Bharata B Rao | ca9f494 | 2019-11-25 08:36:26 +0530 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Secure pages management: Migration of pages between normal and secure |
| 4 | * memory of KVM guests. |
| 5 | * |
| 6 | * Copyright 2018 Bharata B Rao, IBM Corp. <bharata@linux.ibm.com> |
| 7 | */ |
| 8 | |
| 9 | /* |
| 10 | * A pseries guest can be run as secure guest on Ultravisor-enabled |
| 11 | * POWER platforms. On such platforms, this driver will be used to manage |
| 12 | * the movement of guest pages between the normal memory managed by |
| 13 | * hypervisor (HV) and secure memory managed by Ultravisor (UV). |
| 14 | * |
| 15 | * The page-in or page-out requests from UV will come to HV as hcalls and |
| 16 | * HV will call back into UV via ultracalls to satisfy these page requests. |
| 17 | * |
| 18 | * Private ZONE_DEVICE memory equal to the amount of secure memory |
| 19 | * available in the platform for running secure guests is hotplugged. |
| 20 | * Whenever a page belonging to the guest becomes secure, a page from this |
| 21 | * private device memory is used to represent and track that secure page |
Bharata B Rao | 60f0a64 | 2019-11-25 08:36:27 +0530 | [diff] [blame] | 22 | * on the HV side. Some pages (like virtio buffers, VPA pages etc) are |
| 23 | * shared between UV and HV. However such pages aren't represented by |
| 24 | * device private memory and mappings to shared memory exist in both |
| 25 | * UV and HV page tables. |
Bharata B Rao | ca9f494 | 2019-11-25 08:36:26 +0530 | [diff] [blame] | 26 | */ |
| 27 | |
| 28 | /* |
| 29 | * Notes on locking |
| 30 | * |
| 31 | * kvm->arch.uvmem_lock is a per-guest lock that prevents concurrent |
| 32 | * page-in and page-out requests for the same GPA. Concurrent accesses |
| 33 | * can either come via UV (guest vCPUs requesting for same page) |
| 34 | * or when HV and guest simultaneously access the same page. |
| 35 | * This mutex serializes the migration of page from HV(normal) to |
| 36 | * UV(secure) and vice versa. So the serialization points are around |
| 37 | * migrate_vma routines and page-in/out routines. |
| 38 | * |
| 39 | * Per-guest mutex comes with a cost though. Mainly it serializes the |
| 40 | * fault path as page-out can occur when HV faults on accessing secure |
| 41 | * guest pages. Currently UV issues page-in requests for all the guest |
| 42 | * PFNs one at a time during early boot (UV_ESM uvcall), so this is |
| 43 | * not a cause for concern. Also currently the number of page-outs caused |
| 44 | * by HV touching secure pages is very very low. If an when UV supports |
| 45 | * overcommitting, then we might see concurrent guest driven page-outs. |
| 46 | * |
| 47 | * Locking order |
| 48 | * |
| 49 | * 1. kvm->srcu - Protects KVM memslots |
| 50 | * 2. kvm->mm->mmap_sem - find_vma, migrate_vma_pages and helpers, ksm_madvise |
| 51 | * 3. kvm->arch.uvmem_lock - protects read/writes to uvmem slots thus acting |
| 52 | * as sync-points for page-in/out |
| 53 | */ |
| 54 | |
| 55 | /* |
| 56 | * Notes on page size |
| 57 | * |
| 58 | * Currently UV uses 2MB mappings internally, but will issue H_SVM_PAGE_IN |
| 59 | * and H_SVM_PAGE_OUT hcalls in PAGE_SIZE(64K) granularity. HV tracks |
| 60 | * secure GPAs at 64K page size and maintains one device PFN for each |
| 61 | * 64K secure GPA. UV_PAGE_IN and UV_PAGE_OUT calls by HV are also issued |
| 62 | * for 64K page at a time. |
| 63 | * |
| 64 | * HV faulting on secure pages: When HV touches any secure page, it |
| 65 | * faults and issues a UV_PAGE_OUT request with 64K page size. Currently |
| 66 | * UV splits and remaps the 2MB page if necessary and copies out the |
| 67 | * required 64K page contents. |
| 68 | * |
Bharata B Rao | 60f0a64 | 2019-11-25 08:36:27 +0530 | [diff] [blame] | 69 | * Shared pages: Whenever guest shares a secure page, UV will split and |
| 70 | * remap the 2MB page if required and issue H_SVM_PAGE_IN with 64K page size. |
| 71 | * |
Bharata B Rao | 008e359 | 2019-11-25 08:36:28 +0530 | [diff] [blame] | 72 | * HV invalidating a page: When a regular page belonging to secure |
| 73 | * guest gets unmapped, HV informs UV with UV_PAGE_INVAL of 64K |
| 74 | * page size. Using 64K page size is correct here because any non-secure |
| 75 | * page will essentially be of 64K page size. Splitting by UV during sharing |
| 76 | * and page-out ensures this. |
| 77 | * |
| 78 | * Page fault handling: When HV handles page fault of a page belonging |
| 79 | * to secure guest, it sends that to UV with a 64K UV_PAGE_IN request. |
| 80 | * Using 64K size is correct here too as UV would have split the 2MB page |
| 81 | * into 64k mappings and would have done page-outs earlier. |
| 82 | * |
Bharata B Rao | ca9f494 | 2019-11-25 08:36:26 +0530 | [diff] [blame] | 83 | * In summary, the current secure pages handling code in HV assumes |
| 84 | * 64K page size and in fact fails any page-in/page-out requests of |
| 85 | * non-64K size upfront. If and when UV starts supporting multiple |
| 86 | * page-sizes, we need to break this assumption. |
| 87 | */ |
| 88 | |
| 89 | #include <linux/pagemap.h> |
| 90 | #include <linux/migrate.h> |
| 91 | #include <linux/kvm_host.h> |
| 92 | #include <linux/ksm.h> |
| 93 | #include <asm/ultravisor.h> |
| 94 | #include <asm/mman.h> |
| 95 | #include <asm/kvm_ppc.h> |
| 96 | |
| 97 | static struct dev_pagemap kvmppc_uvmem_pgmap; |
| 98 | static unsigned long *kvmppc_uvmem_bitmap; |
| 99 | static DEFINE_SPINLOCK(kvmppc_uvmem_bitmap_lock); |
| 100 | |
| 101 | #define KVMPPC_UVMEM_PFN (1UL << 63) |
| 102 | |
| 103 | struct kvmppc_uvmem_slot { |
| 104 | struct list_head list; |
| 105 | unsigned long nr_pfns; |
| 106 | unsigned long base_pfn; |
| 107 | unsigned long *pfns; |
| 108 | }; |
| 109 | |
| 110 | struct kvmppc_uvmem_page_pvt { |
| 111 | struct kvm *kvm; |
| 112 | unsigned long gpa; |
Bharata B Rao | 60f0a64 | 2019-11-25 08:36:27 +0530 | [diff] [blame] | 113 | bool skip_page_out; |
Bharata B Rao | ca9f494 | 2019-11-25 08:36:26 +0530 | [diff] [blame] | 114 | }; |
| 115 | |
| 116 | int kvmppc_uvmem_slot_init(struct kvm *kvm, const struct kvm_memory_slot *slot) |
| 117 | { |
| 118 | struct kvmppc_uvmem_slot *p; |
| 119 | |
| 120 | p = kzalloc(sizeof(*p), GFP_KERNEL); |
| 121 | if (!p) |
| 122 | return -ENOMEM; |
| 123 | p->pfns = vzalloc(array_size(slot->npages, sizeof(*p->pfns))); |
| 124 | if (!p->pfns) { |
| 125 | kfree(p); |
| 126 | return -ENOMEM; |
| 127 | } |
| 128 | p->nr_pfns = slot->npages; |
| 129 | p->base_pfn = slot->base_gfn; |
| 130 | |
| 131 | mutex_lock(&kvm->arch.uvmem_lock); |
| 132 | list_add(&p->list, &kvm->arch.uvmem_pfns); |
| 133 | mutex_unlock(&kvm->arch.uvmem_lock); |
| 134 | |
| 135 | return 0; |
| 136 | } |
| 137 | |
| 138 | /* |
| 139 | * All device PFNs are already released by the time we come here. |
| 140 | */ |
| 141 | void kvmppc_uvmem_slot_free(struct kvm *kvm, const struct kvm_memory_slot *slot) |
| 142 | { |
| 143 | struct kvmppc_uvmem_slot *p, *next; |
| 144 | |
| 145 | mutex_lock(&kvm->arch.uvmem_lock); |
| 146 | list_for_each_entry_safe(p, next, &kvm->arch.uvmem_pfns, list) { |
| 147 | if (p->base_pfn == slot->base_gfn) { |
| 148 | vfree(p->pfns); |
| 149 | list_del(&p->list); |
| 150 | kfree(p); |
| 151 | break; |
| 152 | } |
| 153 | } |
| 154 | mutex_unlock(&kvm->arch.uvmem_lock); |
| 155 | } |
| 156 | |
| 157 | static void kvmppc_uvmem_pfn_insert(unsigned long gfn, unsigned long uvmem_pfn, |
| 158 | struct kvm *kvm) |
| 159 | { |
| 160 | struct kvmppc_uvmem_slot *p; |
| 161 | |
| 162 | list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) { |
| 163 | if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) { |
| 164 | unsigned long index = gfn - p->base_pfn; |
| 165 | |
| 166 | p->pfns[index] = uvmem_pfn | KVMPPC_UVMEM_PFN; |
| 167 | return; |
| 168 | } |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | static void kvmppc_uvmem_pfn_remove(unsigned long gfn, struct kvm *kvm) |
| 173 | { |
| 174 | struct kvmppc_uvmem_slot *p; |
| 175 | |
| 176 | list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) { |
| 177 | if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) { |
| 178 | p->pfns[gfn - p->base_pfn] = 0; |
| 179 | return; |
| 180 | } |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm, |
| 185 | unsigned long *uvmem_pfn) |
| 186 | { |
| 187 | struct kvmppc_uvmem_slot *p; |
| 188 | |
| 189 | list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) { |
| 190 | if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) { |
| 191 | unsigned long index = gfn - p->base_pfn; |
| 192 | |
| 193 | if (p->pfns[index] & KVMPPC_UVMEM_PFN) { |
| 194 | if (uvmem_pfn) |
| 195 | *uvmem_pfn = p->pfns[index] & |
| 196 | ~KVMPPC_UVMEM_PFN; |
| 197 | return true; |
| 198 | } else |
| 199 | return false; |
| 200 | } |
| 201 | } |
| 202 | return false; |
| 203 | } |
| 204 | |
| 205 | unsigned long kvmppc_h_svm_init_start(struct kvm *kvm) |
| 206 | { |
| 207 | struct kvm_memslots *slots; |
| 208 | struct kvm_memory_slot *memslot; |
| 209 | int ret = H_SUCCESS; |
| 210 | int srcu_idx; |
| 211 | |
| 212 | if (!kvmppc_uvmem_bitmap) |
| 213 | return H_UNSUPPORTED; |
| 214 | |
| 215 | /* Only radix guests can be secure guests */ |
| 216 | if (!kvm_is_radix(kvm)) |
| 217 | return H_UNSUPPORTED; |
| 218 | |
| 219 | srcu_idx = srcu_read_lock(&kvm->srcu); |
| 220 | slots = kvm_memslots(kvm); |
| 221 | kvm_for_each_memslot(memslot, slots) { |
| 222 | if (kvmppc_uvmem_slot_init(kvm, memslot)) { |
| 223 | ret = H_PARAMETER; |
| 224 | goto out; |
| 225 | } |
| 226 | ret = uv_register_mem_slot(kvm->arch.lpid, |
| 227 | memslot->base_gfn << PAGE_SHIFT, |
| 228 | memslot->npages * PAGE_SIZE, |
| 229 | 0, memslot->id); |
| 230 | if (ret < 0) { |
| 231 | kvmppc_uvmem_slot_free(kvm, memslot); |
| 232 | ret = H_PARAMETER; |
| 233 | goto out; |
| 234 | } |
| 235 | } |
| 236 | kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_START; |
| 237 | out: |
| 238 | srcu_read_unlock(&kvm->srcu, srcu_idx); |
| 239 | return ret; |
| 240 | } |
| 241 | |
| 242 | unsigned long kvmppc_h_svm_init_done(struct kvm *kvm) |
| 243 | { |
| 244 | if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) |
| 245 | return H_UNSUPPORTED; |
| 246 | |
| 247 | kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE; |
| 248 | pr_info("LPID %d went secure\n", kvm->arch.lpid); |
| 249 | return H_SUCCESS; |
| 250 | } |
| 251 | |
| 252 | /* |
Bharata B Rao | c326225 | 2019-11-25 08:36:29 +0530 | [diff] [blame] | 253 | * Drop device pages that we maintain for the secure guest |
| 254 | * |
| 255 | * We first mark the pages to be skipped from UV_PAGE_OUT when there |
| 256 | * is HV side fault on these pages. Next we *get* these pages, forcing |
| 257 | * fault on them, do fault time migration to replace the device PTEs in |
| 258 | * QEMU page table with normal PTEs from newly allocated pages. |
| 259 | */ |
| 260 | void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *free, |
Sukadev Bhattiprolu | ce477a7 | 2019-12-19 13:51:45 -0800 | [diff] [blame^] | 261 | struct kvm *kvm, bool skip_page_out) |
Bharata B Rao | c326225 | 2019-11-25 08:36:29 +0530 | [diff] [blame] | 262 | { |
| 263 | int i; |
| 264 | struct kvmppc_uvmem_page_pvt *pvt; |
| 265 | unsigned long pfn, uvmem_pfn; |
| 266 | unsigned long gfn = free->base_gfn; |
| 267 | |
| 268 | for (i = free->npages; i; --i, ++gfn) { |
| 269 | struct page *uvmem_page; |
| 270 | |
| 271 | mutex_lock(&kvm->arch.uvmem_lock); |
| 272 | if (!kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) { |
| 273 | mutex_unlock(&kvm->arch.uvmem_lock); |
| 274 | continue; |
| 275 | } |
| 276 | |
| 277 | uvmem_page = pfn_to_page(uvmem_pfn); |
| 278 | pvt = uvmem_page->zone_device_data; |
Sukadev Bhattiprolu | ce477a7 | 2019-12-19 13:51:45 -0800 | [diff] [blame^] | 279 | pvt->skip_page_out = skip_page_out; |
Bharata B Rao | c326225 | 2019-11-25 08:36:29 +0530 | [diff] [blame] | 280 | mutex_unlock(&kvm->arch.uvmem_lock); |
| 281 | |
| 282 | pfn = gfn_to_pfn(kvm, gfn); |
| 283 | if (is_error_noslot_pfn(pfn)) |
| 284 | continue; |
| 285 | kvm_release_pfn_clean(pfn); |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | /* |
Bharata B Rao | ca9f494 | 2019-11-25 08:36:26 +0530 | [diff] [blame] | 290 | * Get a free device PFN from the pool |
| 291 | * |
| 292 | * Called when a normal page is moved to secure memory (UV_PAGE_IN). Device |
| 293 | * PFN will be used to keep track of the secure page on HV side. |
| 294 | * |
| 295 | * Called with kvm->arch.uvmem_lock held |
| 296 | */ |
| 297 | static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm) |
| 298 | { |
| 299 | struct page *dpage = NULL; |
| 300 | unsigned long bit, uvmem_pfn; |
| 301 | struct kvmppc_uvmem_page_pvt *pvt; |
| 302 | unsigned long pfn_last, pfn_first; |
| 303 | |
| 304 | pfn_first = kvmppc_uvmem_pgmap.res.start >> PAGE_SHIFT; |
| 305 | pfn_last = pfn_first + |
| 306 | (resource_size(&kvmppc_uvmem_pgmap.res) >> PAGE_SHIFT); |
| 307 | |
| 308 | spin_lock(&kvmppc_uvmem_bitmap_lock); |
| 309 | bit = find_first_zero_bit(kvmppc_uvmem_bitmap, |
| 310 | pfn_last - pfn_first); |
| 311 | if (bit >= (pfn_last - pfn_first)) |
| 312 | goto out; |
| 313 | bitmap_set(kvmppc_uvmem_bitmap, bit, 1); |
| 314 | spin_unlock(&kvmppc_uvmem_bitmap_lock); |
| 315 | |
| 316 | pvt = kzalloc(sizeof(*pvt), GFP_KERNEL); |
| 317 | if (!pvt) |
| 318 | goto out_clear; |
| 319 | |
| 320 | uvmem_pfn = bit + pfn_first; |
| 321 | kvmppc_uvmem_pfn_insert(gpa >> PAGE_SHIFT, uvmem_pfn, kvm); |
| 322 | |
| 323 | pvt->gpa = gpa; |
| 324 | pvt->kvm = kvm; |
| 325 | |
| 326 | dpage = pfn_to_page(uvmem_pfn); |
| 327 | dpage->zone_device_data = pvt; |
| 328 | get_page(dpage); |
| 329 | lock_page(dpage); |
| 330 | return dpage; |
| 331 | out_clear: |
| 332 | spin_lock(&kvmppc_uvmem_bitmap_lock); |
| 333 | bitmap_clear(kvmppc_uvmem_bitmap, bit, 1); |
| 334 | out: |
| 335 | spin_unlock(&kvmppc_uvmem_bitmap_lock); |
| 336 | return NULL; |
| 337 | } |
| 338 | |
| 339 | /* |
| 340 | * Alloc a PFN from private device memory pool and copy page from normal |
| 341 | * memory to secure memory using UV_PAGE_IN uvcall. |
| 342 | */ |
| 343 | static int |
| 344 | kvmppc_svm_page_in(struct vm_area_struct *vma, unsigned long start, |
| 345 | unsigned long end, unsigned long gpa, struct kvm *kvm, |
| 346 | unsigned long page_shift, bool *downgrade) |
| 347 | { |
| 348 | unsigned long src_pfn, dst_pfn = 0; |
| 349 | struct migrate_vma mig; |
| 350 | struct page *spage; |
| 351 | unsigned long pfn; |
| 352 | struct page *dpage; |
| 353 | int ret = 0; |
| 354 | |
| 355 | memset(&mig, 0, sizeof(mig)); |
| 356 | mig.vma = vma; |
| 357 | mig.start = start; |
| 358 | mig.end = end; |
| 359 | mig.src = &src_pfn; |
| 360 | mig.dst = &dst_pfn; |
| 361 | |
| 362 | /* |
| 363 | * We come here with mmap_sem write lock held just for |
| 364 | * ksm_madvise(), otherwise we only need read mmap_sem. |
| 365 | * Hence downgrade to read lock once ksm_madvise() is done. |
| 366 | */ |
| 367 | ret = ksm_madvise(vma, vma->vm_start, vma->vm_end, |
| 368 | MADV_UNMERGEABLE, &vma->vm_flags); |
| 369 | downgrade_write(&kvm->mm->mmap_sem); |
| 370 | *downgrade = true; |
| 371 | if (ret) |
| 372 | return ret; |
| 373 | |
| 374 | ret = migrate_vma_setup(&mig); |
| 375 | if (ret) |
| 376 | return ret; |
| 377 | |
| 378 | if (!(*mig.src & MIGRATE_PFN_MIGRATE)) { |
| 379 | ret = -1; |
| 380 | goto out_finalize; |
| 381 | } |
| 382 | |
| 383 | dpage = kvmppc_uvmem_get_page(gpa, kvm); |
| 384 | if (!dpage) { |
| 385 | ret = -1; |
| 386 | goto out_finalize; |
| 387 | } |
| 388 | |
| 389 | pfn = *mig.src >> MIGRATE_PFN_SHIFT; |
| 390 | spage = migrate_pfn_to_page(*mig.src); |
| 391 | if (spage) |
| 392 | uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0, |
| 393 | page_shift); |
| 394 | |
| 395 | *mig.dst = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED; |
| 396 | migrate_vma_pages(&mig); |
| 397 | out_finalize: |
| 398 | migrate_vma_finalize(&mig); |
| 399 | return ret; |
| 400 | } |
| 401 | |
| 402 | /* |
Bharata B Rao | 60f0a64 | 2019-11-25 08:36:27 +0530 | [diff] [blame] | 403 | * Shares the page with HV, thus making it a normal page. |
| 404 | * |
| 405 | * - If the page is already secure, then provision a new page and share |
| 406 | * - If the page is a normal page, share the existing page |
| 407 | * |
| 408 | * In the former case, uses dev_pagemap_ops.migrate_to_ram handler |
| 409 | * to unmap the device page from QEMU's page tables. |
| 410 | */ |
| 411 | static unsigned long |
| 412 | kvmppc_share_page(struct kvm *kvm, unsigned long gpa, unsigned long page_shift) |
| 413 | { |
| 414 | |
| 415 | int ret = H_PARAMETER; |
| 416 | struct page *uvmem_page; |
| 417 | struct kvmppc_uvmem_page_pvt *pvt; |
| 418 | unsigned long pfn; |
| 419 | unsigned long gfn = gpa >> page_shift; |
| 420 | int srcu_idx; |
| 421 | unsigned long uvmem_pfn; |
| 422 | |
| 423 | srcu_idx = srcu_read_lock(&kvm->srcu); |
| 424 | mutex_lock(&kvm->arch.uvmem_lock); |
| 425 | if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) { |
| 426 | uvmem_page = pfn_to_page(uvmem_pfn); |
| 427 | pvt = uvmem_page->zone_device_data; |
| 428 | pvt->skip_page_out = true; |
| 429 | } |
| 430 | |
| 431 | retry: |
| 432 | mutex_unlock(&kvm->arch.uvmem_lock); |
| 433 | pfn = gfn_to_pfn(kvm, gfn); |
| 434 | if (is_error_noslot_pfn(pfn)) |
| 435 | goto out; |
| 436 | |
| 437 | mutex_lock(&kvm->arch.uvmem_lock); |
| 438 | if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) { |
| 439 | uvmem_page = pfn_to_page(uvmem_pfn); |
| 440 | pvt = uvmem_page->zone_device_data; |
| 441 | pvt->skip_page_out = true; |
| 442 | kvm_release_pfn_clean(pfn); |
| 443 | goto retry; |
| 444 | } |
| 445 | |
| 446 | if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0, page_shift)) |
| 447 | ret = H_SUCCESS; |
| 448 | kvm_release_pfn_clean(pfn); |
| 449 | mutex_unlock(&kvm->arch.uvmem_lock); |
| 450 | out: |
| 451 | srcu_read_unlock(&kvm->srcu, srcu_idx); |
| 452 | return ret; |
| 453 | } |
| 454 | |
| 455 | /* |
Bharata B Rao | ca9f494 | 2019-11-25 08:36:26 +0530 | [diff] [blame] | 456 | * H_SVM_PAGE_IN: Move page from normal memory to secure memory. |
Bharata B Rao | 60f0a64 | 2019-11-25 08:36:27 +0530 | [diff] [blame] | 457 | * |
| 458 | * H_PAGE_IN_SHARED flag makes the page shared which means that the same |
| 459 | * memory in is visible from both UV and HV. |
Bharata B Rao | ca9f494 | 2019-11-25 08:36:26 +0530 | [diff] [blame] | 460 | */ |
| 461 | unsigned long |
| 462 | kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa, |
| 463 | unsigned long flags, unsigned long page_shift) |
| 464 | { |
| 465 | bool downgrade = false; |
| 466 | unsigned long start, end; |
| 467 | struct vm_area_struct *vma; |
| 468 | int srcu_idx; |
| 469 | unsigned long gfn = gpa >> page_shift; |
| 470 | int ret; |
| 471 | |
| 472 | if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) |
| 473 | return H_UNSUPPORTED; |
| 474 | |
| 475 | if (page_shift != PAGE_SHIFT) |
| 476 | return H_P3; |
| 477 | |
Bharata B Rao | 60f0a64 | 2019-11-25 08:36:27 +0530 | [diff] [blame] | 478 | if (flags & ~H_PAGE_IN_SHARED) |
Bharata B Rao | ca9f494 | 2019-11-25 08:36:26 +0530 | [diff] [blame] | 479 | return H_P2; |
| 480 | |
Bharata B Rao | 60f0a64 | 2019-11-25 08:36:27 +0530 | [diff] [blame] | 481 | if (flags & H_PAGE_IN_SHARED) |
| 482 | return kvmppc_share_page(kvm, gpa, page_shift); |
| 483 | |
Bharata B Rao | ca9f494 | 2019-11-25 08:36:26 +0530 | [diff] [blame] | 484 | ret = H_PARAMETER; |
| 485 | srcu_idx = srcu_read_lock(&kvm->srcu); |
| 486 | down_write(&kvm->mm->mmap_sem); |
| 487 | |
| 488 | start = gfn_to_hva(kvm, gfn); |
| 489 | if (kvm_is_error_hva(start)) |
| 490 | goto out; |
| 491 | |
| 492 | mutex_lock(&kvm->arch.uvmem_lock); |
| 493 | /* Fail the page-in request of an already paged-in page */ |
| 494 | if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL)) |
| 495 | goto out_unlock; |
| 496 | |
| 497 | end = start + (1UL << page_shift); |
| 498 | vma = find_vma_intersection(kvm->mm, start, end); |
| 499 | if (!vma || vma->vm_start > start || vma->vm_end < end) |
| 500 | goto out_unlock; |
| 501 | |
| 502 | if (!kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift, |
| 503 | &downgrade)) |
| 504 | ret = H_SUCCESS; |
| 505 | out_unlock: |
| 506 | mutex_unlock(&kvm->arch.uvmem_lock); |
| 507 | out: |
| 508 | if (downgrade) |
| 509 | up_read(&kvm->mm->mmap_sem); |
| 510 | else |
| 511 | up_write(&kvm->mm->mmap_sem); |
| 512 | srcu_read_unlock(&kvm->srcu, srcu_idx); |
| 513 | return ret; |
| 514 | } |
| 515 | |
| 516 | /* |
| 517 | * Provision a new page on HV side and copy over the contents |
| 518 | * from secure memory using UV_PAGE_OUT uvcall. |
| 519 | */ |
| 520 | static int |
| 521 | kvmppc_svm_page_out(struct vm_area_struct *vma, unsigned long start, |
| 522 | unsigned long end, unsigned long page_shift, |
| 523 | struct kvm *kvm, unsigned long gpa) |
| 524 | { |
| 525 | unsigned long src_pfn, dst_pfn = 0; |
| 526 | struct migrate_vma mig; |
| 527 | struct page *dpage, *spage; |
Bharata B Rao | 60f0a64 | 2019-11-25 08:36:27 +0530 | [diff] [blame] | 528 | struct kvmppc_uvmem_page_pvt *pvt; |
Bharata B Rao | ca9f494 | 2019-11-25 08:36:26 +0530 | [diff] [blame] | 529 | unsigned long pfn; |
| 530 | int ret = U_SUCCESS; |
| 531 | |
| 532 | memset(&mig, 0, sizeof(mig)); |
| 533 | mig.vma = vma; |
| 534 | mig.start = start; |
| 535 | mig.end = end; |
| 536 | mig.src = &src_pfn; |
| 537 | mig.dst = &dst_pfn; |
| 538 | |
| 539 | mutex_lock(&kvm->arch.uvmem_lock); |
| 540 | /* The requested page is already paged-out, nothing to do */ |
| 541 | if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL)) |
| 542 | goto out; |
| 543 | |
| 544 | ret = migrate_vma_setup(&mig); |
| 545 | if (ret) |
| 546 | return ret; |
| 547 | |
| 548 | spage = migrate_pfn_to_page(*mig.src); |
| 549 | if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE)) |
| 550 | goto out_finalize; |
| 551 | |
| 552 | if (!is_zone_device_page(spage)) |
| 553 | goto out_finalize; |
| 554 | |
| 555 | dpage = alloc_page_vma(GFP_HIGHUSER, vma, start); |
| 556 | if (!dpage) { |
| 557 | ret = -1; |
| 558 | goto out_finalize; |
| 559 | } |
| 560 | |
| 561 | lock_page(dpage); |
Bharata B Rao | 60f0a64 | 2019-11-25 08:36:27 +0530 | [diff] [blame] | 562 | pvt = spage->zone_device_data; |
Bharata B Rao | ca9f494 | 2019-11-25 08:36:26 +0530 | [diff] [blame] | 563 | pfn = page_to_pfn(dpage); |
| 564 | |
Bharata B Rao | 60f0a64 | 2019-11-25 08:36:27 +0530 | [diff] [blame] | 565 | /* |
| 566 | * This function is used in two cases: |
| 567 | * - When HV touches a secure page, for which we do UV_PAGE_OUT |
| 568 | * - When a secure page is converted to shared page, we *get* |
| 569 | * the page to essentially unmap the device page. In this |
| 570 | * case we skip page-out. |
| 571 | */ |
| 572 | if (!pvt->skip_page_out) |
| 573 | ret = uv_page_out(kvm->arch.lpid, pfn << page_shift, |
| 574 | gpa, 0, page_shift); |
| 575 | |
Bharata B Rao | ca9f494 | 2019-11-25 08:36:26 +0530 | [diff] [blame] | 576 | if (ret == U_SUCCESS) |
| 577 | *mig.dst = migrate_pfn(pfn) | MIGRATE_PFN_LOCKED; |
| 578 | else { |
| 579 | unlock_page(dpage); |
| 580 | __free_page(dpage); |
| 581 | goto out_finalize; |
| 582 | } |
| 583 | |
| 584 | migrate_vma_pages(&mig); |
| 585 | out_finalize: |
| 586 | migrate_vma_finalize(&mig); |
| 587 | out: |
| 588 | mutex_unlock(&kvm->arch.uvmem_lock); |
| 589 | return ret; |
| 590 | } |
| 591 | |
| 592 | /* |
| 593 | * Fault handler callback that gets called when HV touches any page that |
| 594 | * has been moved to secure memory, we ask UV to give back the page by |
| 595 | * issuing UV_PAGE_OUT uvcall. |
| 596 | * |
| 597 | * This eventually results in dropping of device PFN and the newly |
| 598 | * provisioned page/PFN gets populated in QEMU page tables. |
| 599 | */ |
| 600 | static vm_fault_t kvmppc_uvmem_migrate_to_ram(struct vm_fault *vmf) |
| 601 | { |
| 602 | struct kvmppc_uvmem_page_pvt *pvt = vmf->page->zone_device_data; |
| 603 | |
| 604 | if (kvmppc_svm_page_out(vmf->vma, vmf->address, |
| 605 | vmf->address + PAGE_SIZE, PAGE_SHIFT, |
| 606 | pvt->kvm, pvt->gpa)) |
| 607 | return VM_FAULT_SIGBUS; |
| 608 | else |
| 609 | return 0; |
| 610 | } |
| 611 | |
| 612 | /* |
| 613 | * Release the device PFN back to the pool |
| 614 | * |
| 615 | * Gets called when secure page becomes a normal page during H_SVM_PAGE_OUT. |
| 616 | * Gets called with kvm->arch.uvmem_lock held. |
| 617 | */ |
| 618 | static void kvmppc_uvmem_page_free(struct page *page) |
| 619 | { |
| 620 | unsigned long pfn = page_to_pfn(page) - |
| 621 | (kvmppc_uvmem_pgmap.res.start >> PAGE_SHIFT); |
| 622 | struct kvmppc_uvmem_page_pvt *pvt; |
| 623 | |
| 624 | spin_lock(&kvmppc_uvmem_bitmap_lock); |
| 625 | bitmap_clear(kvmppc_uvmem_bitmap, pfn, 1); |
| 626 | spin_unlock(&kvmppc_uvmem_bitmap_lock); |
| 627 | |
| 628 | pvt = page->zone_device_data; |
| 629 | page->zone_device_data = NULL; |
| 630 | kvmppc_uvmem_pfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm); |
| 631 | kfree(pvt); |
| 632 | } |
| 633 | |
| 634 | static const struct dev_pagemap_ops kvmppc_uvmem_ops = { |
| 635 | .page_free = kvmppc_uvmem_page_free, |
| 636 | .migrate_to_ram = kvmppc_uvmem_migrate_to_ram, |
| 637 | }; |
| 638 | |
| 639 | /* |
| 640 | * H_SVM_PAGE_OUT: Move page from secure memory to normal memory. |
| 641 | */ |
| 642 | unsigned long |
| 643 | kvmppc_h_svm_page_out(struct kvm *kvm, unsigned long gpa, |
| 644 | unsigned long flags, unsigned long page_shift) |
| 645 | { |
| 646 | unsigned long gfn = gpa >> page_shift; |
| 647 | unsigned long start, end; |
| 648 | struct vm_area_struct *vma; |
| 649 | int srcu_idx; |
| 650 | int ret; |
| 651 | |
| 652 | if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) |
| 653 | return H_UNSUPPORTED; |
| 654 | |
| 655 | if (page_shift != PAGE_SHIFT) |
| 656 | return H_P3; |
| 657 | |
| 658 | if (flags) |
| 659 | return H_P2; |
| 660 | |
| 661 | ret = H_PARAMETER; |
| 662 | srcu_idx = srcu_read_lock(&kvm->srcu); |
| 663 | down_read(&kvm->mm->mmap_sem); |
| 664 | start = gfn_to_hva(kvm, gfn); |
| 665 | if (kvm_is_error_hva(start)) |
| 666 | goto out; |
| 667 | |
| 668 | end = start + (1UL << page_shift); |
| 669 | vma = find_vma_intersection(kvm->mm, start, end); |
| 670 | if (!vma || vma->vm_start > start || vma->vm_end < end) |
| 671 | goto out; |
| 672 | |
| 673 | if (!kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa)) |
| 674 | ret = H_SUCCESS; |
| 675 | out: |
| 676 | up_read(&kvm->mm->mmap_sem); |
| 677 | srcu_read_unlock(&kvm->srcu, srcu_idx); |
| 678 | return ret; |
| 679 | } |
| 680 | |
Bharata B Rao | 008e359 | 2019-11-25 08:36:28 +0530 | [diff] [blame] | 681 | int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn) |
| 682 | { |
| 683 | unsigned long pfn; |
| 684 | int ret = U_SUCCESS; |
| 685 | |
| 686 | pfn = gfn_to_pfn(kvm, gfn); |
| 687 | if (is_error_noslot_pfn(pfn)) |
| 688 | return -EFAULT; |
| 689 | |
| 690 | mutex_lock(&kvm->arch.uvmem_lock); |
| 691 | if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL)) |
| 692 | goto out; |
| 693 | |
| 694 | ret = uv_page_in(kvm->arch.lpid, pfn << PAGE_SHIFT, gfn << PAGE_SHIFT, |
| 695 | 0, PAGE_SHIFT); |
| 696 | out: |
| 697 | kvm_release_pfn_clean(pfn); |
| 698 | mutex_unlock(&kvm->arch.uvmem_lock); |
| 699 | return (ret == U_SUCCESS) ? RESUME_GUEST : -EFAULT; |
| 700 | } |
| 701 | |
Bharata B Rao | ca9f494 | 2019-11-25 08:36:26 +0530 | [diff] [blame] | 702 | static u64 kvmppc_get_secmem_size(void) |
| 703 | { |
| 704 | struct device_node *np; |
| 705 | int i, len; |
| 706 | const __be32 *prop; |
| 707 | u64 size = 0; |
| 708 | |
| 709 | np = of_find_compatible_node(NULL, NULL, "ibm,uv-firmware"); |
| 710 | if (!np) |
| 711 | goto out; |
| 712 | |
| 713 | prop = of_get_property(np, "secure-memory-ranges", &len); |
| 714 | if (!prop) |
| 715 | goto out_put; |
| 716 | |
| 717 | for (i = 0; i < len / (sizeof(*prop) * 4); i++) |
| 718 | size += of_read_number(prop + (i * 4) + 2, 2); |
| 719 | |
| 720 | out_put: |
| 721 | of_node_put(np); |
| 722 | out: |
| 723 | return size; |
| 724 | } |
| 725 | |
| 726 | int kvmppc_uvmem_init(void) |
| 727 | { |
| 728 | int ret = 0; |
| 729 | unsigned long size; |
| 730 | struct resource *res; |
| 731 | void *addr; |
| 732 | unsigned long pfn_last, pfn_first; |
| 733 | |
| 734 | size = kvmppc_get_secmem_size(); |
| 735 | if (!size) { |
| 736 | /* |
| 737 | * Don't fail the initialization of kvm-hv module if |
| 738 | * the platform doesn't export ibm,uv-firmware node. |
| 739 | * Let normal guests run on such PEF-disabled platform. |
| 740 | */ |
| 741 | pr_info("KVMPPC-UVMEM: No support for secure guests\n"); |
| 742 | goto out; |
| 743 | } |
| 744 | |
| 745 | res = request_free_mem_region(&iomem_resource, size, "kvmppc_uvmem"); |
| 746 | if (IS_ERR(res)) { |
| 747 | ret = PTR_ERR(res); |
| 748 | goto out; |
| 749 | } |
| 750 | |
| 751 | kvmppc_uvmem_pgmap.type = MEMORY_DEVICE_PRIVATE; |
| 752 | kvmppc_uvmem_pgmap.res = *res; |
| 753 | kvmppc_uvmem_pgmap.ops = &kvmppc_uvmem_ops; |
| 754 | addr = memremap_pages(&kvmppc_uvmem_pgmap, NUMA_NO_NODE); |
| 755 | if (IS_ERR(addr)) { |
| 756 | ret = PTR_ERR(addr); |
| 757 | goto out_free_region; |
| 758 | } |
| 759 | |
| 760 | pfn_first = res->start >> PAGE_SHIFT; |
| 761 | pfn_last = pfn_first + (resource_size(res) >> PAGE_SHIFT); |
| 762 | kvmppc_uvmem_bitmap = kcalloc(BITS_TO_LONGS(pfn_last - pfn_first), |
| 763 | sizeof(unsigned long), GFP_KERNEL); |
| 764 | if (!kvmppc_uvmem_bitmap) { |
| 765 | ret = -ENOMEM; |
| 766 | goto out_unmap; |
| 767 | } |
| 768 | |
| 769 | pr_info("KVMPPC-UVMEM: Secure Memory size 0x%lx\n", size); |
| 770 | return ret; |
| 771 | out_unmap: |
| 772 | memunmap_pages(&kvmppc_uvmem_pgmap); |
| 773 | out_free_region: |
| 774 | release_mem_region(res->start, size); |
| 775 | out: |
| 776 | return ret; |
| 777 | } |
| 778 | |
| 779 | void kvmppc_uvmem_free(void) |
| 780 | { |
| 781 | memunmap_pages(&kvmppc_uvmem_pgmap); |
| 782 | release_mem_region(kvmppc_uvmem_pgmap.res.start, |
| 783 | resource_size(&kvmppc_uvmem_pgmap.res)); |
| 784 | kfree(kvmppc_uvmem_bitmap); |
| 785 | } |