1099 | ef4_mac_reconfigure(efx); |
| 1100 | |
| 1101 | mutex_unlock(&efx->mac_lock); |
| 1102 | } |
| 1103 | |
| 1104 | /* Cancel work for MAC reconfiguration, periodic hardware monitoring |
| 1105 | * and the async self-test, wait for them to finish and prevent them |
| 1106 | * being scheduled again. This doesn't cover online resets, which |
| 1107 | * should only be cancelled when removing the device. |
| 1108 | */ |
| 1109 | static void ef4_stop_port(struct ef4_nic *efx) |
| 1110 | { |
| 1111 | netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); |
| 1112 | |
| 1113 | EF4_ASSERT_RESET_SERIALISED(efx); |
| 1114 | |
| 1115 | mutex_lock(&efx->mac_lock); |
| 1116 | efx->port_enabled = false; |
| 1117 | mutex_unlock(&efx->mac_lock); |
| 1118 | |
| 1119 | /* Serialise against ef4_set_multicast_list() */ |
| 1120 | netif_addr_lock_bh(efx->net_dev); |
| 1121 | netif_addr_unlock_bh(efx->net_dev); |
| 1122 | |
| 1123 | cancel_delayed_work_sync(&efx->monitor_work); |
| 1124 | ef4_selftest_async_cancel(efx); |
| 1125 | cancel_work_sync(&efx->mac_work); |
| 1126 | } |
| 1127 | |
| 1128 | static void ef4_fini_port(struct ef4_nic *efx) |
| 1129 | { |
| 1130 | netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); |
| 1131 | |
| 1132 | if (!efx->port_initialized) |
| 1133 | return; |
| 1134 | |
| 1135 | efx->phy_op->fini(efx); |
| 1136 | efx->port_initialized = false; |
| 1137 | |
| 1138 | efx->link_state.up = false; |
| 1139 | ef4_link_status_changed(efx); |
| 1140 | } |
| 1141 | |
| 1142 | static void ef4_remove_port(struct ef4_nic *efx) |
| 1143 | { |
| 1144 | netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); |
| 1145 | |
| 1146 | efx->type->remove_port(efx); |
| 1147 | } |
| 1148 | |
| 1149 | /************************************************************************** |
| 1150 | * |
| 1151 | * NIC handling |
| 1152 | * |
| 1153 | **************************************************************************/ |
| 1154 | |
| 1155 | static LIST_HEAD(ef4_primary_list); |
| 1156 | static LIST_HEAD(ef4_unassociated_list); |
| 1157 | |
| 1158 | static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right) |
| 1159 | { |
| 1160 | return left->type == right->type && |
| 1161 | left->vpd_sn && right->vpd_sn && |
| 1162 | !strcmp(left->vpd_sn, right->vpd_sn); |
| 1163 | } |
| 1164 | |
| 1165 | static void ef4_associate(struct ef4_nic *efx) |
| 1166 | { |
| 1167 | struct ef4_nic *other, *next; |
| 1168 | |
| 1169 | if (efx->primary == efx) { |
| 1170 | /* Adding primary function; look for secondaries */ |
| 1171 | |
| 1172 | netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); |
| 1173 | list_add_tail(&efx->node, &ef4_primary_list); |
| 1174 | |
| 1175 | list_for_each_entry_safe(other, next, &ef4_unassociated_list, |
| 1176 | node) { |
| 1177 | if (ef4_same_controller(efx, other)) { |
| 1178 | list_del(&other->node); |
| 1179 | netif_dbg(other, probe, other->net_dev, |
| 1180 | "moving to secondary list of %s %s\n", |
| 1181 | pci_name(efx->pci_dev), |
| 1182 | efx->net_dev->name); |
| 1183 | list_add_tail(&other->node, |
| 1184 | &efx->secondary_list); |
| 1185 | other->primary = efx; |
| 1186 | } |
| 1187 | } |
| 1188 | } else { |
| 1189 | /* Adding secondary function; look for primary */ |
| 1190 | |
| 1191 | list_for_each_entry(other, &ef4_primary_list, node) { |
| 1192 | if (ef4_same_controller(efx, other)) { |
| 1193 | netif_dbg(efx, probe, efx->net_dev, |
| 1194 | "adding to secondary list of %s %s\n", |
| 1195 | pci_name(other->pci_dev), |
| 1196 | other->net_dev->name); |
| 1197 | list_add_tail(&efx->node, |
| 1198 | &other->secondary_list); |
| 1199 | efx->primary = other; |
| 1200 | return; |
| 1201 | } |
| 1202 | } |
| 1203 | |
| 1204 | netif_dbg(efx, probe, efx->net_dev, |
| 1205 | "adding to unassociated list\n"); |
| 1206 | list_add_tail(&efx->node, &ef4_unassociated_list); |
| 1207 | } |
| 1208 | } |
| 1209 | |
| 1210 | static void ef4_dissociate(struct ef4_nic *efx) |
| 1211 | { |
| 1212 | struct ef4_nic *other, *next; |
| 1213 | |
| 1214 | list_del(&efx->node); |
| 1215 | efx->primary = NULL; |
| 1216 | |
| 1217 | list_for_each_entry_safe(other, next, &efx->secondary_list, node) { |
| 1218 | list_del(&other->node); |
| 1219 | netif_dbg(other, probe, other->net_dev, |
| 1220 | "moving to unassociated list\n"); |
| 1221 | list_add_tail(&other->node, &ef4_unassociated_list); |
| 1222 | other->primary = NULL; |
| 1223 | } |
| 1224 | } |
| 1225 | |
| 1226 | /* This configures the PCI device to enable I/O and DMA. */ |
| 1227 | static int ef4_init_io(struct ef4_nic *efx) |
| 1228 | { |
| 1229 | struct pci_dev *pci_dev = efx->pci_dev; |
| 1230 | dma_addr_t dma_mask = efx->type->max_dma_mask; |
| 1231 | unsigned int mem_map_size = efx->type->mem_map_size(efx); |
| 1232 | int rc, bar; |
| 1233 | |
| 1234 | netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); |
| 1235 | |
| 1236 | bar = efx->type->mem_bar; |
| 1237 | |
| 1238 | rc = pci_enable_device(pci_dev); |
| 1239 | if (rc) { |
| 1240 | netif_err(efx, probe, efx->net_dev, |
| 1241 | "failed to enable PCI device\n"); |
| 1242 | goto fail1; |
| 1243 | } |
| 1244 | |
| 1245 | pci_set_master(pci_dev); |
| 1246 | |
| 1247 | /* Set the PCI DMA mask. Try all possibilities from our |
| 1248 | * genuine mask down to 32 bits, because some architectures |
| 1249 | * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit |
| 1250 | * masks event though they reject 46 bit masks. |
| 1251 | */ |
| 1252 | while (dma_mask > 0x7fffffffUL) { |
| 1253 | rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask); |
| 1254 | if (rc == 0) |
| 1255 | break; |
| 1256 | dma_mask >>= 1; |
| 1257 | } |
| 1258 | if (rc) { |
| 1259 | netif_err(efx, probe, efx->net_dev, |
| 1260 | "could not find a suitable DMA mask\n"); |
| 1261 | goto fail2; |
| 1262 | } |
| 1263 | netif_dbg(efx, probe, efx->net_dev, |
| 1264 | "using DMA mask %llx\n", (unsigned long long) dma_mask); |
| 1265 | |
| 1266 | efx->membase_phys = pci_resource_start(efx->pci_dev, bar); |
| 1267 | rc = pci_request_region(pci_dev, bar, "sfc"); |
| 1268 | if (rc) { |
| 1269 | netif_err(efx, probe, efx->net_dev, |
| 1270 | "request for memory BAR failed\n"); |
| 1271 | rc = -EIO; |
| 1272 | goto fail3; |
| 1273 | } |
| 1274 | efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size); |
| 1275 | if (!efx->membase) { |
| 1276 | netif_err(efx, probe, efx->net_dev, |
| 1277 | "could not map memory BAR at %llx+%x\n", |
| 1278 | (unsigned long long)efx->membase_phys, mem_map_size); |
| 1279 | rc = -ENOMEM; |
| 1280 | goto fail4; |
| 1281 | } |
| 1282 | netif_dbg(efx, probe, efx->net_dev, |
| 1283 | "memory BAR at %llx+%x (virtual %p)\n", |
| 1284 | (unsigned long long)efx->membase_phys, mem_map_size, |
| 1285 | efx->membase); |
| 1286 | |
| 1287 | return 0; |
| 1288 | |
| 1289 | fail4: |
| 1290 | pci_release_region(efx->pci_dev, bar); |
| 1291 | fail3: |
| 1292 | efx->membase_phys = 0; |
| 1293 | fail2: |
| 1294 | pci_disable_device(efx->pci_dev); |
| 1295 | fail1: |
| 1296 | return rc; |
| 1297 | } |
| 1298 | |
| 1299 | static void ef4_fini_io(struct ef4_nic *efx) |
| 1300 | { |
| 1301 | int bar; |
| 1302 | |
| 1303 | netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); |
| 1304 | |
| 1305 | if (efx->membase) { |
| 1306 | iounmap(efx->membase); |
| 1307 | efx->membase = NULL; |
| 1308 | } |
| 1309 | |
| 1310 | if (efx->membase_phys) { |
| 1311 | bar = efx->type->mem_bar; |
| 1312 | pci_release_region(efx->pci_dev, bar); |
| 1313 | efx->membase_phys = 0; |
| 1314 | } |
| 1315 | |
| 1316 | /* Don't disable bus-mastering if VFs are assigned */ |
| 1317 | if (!pci_vfs_assigned(efx->pci_dev)) |
| 1318 | pci_disable_device(efx->pci_dev); |
| 1319 | } |
| 1320 | |
| 1321 | void ef4_set_default_rx_indir_table(struct ef4_nic *efx) |
| 1322 | { |
| 1323 | size_t i; |
| 1324 | |
| 1325 | for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++) |
| 1326 | efx->rx_indir_table[i] = |
| 1327 | ethtool_rxfh_indir_default(i, efx->rss_spread); |
| 1328 | } |
| 1329 | |
| 1330 | static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx) |
| 1331 | { |
| 1332 | cpumask_var_t thread_mask; |
| 1333 | unsigned int count; |
| 1334 | int cpu; |
| 1335 | |
| 1336 | if (rss_cpus) { |
| 1337 | count = rss_cpus; |
| 1338 | } else { |
| 1339 | if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) { |
| 1340 | netif_warn(efx, probe, efx->net_dev, |
| 1341 | "RSS disabled due to allocation failure\n"); |
| 1342 | return 1; |
| 1343 | } |
| 1344 | |
| 1345 | count = 0; |
| 1346 | for_each_online_cpu(cpu) { |
| 1347 | if (!cpumask_test_cpu(cpu, thread_mask)) { |
| 1348 | ++count; |
| 1349 | cpumask_or(thread_mask, thread_mask, |
| 1350 | topology_sibling_cpumask(cpu)); |
| 1351 | } |
| 1352 | } |
| 1353 | |
| 1354 | free_cpumask_var(thread_mask); |
| 1355 | } |
| 1356 | |
Bert Kenward | 271a8b4 | 2017-04-12 17:06:52 +0100 | [diff] [blame] | 1357 | if (count > EF4_MAX_RX_QUEUES) { |
| 1358 | netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn, |
| 1359 | "Reducing number of rx queues from %u to %u.\n", |
| 1360 | count, EF4_MAX_RX_QUEUES); |
| 1361 | count = EF4_MAX_RX_QUEUES; |
| 1362 | } |
| 1363 | |
Edward Cree | 5a6681e | 2016-11-28 18:55:34 +0000 | [diff] [blame] | 1364 | return count; |
| 1365 | } |
| 1366 | |
| 1367 | /* Probe the number and type of interrupts we are able to obtain, and |
| 1368 | * the resulting numbers of channels and RX queues. |
| 1369 | */ |
| 1370 | static int ef4_probe_interrupts(struct ef4_nic *efx) |
| 1371 | { |
| 1372 | unsigned int extra_channels = 0; |
| 1373 | unsigned int i, j; |
| 1374 | int rc; |
| 1375 | |
| 1376 | for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) |
| 1377 | if (efx->extra_channel_type[i]) |
| 1378 | ++extra_channels; |
| 1379 | |
| 1380 | if (efx->interrupt_mode == EF4_INT_MODE_MSIX) { |
| 1381 | struct msix_entry xentries[EF4_MAX_CHANNELS]; |
| 1382 | unsigned int n_channels; |
| 1383 | |
| 1384 | n_channels = ef4_wanted_parallelism(efx); |
| 1385 | if (ef4_separate_tx_channels) |
| 1386 | n_channels *= 2; |
| 1387 | n_channels += extra_channels; |
| 1388 | n_channels = min(n_channels, efx->max_channels); |
| 1389 | |
| 1390 | for (i = 0; i < n_channels; i++) |
| 1391 | xentries[i].entry = i; |
| 1392 | rc = pci_enable_msix_range(efx->pci_dev, |
| 1393 | xentries, 1, n_channels); |
| 1394 | if (rc < 0) { |
| 1395 | /* Fall back to single channel MSI */ |
| 1396 | efx->interrupt_mode = EF4_INT_MODE_MSI; |
| 1397 | netif_err(efx, drv, efx->net_dev, |
| 1398 | "could not enable MSI-X\n"); |
| 1399 | } else if (rc < n_channels) { |
| 1400 | netif_err(efx, drv, efx->net_dev, |
| 1401 | "WARNING: Insufficient MSI-X vectors" |
| 1402 | " available (%d < %u).\n", rc, n_channels); |
| 1403 | netif_err(efx, drv, efx->net_dev, |
| 1404 | "WARNING: Performance may be reduced.\n"); |
| 1405 | n_channels = rc; |
| 1406 | } |
| 1407 | |
| 1408 | if (rc > 0) { |
| 1409 | efx->n_channels = n_channels; |
| 1410 | if (n_channels > extra_channels) |
| 1411 | n_channels -= extra_channels; |
| 1412 | if (ef4_separate_tx_channels) { |
| 1413 | efx->n_tx_channels = min(max(n_channels / 2, |
| 1414 | 1U), |
| 1415 | efx->max_tx_channels); |
| 1416 | efx->n_rx_channels = max(n_channels - |
| 1417 | efx->n_tx_channels, |
| 1418 | 1U); |
| 1419 | } else { |
| 1420 | efx->n_tx_channels = min(n_channels, |
| 1421 | efx->max_tx_channels); |
| 1422 | efx->n_rx_channels = n_channels; |
| 1423 | } |
| 1424 | for (i = 0; i < efx->n_channels; i++) |
| 1425 | ef4_get_channel(efx, i)->irq = |
| 1426 | xentries[i].vector; |
| 1427 | } |
| 1428 | } |
| 1429 | |
| 1430 | /* Try single interrupt MSI */ |
| 1431 | if (efx->interrupt_mode == EF4_INT_MODE_MSI) { |
| 1432 | efx->n_channels = 1; |
| 1433 | efx->n_rx_channels = 1; |
| 1434 | efx->n_tx_channels = 1; |
| 1435 | rc = pci_enable_msi(efx->pci_dev); |
| 1436 | if (rc == 0) { |
| 1437 | ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq; |
| 1438 | } else { |
| 1439 | netif_err(efx, drv, efx->net_dev, |
| 1440 | "could not enable MSI\n"); |
| 1441 | efx->interrupt_mode = EF4_INT_MODE_LEGACY; |
| 1442 | } |
| 1443 | } |
| 1444 | |
| 1445 | /* Assume legacy interrupts */ |
| 1446 | if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) { |
| 1447 | efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0); |
| 1448 | efx->n_rx_channels = 1; |
| 1449 | efx->n_tx_channels = 1; |
| 1450 | efx->legacy_irq = efx->pci_dev->irq; |
| 1451 | } |
| 1452 | |
| 1453 | /* Assign extra channels if possible */ |
| 1454 | j = efx->n_channels; |
| 1455 | for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) { |
| 1456 | if (!efx->extra_channel_type[i]) |
| 1457 | continue; |
| 1458 | if (efx->interrupt_mode != EF4_INT_MODE_MSIX || |
| 1459 | efx->n_channels <= extra_channels) { |
| 1460 | efx->extra_channel_type[i]->handle_no_channel(efx); |
| 1461 | } else { |
| 1462 | --j; |
| 1463 | ef4_get_channel(efx, j)->type = |
| 1464 | efx->extra_channel_type[i]; |
| 1465 | } |
| 1466 | } |
| 1467 | |
| 1468 | efx->rss_spread = efx->n_rx_channels; |
| 1469 | |
| 1470 | return 0; |
| 1471 | } |
| 1472 | |
| 1473 | static int ef4_soft_enable_interrupts(struct ef4_nic *efx) |
| 1474 | { |
| 1475 | struct ef4_channel *channel, *end_channel; |
| 1476 | int rc; |
| 1477 | |
| 1478 | BUG_ON(efx->state == STATE_DISABLED); |
| 1479 | |
| 1480 | efx->irq_soft_enabled = true; |
| 1481 | smp_wmb(); |
| 1482 | |
| 1483 | ef4_for_each_channel(channel, efx) { |
| 1484 | if (!channel->type->keep_eventq) { |
| 1485 | rc = ef4_init_eventq(channel); |
| 1486 | if (rc) |
| 1487 | goto fail; |
| 1488 | } |
| 1489 | ef4_start_eventq(channel); |
| 1490 | } |
| 1491 | |
| 1492 | return 0; |
| 1493 | fail: |
| 1494 | end_channel = channel; |
| 1495 | ef4_for_each_channel(channel, efx) { |
| 1496 | if (channel == end_channel) |
| 1497 | break; |
| 1498 | ef4_stop_eventq(channel); |
| 1499 | if (!channel->type->keep_eventq) |
| 1500 | ef4_fini_eventq(channel); |
| 1501 | } |
| 1502 | |
| 1503 | return rc; |
| 1504 | } |
| 1505 | |
| 1506 | static void ef4_soft_disable_interrupts(struct ef4_nic *efx) |
| 1507 | { |
| 1508 | struct ef4_channel *channel; |
| 1509 | |
| 1510 | if (efx->state == STATE_DISABLED) |
| 1511 | return; |
| 1512 | |
| 1513 | efx->irq_soft_enabled = false; |
| 1514 | smp_wmb(); |
| 1515 | |
| 1516 | if (efx->legacy_irq) |
| 1517 | synchronize_irq(efx->legacy_irq); |
| 1518 | |
| 1519 | ef4_for_each_channel(channel, efx) { |
| 1520 | if (channel->irq) |
| 1521 | synchronize_irq(channel->irq); |
| 1522 | |
| 1523 | ef4_stop_eventq(channel); |
| 1524 | if (!channel->type->keep_eventq) |
| 1525 | ef4_fini_eventq(channel); |
| 1526 | } |
| 1527 | } |
| 1528 | |
| 1529 | static int ef4_enable_interrupts(struct ef4_nic *efx) |
| 1530 | { |
| 1531 | struct ef4_channel *channel, *end_channel; |
| 1532 | int rc; |
| 1533 | |
| 1534 | BUG_ON(efx->state == STATE_DISABLED); |
| 1535 | |
| 1536 | if (efx->eeh_disabled_legacy_irq) { |
| 1537 | enable_irq(efx->legacy_irq); |
| 1538 | efx->eeh_disabled_legacy_irq = false; |
| 1539 | } |
| 1540 | |
| 1541 | efx->type->irq_enable_master(efx); |
| 1542 | |
| 1543 | ef4_for_each_channel(channel, efx) { |
| 1544 | if (channel->type->keep_eventq) { |
| 1545 | rc = ef4_init_eventq(channel); |
| 1546 | if (rc) |
| 1547 | goto fail; |
| 1548 | } |
| 1549 | } |
| 1550 | |
| 1551 | rc = ef4_soft_enable_interrupts(efx); |
| 1552 | if (rc) |
| 1553 | goto fail; |
| 1554 | |
| 1555 | return 0; |
| 1556 | |
| 1557 | fail: |
| 1558 | end_channel = channel; |
| 1559 | ef4_for_each_channel(channel, efx) { |
| 1560 | if (channel == end_channel) |
| 1561 | break; |
| 1562 | if (channel->type->keep_eventq) |
| 1563 | ef4_fini_eventq(channel); |
| 1564 | } |
| 1565 | |
| 1566 | efx->type->irq_disable_non_ev(efx); |
| 1567 | |
| 1568 | return rc; |
| 1569 | } |
| 1570 | |
| 1571 | static void ef4_disable_interrupts(struct ef4_nic *efx) |
| 1572 | { |
| 1573 | struct ef4_channel *channel; |
| 1574 | |
| 1575 | ef4_soft_disable_interrupts(efx); |
| 1576 | |
| 1577 | ef4_for_each_channel(channel, efx) { |
| 1578 | if (channel->type->keep_eventq) |
| 1579 | ef4_fini_eventq(channel); |
| 1580 | } |
| 1581 | |
| 1582 | efx->type->irq_disable_non_ev(efx); |
| 1583 | } |
| 1584 | |
| 1585 | static void ef4_remove_interrupts(struct ef4_nic *efx) |
| 1586 | { |
| 1587 | struct ef4_channel *channel; |
| 1588 | |
| 1589 | /* Remove MSI/MSI-X interrupts */ |
| 1590 | ef4_for_each_channel(channel, efx) |
| 1591 | channel->irq = 0; |
| 1592 | pci_disable_msi(efx->pci_dev); |
| 1593 | pci_disable_msix(efx->pci_dev); |
| 1594 | |
| 1595 | /* Remove legacy interrupt */ |
| 1596 | efx->legacy_irq = 0; |
| 1597 | } |
| 1598 | |
| 1599 | static void ef4_set_channels(struct ef4_nic *efx) |
| 1600 | { |
| 1601 | struct ef4_channel *channel; |
| 1602 | struct ef4_tx_queue *tx_queue; |
| 1603 | |
| 1604 | efx->tx_channel_offset = |
| 1605 | ef4_separate_tx_channels ? |
| 1606 | efx->n_channels - efx->n_tx_channels : 0; |
| 1607 | |
| 1608 | /* We need to mark which channels really have RX and TX |
| 1609 | * queues, and adjust the TX queue numbers if we have separate |
| 1610 | * RX-only and TX-only channels. |
| 1611 | */ |
| 1612 | ef4_for_each_channel(channel, efx) { |
| 1613 | if (channel->channel < efx->n_rx_channels) |
| 1614 | channel->rx_queue.core_index = channel->channel; |
| 1615 | else |
| 1616 | channel->rx_queue.core_index = -1; |
| 1617 | |
| 1618 | ef4_for_each_channel_tx_queue(tx_queue, channel) |
| 1619 | tx_queue->queue -= (efx->tx_channel_offset * |
| 1620 | EF4_TXQ_TYPES); |
| 1621 | } |
| 1622 | } |
| 1623 | |
| 1624 | static int ef4_probe_nic(struct ef4_nic *efx) |
| 1625 | { |
| 1626 | int rc; |
| 1627 | |
| 1628 | netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); |
| 1629 | |
| 1630 | /* Carry out hardware-type specific initialisation */ |
| 1631 | rc = efx->type->probe(efx); |
| 1632 | if (rc) |
| 1633 | return rc; |
| 1634 | |
| 1635 | do { |
| 1636 | if (!efx->max_channels || !efx->max_tx_channels) { |
| 1637 | netif_err(efx, drv, efx->net_dev, |
| 1638 | "Insufficient resources to allocate" |
| 1639 | " any channels\n"); |
| 1640 | rc = -ENOSPC; |
| 1641 | goto fail1; |
| 1642 | } |
| 1643 | |
| 1644 | /* Determine the number of channels and queues by trying |
| 1645 | * to hook in MSI-X interrupts. |
| 1646 | */ |
| 1647 | rc = ef4_probe_interrupts(efx); |
| 1648 | if (rc) |
| 1649 | goto fail1; |
| 1650 | |
| 1651 | ef4_set_channels(efx); |
| 1652 | |
| 1653 | /* dimension_resources can fail with EAGAIN */ |
| 1654 | rc = efx->type->dimension_resources(efx); |
| 1655 | if (rc != 0 && rc != -EAGAIN) |
| 1656 | goto fail2; |
| 1657 | |
| 1658 | if (rc == -EAGAIN) |
| 1659 | /* try again with new max_channels */ |
| 1660 | ef4_remove_interrupts(efx); |
| 1661 | |
| 1662 | } while (rc == -EAGAIN); |
| 1663 | |
| 1664 | if (efx->n_channels > 1) |
| 1665 | netdev_rss_key_fill(&efx->rx_hash_key, |
| 1666 | sizeof(efx->rx_hash_key)); |
| 1667 | ef4_set_default_rx_indir_table(efx); |
| 1668 | |
| 1669 | netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); |
| 1670 | netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); |
| 1671 | |
| 1672 | /* Initialise the interrupt moderation settings */ |
| 1673 | efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000); |
| 1674 | ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, |
| 1675 | true); |
| 1676 | |
| 1677 | return 0; |
| 1678 | |
| 1679 | fail2: |
| 1680 | ef4_remove_interrupts(efx); |
| 1681 | fail1: |
| 1682 | efx->type->remove(efx); |
| 1683 | return rc; |
| 1684 | } |
| 1685 | |
| 1686 | static void ef4_remove_nic(struct ef4_nic *efx) |
| 1687 | { |
| 1688 | netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); |
| 1689 | |
| 1690 | ef4_remove_interrupts(efx); |
| 1691 | efx->type->remove(efx); |
| 1692 | } |
| 1693 | |
| 1694 | static int ef4_probe_filters(struct ef4_nic *efx) |
| 1695 | { |
| 1696 | int rc; |
| 1697 | |
| 1698 | spin_lock_init(&efx->filter_lock); |
| 1699 | init_rwsem(&efx->filter_sem); |
| 1700 | mutex_lock(&efx->mac_lock); |
| 1701 | down_write(&efx->filter_sem); |
| 1702 | rc = efx->type->filter_table_probe(efx); |
| 1703 | if (rc) |
| 1704 | goto out_unlock; |
| 1705 | |
| 1706 | #ifdef CONFIG_RFS_ACCEL |
| 1707 | if (efx->type->offload_features & NETIF_F_NTUPLE) { |
| 1708 | struct ef4_channel *channel; |
| 1709 | int i, success = 1; |
| 1710 | |
| 1711 | ef4_for_each_channel(channel, efx) { |
| 1712 | channel->rps_flow_id = |
| 1713 | kcalloc(efx->type->max_rx_ip_filters, |
| 1714 | sizeof(*channel->rps_flow_id), |
| 1715 | GFP_KERNEL); |
| 1716 | if (!channel->rps_flow_id) |
| 1717 | success = 0; |
| 1718 | else |
| 1719 | for (i = 0; |
| 1720 | i < efx->type->max_rx_ip_filters; |
| 1721 | ++i) |
| 1722 | channel->rps_flow_id[i] = |
| 1723 | RPS_FLOW_ID_INVALID; |
| 1724 | } |
| 1725 | |
| 1726 | if (!success) { |
| 1727 | ef4_for_each_channel(channel, efx) |
| 1728 | kfree(channel->rps_flow_id); |
| 1729 | efx->type->filter_table_remove(efx); |
| 1730 | rc = -ENOMEM; |
| 1731 | goto out_unlock; |
| 1732 | } |
| 1733 | |
| 1734 | efx->rps_expire_index = efx->rps_expire_channel = 0; |
| 1735 | } |
| 1736 | #endif |
| 1737 | out_unlock: |
| 1738 | up_write(&efx->filter_sem); |
| 1739 | mutex_unlock(&efx->mac_lock); |
| 1740 | return rc; |
| 1741 | } |
| 1742 | |
| 1743 | static void ef4_remove_filters(struct ef4_nic *efx) |
| 1744 | { |
| 1745 | #ifdef CONFIG_RFS_ACCEL |
| 1746 | struct ef4_channel *channel; |
| 1747 | |
| 1748 | ef4_for_each_channel(channel, efx) |
| 1749 | kfree(channel->rps_flow_id); |
| 1750 | #endif |
| 1751 | down_write(&efx->filter_sem); |
| 1752 | efx->type->filter_table_remove(efx); |
| 1753 | up_write(&efx->filter_sem); |
| 1754 | } |
| 1755 | |
| 1756 | static void ef4_restore_filters(struct ef4_nic *efx) |
| 1757 | { |
| 1758 | down_read(&efx->filter_sem); |
| 1759 | efx->type->filter_table_restore(efx); |
| 1760 | up_read(&efx->filter_sem); |
| 1761 | } |
| 1762 | |
| 1763 | /************************************************************************** |
| 1764 | * |
| 1765 | * NIC startup/shutdown |
| 1766 | * |
| 1767 | *************************************************************************/ |
| 1768 | |
| 1769 | static int ef4_probe_all(struct ef4_nic *efx) |
| 1770 | { |
| 1771 | int rc; |
| 1772 | |
| 1773 | rc = ef4_probe_nic(efx); |
| 1774 | if (rc) { |
| 1775 | netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); |
| 1776 | goto fail1; |
| 1777 | } |
| 1778 | |
| 1779 | rc = ef4_probe_port(efx); |
| 1780 | if (rc) { |
| 1781 | netif_err(efx, probe, efx->net_dev, "failed to create port\n"); |
| 1782 | goto fail2; |
| 1783 | } |
| 1784 | |
| 1785 | BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT); |
| 1786 | if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) { |
| 1787 | rc = -EINVAL; |
| 1788 | goto fail3; |
| 1789 | } |
| 1790 | efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE; |
| 1791 | |
| 1792 | rc = ef4_probe_filters(efx); |
| 1793 | if (rc) { |
| 1794 | netif_err(efx, probe, efx->net_dev, |
| 1795 | "failed to create filter tables\n"); |
| 1796 | goto fail4; |
| 1797 | } |
| 1798 | |
| 1799 | rc = ef4_probe_channels(efx); |
| 1800 | if (rc) |
| 1801 | goto fail5; |
| 1802 | |
| 1803 | return 0; |
| 1804 | |
| 1805 | fail5: |
| 1806 | ef4_remove_filters(efx); |
| 1807 | fail4: |
| 1808 | fail3: |
| 1809 | ef4_remove_port(efx); |
| 1810 | fail2: |
| 1811 | ef4_remove_nic(efx); |
| 1812 | fail1: |
| 1813 | return rc; |
| 1814 | } |
| 1815 | |
| 1816 | /* If the interface is supposed to be running but is not, start |
| 1817 | * the hardware and software data path, regular activity for the port |
| 1818 | * (MAC statistics, link polling, etc.) and schedule the port to be |
| 1819 | * reconfigured. Interrupts must already be enabled. This function |
| 1820 | * is safe to call multiple times, so long as the NIC is not disabled. |
| 1821 | * Requires the RTNL lock. |
| 1822 | */ |
| 1823 | static void ef4_start_all(struct ef4_nic *efx) |
| 1824 | { |
| 1825 | EF4_ASSERT_RESET_SERIALISED(efx); |
| 1826 | BUG_ON(efx->state == STATE_DISABLED); |
| 1827 | |
| 1828 | /* Check that it is appropriate to restart the interface. All |
| 1829 | * of these flags are safe to read under just the rtnl lock */ |
| 1830 | if (efx->port_enabled || !netif_running(efx->net_dev) || |
| 1831 | efx->reset_pending) |
| 1832 | return; |
| 1833 | |
| 1834 | ef4_start_port(efx); |
| 1835 | ef4_start_datapath(efx); |
| 1836 | |
| 1837 | /* Start the hardware monitor if there is one */ |
| 1838 | if (efx->type->monitor != NULL) |
| 1839 | queue_delayed_work(efx->workqueue, &efx->monitor_work, |
| 1840 | ef4_monitor_interval); |
| 1841 | |
| 1842 | efx->type->start_stats(efx); |
| 1843 | efx->type->pull_stats(efx); |
| 1844 | spin_lock_bh(&efx->stats_lock); |
| 1845 | efx->type->update_stats(efx, NULL, NULL); |
| 1846 | spin_unlock_bh(&efx->stats_lock); |
| 1847 | } |
| 1848 | |
| 1849 | /* Quiesce the hardware and software data path, and regular activity |
| 1850 | * for the port without bringing the link down. Safe to call multiple |
| 1851 | * times with the NIC in almost any state, but interrupts should be |
| 1852 | * enabled. Requires the RTNL lock. |
| 1853 | */ |
| 1854 | static void ef4_stop_all(struct ef4_nic *efx) |
| 1855 | { |
| 1856 | EF4_ASSERT_RESET_SERIALISED(efx); |
| 1857 | |
| 1858 | /* port_enabled can be read safely under the rtnl lock */ |
| 1859 | if (!efx->port_enabled) |
| 1860 | return; |
| 1861 | |
| 1862 | /* update stats before we go down so we can accurately count |
| 1863 | * rx_nodesc_drops |
| 1864 | */ |
| 1865 | efx->type->pull_stats(efx); |
| 1866 | spin_lock_bh(&efx->stats_lock); |
| 1867 | efx->type->update_stats(efx, NULL, NULL); |
| 1868 | spin_unlock_bh(&efx->stats_lock); |
| 1869 | efx->type->stop_stats(efx); |
| 1870 | ef4_stop_port(efx); |
| 1871 | |
| 1872 | /* Stop the kernel transmit interface. This is only valid if |
| 1873 | * the device is stopped or detached; otherwise the watchdog |
| 1874 | * may fire immediately. |
| 1875 | */ |
| 1876 | WARN_ON(netif_running(efx->net_dev) && |
| 1877 | netif_device_present(efx->net_dev)); |
| 1878 | netif_tx_disable(efx->net_dev); |
| 1879 | |
| 1880 | ef4_stop_datapath(efx); |
| 1881 | } |
| 1882 | |
| 1883 | static void ef4_remove_all(struct ef4_nic *efx) |
| 1884 | { |
| 1885 | ef4_remove_channels(efx); |
| 1886 | ef4_remove_filters(efx); |
| 1887 | ef4_remove_port(efx); |
| 1888 | ef4_remove_nic(efx); |
| 1889 | } |
| 1890 | |
| 1891 | /************************************************************************** |
| 1892 | * |
| 1893 | * Interrupt moderation |
| 1894 | * |
| 1895 | **************************************************************************/ |
| 1896 | unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs) |
| 1897 | { |
| 1898 | if (usecs == 0) |
| 1899 | return 0; |
| 1900 | if (usecs * 1000 < efx->timer_quantum_ns) |
| 1901 | return 1; /* never round down to 0 */ |
| 1902 | return usecs * 1000 / efx->timer_quantum_ns; |
| 1903 | } |
| 1904 | |
| 1905 | unsigned int ef4_ticks_to_usecs(struct ef4_nic *efx, unsigned int ticks) |
| 1906 | { |
| 1907 | /* We must round up when converting ticks to microseconds |
| 1908 | * because we round down when converting the other way. |
| 1909 | */ |
| 1910 | return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000); |
| 1911 | } |
| 1912 | |
| 1913 | /* Set interrupt moderation parameters */ |
| 1914 | int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs, |
| 1915 | unsigned int rx_usecs, bool rx_adaptive, |
| 1916 | bool rx_may_override_tx) |
| 1917 | { |
| 1918 | struct ef4_channel *channel; |
| 1919 | unsigned int timer_max_us; |
| 1920 | |
| 1921 | EF4_ASSERT_RESET_SERIALISED(efx); |
| 1922 | |
| 1923 | timer_max_us = efx->timer_max_ns / 1000; |
| 1924 | |
| 1925 | if (tx_usecs > timer_max_us || rx_usecs > timer_max_us) |
| 1926 | return -EINVAL; |
| 1927 | |
| 1928 | if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 && |
| 1929 | !rx_may_override_tx) { |
| 1930 | netif_err(efx, drv, efx->net_dev, "Channels are shared. " |
| 1931 | "RX and TX IRQ moderation must be equal\n"); |
| 1932 | return -EINVAL; |
| 1933 | } |
| 1934 | |
| 1935 | efx->irq_rx_adaptive = rx_adaptive; |
| 1936 | efx->irq_rx_moderation_us = rx_usecs; |
| 1937 | ef4_for_each_channel(channel, efx) { |
| 1938 | if (ef4_channel_has_rx_queue(channel)) |
| 1939 | channel->irq_moderation_us = rx_usecs; |
| 1940 | else if (ef4_channel_has_tx_queues(channel)) |
| 1941 | channel->irq_moderation_us = tx_usecs; |
| 1942 | } |
| 1943 | |
| 1944 | return 0; |
| 1945 | } |
| 1946 | |
| 1947 | void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs, |
| 1948 | unsigned int *rx_usecs, bool *rx_adaptive) |
| 1949 | { |
| 1950 | *rx_adaptive = efx->irq_rx_adaptive; |
| 1951 | *rx_usecs = efx->irq_rx_moderation_us; |
| 1952 | |
| 1953 | /* If channels are shared between RX and TX, so is IRQ |
| 1954 | * moderation. Otherwise, IRQ moderation is the same for all |
| 1955 | * TX channels and is not adaptive. |
| 1956 | */ |
| 1957 | if (efx->tx_channel_offset == 0) { |
| 1958 | *tx_usecs = *rx_usecs; |
| 1959 | } else { |
| 1960 | struct ef4_channel *tx_channel; |
| 1961 | |
| 1962 | tx_channel = efx->channel[efx->tx_channel_offset]; |
| 1963 | *tx_usecs = tx_channel->irq_moderation_us; |
| 1964 | } |
| 1965 | } |
| 1966 | |
| 1967 | /************************************************************************** |
| 1968 | * |
| 1969 | * Hardware monitor |
| 1970 | * |
| 1971 | **************************************************************************/ |
| 1972 | |
| 1973 | /* Run periodically off the general workqueue */ |
| 1974 | static void ef4_monitor(struct work_struct *data) |
| 1975 | { |
| 1976 | struct ef4_nic *efx = container_of(data, struct ef4_nic, |
| 1977 | monitor_work.work); |
| 1978 | |
| 1979 | netif_vdbg(efx, timer, efx->net_dev, |
| 1980 | "hardware monitor executing on CPU %d\n", |
| 1981 | raw_smp_processor_id()); |
| 1982 | BUG_ON(efx->type->monitor == NULL); |
| 1983 | |
| 1984 | /* If the mac_lock is already held then it is likely a port |
| 1985 | * reconfiguration is already in place, which will likely do |
| 1986 | * most of the work of monitor() anyway. */ |
| 1987 | if (mutex_trylock(&efx->mac_lock)) { |
| 1988 | if (efx->port_enabled) |
| 1989 | efx->type->monitor(efx); |
| 1990 | mutex_unlock(&efx->mac_lock); |
| 1991 | } |
| 1992 | |
| 1993 | queue_delayed_work(efx->workqueue, &efx->monitor_work, |
| 1994 | ef4_monitor_interval); |
| 1995 | } |
| 1996 | |
| 1997 | /************************************************************************** |
| 1998 | * |
| 1999 | * ioctls |
| 2000 | * |
| 2001 | *************************************************************************/ |
| 2002 | |
| 2003 | /* Net device ioctl |
| 2004 | * Context: process, rtnl_lock() held. |
| 2005 | */ |
| 2006 | static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) |
| 2007 | { |
| 2008 | struct ef4_nic *efx = netdev_priv(net_dev); |
| 2009 | struct mii_ioctl_data *data = if_mii(ifr); |
| 2010 | |
| 2011 | /* Convert phy_id from older PRTAD/DEVAD format */ |
| 2012 | if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && |
| 2013 | (data->phy_id & 0xfc00) == 0x0400) |
| 2014 | data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; |
| 2015 | |
| 2016 | return mdio_mii_ioctl(&efx->mdio, data, cmd); |
| 2017 | } |
| 2018 | |
| 2019 | /************************************************************************** |
| 2020 | * |
| 2021 | * NAPI interface |
| 2022 | * |
| 2023 | **************************************************************************/ |
| 2024 | |
| 2025 | static void ef4_init_napi_channel(struct ef4_channel *channel) |
| 2026 | { |
| 2027 | struct ef4_nic *efx = channel->efx; |
| 2028 | |
| 2029 | channel->napi_dev = efx->net_dev; |
| 2030 | netif_napi_add(channel->napi_dev, &channel->napi_str, |
| 2031 | ef4_poll, napi_weight); |
Edward Cree | 5a6681e | 2016-11-28 18:55:34 +0000 | [diff] [blame] | 2032 | } |
| 2033 | |
| 2034 | static void ef4_init_napi(struct ef4_nic *efx) |
| 2035 | { |
| 2036 | struct ef4_channel *channel; |
| 2037 | |
| 2038 | ef4_for_each_channel(channel, efx) |
| 2039 | ef4_init_napi_channel(channel); |
| 2040 | } |
| 2041 | |
| 2042 | static void ef4_fini_napi_channel(struct ef4_channel *channel) |
| 2043 | { |
| 2044 | if (channel->napi_dev) |
| 2045 | netif_napi_del(&channel->napi_str); |
| 2046 | |
| 2047 | channel->napi_dev = NULL; |
| 2048 | } |
| 2049 | |
| 2050 | static void ef4_fini_napi(struct ef4_nic *efx) |
| 2051 | { |
| 2052 | struct ef4_channel *channel; |
| 2053 | |
| 2054 | ef4_for_each_channel(channel, efx) |
| 2055 | ef4_fini_napi_channel(channel); |
| 2056 | } |
| 2057 | |
| 2058 | /************************************************************************** |
| 2059 | * |
| 2060 | * Kernel netpoll interface |
| 2061 | * |
| 2062 | *************************************************************************/ |
| 2063 | |
| 2064 | #ifdef CONFIG_NET_POLL_CONTROLLER |
| 2065 | |
| 2066 | /* Although in the common case interrupts will be disabled, this is not |
| 2067 | * guaranteed. However, all our work happens inside the NAPI callback, |
| 2068 | * so no locking is required. |
| 2069 | */ |
| 2070 | static void ef4_netpoll(struct net_device *net_dev) |
| 2071 | { |
| 2072 | struct ef4_nic *efx = netdev_priv(net_dev); |
| 2073 | struct ef4_channel *channel; |
| 2074 | |
| 2075 | ef4_for_each_channel(channel, efx) |
| 2076 | ef4_schedule_channel(channel); |
| 2077 | } |
| 2078 | |
| 2079 | #endif |
| 2080 | |
Edward Cree | 5a6681e | 2016-11-28 18:55:34 +0000 | [diff] [blame] | 2081 | /************************************************************************** |
| 2082 | * |
| 2083 | * Kernel net device interface |
| 2084 | * |
| 2085 | *************************************************************************/ |
| 2086 | |
| 2087 | /* Context: process, rtnl_lock() held. */ |
| 2088 | int ef4_net_open(struct net_device *net_dev) |
| 2089 | { |
| 2090 | struct ef4_nic *efx = netdev_priv(net_dev); |
| 2091 | int rc; |
| 2092 | |
| 2093 | netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", |
| 2094 | raw_smp_processor_id()); |
| 2095 | |
| 2096 | rc = ef4_check_disabled(efx); |
| 2097 | if (rc) |
| 2098 | return rc; |
| 2099 | if (efx->phy_mode & PHY_MODE_SPECIAL) |
| 2100 | return -EBUSY; |
| 2101 | |
| 2102 | /* Notify the kernel of the link state polled during driver load, |
| 2103 | * before the monitor starts running */ |
| 2104 | ef4_link_status_changed(efx); |
| 2105 | |
| 2106 | ef4_start_all(efx); |
| 2107 | ef4_selftest_async_start(efx); |
| 2108 | return 0; |
| 2109 | } |
| 2110 | |
| 2111 | /* Context: process, rtnl_lock() held. |
| 2112 | * Note that the kernel will ignore our return code; this method |
| 2113 | * should really be a void. |
| 2114 | */ |
| 2115 | int ef4_net_stop(struct net_device *net_dev) |
| 2116 | { |
| 2117 | struct ef4_nic *efx = netdev_priv(net_dev); |
| 2118 | |
| 2119 | netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", |
| 2120 | raw_smp_processor_id()); |
| 2121 | |
| 2122 | /* Stop the device and flush all the channels */ |
| 2123 | ef4_stop_all(efx); |
| 2124 | |
| 2125 | return 0; |
| 2126 | } |
| 2127 | |
| 2128 | /* Context: process, dev_base_lock or RTNL held, non-blocking. */ |
stephen hemminger | bc1f447 | 2017-01-06 19:12:52 -0800 | [diff] [blame] | 2129 | static void ef4_net_stats(struct net_device *net_dev, |
| 2130 | struct rtnl_link_stats64 *stats) |
Edward Cree | 5a6681e | 2016-11-28 18:55:34 +0000 | [diff] [blame] | 2131 | { |
| 2132 | struct ef4_nic *efx = netdev_priv(net_dev); |
| 2133 | |
| 2134 | spin_lock_bh(&efx->stats_lock); |
| 2135 | efx->type->update_stats(efx, NULL, stats); |
| 2136 | spin_unlock_bh(&efx->stats_lock); |
Edward Cree | 5a6681e | 2016-11-28 18:55:34 +0000 | [diff] [blame] | 2137 | } |
| 2138 | |
| 2139 | /* Context: netif_tx_lock held, BHs disabled. */ |
| 2140 | static void ef4_watchdog(struct net_device *net_dev) |
| 2141 | { |
| 2142 | struct ef4_nic *efx = netdev_priv(net_dev); |
| 2143 | |
| 2144 | netif_err(efx, tx_err, efx->net_dev, |
| 2145 | "TX stuck with port_enabled=%d: resetting channels\n", |
| 2146 | efx->port_enabled); |
| 2147 | |
| 2148 | ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); |
| 2149 | } |
| 2150 | |
| 2151 | |
| 2152 | /* Context: process, rtnl_lock() held. */ |
| 2153 | static int ef4_change_mtu(struct net_device *net_dev, int new_mtu) |
| 2154 | { |
| 2155 | struct ef4_nic *efx = netdev_priv(net_dev); |
| 2156 | int rc; |
| 2157 | |
| 2158 | rc = ef4_check_disabled(efx); |
| 2159 | if (rc) |
| 2160 | return rc; |
| 2161 | |
| 2162 | netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); |
| 2163 | |
| 2164 | ef4_device_detach_sync(efx); |
| 2165 | ef4_stop_all(efx); |
| 2166 | |
| 2167 | mutex_lock(&efx->mac_lock); |
| 2168 | net_dev->mtu = new_mtu; |
| 2169 | ef4_mac_reconfigure(efx); |
| 2170 | mutex_unlock(&efx->mac_lock); |
| 2171 | |
| 2172 | ef4_start_all(efx); |
| 2173 | netif_device_attach(efx->net_dev); |
| 2174 | return 0; |
| 2175 | } |
| 2176 | |
| 2177 | static int ef4_set_mac_address(struct net_device *net_dev, void *data) |
| 2178 | { |
| 2179 | struct ef4_nic *efx = netdev_priv(net_dev); |
| 2180 | struct sockaddr *addr = data; |
| 2181 | u8 *new_addr = addr->sa_data; |
| 2182 | u8 old_addr[6]; |
| 2183 | int rc; |
| 2184 | |
| 2185 | if (!is_valid_ether_addr(new_addr)) { |
| 2186 | netif_err(efx, drv, efx->net_dev, |
| 2187 | "invalid ethernet MAC address requested: %pM\n", |
| 2188 | new_addr); |
| 2189 | return -EADDRNOTAVAIL; |
| 2190 | } |
| 2191 | |
| 2192 | /* save old address */ |
| 2193 | ether_addr_copy(old_addr, net_dev->dev_addr); |
| 2194 | ether_addr_copy(net_dev->dev_addr, new_addr); |
| 2195 | if (efx->type->set_mac_address) { |
| 2196 | rc = efx->type->set_mac_address(efx); |
| 2197 | if (rc) { |
| 2198 | ether_addr_copy(net_dev->dev_addr, old_addr); |
| 2199 | return rc; |
| 2200 | } |
| 2201 | } |
| 2202 | |
| 2203 | /* Reconfigure the MAC */ |
| 2204 | mutex_lock(&efx->mac_lock); |
| 2205 | ef4_mac_reconfigure(efx); |
| 2206 | mutex_unlock(&efx->mac_lock); |
| 2207 | |
| 2208 | return 0; |
| 2209 | } |
| 2210 | |
| 2211 | /* Context: netif_addr_lock held, BHs disabled. */ |
| 2212 | static void ef4_set_rx_mode(struct net_device *net_dev) |
| 2213 | { |
| 2214 | struct ef4_nic *efx = netdev_priv(net_dev); |
| 2215 | |
| 2216 | if (efx->port_enabled) |
| 2217 | queue_work(efx->workqueue, &efx->mac_work); |
| 2218 | /* Otherwise ef4_start_port() will do this */ |
| 2219 | } |
| 2220 | |
| 2221 | static int ef4_set_features(struct net_device *net_dev, netdev_features_t data) |
| 2222 | { |
| 2223 | struct ef4_nic *efx = netdev_priv(net_dev); |
| 2224 | int rc; |
| 2225 | |
| 2226 | /* If disabling RX n-tuple filtering, clear existing filters */ |
| 2227 | if (net_dev->features & ~data & NETIF_F_NTUPLE) { |
| 2228 | rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL); |
| 2229 | if (rc) |
| 2230 | return rc; |
| 2231 | } |
| 2232 | |
| 2233 | /* If Rx VLAN filter is changed, update filters via mac_reconfigure */ |
| 2234 | if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) { |
| 2235 | /* ef4_set_rx_mode() will schedule MAC work to update filters |
| 2236 | * when a new features are finally set in net_dev. |
| 2237 | */ |
| 2238 | ef4_set_rx_mode(net_dev); |
| 2239 | } |
| 2240 | |
| 2241 | return 0; |
| 2242 | } |
| 2243 | |
| 2244 | static const struct net_device_ops ef4_netdev_ops = { |
| 2245 | .ndo_open = ef4_net_open, |
| 2246 | .ndo_stop = ef4_net_stop, |
| 2247 | .ndo_get_stats64 = ef4_net_stats, |
| 2248 | .ndo_tx_timeout = ef4_watchdog, |
| 2249 | .ndo_start_xmit = ef4_hard_start_xmit, |
| 2250 | .ndo_validate_addr = eth_validate_addr, |
| 2251 | .ndo_do_ioctl = ef4_ioctl, |
| 2252 | .ndo_change_mtu = ef4_change_mtu, |
| 2253 | .ndo_set_mac_address = ef4_set_mac_address, |
| 2254 | .ndo_set_rx_mode = ef4_set_rx_mode, |
| 2255 | .ndo_set_features = ef4_set_features, |
| 2256 | #ifdef CONFIG_NET_POLL_CONTROLLER |
| 2257 | .ndo_poll_controller = ef4_netpoll, |
| 2258 | #endif |
| 2259 | .ndo_setup_tc = ef4_setup_tc, |
Edward Cree | 5a6681e | 2016-11-28 18:55:34 +0000 | [diff] [blame] | 2260 | #ifdef CONFIG_RFS_ACCEL |
| 2261 | .ndo_rx_flow_steer = ef4_filter_rfs, |
| 2262 | #endif |
| 2263 | }; |
| 2264 | |
| 2265 | static void ef4_update_name(struct ef4_nic *efx) |
| 2266 | { |
| 2267 | strcpy(efx->name, efx->net_dev->name); |
| 2268 | ef4_mtd_rename(efx); |
| 2269 | ef4_set_channel_names(efx); |
| 2270 | } |
| 2271 | |
| 2272 | static int ef4_netdev_event(struct notifier_block *this, |
| 2273 | unsigned long event, void *ptr) |
| 2274 | { |
| 2275 | struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); |
| 2276 | |
| 2277 | if ((net_dev->netdev_ops == &ef4_netdev_ops) && |
| 2278 | event == NETDEV_CHANGENAME) |
| 2279 | ef4_update_name(netdev_priv(net_dev)); |
| 2280 | |
| 2281 | return NOTIFY_DONE; |
| 2282 | } |
| 2283 | |
| 2284 | static struct notifier_block ef4_netdev_notifier = { |
| 2285 | .notifier_call = ef4_netdev_event, |
| 2286 | }; |
| 2287 | |
| 2288 | static ssize_t |
| 2289 | show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) |
| 2290 | { |
| 2291 | struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev)); |
| 2292 | return sprintf(buf, "%d\n", efx->phy_type); |
| 2293 | } |
| 2294 | static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL); |
| 2295 | |
| 2296 | static int ef4_register_netdev(struct ef4_nic *efx) |
| 2297 | { |
| 2298 | struct net_device *net_dev = efx->net_dev; |
| 2299 | struct ef4_channel *channel; |
| 2300 | int rc; |
| 2301 | |
| 2302 | net_dev->watchdog_timeo = 5 * HZ; |
| 2303 | net_dev->irq = efx->pci_dev->irq; |
| 2304 | net_dev->netdev_ops = &ef4_netdev_ops; |
| 2305 | net_dev->ethtool_ops = &ef4_ethtool_ops; |
| 2306 | net_dev->gso_max_segs = EF4_TSO_MAX_SEGS; |
| 2307 | net_dev->min_mtu = EF4_MIN_MTU; |
| 2308 | net_dev->max_mtu = EF4_MAX_MTU; |
| 2309 | |
| 2310 | rtnl_lock(); |
| 2311 | |
| 2312 | /* Enable resets to be scheduled and check whether any were |
| 2313 | * already requested. If so, the NIC is probably hosed so we |
| 2314 | * abort. |
| 2315 | */ |
| 2316 | efx->state = STATE_READY; |
| 2317 | smp_mb(); /* ensure we change state before checking reset_pending */ |
| 2318 | if (efx->reset_pending) { |
| 2319 | netif_err(efx, probe, efx->net_dev, |
| 2320 | "aborting probe due to scheduled reset\n"); |
| 2321 | rc = -EIO; |
| 2322 | goto fail_locked; |
| 2323 | } |
| 2324 | |
| 2325 | rc = dev_alloc_name(net_dev, net_dev->name); |
| 2326 | if (rc < 0) |
| 2327 | goto fail_locked; |
| 2328 | ef4_update_name(efx); |
| 2329 | |
| 2330 | /* Always start with carrier off; PHY events will detect the link */ |
| 2331 | netif_carrier_off(net_dev); |
| 2332 | |
| 2333 | rc = register_netdevice(net_dev); |
| 2334 | if (rc) |
| 2335 | goto fail_locked; |
| 2336 | |
| 2337 | ef4_for_each_channel(channel, efx) { |
| 2338 | struct ef4_tx_queue *tx_queue; |
| 2339 | ef4_for_each_channel_tx_queue(tx_queue, channel) |
| 2340 | ef4_init_tx_queue_core_txq(tx_queue); |
| 2341 | } |
| 2342 | |
| 2343 | ef4_associate(efx); |
| 2344 | |
| 2345 | rtnl_unlock(); |
| 2346 | |
| 2347 | rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); |
| 2348 | if (rc) { |
| 2349 | netif_err(efx, drv, efx->net_dev, |
| 2350 | "failed to init net dev attributes\n"); |
| 2351 | goto fail_registered; |
| 2352 | } |
| 2353 | return 0; |
| 2354 | |
| 2355 | fail_registered: |
| 2356 | rtnl_lock(); |
| 2357 | ef4_dissociate(efx); |
| 2358 | unregister_netdevice(net_dev); |
| 2359 | fail_locked: |
| 2360 | efx->state = STATE_UNINIT; |
| 2361 | rtnl_unlock(); |
| 2362 | netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); |
| 2363 | return rc; |
| 2364 | } |
| 2365 | |
| 2366 | static void ef4_unregister_netdev(struct ef4_nic *efx) |
| 2367 | { |
| 2368 | if (!efx->net_dev) |
| 2369 | return; |
| 2370 | |
| 2371 | BUG_ON(netdev_priv(efx->net_dev) != efx); |
| 2372 | |
| 2373 | if (ef4_dev_registered(efx)) { |
| 2374 | strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); |
| 2375 | device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); |
| 2376 | unregister_netdev(efx->net_dev); |
| 2377 | } |
| 2378 | } |
| 2379 | |
| 2380 | /************************************************************************** |
| 2381 | * |
| 2382 | * Device reset and suspend |
| 2383 | * |
| 2384 | **************************************************************************/ |
| 2385 | |
| 2386 | /* Tears down the entire software state and most of the hardware state |
| 2387 | * before reset. */ |
| 2388 | void ef4_reset_down(struct ef4_nic *efx, enum reset_type method) |
| 2389 | { |
| 2390 | EF4_ASSERT_RESET_SERIALISED(efx); |
| 2391 | |
| 2392 | ef4_stop_all(efx); |
| 2393 | ef4_disable_interrupts(efx); |
| 2394 | |
| 2395 | mutex_lock(&efx->mac_lock); |
| 2396 | if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && |
| 2397 | method != RESET_TYPE_DATAPATH) |
| 2398 | efx->phy_op->fini(efx); |
| 2399 | efx->type->fini(efx); |
| 2400 | } |
| 2401 | |
| 2402 | /* This function will always ensure that the locks acquired in |
| 2403 | * ef4_reset_down() are released. A failure return code indicates |
| 2404 | * that we were unable to reinitialise the hardware, and the |
| 2405 | * driver should be disabled. If ok is false, then the rx and tx |
| 2406 | * engines are not restarted, pending a RESET_DISABLE. */ |
| 2407 | int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok) |
| 2408 | { |
| 2409 | int rc; |
| 2410 | |
| 2411 | EF4_ASSERT_RESET_SERIALISED(efx); |
| 2412 | |
| 2413 | /* Ensure that SRAM is initialised even if we're disabling the device */ |
| 2414 | rc = efx->type->init(efx); |
| 2415 | if (rc) { |
| 2416 | netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); |
| 2417 | goto fail; |
| 2418 | } |
| 2419 | |
| 2420 | if (!ok) |
| 2421 | goto fail; |
| 2422 | |
| 2423 | if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && |
| 2424 | method != RESET_TYPE_DATAPATH) { |
| 2425 | rc = efx->phy_op->init(efx); |
| 2426 | if (rc) |
| 2427 | goto fail; |
| 2428 | rc = efx->phy_op->reconfigure(efx); |
| 2429 | if (rc && rc != -EPERM) |
| 2430 | netif_err(efx, drv, efx->net_dev, |
| 2431 | "could not restore PHY settings\n"); |
| 2432 | } |
| 2433 | |
| 2434 | rc = ef4_enable_interrupts(efx); |
| 2435 | if (rc) |
| 2436 | goto fail; |
| 2437 | |
| 2438 | down_read(&efx->filter_sem); |
| 2439 | ef4_restore_filters(efx); |
| 2440 | up_read(&efx->filter_sem); |
| 2441 | |
| 2442 | mutex_unlock(&efx->mac_lock); |
| 2443 | |
| 2444 | ef4_start_all(efx); |
| 2445 | |
| 2446 | return 0; |
| 2447 | |
| 2448 | fail: |
| 2449 | efx->port_initialized = false; |
| 2450 | |
| 2451 | mutex_unlock(&efx->mac_lock); |
| 2452 | |
| 2453 | return rc; |
| 2454 | } |
| 2455 | |
| 2456 | /* Reset the NIC using the specified method. Note that the reset may |
| 2457 | * fail, in which case the card will be left in an unusable state. |
| 2458 | * |
| 2459 | * Caller must hold the rtnl_lock. |
| 2460 | */ |
| 2461 | int ef4_reset(struct ef4_nic *efx, enum reset_type method) |
| 2462 | { |
| 2463 | int rc, rc2; |
| 2464 | bool disabled; |
| 2465 | |
| 2466 | netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", |
| 2467 | RESET_TYPE(method)); |
| 2468 | |
| 2469 | ef4_device_detach_sync(efx); |
| 2470 | ef4_reset_down(efx, method); |
| 2471 | |
| 2472 | rc = efx->type->reset(efx, method); |
| 2473 | if (rc) { |
| 2474 | netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); |
| 2475 | goto out; |
| 2476 | } |
| 2477 | |
| 2478 | /* Clear flags for the scopes we covered. We assume the NIC and |
| 2479 | * driver are now quiescent so that there is no race here. |
| 2480 | */ |
| 2481 | if (method < RESET_TYPE_MAX_METHOD) |
| 2482 | efx->reset_pending &= -(1 << (method + 1)); |
| 2483 | else /* it doesn't fit into the well-ordered scope hierarchy */ |
| 2484 | __clear_bit(method, &efx->reset_pending); |
| 2485 | |
| 2486 | /* Reinitialise bus-mastering, which may have been turned off before |
| 2487 | * the reset was scheduled. This is still appropriate, even in the |
| 2488 | * RESET_TYPE_DISABLE since this driver generally assumes the hardware |
| 2489 | * can respond to requests. */ |
| 2490 | pci_set_master(efx->pci_dev); |
| 2491 | |
| 2492 | out: |
| 2493 | /* Leave device stopped if necessary */ |
| 2494 | disabled = rc || |
| 2495 | method == RESET_TYPE_DISABLE || |
| 2496 | method == RESET_TYPE_RECOVER_OR_DISABLE; |
| 2497 | rc2 = ef4_reset_up(efx, method, !disabled); |
| 2498 | if (rc2) { |
| 2499 | disabled = true; |
| 2500 | if (!rc) |
| 2501 | rc = rc2; |
| 2502 | } |
| 2503 | |
| 2504 | if (disabled) { |
| 2505 | dev_close(efx->net_dev); |
| 2506 | netif_err(efx, drv, efx->net_dev, "has been disabled\n"); |
| 2507 | efx->state = STATE_DISABLED; |
| 2508 | } else { |
| 2509 | netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); |
| 2510 | netif_device_attach(efx->net_dev); |
| 2511 | } |
| 2512 | return rc; |
| 2513 | } |
| 2514 | |
| 2515 | /* Try recovery mechanisms. |
| 2516 | * For now only EEH is supported. |
| 2517 | * Returns 0 if the recovery mechanisms are unsuccessful. |
| 2518 | * Returns a non-zero value otherwise. |
| 2519 | */ |
| 2520 | int ef4_try_recovery(struct ef4_nic *efx) |
| 2521 | { |
| 2522 | #ifdef CONFIG_EEH |
| 2523 | /* A PCI error can occur and not be seen by EEH because nothing |
| 2524 | * happens on the PCI bus. In this case the driver may fail and |
| 2525 | * schedule a 'recover or reset', leading to this recovery handler. |
| 2526 | * Manually call the eeh failure check function. |
| 2527 | */ |
| 2528 | struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev); |
| 2529 | if (eeh_dev_check_failure(eehdev)) { |
| 2530 | /* The EEH mechanisms will handle the error and reset the |
| 2531 | * device if necessary. |
| 2532 | */ |
| 2533 | return 1; |
| 2534 | } |
| 2535 | #endif |
| 2536 | return 0; |
| 2537 | } |
| 2538 | |
| 2539 | /* The worker thread exists so that code that cannot sleep can |
| 2540 | * schedule a reset for later. |
| 2541 | */ |
| 2542 | static void ef4_reset_work(struct work_struct *data) |
| 2543 | { |
| 2544 | struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work); |
| 2545 | unsigned long pending; |
| 2546 | enum reset_type method; |
| 2547 | |
| 2548 | pending = ACCESS_ONCE(efx->reset_pending); |
| 2549 | method = fls(pending) - 1; |
| 2550 | |
| 2551 | if ((method == RESET_TYPE_RECOVER_OR_DISABLE || |
| 2552 | method == RESET_TYPE_RECOVER_OR_ALL) && |
| 2553 | ef4_try_recovery(efx)) |
| 2554 | return; |
| 2555 | |
| 2556 | if (!pending) |
| 2557 | return; |
| 2558 | |
| 2559 | rtnl_lock(); |
| 2560 | |
| 2561 | /* We checked the state in ef4_schedule_reset() but it may |
| 2562 | * have changed by now. Now that we have the RTNL lock, |
| 2563 | * it cannot change again. |
| 2564 | */ |
| 2565 | if (efx->state == STATE_READY) |
| 2566 | (void)ef4_reset(efx, method); |
| 2567 | |
| 2568 | rtnl_unlock(); |
| 2569 | } |
| 2570 | |
| 2571 | void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type) |
| 2572 | { |
| 2573 | enum reset_type method; |
| 2574 | |
| 2575 | if (efx->state == STATE_RECOVERY) { |
| 2576 | netif_dbg(efx, drv, efx->net_dev, |
| 2577 | "recovering: skip scheduling %s reset\n", |
| 2578 | RESET_TYPE(type)); |
| 2579 | return; |
| 2580 | } |
| 2581 | |
| 2582 | switch (type) { |
| 2583 | case RESET_TYPE_INVISIBLE: |
| 2584 | case RESET_TYPE_ALL: |
| 2585 | case RESET_TYPE_RECOVER_OR_ALL: |
| 2586 | case RESET_TYPE_WORLD: |
| 2587 | case RESET_TYPE_DISABLE: |
| 2588 | case RESET_TYPE_RECOVER_OR_DISABLE: |
| 2589 | case RESET_TYPE_DATAPATH: |
| 2590 | method = type; |
| 2591 | netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", |
| 2592 | RESET_TYPE(method)); |
| 2593 | break; |
| 2594 | default: |
| 2595 | method = efx->type->map_reset_reason(type); |
| 2596 | netif_dbg(efx, drv, efx->net_dev, |
| 2597 | "scheduling %s reset for %s\n", |
| 2598 | RESET_TYPE(method), RESET_TYPE(type)); |
| 2599 | break; |
| 2600 | } |
| 2601 | |
| 2602 | set_bit(method, &efx->reset_pending); |
| 2603 | smp_mb(); /* ensure we change reset_pending before checking state */ |
| 2604 | |
| 2605 | /* If we're not READY then just leave the flags set as the cue |
| 2606 | * to abort probing or reschedule the reset later. |
| 2607 | */ |
| 2608 | if (ACCESS_ONCE(efx->state) != STATE_READY) |
| 2609 | return; |
| 2610 | |
| 2611 | queue_work(reset_workqueue, &efx->reset_work); |
| 2612 | } |
| 2613 | |
| 2614 | /************************************************************************** |
| 2615 | * |
| 2616 | * List of NICs we support |
| 2617 | * |
| 2618 | **************************************************************************/ |
| 2619 | |
| 2620 | /* PCI device ID table */ |
| 2621 | static const struct pci_device_id ef4_pci_table[] = { |
| 2622 | {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, |
| 2623 | PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0), |
| 2624 | .driver_data = (unsigned long) &falcon_a1_nic_type}, |
| 2625 | {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, |
| 2626 | PCI_DEVICE_ID_SOLARFLARE_SFC4000B), |
| 2627 | .driver_data = (unsigned long) &falcon_b0_nic_type}, |
| 2628 | {0} /* end of list */ |
| 2629 | }; |
| 2630 | |
| 2631 | /************************************************************************** |
| 2632 | * |
| 2633 | * Dummy PHY/MAC operations |
| 2634 | * |
| 2635 | * Can be used for some unimplemented operations |
| 2636 | * Needed so all function pointers are valid and do not have to be tested |
| 2637 | * before use |
| 2638 | * |
| 2639 | **************************************************************************/ |
| 2640 | int ef4_port_dummy_op_int(struct ef4_nic *efx) |
| 2641 | { |
| 2642 | return 0; |
| 2643 | } |
| 2644 | void ef4_port_dummy_op_void(struct ef4_nic *efx) {} |
| 2645 | |
| 2646 | static bool ef4_port_dummy_op_poll(struct ef4_nic *efx) |
| 2647 | { |
| 2648 | return false; |
| 2649 | } |
| 2650 | |
| 2651 | static const struct ef4_phy_operations ef4_dummy_phy_operations = { |
| 2652 | .init = ef4_port_dummy_op_int, |
| 2653 | .reconfigure = ef4_port_dummy_op_int, |
| 2654 | .poll = ef4_port_dummy_op_poll, |
| 2655 | .fini = ef4_port_dummy_op_void, |
| 2656 | }; |
| 2657 | |
| 2658 | /************************************************************************** |
| 2659 | * |
| 2660 | * Data housekeeping |
| 2661 | * |
| 2662 | **************************************************************************/ |
| 2663 | |
| 2664 | /* This zeroes out and then fills in the invariants in a struct |
| 2665 | * ef4_nic (including all sub-structures). |
| 2666 | */ |
| 2667 | static int ef4_init_struct(struct ef4_nic *efx, |
| 2668 | struct pci_dev *pci_dev, struct net_device *net_dev) |
| 2669 | { |
| 2670 | int i; |
| 2671 | |
| 2672 | /* Initialise common structures */ |
| 2673 | INIT_LIST_HEAD(&efx->node); |
| 2674 | INIT_LIST_HEAD(&efx->secondary_list); |
| 2675 | spin_lock_init(&efx->biu_lock); |
| 2676 | #ifdef CONFIG_SFC_FALCON_MTD |
| 2677 | INIT_LIST_HEAD(&efx->mtd_list); |
| 2678 | #endif |
| 2679 | INIT_WORK(&efx->reset_work, ef4_reset_work); |
| 2680 | INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor); |
| 2681 | INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work); |
| 2682 | efx->pci_dev = pci_dev; |
| 2683 | efx->msg_enable = debug; |
| 2684 | efx->state = STATE_UNINIT; |
| 2685 | strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); |
| 2686 | |
| 2687 | efx->net_dev = net_dev; |
| 2688 | efx->rx_prefix_size = efx->type->rx_prefix_size; |
| 2689 | efx->rx_ip_align = |
| 2690 | NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0; |
| 2691 | efx->rx_packet_hash_offset = |
| 2692 | efx->type->rx_hash_offset - efx->type->rx_prefix_size; |
| 2693 | efx->rx_packet_ts_offset = |
| 2694 | efx->type->rx_ts_offset - efx->type->rx_prefix_size; |
| 2695 | spin_lock_init(&efx->stats_lock); |
| 2696 | mutex_init(&efx->mac_lock); |
| 2697 | efx->phy_op = &ef4_dummy_phy_operations; |
| 2698 | efx->mdio.dev = net_dev; |
| 2699 | INIT_WORK(&efx->mac_work, ef4_mac_work); |
| 2700 | init_waitqueue_head(&efx->flush_wq); |
| 2701 | |
| 2702 | for (i = 0; i < EF4_MAX_CHANNELS; i++) { |
| 2703 | efx->channel[i] = ef4_alloc_channel(efx, i, NULL); |
| 2704 | if (!efx->channel[i]) |
| 2705 | goto fail; |
| 2706 | efx->msi_context[i].efx = efx; |
| 2707 | efx->msi_context[i].index = i; |
| 2708 | } |
| 2709 | |
| 2710 | /* Higher numbered interrupt modes are less capable! */ |
| 2711 | efx->interrupt_mode = max(efx->type->max_interrupt_mode, |
| 2712 | interrupt_mode); |
| 2713 | |
| 2714 | /* Would be good to use the net_dev name, but we're too early */ |
| 2715 | snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", |
| 2716 | pci_name(pci_dev)); |
| 2717 | efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); |
| 2718 | if (!efx->workqueue) |
| 2719 | goto fail; |
| 2720 | |
| 2721 | return 0; |
| 2722 | |
| 2723 | fail: |
| 2724 | ef4_fini_struct(efx); |
| 2725 | return -ENOMEM; |
| 2726 | } |
| 2727 | |
| 2728 | static void ef4_fini_struct(struct ef4_nic *efx) |
| 2729 | { |
| 2730 | int i; |
| 2731 | |
| 2732 | for (i = 0; i < EF4_MAX_CHANNELS; i++) |
| 2733 | kfree(efx->channel[i]); |
| 2734 | |
| 2735 | kfree(efx->vpd_sn); |
| 2736 | |
| 2737 | if (efx->workqueue) { |
| 2738 | destroy_workqueue(efx->workqueue); |
| 2739 | efx->workqueue = NULL; |
| 2740 | } |
| 2741 | } |
| 2742 | |
| 2743 | void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats) |
| 2744 | { |
| 2745 | u64 n_rx_nodesc_trunc = 0; |
| 2746 | struct ef4_channel *channel; |
| 2747 | |
| 2748 | ef4_for_each_channel(channel, efx) |
| 2749 | n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc; |
| 2750 | stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc; |
| 2751 | stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops); |
| 2752 | } |
| 2753 | |
| 2754 | /************************************************************************** |
| 2755 | * |
| 2756 | * PCI interface |
| 2757 | * |
| 2758 | **************************************************************************/ |
| 2759 | |
| 2760 | /* Main body of final NIC shutdown code |
| 2761 | * This is called only at module unload (or hotplug removal). |
| 2762 | */ |
| 2763 | static void ef4_pci_remove_main(struct ef4_nic *efx) |
| 2764 | { |
| 2765 | /* Flush reset_work. It can no longer be scheduled since we |
| 2766 | * are not READY. |
| 2767 | */ |
| 2768 | BUG_ON(efx->state == STATE_READY); |
| 2769 | cancel_work_sync(&efx->reset_work); |
| 2770 | |
| 2771 | ef4_disable_interrupts(efx); |
| 2772 | ef4_nic_fini_interrupt(efx); |
| 2773 | ef4_fini_port(efx); |
| 2774 | efx->type->fini(efx); |
| 2775 | ef4_fini_napi(efx); |
| 2776 | ef4_remove_all(efx); |
| 2777 | } |
| 2778 | |
| 2779 | /* Final NIC shutdown |
| 2780 | * This is called only at module unload (or hotplug removal). A PF can call |
| 2781 | * this on its VFs to ensure they are unbound first. |
| 2782 | */ |
| 2783 | static void ef4_pci_remove(struct pci_dev *pci_dev) |
| 2784 | { |
| 2785 | struct ef4_nic *efx; |
| 2786 | |
| 2787 | efx = pci_get_drvdata(pci_dev); |
| 2788 | if (!efx) |
| 2789 | return; |
| 2790 | |
| 2791 | /* Mark the NIC as fini, then stop the interface */ |
| 2792 | rtnl_lock(); |
| 2793 | ef4_dissociate(efx); |
| 2794 | dev_close(efx->net_dev); |
| 2795 | ef4_disable_interrupts(efx); |
| 2796 | efx->state = STATE_UNINIT; |
| 2797 | rtnl_unlock(); |
| 2798 | |
| 2799 | ef4_unregister_netdev(efx); |
| 2800 | |
| 2801 | ef4_mtd_remove(efx); |
| 2802 | |
| 2803 | ef4_pci_remove_main(efx); |
| 2804 | |
| 2805 | ef4_fini_io(efx); |
| 2806 | netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); |
| 2807 | |
| 2808 | ef4_fini_struct(efx); |
| 2809 | free_netdev(efx->net_dev); |
| 2810 | |
| 2811 | pci_disable_pcie_error_reporting(pci_dev); |
| 2812 | }; |
| 2813 | |
| 2814 | /* NIC VPD information |
| 2815 | * Called during probe to display the part number of the |
| 2816 | * installed NIC. VPD is potentially very large but this should |
| 2817 | * always appear within the first 512 bytes. |
| 2818 | */ |
| 2819 | #define SFC_VPD_LEN 512 |
| 2820 | static void ef4_probe_vpd_strings(struct ef4_nic *efx) |
| 2821 | { |
| 2822 | struct pci_dev *dev = efx->pci_dev; |
| 2823 | char vpd_data[SFC_VPD_LEN]; |
| 2824 | ssize_t vpd_size; |
| 2825 | int ro_start, ro_size, i, j; |
| 2826 | |
| 2827 | /* Get the vpd data from the device */ |
| 2828 | vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data); |
| 2829 | if (vpd_size <= 0) { |
| 2830 | netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n"); |
| 2831 | return; |
| 2832 | } |
| 2833 | |
| 2834 | /* Get the Read only section */ |
| 2835 | ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); |
| 2836 | if (ro_start < 0) { |
| 2837 | netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n"); |
| 2838 | return; |
| 2839 | } |
| 2840 | |
| 2841 | ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); |
| 2842 | j = ro_size; |
| 2843 | i = ro_start + PCI_VPD_LRDT_TAG_SIZE; |
| 2844 | if (i + j > vpd_size) |
| 2845 | j = vpd_size - i; |
| 2846 | |
| 2847 | /* Get the Part number */ |
| 2848 | i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN"); |
| 2849 | if (i < 0) { |
| 2850 | netif_err(efx, drv, efx->net_dev, "Part number not found\n"); |
| 2851 | return; |
| 2852 | } |
| 2853 | |
| 2854 | j = pci_vpd_info_field_size(&vpd_data[i]); |
| 2855 | i += PCI_VPD_INFO_FLD_HDR_SIZE; |
| 2856 | if (i + j > vpd_size) { |
| 2857 | netif_err(efx, drv, efx->net_dev, "Incomplete part number\n"); |
| 2858 | return; |
| 2859 | } |
| 2860 | |
| 2861 | netif_info(efx, drv, efx->net_dev, |
| 2862 | "Part Number : %.*s\n", j, &vpd_data[i]); |
| 2863 | |
| 2864 | i = ro_start + PCI_VPD_LRDT_TAG_SIZE; |
| 2865 | j = ro_size; |
| 2866 | i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN"); |
| 2867 | if (i < 0) { |
| 2868 | netif_err(efx, drv, efx->net_dev, "Serial number not found\n"); |
| 2869 | return; |
| 2870 | } |
| 2871 | |
| 2872 | j = pci_vpd_info_field_size(&vpd_data[i]); |
| 2873 | i += PCI_VPD_INFO_FLD_HDR_SIZE; |
| 2874 | if (i + j > vpd_size) { |
| 2875 | netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n"); |
| 2876 | return; |
| 2877 | } |
| 2878 | |
| 2879 | efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL); |
| 2880 | if (!efx->vpd_sn) |
| 2881 | return; |
| 2882 | |
| 2883 | snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]); |
| 2884 | } |
| 2885 | |
| 2886 | |
| 2887 | /* Main body of NIC initialisation |
| 2888 | * This is called at module load (or hotplug insertion, theoretically). |
| 2889 | */ |
| 2890 | static int ef4_pci_probe_main(struct ef4_nic *efx) |
| 2891 | { |
| 2892 | int rc; |
| 2893 | |
| 2894 | /* Do start-of-day initialisation */ |
| 2895 | rc = ef4_probe_all(efx); |
| 2896 | if (rc) |
| 2897 | goto fail1; |
| 2898 | |
| 2899 | ef4_init_napi(efx); |
| 2900 | |
| 2901 | rc = efx->type->init(efx); |
| 2902 | if (rc) { |
| 2903 | netif_err(efx, probe, efx->net_dev, |
| 2904 | "failed to initialise NIC\n"); |
| 2905 | goto fail3; |
| 2906 | } |
| 2907 | |
| 2908 | rc = ef4_init_port(efx); |
| 2909 | if (rc) { |
| 2910 | netif_err(efx, probe, efx->net_dev, |
| 2911 | "failed to initialise port\n"); |
| 2912 | goto fail4; |
| 2913 | } |
| 2914 | |
| 2915 | rc = ef4_nic_init_interrupt(efx); |
| 2916 | if (rc) |
| 2917 | goto fail5; |
| 2918 | rc = ef4_enable_interrupts(efx); |
| 2919 | if (rc) |
| 2920 | goto fail6; |
| 2921 | |
| 2922 | return 0; |
| 2923 | |
| 2924 | fail6: |
| 2925 | ef4_nic_fini_interrupt(efx); |
| 2926 | fail5: |
| 2927 | ef4_fini_port(efx); |
| 2928 | fail4: |
| 2929 | efx->type->fini(efx); |
| 2930 | fail3: |
| 2931 | ef4_fini_napi(efx); |
| 2932 | ef4_remove_all(efx); |
| 2933 | fail1: |
| 2934 | return rc; |
| 2935 | } |
| 2936 | |
| 2937 | /* NIC initialisation |
| 2938 | * |
| 2939 | * This is called at module load (or hotplug insertion, |
| 2940 | * theoretically). It sets up PCI mappings, resets the NIC, |
| 2941 | * sets up and registers the network devices with the kernel and hooks |
| 2942 | * the interrupt service routine. It does not prepare the device for |
| 2943 | * transmission; this is left to the first time one of the network |
| 2944 | * interfaces is brought up (i.e. ef4_net_open). |
| 2945 | */ |
| 2946 | static int ef4_pci_probe(struct pci_dev *pci_dev, |
| 2947 | const struct pci_device_id *entry) |
| 2948 | { |
| 2949 | struct net_device *net_dev; |
| 2950 | struct ef4_nic *efx; |
| 2951 | int rc; |
| 2952 | |
| 2953 | /* Allocate and initialise a struct net_device and struct ef4_nic */ |
| 2954 | net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES, |
| 2955 | EF4_MAX_RX_QUEUES); |
| 2956 | if (!net_dev) |
| 2957 | return -ENOMEM; |
| 2958 | efx = netdev_priv(net_dev); |
| 2959 | efx->type = (const struct ef4_nic_type *) entry->driver_data; |
| 2960 | efx->fixed_features |= NETIF_F_HIGHDMA; |
| 2961 | |
| 2962 | pci_set_drvdata(pci_dev, efx); |
| 2963 | SET_NETDEV_DEV(net_dev, &pci_dev->dev); |
| 2964 | rc = ef4_init_struct(efx, pci_dev, net_dev); |
| 2965 | if (rc) |
| 2966 | goto fail1; |
| 2967 | |
| 2968 | netif_info(efx, probe, efx->net_dev, |
| 2969 | "Solarflare NIC detected\n"); |
| 2970 | |
| 2971 | ef4_probe_vpd_strings(efx); |
| 2972 | |
| 2973 | /* Set up basic I/O (BAR mappings etc) */ |
| 2974 | rc = ef4_init_io(efx); |
| 2975 | if (rc) |
| 2976 | goto fail2; |
| 2977 | |
| 2978 | rc = ef4_pci_probe_main(efx); |
| 2979 | if (rc) |
| 2980 | goto fail3; |
| 2981 | |
| 2982 | net_dev->features |= (efx->type->offload_features | NETIF_F_SG | |
| 2983 | NETIF_F_RXCSUM); |
| 2984 | /* Mask for features that also apply to VLAN devices */ |
| 2985 | net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG | |
| 2986 | NETIF_F_HIGHDMA | NETIF_F_RXCSUM); |
| 2987 | |
| 2988 | net_dev->hw_features = net_dev->features & ~efx->fixed_features; |
| 2989 | |
| 2990 | /* Disable VLAN filtering by default. It may be enforced if |
| 2991 | * the feature is fixed (i.e. VLAN filters are required to |
| 2992 | * receive VLAN tagged packets due to vPort restrictions). |
| 2993 | */ |
| 2994 | net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; |
| 2995 | net_dev->features |= efx->fixed_features; |
| 2996 | |
| 2997 | rc = ef4_register_netdev(efx); |
| 2998 | if (rc) |
| 2999 | goto fail4; |
| 3000 | |
| 3001 | netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); |
| 3002 | |
| 3003 | /* Try to create MTDs, but allow this to fail */ |
| 3004 | rtnl_lock(); |
| 3005 | rc = ef4_mtd_probe(efx); |
| 3006 | rtnl_unlock(); |
| 3007 | if (rc && rc != -EPERM) |
| 3008 | netif_warn(efx, probe, efx->net_dev, |
| 3009 | "failed to create MTDs (%d)\n", rc); |
| 3010 | |
| 3011 | rc = pci_enable_pcie_error_reporting(pci_dev); |
| 3012 | if (rc && rc != -EINVAL) |
| 3013 | netif_notice(efx, probe, efx->net_dev, |
| 3014 | "PCIE error reporting unavailable (%d).\n", |
| 3015 | rc); |
| 3016 | |
| 3017 | return 0; |
| 3018 | |
| 3019 | fail4: |
| 3020 | ef4_pci_remove_main(efx); |
| 3021 | fail3: |
| 3022 | ef4_fini_io(efx); |
| 3023 | fail2: |
| 3024 | ef4_fini_struct(efx); |
| 3025 | fail1: |
| 3026 | WARN_ON(rc > 0); |
| 3027 | netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); |
| 3028 | free_netdev(net_dev); |
| 3029 | return rc; |
| 3030 | } |
| 3031 | |
| 3032 | static int ef4_pm_freeze(struct device *dev) |
| 3033 | { |
| 3034 | struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev)); |
| 3035 | |
| 3036 | rtnl_lock(); |
| 3037 | |
| 3038 | if (efx->state != STATE_DISABLED) { |
| 3039 | efx->state = STATE_UNINIT; |
| 3040 | |
| 3041 | ef4_device_detach_sync(efx); |
| 3042 | |
| 3043 | ef4_stop_all(efx); |
| 3044 | ef4_disable_interrupts(efx); |
| 3045 | } |
| 3046 | |
| 3047 | rtnl_unlock(); |
| 3048 | |
| 3049 | return 0; |
| 3050 | } |
| 3051 | |
| 3052 | static int ef4_pm_thaw(struct device *dev) |
| 3053 | { |
| 3054 | int rc; |
| 3055 | struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev)); |
| 3056 | |
| 3057 | rtnl_lock(); |
| 3058 | |
| 3059 | if (efx->state != STATE_DISABLED) { |
| 3060 | rc = ef4_enable_interrupts(efx); |
| 3061 | if (rc) |
| 3062 | goto fail; |
| 3063 | |
| 3064 | mutex_lock(&efx->mac_lock); |
| 3065 | efx->phy_op->reconfigure(efx); |
| 3066 | mutex_unlock(&efx->mac_lock); |
| 3067 | |
| 3068 | ef4_start_all(efx); |
| 3069 | |
| 3070 | netif_device_attach(efx->net_dev); |
| 3071 | |
| 3072 | efx->state = STATE_READY; |
| 3073 | |
| 3074 | efx->type->resume_wol(efx); |
| 3075 | } |
| 3076 | |
| 3077 | rtnl_unlock(); |
| 3078 | |
| 3079 | /* Reschedule any quenched resets scheduled during ef4_pm_freeze() */ |
| 3080 | queue_work(reset_workqueue, &efx->reset_work); |
| 3081 | |
| 3082 | return 0; |
| 3083 | |
| 3084 | fail: |
| 3085 | rtnl_unlock(); |
| 3086 | |
| 3087 | return rc; |
| 3088 | } |
| 3089 | |
| 3090 | static int ef4_pm_poweroff(struct device *dev) |
| 3091 | { |
| 3092 | struct pci_dev *pci_dev = to_pci_dev(dev); |
| 3093 | struct ef4_nic *efx = pci_get_drvdata(pci_dev); |
| 3094 | |
| 3095 | efx->type->fini(efx); |
| 3096 | |
| 3097 | efx->reset_pending = 0; |
| 3098 | |
| 3099 | pci_save_state(pci_dev); |
| 3100 | return pci_set_power_state(pci_dev, PCI_D3hot); |
| 3101 | } |
| 3102 | |
| 3103 | /* Used for both resume and restore */ |
| 3104 | static int ef4_pm_resume(struct device *dev) |
| 3105 | { |
| 3106 | struct pci_dev *pci_dev = to_pci_dev(dev); |
| 3107 | struct ef4_nic *efx = pci_get_drvdata(pci_dev); |
| 3108 | int rc; |
| 3109 | |
| 3110 | rc = pci_set_power_state(pci_dev, PCI_D0); |
| 3111 | if (rc) |
| 3112 | return rc; |
| 3113 | pci_restore_state(pci_dev); |
| 3114 | rc = pci_enable_device(pci_dev); |
| 3115 | if (rc) |
| 3116 | return rc; |
| 3117 | pci_set_master(efx->pci_dev); |
| 3118 | rc = efx->type->reset(efx, RESET_TYPE_ALL); |
| 3119 | if (rc) |
| 3120 | return rc; |
| 3121 | rc = efx->type->init(efx); |
| 3122 | if (rc) |
| 3123 | return rc; |
| 3124 | rc = ef4_pm_thaw(dev); |
| 3125 | return rc; |
| 3126 | } |
| 3127 | |
| 3128 | static int ef4_pm_suspend(struct device *dev) |
| 3129 | { |
| 3130 | int rc; |
| 3131 | |
| 3132 | ef4_pm_freeze(dev); |
| 3133 | rc = ef4_pm_poweroff(dev); |
| 3134 | if (rc) |
| 3135 | ef4_pm_resume(dev); |
| 3136 | return rc; |
| 3137 | } |
| 3138 | |
| 3139 | static const struct dev_pm_ops ef4_pm_ops = { |
| 3140 | .suspend = ef4_pm_suspend, |
| 3141 | .resume = ef4_pm_resume, |
| 3142 | .freeze = ef4_pm_freeze, |
| 3143 | .thaw = ef4_pm_thaw, |
| 3144 | .poweroff = ef4_pm_poweroff, |
| 3145 | .restore = ef4_pm_resume, |
| 3146 | }; |
| 3147 | |
| 3148 | /* A PCI error affecting this device was detected. |
| 3149 | * At this point MMIO and DMA may be disabled. |
| 3150 | * Stop the software path and request a slot reset. |
| 3151 | */ |
| 3152 | static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev, |
| 3153 | enum pci_channel_state state) |
| 3154 | { |
| 3155 | pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; |
| 3156 | struct ef4_nic *efx = pci_get_drvdata(pdev); |
| 3157 | |
| 3158 | if (state == pci_channel_io_perm_failure) |
| 3159 | return PCI_ERS_RESULT_DISCONNECT; |
| 3160 | |
| 3161 | rtnl_lock(); |
| 3162 | |
| 3163 | if (efx->state != STATE_DISABLED) { |
| 3164 | efx->state = STATE_RECOVERY; |
| 3165 | efx->reset_pending = 0; |
| 3166 | |
| 3167 | ef4_device_detach_sync(efx); |
| 3168 | |
| 3169 | ef4_stop_all(efx); |
| 3170 | ef4_disable_interrupts(efx); |
| 3171 | |
| 3172 | status = PCI_ERS_RESULT_NEED_RESET; |
| 3173 | } else { |
| 3174 | /* If the interface is disabled we don't want to do anything |
| 3175 | * with it. |
| 3176 | */ |
| 3177 | status = PCI_ERS_RESULT_RECOVERED; |
| 3178 | } |
| 3179 | |
| 3180 | rtnl_unlock(); |
| 3181 | |
| 3182 | pci_disable_device(pdev); |
| 3183 | |
| 3184 | return status; |
| 3185 | } |
| 3186 | |
| 3187 | /* Fake a successful reset, which will be performed later in ef4_io_resume. */ |
| 3188 | static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev) |
| 3189 | { |
| 3190 | struct ef4_nic *efx = pci_get_drvdata(pdev); |
| 3191 | pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; |
| 3192 | int rc; |
| 3193 | |
| 3194 | if (pci_enable_device(pdev)) { |
| 3195 | netif_err(efx, hw, efx->net_dev, |
| 3196 | "Cannot re-enable PCI device after reset.\n"); |
| 3197 | status = PCI_ERS_RESULT_DISCONNECT; |
| 3198 | } |
| 3199 | |
| 3200 | rc = pci_cleanup_aer_uncorrect_error_status(pdev); |
| 3201 | if (rc) { |
| 3202 | netif_err(efx, hw, efx->net_dev, |
| 3203 | "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc); |
| 3204 | /* Non-fatal error. Continue. */ |
| 3205 | } |
| 3206 | |
| 3207 | return status; |
| 3208 | } |
| 3209 | |
| 3210 | /* Perform the actual reset and resume I/O operations. */ |
| 3211 | static void ef4_io_resume(struct pci_dev *pdev) |
| 3212 | { |
| 3213 | struct ef4_nic *efx = pci_get_drvdata(pdev); |
| 3214 | int rc; |
| 3215 | |
| 3216 | rtnl_lock(); |
| 3217 | |
| 3218 | if (efx->state == STATE_DISABLED) |
| 3219 | goto out; |
| 3220 | |
| 3221 | rc = ef4_reset(efx, RESET_TYPE_ALL); |
| 3222 | if (rc) { |
| 3223 | netif_err(efx, hw, efx->net_dev, |
| 3224 | "ef4_reset failed after PCI error (%d)\n", rc); |
| 3225 | } else { |
| 3226 | efx->state = STATE_READY; |
| 3227 | netif_dbg(efx, hw, efx->net_dev, |
| 3228 | "Done resetting and resuming IO after PCI error.\n"); |
| 3229 | } |
| 3230 | |
| 3231 | out: |
| 3232 | rtnl_unlock(); |
| 3233 | } |
| 3234 | |
| 3235 | /* For simplicity and reliability, we always require a slot reset and try to |
| 3236 | * reset the hardware when a pci error affecting the device is detected. |
| 3237 | * We leave both the link_reset and mmio_enabled callback unimplemented: |
| 3238 | * with our request for slot reset the mmio_enabled callback will never be |
| 3239 | * called, and the link_reset callback is not used by AER or EEH mechanisms. |
| 3240 | */ |
| 3241 | static const struct pci_error_handlers ef4_err_handlers = { |
| 3242 | .error_detected = ef4_io_error_detected, |
| 3243 | .slot_reset = ef4_io_slot_reset, |
| 3244 | .resume = ef4_io_resume, |
| 3245 | }; |
| 3246 | |
| 3247 | static struct pci_driver ef4_pci_driver = { |
| 3248 | .name = KBUILD_MODNAME, |
| 3249 | .id_table = ef4_pci_table, |
| 3250 | .probe = ef4_pci_probe, |
| 3251 | .remove = ef4_pci_remove, |
| 3252 | .driver.pm = &ef4_pm_ops, |
| 3253 | .err_handler = &ef4_err_handlers, |
| 3254 | }; |
| 3255 | |
| 3256 | /************************************************************************** |
| 3257 | * |
| 3258 | * Kernel module interface |
| 3259 | * |
| 3260 | *************************************************************************/ |
| 3261 | |
| 3262 | module_param(interrupt_mode, uint, 0444); |
| 3263 | MODULE_PARM_DESC(interrupt_mode, |
| 3264 | "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); |
| 3265 | |
| 3266 | static int __init ef4_init_module(void) |
| 3267 | { |
| 3268 | int rc; |
| 3269 | |
| 3270 | printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n"); |
| 3271 | |
| 3272 | rc = register_netdevice_notifier(&ef4_netdev_notifier); |
| 3273 | if (rc) |
| 3274 | goto err_notifier; |
| 3275 | |
| 3276 | reset_workqueue = create_singlethread_workqueue("sfc_reset"); |
| 3277 | if (!reset_workqueue) { |
| 3278 | rc = -ENOMEM; |
| 3279 | goto err_reset; |
| 3280 | } |
| 3281 | |
| 3282 | rc = pci_register_driver(&ef4_pci_driver); |
| 3283 | if (rc < 0) |
| 3284 | goto err_pci; |
| 3285 | |
| 3286 | return 0; |
| 3287 | |
| 3288 | err_pci: |
| 3289 | destroy_workqueue(reset_workqueue); |
| 3290 | err_reset: |
| 3291 | unregister_netdevice_notifier(&ef4_netdev_notifier); |
| 3292 | err_notifier: |
| 3293 | return rc; |
| 3294 | } |
| 3295 | |
| 3296 | static void __exit ef4_exit_module(void) |
| 3297 | { |
| 3298 | printk(KERN_INFO "Solarflare Falcon driver unloading\n"); |
| 3299 | |
| 3300 | pci_unregister_driver(&ef4_pci_driver); |
| 3301 | destroy_workqueue(reset_workqueue); |
| 3302 | unregister_netdevice_notifier(&ef4_netdev_notifier); |
| 3303 | |
| 3304 | } |
| 3305 | |
| 3306 | module_init(ef4_init_module); |
| 3307 | module_exit(ef4_exit_module); |
| 3308 | |
| 3309 | MODULE_AUTHOR("Solarflare Communications and " |
| 3310 | "Michael Brown <mbrown@fensystems.co.uk>"); |
| 3311 | MODULE_DESCRIPTION("Solarflare Falcon network driver"); |
| 3312 | MODULE_LICENSE("GPL"); |
| 3313 | MODULE_DEVICE_TABLE(pci, ef4_pci_table); |
Edward Cree | e7072f6 | 2017-01-03 15:46:15 +0000 | [diff] [blame] | 3314 | MODULE_VERSION(EF4_DRIVER_VERSION); |