Keith Busch | 185a383 | 2016-01-12 13:18:10 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Volume Management Device driver |
| 3 | * Copyright (c) 2015, Intel Corporation. |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify it |
| 6 | * under the terms and conditions of the GNU General Public License, |
| 7 | * version 2, as published by the Free Software Foundation. |
| 8 | * |
| 9 | * This program is distributed in the hope it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 12 | * more details. |
| 13 | */ |
| 14 | |
| 15 | #include <linux/device.h> |
| 16 | #include <linux/interrupt.h> |
| 17 | #include <linux/irq.h> |
| 18 | #include <linux/kernel.h> |
| 19 | #include <linux/module.h> |
| 20 | #include <linux/msi.h> |
| 21 | #include <linux/pci.h> |
| 22 | #include <linux/rculist.h> |
| 23 | #include <linux/rcupdate.h> |
| 24 | |
| 25 | #include <asm/irqdomain.h> |
| 26 | #include <asm/device.h> |
| 27 | #include <asm/msi.h> |
| 28 | #include <asm/msidef.h> |
| 29 | |
| 30 | #define VMD_CFGBAR 0 |
| 31 | #define VMD_MEMBAR1 2 |
| 32 | #define VMD_MEMBAR2 4 |
| 33 | |
| 34 | /* |
| 35 | * Lock for manipulating VMD IRQ lists. |
| 36 | */ |
| 37 | static DEFINE_RAW_SPINLOCK(list_lock); |
| 38 | |
| 39 | /** |
| 40 | * struct vmd_irq - private data to map driver IRQ to the VMD shared vector |
| 41 | * @node: list item for parent traversal. |
| 42 | * @rcu: RCU callback item for freeing. |
| 43 | * @irq: back pointer to parent. |
| 44 | * @virq: the virtual IRQ value provided to the requesting driver. |
| 45 | * |
| 46 | * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to |
| 47 | * a VMD IRQ using this structure. |
| 48 | */ |
| 49 | struct vmd_irq { |
| 50 | struct list_head node; |
| 51 | struct rcu_head rcu; |
| 52 | struct vmd_irq_list *irq; |
| 53 | unsigned int virq; |
| 54 | }; |
| 55 | |
| 56 | /** |
| 57 | * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector |
| 58 | * @irq_list: the list of irq's the VMD one demuxes to. |
| 59 | * @vmd_vector: the h/w IRQ assigned to the VMD. |
| 60 | * @index: index into the VMD MSI-X table; used for message routing. |
| 61 | * @count: number of child IRQs assigned to this vector; used to track |
| 62 | * sharing. |
| 63 | */ |
| 64 | struct vmd_irq_list { |
| 65 | struct list_head irq_list; |
| 66 | struct vmd_dev *vmd; |
| 67 | unsigned int vmd_vector; |
| 68 | unsigned int index; |
| 69 | unsigned int count; |
| 70 | }; |
| 71 | |
| 72 | struct vmd_dev { |
| 73 | struct pci_dev *dev; |
| 74 | |
| 75 | spinlock_t cfg_lock; |
| 76 | char __iomem *cfgbar; |
| 77 | |
| 78 | int msix_count; |
| 79 | struct msix_entry *msix_entries; |
| 80 | struct vmd_irq_list *irqs; |
| 81 | |
| 82 | struct pci_sysdata sysdata; |
| 83 | struct resource resources[3]; |
| 84 | struct irq_domain *irq_domain; |
| 85 | struct pci_bus *bus; |
| 86 | |
| 87 | #ifdef CONFIG_X86_DEV_DMA_OPS |
| 88 | struct dma_map_ops dma_ops; |
| 89 | struct dma_domain dma_domain; |
| 90 | #endif |
| 91 | }; |
| 92 | |
| 93 | static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus) |
| 94 | { |
| 95 | return container_of(bus->sysdata, struct vmd_dev, sysdata); |
| 96 | } |
| 97 | |
| 98 | /* |
| 99 | * Drivers managing a device in a VMD domain allocate their own IRQs as before, |
| 100 | * but the MSI entry for the hardware it's driving will be programmed with a |
| 101 | * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its |
| 102 | * domain into one of its own, and the VMD driver de-muxes these for the |
| 103 | * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations |
| 104 | * and irq_chip to set this up. |
| 105 | */ |
| 106 | static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) |
| 107 | { |
| 108 | struct vmd_irq *vmdirq = data->chip_data; |
| 109 | struct vmd_irq_list *irq = vmdirq->irq; |
| 110 | |
| 111 | msg->address_hi = MSI_ADDR_BASE_HI; |
| 112 | msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_DEST_ID(irq->index); |
| 113 | msg->data = 0; |
| 114 | } |
| 115 | |
| 116 | /* |
| 117 | * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops. |
| 118 | */ |
| 119 | static void vmd_irq_enable(struct irq_data *data) |
| 120 | { |
| 121 | struct vmd_irq *vmdirq = data->chip_data; |
| 122 | |
| 123 | raw_spin_lock(&list_lock); |
| 124 | list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list); |
| 125 | raw_spin_unlock(&list_lock); |
| 126 | |
| 127 | data->chip->irq_unmask(data); |
| 128 | } |
| 129 | |
| 130 | static void vmd_irq_disable(struct irq_data *data) |
| 131 | { |
| 132 | struct vmd_irq *vmdirq = data->chip_data; |
| 133 | |
| 134 | data->chip->irq_mask(data); |
| 135 | |
| 136 | raw_spin_lock(&list_lock); |
| 137 | list_del_rcu(&vmdirq->node); |
| 138 | raw_spin_unlock(&list_lock); |
| 139 | } |
| 140 | |
| 141 | /* |
| 142 | * XXX: Stubbed until we develop acceptable way to not create conflicts with |
| 143 | * other devices sharing the same vector. |
| 144 | */ |
| 145 | static int vmd_irq_set_affinity(struct irq_data *data, |
| 146 | const struct cpumask *dest, bool force) |
| 147 | { |
| 148 | return -EINVAL; |
| 149 | } |
| 150 | |
| 151 | static struct irq_chip vmd_msi_controller = { |
| 152 | .name = "VMD-MSI", |
| 153 | .irq_enable = vmd_irq_enable, |
| 154 | .irq_disable = vmd_irq_disable, |
| 155 | .irq_compose_msi_msg = vmd_compose_msi_msg, |
| 156 | .irq_set_affinity = vmd_irq_set_affinity, |
| 157 | }; |
| 158 | |
| 159 | static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info, |
| 160 | msi_alloc_info_t *arg) |
| 161 | { |
| 162 | return 0; |
| 163 | } |
| 164 | |
| 165 | /* |
| 166 | * XXX: We can be even smarter selecting the best IRQ once we solve the |
| 167 | * affinity problem. |
| 168 | */ |
| 169 | static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd) |
| 170 | { |
| 171 | int i, best = 0; |
| 172 | |
| 173 | raw_spin_lock(&list_lock); |
| 174 | for (i = 1; i < vmd->msix_count; i++) |
| 175 | if (vmd->irqs[i].count < vmd->irqs[best].count) |
| 176 | best = i; |
| 177 | vmd->irqs[best].count++; |
| 178 | raw_spin_unlock(&list_lock); |
| 179 | |
| 180 | return &vmd->irqs[best]; |
| 181 | } |
| 182 | |
| 183 | static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info, |
| 184 | unsigned int virq, irq_hw_number_t hwirq, |
| 185 | msi_alloc_info_t *arg) |
| 186 | { |
| 187 | struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(arg->desc)->bus); |
| 188 | struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL); |
| 189 | |
| 190 | if (!vmdirq) |
| 191 | return -ENOMEM; |
| 192 | |
| 193 | INIT_LIST_HEAD(&vmdirq->node); |
| 194 | vmdirq->irq = vmd_next_irq(vmd); |
| 195 | vmdirq->virq = virq; |
| 196 | |
| 197 | irq_domain_set_info(domain, virq, vmdirq->irq->vmd_vector, info->chip, |
| 198 | vmdirq, handle_simple_irq, vmd, NULL); |
| 199 | return 0; |
| 200 | } |
| 201 | |
| 202 | static void vmd_msi_free(struct irq_domain *domain, |
| 203 | struct msi_domain_info *info, unsigned int virq) |
| 204 | { |
| 205 | struct vmd_irq *vmdirq = irq_get_chip_data(virq); |
| 206 | |
| 207 | /* XXX: Potential optimization to rebalance */ |
| 208 | raw_spin_lock(&list_lock); |
| 209 | vmdirq->irq->count--; |
| 210 | raw_spin_unlock(&list_lock); |
| 211 | |
| 212 | kfree_rcu(vmdirq, rcu); |
| 213 | } |
| 214 | |
| 215 | static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev, |
| 216 | int nvec, msi_alloc_info_t *arg) |
| 217 | { |
| 218 | struct pci_dev *pdev = to_pci_dev(dev); |
| 219 | struct vmd_dev *vmd = vmd_from_bus(pdev->bus); |
| 220 | |
| 221 | if (nvec > vmd->msix_count) |
| 222 | return vmd->msix_count; |
| 223 | |
| 224 | memset(arg, 0, sizeof(*arg)); |
| 225 | return 0; |
| 226 | } |
| 227 | |
| 228 | static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc) |
| 229 | { |
| 230 | arg->desc = desc; |
| 231 | } |
| 232 | |
| 233 | static struct msi_domain_ops vmd_msi_domain_ops = { |
| 234 | .get_hwirq = vmd_get_hwirq, |
| 235 | .msi_init = vmd_msi_init, |
| 236 | .msi_free = vmd_msi_free, |
| 237 | .msi_prepare = vmd_msi_prepare, |
| 238 | .set_desc = vmd_set_desc, |
| 239 | }; |
| 240 | |
| 241 | static struct msi_domain_info vmd_msi_domain_info = { |
| 242 | .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | |
| 243 | MSI_FLAG_PCI_MSIX, |
| 244 | .ops = &vmd_msi_domain_ops, |
| 245 | .chip = &vmd_msi_controller, |
| 246 | }; |
| 247 | |
| 248 | #ifdef CONFIG_X86_DEV_DMA_OPS |
| 249 | /* |
| 250 | * VMD replaces the requester ID with its own. DMA mappings for devices in a |
| 251 | * VMD domain need to be mapped for the VMD, not the device requiring |
| 252 | * the mapping. |
| 253 | */ |
| 254 | static struct device *to_vmd_dev(struct device *dev) |
| 255 | { |
| 256 | struct pci_dev *pdev = to_pci_dev(dev); |
| 257 | struct vmd_dev *vmd = vmd_from_bus(pdev->bus); |
| 258 | |
| 259 | return &vmd->dev->dev; |
| 260 | } |
| 261 | |
| 262 | static struct dma_map_ops *vmd_dma_ops(struct device *dev) |
| 263 | { |
| 264 | return to_vmd_dev(dev)->archdata.dma_ops; |
| 265 | } |
| 266 | |
| 267 | static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr, |
| 268 | gfp_t flag, struct dma_attrs *attrs) |
| 269 | { |
| 270 | return vmd_dma_ops(dev)->alloc(to_vmd_dev(dev), size, addr, flag, |
| 271 | attrs); |
| 272 | } |
| 273 | |
| 274 | static void vmd_free(struct device *dev, size_t size, void *vaddr, |
| 275 | dma_addr_t addr, struct dma_attrs *attrs) |
| 276 | { |
| 277 | return vmd_dma_ops(dev)->free(to_vmd_dev(dev), size, vaddr, addr, |
| 278 | attrs); |
| 279 | } |
| 280 | |
| 281 | static int vmd_mmap(struct device *dev, struct vm_area_struct *vma, |
| 282 | void *cpu_addr, dma_addr_t addr, size_t size, |
| 283 | struct dma_attrs *attrs) |
| 284 | { |
| 285 | return vmd_dma_ops(dev)->mmap(to_vmd_dev(dev), vma, cpu_addr, addr, |
| 286 | size, attrs); |
| 287 | } |
| 288 | |
| 289 | static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt, |
| 290 | void *cpu_addr, dma_addr_t addr, size_t size, |
| 291 | struct dma_attrs *attrs) |
| 292 | { |
| 293 | return vmd_dma_ops(dev)->get_sgtable(to_vmd_dev(dev), sgt, cpu_addr, |
| 294 | addr, size, attrs); |
| 295 | } |
| 296 | |
| 297 | static dma_addr_t vmd_map_page(struct device *dev, struct page *page, |
| 298 | unsigned long offset, size_t size, |
| 299 | enum dma_data_direction dir, |
| 300 | struct dma_attrs *attrs) |
| 301 | { |
| 302 | return vmd_dma_ops(dev)->map_page(to_vmd_dev(dev), page, offset, size, |
| 303 | dir, attrs); |
| 304 | } |
| 305 | |
| 306 | static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size, |
| 307 | enum dma_data_direction dir, struct dma_attrs *attrs) |
| 308 | { |
| 309 | vmd_dma_ops(dev)->unmap_page(to_vmd_dev(dev), addr, size, dir, attrs); |
| 310 | } |
| 311 | |
| 312 | static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents, |
| 313 | enum dma_data_direction dir, struct dma_attrs *attrs) |
| 314 | { |
| 315 | return vmd_dma_ops(dev)->map_sg(to_vmd_dev(dev), sg, nents, dir, attrs); |
| 316 | } |
| 317 | |
| 318 | static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, |
| 319 | enum dma_data_direction dir, struct dma_attrs *attrs) |
| 320 | { |
| 321 | vmd_dma_ops(dev)->unmap_sg(to_vmd_dev(dev), sg, nents, dir, attrs); |
| 322 | } |
| 323 | |
| 324 | static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr, |
| 325 | size_t size, enum dma_data_direction dir) |
| 326 | { |
| 327 | vmd_dma_ops(dev)->sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir); |
| 328 | } |
| 329 | |
| 330 | static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr, |
| 331 | size_t size, enum dma_data_direction dir) |
| 332 | { |
| 333 | vmd_dma_ops(dev)->sync_single_for_device(to_vmd_dev(dev), addr, size, |
| 334 | dir); |
| 335 | } |
| 336 | |
| 337 | static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, |
| 338 | int nents, enum dma_data_direction dir) |
| 339 | { |
| 340 | vmd_dma_ops(dev)->sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir); |
| 341 | } |
| 342 | |
| 343 | static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg, |
| 344 | int nents, enum dma_data_direction dir) |
| 345 | { |
| 346 | vmd_dma_ops(dev)->sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir); |
| 347 | } |
| 348 | |
| 349 | static int vmd_mapping_error(struct device *dev, dma_addr_t addr) |
| 350 | { |
| 351 | return vmd_dma_ops(dev)->mapping_error(to_vmd_dev(dev), addr); |
| 352 | } |
| 353 | |
| 354 | static int vmd_dma_supported(struct device *dev, u64 mask) |
| 355 | { |
| 356 | return vmd_dma_ops(dev)->dma_supported(to_vmd_dev(dev), mask); |
| 357 | } |
| 358 | |
| 359 | #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK |
| 360 | static u64 vmd_get_required_mask(struct device *dev) |
| 361 | { |
| 362 | return vmd_dma_ops(dev)->get_required_mask(to_vmd_dev(dev)); |
| 363 | } |
| 364 | #endif |
| 365 | |
| 366 | static void vmd_teardown_dma_ops(struct vmd_dev *vmd) |
| 367 | { |
| 368 | struct dma_domain *domain = &vmd->dma_domain; |
| 369 | |
| 370 | if (vmd->dev->dev.archdata.dma_ops) |
| 371 | del_dma_domain(domain); |
| 372 | } |
| 373 | |
| 374 | #define ASSIGN_VMD_DMA_OPS(source, dest, fn) \ |
| 375 | do { \ |
| 376 | if (source->fn) \ |
| 377 | dest->fn = vmd_##fn; \ |
| 378 | } while (0) |
| 379 | |
| 380 | static void vmd_setup_dma_ops(struct vmd_dev *vmd) |
| 381 | { |
| 382 | const struct dma_map_ops *source = vmd->dev->dev.archdata.dma_ops; |
| 383 | struct dma_map_ops *dest = &vmd->dma_ops; |
| 384 | struct dma_domain *domain = &vmd->dma_domain; |
| 385 | |
| 386 | domain->domain_nr = vmd->sysdata.domain; |
| 387 | domain->dma_ops = dest; |
| 388 | |
| 389 | if (!source) |
| 390 | return; |
| 391 | ASSIGN_VMD_DMA_OPS(source, dest, alloc); |
| 392 | ASSIGN_VMD_DMA_OPS(source, dest, free); |
| 393 | ASSIGN_VMD_DMA_OPS(source, dest, mmap); |
| 394 | ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable); |
| 395 | ASSIGN_VMD_DMA_OPS(source, dest, map_page); |
| 396 | ASSIGN_VMD_DMA_OPS(source, dest, unmap_page); |
| 397 | ASSIGN_VMD_DMA_OPS(source, dest, map_sg); |
| 398 | ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg); |
| 399 | ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu); |
| 400 | ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device); |
| 401 | ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu); |
| 402 | ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device); |
| 403 | ASSIGN_VMD_DMA_OPS(source, dest, mapping_error); |
| 404 | ASSIGN_VMD_DMA_OPS(source, dest, dma_supported); |
| 405 | #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK |
| 406 | ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask); |
| 407 | #endif |
| 408 | add_dma_domain(domain); |
| 409 | } |
| 410 | #undef ASSIGN_VMD_DMA_OPS |
| 411 | #else |
| 412 | static void vmd_teardown_dma_ops(struct vmd_dev *vmd) {} |
| 413 | static void vmd_setup_dma_ops(struct vmd_dev *vmd) {} |
| 414 | #endif |
| 415 | |
| 416 | static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus, |
| 417 | unsigned int devfn, int reg, int len) |
| 418 | { |
| 419 | char __iomem *addr = vmd->cfgbar + |
| 420 | (bus->number << 20) + (devfn << 12) + reg; |
| 421 | |
| 422 | if ((addr - vmd->cfgbar) + len >= |
| 423 | resource_size(&vmd->dev->resource[VMD_CFGBAR])) |
| 424 | return NULL; |
| 425 | |
| 426 | return addr; |
| 427 | } |
| 428 | |
| 429 | /* |
| 430 | * CPU may deadlock if config space is not serialized on some versions of this |
| 431 | * hardware, so all config space access is done under a spinlock. |
| 432 | */ |
| 433 | static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg, |
| 434 | int len, u32 *value) |
| 435 | { |
| 436 | struct vmd_dev *vmd = vmd_from_bus(bus); |
| 437 | char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); |
| 438 | unsigned long flags; |
| 439 | int ret = 0; |
| 440 | |
| 441 | if (!addr) |
| 442 | return -EFAULT; |
| 443 | |
| 444 | spin_lock_irqsave(&vmd->cfg_lock, flags); |
| 445 | switch (len) { |
| 446 | case 1: |
| 447 | *value = readb(addr); |
| 448 | break; |
| 449 | case 2: |
| 450 | *value = readw(addr); |
| 451 | break; |
| 452 | case 4: |
| 453 | *value = readl(addr); |
| 454 | break; |
| 455 | default: |
| 456 | ret = -EINVAL; |
| 457 | break; |
| 458 | } |
| 459 | spin_unlock_irqrestore(&vmd->cfg_lock, flags); |
| 460 | return ret; |
| 461 | } |
| 462 | |
| 463 | /* |
| 464 | * VMD h/w converts non-posted config writes to posted memory writes. The |
| 465 | * read-back in this function forces the completion so it returns only after |
| 466 | * the config space was written, as expected. |
| 467 | */ |
| 468 | static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg, |
| 469 | int len, u32 value) |
| 470 | { |
| 471 | struct vmd_dev *vmd = vmd_from_bus(bus); |
| 472 | char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); |
| 473 | unsigned long flags; |
| 474 | int ret = 0; |
| 475 | |
| 476 | if (!addr) |
| 477 | return -EFAULT; |
| 478 | |
| 479 | spin_lock_irqsave(&vmd->cfg_lock, flags); |
| 480 | switch (len) { |
| 481 | case 1: |
| 482 | writeb(value, addr); |
| 483 | readb(addr); |
| 484 | break; |
| 485 | case 2: |
| 486 | writew(value, addr); |
| 487 | readw(addr); |
| 488 | break; |
| 489 | case 4: |
| 490 | writel(value, addr); |
| 491 | readl(addr); |
| 492 | break; |
| 493 | default: |
| 494 | ret = -EINVAL; |
| 495 | break; |
| 496 | } |
| 497 | spin_unlock_irqrestore(&vmd->cfg_lock, flags); |
| 498 | return ret; |
| 499 | } |
| 500 | |
| 501 | static struct pci_ops vmd_ops = { |
| 502 | .read = vmd_pci_read, |
| 503 | .write = vmd_pci_write, |
| 504 | }; |
| 505 | |
| 506 | /* |
| 507 | * VMD domains start at 0x1000 to not clash with ACPI _SEG domains. |
| 508 | */ |
| 509 | static int vmd_find_free_domain(void) |
| 510 | { |
| 511 | int domain = 0xffff; |
| 512 | struct pci_bus *bus = NULL; |
| 513 | |
| 514 | while ((bus = pci_find_next_bus(bus)) != NULL) |
| 515 | domain = max_t(int, domain, pci_domain_nr(bus)); |
| 516 | return domain + 1; |
| 517 | } |
| 518 | |
| 519 | static int vmd_enable_domain(struct vmd_dev *vmd) |
| 520 | { |
| 521 | struct pci_sysdata *sd = &vmd->sysdata; |
| 522 | struct resource *res; |
| 523 | u32 upper_bits; |
| 524 | unsigned long flags; |
| 525 | LIST_HEAD(resources); |
| 526 | |
| 527 | res = &vmd->dev->resource[VMD_CFGBAR]; |
| 528 | vmd->resources[0] = (struct resource) { |
| 529 | .name = "VMD CFGBAR", |
Keith Busch | d068c35 | 2016-03-02 15:31:04 -0700 | [diff] [blame^] | 530 | .start = 0, |
Keith Busch | 185a383 | 2016-01-12 13:18:10 -0700 | [diff] [blame] | 531 | .end = (resource_size(res) >> 20) - 1, |
| 532 | .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED, |
| 533 | }; |
| 534 | |
Keith Busch | 83cc54a | 2016-03-02 15:31:03 -0700 | [diff] [blame] | 535 | /* |
| 536 | * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can |
| 537 | * put 32-bit resources in the window. |
| 538 | * |
| 539 | * There's no hardware reason why a 64-bit window *couldn't* |
| 540 | * contain a 32-bit resource, but pbus_size_mem() computes the |
| 541 | * bridge window size assuming a 64-bit window will contain no |
| 542 | * 32-bit resources. __pci_assign_resource() enforces that |
| 543 | * artificial restriction to make sure everything will fit. |
| 544 | * |
| 545 | * The only way we could use a 64-bit non-prefechable MEMBAR is |
| 546 | * if its address is <4GB so that we can convert it to a 32-bit |
| 547 | * resource. To be visible to the host OS, all VMD endpoints must |
| 548 | * be initially configured by platform BIOS, which includes setting |
| 549 | * up these resources. We can assume the device is configured |
| 550 | * according to the platform needs. |
| 551 | */ |
Keith Busch | 185a383 | 2016-01-12 13:18:10 -0700 | [diff] [blame] | 552 | res = &vmd->dev->resource[VMD_MEMBAR1]; |
| 553 | upper_bits = upper_32_bits(res->end); |
| 554 | flags = res->flags & ~IORESOURCE_SIZEALIGN; |
| 555 | if (!upper_bits) |
| 556 | flags &= ~IORESOURCE_MEM_64; |
| 557 | vmd->resources[1] = (struct resource) { |
| 558 | .name = "VMD MEMBAR1", |
| 559 | .start = res->start, |
| 560 | .end = res->end, |
| 561 | .flags = flags, |
| 562 | }; |
| 563 | |
| 564 | res = &vmd->dev->resource[VMD_MEMBAR2]; |
| 565 | upper_bits = upper_32_bits(res->end); |
| 566 | flags = res->flags & ~IORESOURCE_SIZEALIGN; |
| 567 | if (!upper_bits) |
| 568 | flags &= ~IORESOURCE_MEM_64; |
| 569 | vmd->resources[2] = (struct resource) { |
| 570 | .name = "VMD MEMBAR2", |
| 571 | .start = res->start + 0x2000, |
| 572 | .end = res->end, |
| 573 | .flags = flags, |
| 574 | }; |
| 575 | |
| 576 | sd->domain = vmd_find_free_domain(); |
| 577 | if (sd->domain < 0) |
| 578 | return sd->domain; |
| 579 | |
| 580 | sd->node = pcibus_to_node(vmd->dev->bus); |
| 581 | |
| 582 | vmd->irq_domain = pci_msi_create_irq_domain(NULL, &vmd_msi_domain_info, |
| 583 | NULL); |
| 584 | if (!vmd->irq_domain) |
| 585 | return -ENODEV; |
| 586 | |
| 587 | pci_add_resource(&resources, &vmd->resources[0]); |
| 588 | pci_add_resource(&resources, &vmd->resources[1]); |
| 589 | pci_add_resource(&resources, &vmd->resources[2]); |
| 590 | vmd->bus = pci_create_root_bus(&vmd->dev->dev, 0, &vmd_ops, sd, |
| 591 | &resources); |
| 592 | if (!vmd->bus) { |
| 593 | pci_free_resource_list(&resources); |
| 594 | irq_domain_remove(vmd->irq_domain); |
| 595 | return -ENODEV; |
| 596 | } |
| 597 | |
| 598 | vmd_setup_dma_ops(vmd); |
| 599 | dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain); |
| 600 | pci_rescan_bus(vmd->bus); |
| 601 | |
| 602 | WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj, |
| 603 | "domain"), "Can't create symlink to domain\n"); |
| 604 | return 0; |
| 605 | } |
| 606 | |
| 607 | static irqreturn_t vmd_irq(int irq, void *data) |
| 608 | { |
| 609 | struct vmd_irq_list *irqs = data; |
| 610 | struct vmd_irq *vmdirq; |
| 611 | |
| 612 | rcu_read_lock(); |
| 613 | list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node) |
| 614 | generic_handle_irq(vmdirq->virq); |
| 615 | rcu_read_unlock(); |
| 616 | |
| 617 | return IRQ_HANDLED; |
| 618 | } |
| 619 | |
| 620 | static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id) |
| 621 | { |
| 622 | struct vmd_dev *vmd; |
| 623 | int i, err; |
| 624 | |
| 625 | if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20)) |
| 626 | return -ENOMEM; |
| 627 | |
| 628 | vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL); |
| 629 | if (!vmd) |
| 630 | return -ENOMEM; |
| 631 | |
| 632 | vmd->dev = dev; |
| 633 | err = pcim_enable_device(dev); |
| 634 | if (err < 0) |
| 635 | return err; |
| 636 | |
| 637 | vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0); |
| 638 | if (!vmd->cfgbar) |
| 639 | return -ENOMEM; |
| 640 | |
| 641 | pci_set_master(dev); |
| 642 | if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) && |
| 643 | dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) |
| 644 | return -ENODEV; |
| 645 | |
| 646 | vmd->msix_count = pci_msix_vec_count(dev); |
| 647 | if (vmd->msix_count < 0) |
| 648 | return -ENODEV; |
| 649 | |
| 650 | vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs), |
| 651 | GFP_KERNEL); |
| 652 | if (!vmd->irqs) |
| 653 | return -ENOMEM; |
| 654 | |
| 655 | vmd->msix_entries = devm_kcalloc(&dev->dev, vmd->msix_count, |
| 656 | sizeof(*vmd->msix_entries), |
| 657 | GFP_KERNEL); |
| 658 | if (!vmd->msix_entries) |
| 659 | return -ENOMEM; |
| 660 | for (i = 0; i < vmd->msix_count; i++) |
| 661 | vmd->msix_entries[i].entry = i; |
| 662 | |
| 663 | vmd->msix_count = pci_enable_msix_range(vmd->dev, vmd->msix_entries, 1, |
| 664 | vmd->msix_count); |
| 665 | if (vmd->msix_count < 0) |
| 666 | return vmd->msix_count; |
| 667 | |
| 668 | for (i = 0; i < vmd->msix_count; i++) { |
| 669 | INIT_LIST_HEAD(&vmd->irqs[i].irq_list); |
| 670 | vmd->irqs[i].vmd_vector = vmd->msix_entries[i].vector; |
| 671 | vmd->irqs[i].index = i; |
| 672 | |
| 673 | err = devm_request_irq(&dev->dev, vmd->irqs[i].vmd_vector, |
| 674 | vmd_irq, 0, "vmd", &vmd->irqs[i]); |
| 675 | if (err) |
| 676 | return err; |
| 677 | } |
| 678 | |
| 679 | spin_lock_init(&vmd->cfg_lock); |
| 680 | pci_set_drvdata(dev, vmd); |
| 681 | err = vmd_enable_domain(vmd); |
| 682 | if (err) |
| 683 | return err; |
| 684 | |
| 685 | dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n", |
| 686 | vmd->sysdata.domain); |
| 687 | return 0; |
| 688 | } |
| 689 | |
| 690 | static void vmd_remove(struct pci_dev *dev) |
| 691 | { |
| 692 | struct vmd_dev *vmd = pci_get_drvdata(dev); |
| 693 | |
| 694 | pci_set_drvdata(dev, NULL); |
| 695 | sysfs_remove_link(&vmd->dev->dev.kobj, "domain"); |
| 696 | pci_stop_root_bus(vmd->bus); |
| 697 | pci_remove_root_bus(vmd->bus); |
| 698 | vmd_teardown_dma_ops(vmd); |
| 699 | irq_domain_remove(vmd->irq_domain); |
| 700 | } |
| 701 | |
| 702 | #ifdef CONFIG_PM |
| 703 | static int vmd_suspend(struct device *dev) |
| 704 | { |
| 705 | struct pci_dev *pdev = to_pci_dev(dev); |
| 706 | |
| 707 | pci_save_state(pdev); |
| 708 | return 0; |
| 709 | } |
| 710 | |
| 711 | static int vmd_resume(struct device *dev) |
| 712 | { |
| 713 | struct pci_dev *pdev = to_pci_dev(dev); |
| 714 | |
| 715 | pci_restore_state(pdev); |
| 716 | return 0; |
| 717 | } |
| 718 | #endif |
| 719 | static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume); |
| 720 | |
| 721 | static const struct pci_device_id vmd_ids[] = { |
| 722 | {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x201d),}, |
| 723 | {0,} |
| 724 | }; |
| 725 | MODULE_DEVICE_TABLE(pci, vmd_ids); |
| 726 | |
| 727 | static struct pci_driver vmd_drv = { |
| 728 | .name = "vmd", |
| 729 | .id_table = vmd_ids, |
| 730 | .probe = vmd_probe, |
| 731 | .remove = vmd_remove, |
| 732 | .driver = { |
| 733 | .pm = &vmd_dev_pm_ops, |
| 734 | }, |
| 735 | }; |
| 736 | module_pci_driver(vmd_drv); |
| 737 | |
| 738 | MODULE_AUTHOR("Intel Corporation"); |
| 739 | MODULE_LICENSE("GPL v2"); |
| 740 | MODULE_VERSION("0.6"); |