blob: 49b4909252555598b6c665dd0d27a49a11e35ecf [file] [log] [blame]
Thomas Gleixnercaab2772019-06-03 07:44:50 +02001// SPDX-License-Identifier: GPL-2.0-only
Will Deacond5d96962016-09-22 11:36:32 +01002/*
3 * Perf support for the Statistical Profiling Extension, introduced as
4 * part of ARMv8.2.
5 *
Will Deacond5d96962016-09-22 11:36:32 +01006 * Copyright (C) 2016 ARM Limited
7 *
8 * Author: Will Deacon <will.deacon@arm.com>
9 */
10
11#define PMUNAME "arm_spe"
12#define DRVNAME PMUNAME "_pmu"
13#define pr_fmt(fmt) DRVNAME ": " fmt
14
Arnd Bergmannfcd9f832018-02-22 12:47:05 +010015#include <linux/bitops.h>
16#include <linux/bug.h>
17#include <linux/capability.h>
Will Deacond5d96962016-09-22 11:36:32 +010018#include <linux/cpuhotplug.h>
Arnd Bergmannfcd9f832018-02-22 12:47:05 +010019#include <linux/cpumask.h>
20#include <linux/device.h>
21#include <linux/errno.h>
Will Deacond5d96962016-09-22 11:36:32 +010022#include <linux/interrupt.h>
23#include <linux/irq.h>
Arnd Bergmannfcd9f832018-02-22 12:47:05 +010024#include <linux/kernel.h>
25#include <linux/list.h>
Will Deacond5d96962016-09-22 11:36:32 +010026#include <linux/module.h>
27#include <linux/of_address.h>
28#include <linux/of_device.h>
29#include <linux/perf_event.h>
30#include <linux/platform_device.h>
Arnd Bergmannfcd9f832018-02-22 12:47:05 +010031#include <linux/printk.h>
Will Deacond5d96962016-09-22 11:36:32 +010032#include <linux/slab.h>
Arnd Bergmannfcd9f832018-02-22 12:47:05 +010033#include <linux/smp.h>
34#include <linux/vmalloc.h>
Will Deacond5d96962016-09-22 11:36:32 +010035
Arnd Bergmannfcd9f832018-02-22 12:47:05 +010036#include <asm/barrier.h>
37#include <asm/cpufeature.h>
38#include <asm/mmu.h>
Will Deacond5d96962016-09-22 11:36:32 +010039#include <asm/sysreg.h>
40
41#define ARM_SPE_BUF_PAD_BYTE 0
42
43struct arm_spe_pmu_buf {
44 int nr_pages;
45 bool snapshot;
46 void *base;
47};
48
49struct arm_spe_pmu {
50 struct pmu pmu;
51 struct platform_device *pdev;
52 cpumask_t supported_cpus;
53 struct hlist_node hotplug_node;
54
55 int irq; /* PPI */
56
57 u16 min_period;
58 u16 counter_sz;
59
60#define SPE_PMU_FEAT_FILT_EVT (1UL << 0)
61#define SPE_PMU_FEAT_FILT_TYP (1UL << 1)
62#define SPE_PMU_FEAT_FILT_LAT (1UL << 2)
63#define SPE_PMU_FEAT_ARCH_INST (1UL << 3)
64#define SPE_PMU_FEAT_LDS (1UL << 4)
65#define SPE_PMU_FEAT_ERND (1UL << 5)
66#define SPE_PMU_FEAT_DEV_PROBED (1UL << 63)
67 u64 features;
68
69 u16 max_record_sz;
70 u16 align;
71 struct perf_output_handle __percpu *handle;
72};
73
74#define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
75
76/* Convert a free-running index from perf into an SPE buffer offset */
77#define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
78
79/* Keep track of our dynamic hotplug state */
80static enum cpuhp_state arm_spe_pmu_online;
81
82enum arm_spe_pmu_buf_fault_action {
83 SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
84 SPE_PMU_BUF_FAULT_ACT_FATAL,
85 SPE_PMU_BUF_FAULT_ACT_OK,
86};
87
88/* This sysfs gunk was really good fun to write. */
89enum arm_spe_pmu_capabilities {
90 SPE_PMU_CAP_ARCH_INST = 0,
91 SPE_PMU_CAP_ERND,
92 SPE_PMU_CAP_FEAT_MAX,
93 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
94 SPE_PMU_CAP_MIN_IVAL,
95};
96
97static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
98 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
99 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND,
100};
101
102static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
103{
104 if (cap < SPE_PMU_CAP_FEAT_MAX)
105 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
106
107 switch (cap) {
108 case SPE_PMU_CAP_CNT_SZ:
109 return spe_pmu->counter_sz;
110 case SPE_PMU_CAP_MIN_IVAL:
111 return spe_pmu->min_period;
112 default:
113 WARN(1, "unknown cap %d\n", cap);
114 }
115
116 return 0;
117}
118
119static ssize_t arm_spe_pmu_cap_show(struct device *dev,
120 struct device_attribute *attr,
121 char *buf)
122{
Wolfram Sangd0f2e422018-04-19 16:06:07 +0200123 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
Will Deacond5d96962016-09-22 11:36:32 +0100124 struct dev_ext_attribute *ea =
125 container_of(attr, struct dev_ext_attribute, attr);
126 int cap = (long)ea->var;
127
128 return snprintf(buf, PAGE_SIZE, "%u\n",
129 arm_spe_pmu_cap_get(spe_pmu, cap));
130}
131
132#define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \
133 &((struct dev_ext_attribute[]) { \
134 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \
135 })[0].attr.attr
136
137#define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \
138 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
139
140static struct attribute *arm_spe_pmu_cap_attr[] = {
141 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
142 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
143 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
144 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
145 NULL,
146};
147
148static struct attribute_group arm_spe_pmu_cap_group = {
149 .name = "caps",
150 .attrs = arm_spe_pmu_cap_attr,
151};
152
153/* User ABI */
154#define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */
155#define ATTR_CFG_FLD_ts_enable_LO 0
156#define ATTR_CFG_FLD_ts_enable_HI 0
157#define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */
158#define ATTR_CFG_FLD_pa_enable_LO 1
159#define ATTR_CFG_FLD_pa_enable_HI 1
160#define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */
161#define ATTR_CFG_FLD_pct_enable_LO 2
162#define ATTR_CFG_FLD_pct_enable_HI 2
163#define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */
164#define ATTR_CFG_FLD_jitter_LO 16
165#define ATTR_CFG_FLD_jitter_HI 16
166#define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */
167#define ATTR_CFG_FLD_branch_filter_LO 32
168#define ATTR_CFG_FLD_branch_filter_HI 32
169#define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */
170#define ATTR_CFG_FLD_load_filter_LO 33
171#define ATTR_CFG_FLD_load_filter_HI 33
172#define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */
173#define ATTR_CFG_FLD_store_filter_LO 34
174#define ATTR_CFG_FLD_store_filter_HI 34
175
176#define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */
177#define ATTR_CFG_FLD_event_filter_LO 0
178#define ATTR_CFG_FLD_event_filter_HI 63
179
180#define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */
181#define ATTR_CFG_FLD_min_latency_LO 0
182#define ATTR_CFG_FLD_min_latency_HI 11
183
184/* Why does everything I do descend into this? */
185#define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
186 (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
187
188#define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
189 __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
190
191#define GEN_PMU_FORMAT_ATTR(name) \
192 PMU_FORMAT_ATTR(name, \
193 _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \
194 ATTR_CFG_FLD_##name##_LO, \
195 ATTR_CFG_FLD_##name##_HI))
196
197#define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \
198 ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
199
200#define ATTR_CFG_GET_FLD(attr, name) \
201 _ATTR_CFG_GET_FLD(attr, \
202 ATTR_CFG_FLD_##name##_CFG, \
203 ATTR_CFG_FLD_##name##_LO, \
204 ATTR_CFG_FLD_##name##_HI)
205
206GEN_PMU_FORMAT_ATTR(ts_enable);
207GEN_PMU_FORMAT_ATTR(pa_enable);
208GEN_PMU_FORMAT_ATTR(pct_enable);
209GEN_PMU_FORMAT_ATTR(jitter);
210GEN_PMU_FORMAT_ATTR(branch_filter);
211GEN_PMU_FORMAT_ATTR(load_filter);
212GEN_PMU_FORMAT_ATTR(store_filter);
213GEN_PMU_FORMAT_ATTR(event_filter);
214GEN_PMU_FORMAT_ATTR(min_latency);
215
216static struct attribute *arm_spe_pmu_formats_attr[] = {
217 &format_attr_ts_enable.attr,
218 &format_attr_pa_enable.attr,
219 &format_attr_pct_enable.attr,
220 &format_attr_jitter.attr,
221 &format_attr_branch_filter.attr,
222 &format_attr_load_filter.attr,
223 &format_attr_store_filter.attr,
224 &format_attr_event_filter.attr,
225 &format_attr_min_latency.attr,
226 NULL,
227};
228
229static struct attribute_group arm_spe_pmu_format_group = {
230 .name = "format",
231 .attrs = arm_spe_pmu_formats_attr,
232};
233
234static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
235 struct device_attribute *attr,
236 char *buf)
237{
Wolfram Sangd0f2e422018-04-19 16:06:07 +0200238 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
Will Deacond5d96962016-09-22 11:36:32 +0100239
240 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
241}
242static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL);
243
244static struct attribute *arm_spe_pmu_attrs[] = {
245 &dev_attr_cpumask.attr,
246 NULL,
247};
248
249static struct attribute_group arm_spe_pmu_group = {
250 .attrs = arm_spe_pmu_attrs,
251};
252
253static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
254 &arm_spe_pmu_group,
255 &arm_spe_pmu_cap_group,
256 &arm_spe_pmu_format_group,
257 NULL,
258};
259
260/* Convert between user ABI and register values */
261static u64 arm_spe_event_to_pmscr(struct perf_event *event)
262{
263 struct perf_event_attr *attr = &event->attr;
264 u64 reg = 0;
265
266 reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
267 reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
268 reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
269
270 if (!attr->exclude_user)
271 reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
272
273 if (!attr->exclude_kernel)
274 reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
275
276 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && capable(CAP_SYS_ADMIN))
277 reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
278
279 return reg;
280}
281
282static void arm_spe_event_sanitise_period(struct perf_event *event)
283{
284 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
285 u64 period = event->hw.sample_period;
286 u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
287 << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
288
289 if (period < spe_pmu->min_period)
290 period = spe_pmu->min_period;
291 else if (period > max_period)
292 period = max_period;
293 else
294 period &= max_period;
295
296 event->hw.sample_period = period;
297}
298
299static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
300{
301 struct perf_event_attr *attr = &event->attr;
302 u64 reg = 0;
303
304 arm_spe_event_sanitise_period(event);
305
306 reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
307 reg |= event->hw.sample_period;
308
309 return reg;
310}
311
312static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
313{
314 struct perf_event_attr *attr = &event->attr;
315 u64 reg = 0;
316
317 reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
318 reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
319 reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
320
321 if (reg)
322 reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
323
324 if (ATTR_CFG_GET_FLD(attr, event_filter))
325 reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
326
327 if (ATTR_CFG_GET_FLD(attr, min_latency))
328 reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
329
330 return reg;
331}
332
333static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
334{
335 struct perf_event_attr *attr = &event->attr;
336 return ATTR_CFG_GET_FLD(attr, event_filter);
337}
338
339static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
340{
341 struct perf_event_attr *attr = &event->attr;
342 return ATTR_CFG_GET_FLD(attr, min_latency)
343 << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
344}
345
346static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
347{
348 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
349 u64 head = PERF_IDX2OFF(handle->head, buf);
350
351 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
352 if (!buf->snapshot)
353 perf_aux_output_skip(handle, len);
354}
355
356static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
357{
358 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
359 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
360 u64 head = PERF_IDX2OFF(handle->head, buf);
361 u64 limit = buf->nr_pages * PAGE_SIZE;
362
363 /*
364 * The trace format isn't parseable in reverse, so clamp
365 * the limit to half of the buffer size in snapshot mode
366 * so that the worst case is half a buffer of records, as
367 * opposed to a single record.
368 */
369 if (head < limit >> 1)
370 limit >>= 1;
371
372 /*
373 * If we're within max_record_sz of the limit, we must
374 * pad, move the head index and recompute the limit.
375 */
376 if (limit - head < spe_pmu->max_record_sz) {
377 arm_spe_pmu_pad_buf(handle, limit - head);
378 handle->head = PERF_IDX2OFF(limit, buf);
379 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
380 }
381
382 return limit;
383}
384
385static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
386{
387 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
388 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
389 const u64 bufsize = buf->nr_pages * PAGE_SIZE;
390 u64 limit = bufsize;
391 u64 head, tail, wakeup;
392
393 /*
394 * The head can be misaligned for two reasons:
395 *
396 * 1. The hardware left PMBPTR pointing to the first byte after
397 * a record when generating a buffer management event.
398 *
399 * 2. We used perf_aux_output_skip to consume handle->size bytes
400 * and CIRC_SPACE was used to compute the size, which always
401 * leaves one entry free.
402 *
403 * Deal with this by padding to the next alignment boundary and
404 * moving the head index. If we run out of buffer space, we'll
405 * reduce handle->size to zero and end up reporting truncation.
406 */
407 head = PERF_IDX2OFF(handle->head, buf);
408 if (!IS_ALIGNED(head, spe_pmu->align)) {
409 unsigned long delta = roundup(head, spe_pmu->align) - head;
410
411 delta = min(delta, handle->size);
412 arm_spe_pmu_pad_buf(handle, delta);
413 head = PERF_IDX2OFF(handle->head, buf);
414 }
415
416 /* If we've run out of free space, then nothing more to do */
417 if (!handle->size)
418 goto no_space;
419
420 /* Compute the tail and wakeup indices now that we've aligned head */
421 tail = PERF_IDX2OFF(handle->head + handle->size, buf);
422 wakeup = PERF_IDX2OFF(handle->wakeup, buf);
423
424 /*
425 * Avoid clobbering unconsumed data. We know we have space, so
426 * if we see head == tail we know that the buffer is empty. If
427 * head > tail, then there's nothing to clobber prior to
428 * wrapping.
429 */
430 if (head < tail)
431 limit = round_down(tail, PAGE_SIZE);
432
433 /*
434 * Wakeup may be arbitrarily far into the future. If it's not in
435 * the current generation, either we'll wrap before hitting it,
436 * or it's in the past and has been handled already.
437 *
438 * If there's a wakeup before we wrap, arrange to be woken up by
439 * the page boundary following it. Keep the tail boundary if
440 * that's lower.
441 */
442 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
443 limit = min(limit, round_up(wakeup, PAGE_SIZE));
444
445 if (limit > head)
446 return limit;
447
448 arm_spe_pmu_pad_buf(handle, handle->size);
449no_space:
450 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
451 perf_aux_output_end(handle, 0);
452 return 0;
453}
454
455static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
456{
457 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
458 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
459 u64 limit = __arm_spe_pmu_next_off(handle);
460 u64 head = PERF_IDX2OFF(handle->head, buf);
461
462 /*
463 * If the head has come too close to the end of the buffer,
464 * then pad to the end and recompute the limit.
465 */
466 if (limit && (limit - head < spe_pmu->max_record_sz)) {
467 arm_spe_pmu_pad_buf(handle, limit - head);
468 limit = __arm_spe_pmu_next_off(handle);
469 }
470
471 return limit;
472}
473
474static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
475 struct perf_event *event)
476{
477 u64 base, limit;
478 struct arm_spe_pmu_buf *buf;
479
480 /* Start a new aux session */
481 buf = perf_aux_output_begin(handle, event);
482 if (!buf) {
483 event->hw.state |= PERF_HES_STOPPED;
484 /*
485 * We still need to clear the limit pointer, since the
486 * profiler might only be disabled by virtue of a fault.
487 */
488 limit = 0;
489 goto out_write_limit;
490 }
491
492 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
493 : arm_spe_pmu_next_off(handle);
494 if (limit)
495 limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
496
497 limit += (u64)buf->base;
498 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
499 write_sysreg_s(base, SYS_PMBPTR_EL1);
500
501out_write_limit:
502 write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
503}
504
505static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
506{
507 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
508 u64 offset, size;
509
510 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
511 size = offset - PERF_IDX2OFF(handle->head, buf);
512
513 if (buf->snapshot)
514 handle->head = offset;
515
516 perf_aux_output_end(handle, size);
517}
518
519static void arm_spe_pmu_disable_and_drain_local(void)
520{
521 /* Disable profiling at EL0 and EL1 */
522 write_sysreg_s(0, SYS_PMSCR_EL1);
523 isb();
524
525 /* Drain any buffered data */
526 psb_csync();
527 dsb(nsh);
528
529 /* Disable the profiling buffer */
530 write_sysreg_s(0, SYS_PMBLIMITR_EL1);
531 isb();
532}
533
534/* IRQ handling */
535static enum arm_spe_pmu_buf_fault_action
536arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
537{
538 const char *err_str;
539 u64 pmbsr;
540 enum arm_spe_pmu_buf_fault_action ret;
541
542 /*
543 * Ensure new profiling data is visible to the CPU and any external
544 * aborts have been resolved.
545 */
546 psb_csync();
547 dsb(nsh);
548
549 /* Ensure hardware updates to PMBPTR_EL1 are visible */
550 isb();
551
552 /* Service required? */
553 pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
554 if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
555 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
556
557 /*
558 * If we've lost data, disable profiling and also set the PARTIAL
559 * flag to indicate that the last record is corrupted.
560 */
561 if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
562 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
563 PERF_AUX_FLAG_PARTIAL);
564
565 /* Report collisions to userspace so that it can up the period */
566 if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
567 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
568
569 /* We only expect buffer management events */
570 switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
571 case SYS_PMBSR_EL1_EC_BUF:
572 /* Handled below */
573 break;
574 case SYS_PMBSR_EL1_EC_FAULT_S1:
575 case SYS_PMBSR_EL1_EC_FAULT_S2:
576 err_str = "Unexpected buffer fault";
577 goto out_err;
578 default:
579 err_str = "Unknown error code";
580 goto out_err;
581 }
582
583 /* Buffer management event */
584 switch (pmbsr &
585 (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
586 case SYS_PMBSR_EL1_BUF_BSC_FULL:
587 ret = SPE_PMU_BUF_FAULT_ACT_OK;
588 goto out_stop;
589 default:
590 err_str = "Unknown buffer status code";
591 }
592
593out_err:
594 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
595 err_str, smp_processor_id(), pmbsr,
596 read_sysreg_s(SYS_PMBPTR_EL1),
597 read_sysreg_s(SYS_PMBLIMITR_EL1));
598 ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
599
600out_stop:
601 arm_spe_perf_aux_output_end(handle);
602 return ret;
603}
604
605static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
606{
607 struct perf_output_handle *handle = dev;
608 struct perf_event *event = handle->event;
609 enum arm_spe_pmu_buf_fault_action act;
610
611 if (!perf_get_aux(handle))
612 return IRQ_NONE;
613
614 act = arm_spe_pmu_buf_get_fault_act(handle);
615 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
616 return IRQ_NONE;
617
618 /*
619 * Ensure perf callbacks have completed, which may disable the
620 * profiling buffer in response to a TRUNCATION flag.
621 */
622 irq_work_run();
623
624 switch (act) {
625 case SPE_PMU_BUF_FAULT_ACT_FATAL:
626 /*
627 * If a fatal exception occurred then leaving the profiling
628 * buffer enabled is a recipe waiting to happen. Since
629 * fatal faults don't always imply truncation, make sure
630 * that the profiling buffer is disabled explicitly before
631 * clearing the syndrome register.
632 */
633 arm_spe_pmu_disable_and_drain_local();
634 break;
635 case SPE_PMU_BUF_FAULT_ACT_OK:
636 /*
637 * We handled the fault (the buffer was full), so resume
638 * profiling as long as we didn't detect truncation.
639 * PMBPTR might be misaligned, but we'll burn that bridge
640 * when we get to it.
641 */
642 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
643 arm_spe_perf_aux_output_begin(handle, event);
644 isb();
645 }
646 break;
647 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
648 /* We've seen you before, but GCC has the memory of a sieve. */
649 break;
650 }
651
652 /* The buffer pointers are now sane, so resume profiling. */
653 write_sysreg_s(0, SYS_PMBSR_EL1);
654 return IRQ_HANDLED;
655}
656
657/* Perf callbacks */
658static int arm_spe_pmu_event_init(struct perf_event *event)
659{
660 u64 reg;
661 struct perf_event_attr *attr = &event->attr;
662 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
663
664 /* This is, of course, deeply driver-specific */
665 if (attr->type != event->pmu->type)
666 return -ENOENT;
667
668 if (event->cpu >= 0 &&
669 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
670 return -ENOENT;
671
672 if (arm_spe_event_to_pmsevfr(event) & SYS_PMSEVFR_EL1_RES0)
673 return -EOPNOTSUPP;
674
675 if (attr->exclude_idle)
676 return -EOPNOTSUPP;
677
678 /*
679 * Feedback-directed frequency throttling doesn't work when we
680 * have a buffer of samples. We'd need to manually count the
681 * samples in the buffer when it fills up and adjust the event
682 * count to reflect that. Instead, just force the user to specify
683 * a sample period.
684 */
685 if (attr->freq)
686 return -EINVAL;
687
688 reg = arm_spe_event_to_pmsfcr(event);
689 if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
690 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
691 return -EOPNOTSUPP;
692
693 if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
694 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
695 return -EOPNOTSUPP;
696
697 if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
698 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
699 return -EOPNOTSUPP;
700
701 reg = arm_spe_event_to_pmscr(event);
702 if (!capable(CAP_SYS_ADMIN) &&
703 (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
704 BIT(SYS_PMSCR_EL1_CX_SHIFT) |
705 BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
706 return -EACCES;
707
708 return 0;
709}
710
711static void arm_spe_pmu_start(struct perf_event *event, int flags)
712{
713 u64 reg;
714 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
715 struct hw_perf_event *hwc = &event->hw;
716 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
717
718 hwc->state = 0;
719 arm_spe_perf_aux_output_begin(handle, event);
720 if (hwc->state)
721 return;
722
723 reg = arm_spe_event_to_pmsfcr(event);
724 write_sysreg_s(reg, SYS_PMSFCR_EL1);
725
726 reg = arm_spe_event_to_pmsevfr(event);
727 write_sysreg_s(reg, SYS_PMSEVFR_EL1);
728
729 reg = arm_spe_event_to_pmslatfr(event);
730 write_sysreg_s(reg, SYS_PMSLATFR_EL1);
731
732 if (flags & PERF_EF_RELOAD) {
733 reg = arm_spe_event_to_pmsirr(event);
734 write_sysreg_s(reg, SYS_PMSIRR_EL1);
735 isb();
736 reg = local64_read(&hwc->period_left);
737 write_sysreg_s(reg, SYS_PMSICR_EL1);
738 }
739
740 reg = arm_spe_event_to_pmscr(event);
741 isb();
742 write_sysreg_s(reg, SYS_PMSCR_EL1);
743}
744
745static void arm_spe_pmu_stop(struct perf_event *event, int flags)
746{
747 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
748 struct hw_perf_event *hwc = &event->hw;
749 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
750
751 /* If we're already stopped, then nothing to do */
752 if (hwc->state & PERF_HES_STOPPED)
753 return;
754
755 /* Stop all trace generation */
756 arm_spe_pmu_disable_and_drain_local();
757
758 if (flags & PERF_EF_UPDATE) {
759 /*
760 * If there's a fault pending then ensure we contain it
761 * to this buffer, since we might be on the context-switch
762 * path.
763 */
764 if (perf_get_aux(handle)) {
765 enum arm_spe_pmu_buf_fault_action act;
766
767 act = arm_spe_pmu_buf_get_fault_act(handle);
768 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
769 arm_spe_perf_aux_output_end(handle);
770 else
771 write_sysreg_s(0, SYS_PMBSR_EL1);
772 }
773
774 /*
775 * This may also contain ECOUNT, but nobody else should
776 * be looking at period_left, since we forbid frequency
777 * based sampling.
778 */
779 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
780 hwc->state |= PERF_HES_UPTODATE;
781 }
782
783 hwc->state |= PERF_HES_STOPPED;
784}
785
786static int arm_spe_pmu_add(struct perf_event *event, int flags)
787{
788 int ret = 0;
789 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
790 struct hw_perf_event *hwc = &event->hw;
791 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
792
793 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
794 return -ENOENT;
795
796 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
797
798 if (flags & PERF_EF_START) {
799 arm_spe_pmu_start(event, PERF_EF_RELOAD);
800 if (hwc->state & PERF_HES_STOPPED)
801 ret = -EINVAL;
802 }
803
804 return ret;
805}
806
807static void arm_spe_pmu_del(struct perf_event *event, int flags)
808{
809 arm_spe_pmu_stop(event, PERF_EF_UPDATE);
810}
811
812static void arm_spe_pmu_read(struct perf_event *event)
813{
814}
815
Mathieu Poirier84001862019-01-31 11:47:08 -0700816static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
817 int nr_pages, bool snapshot)
Will Deacond5d96962016-09-22 11:36:32 +0100818{
Mathieu Poirier84001862019-01-31 11:47:08 -0700819 int i, cpu = event->cpu;
Will Deacond5d96962016-09-22 11:36:32 +0100820 struct page **pglist;
821 struct arm_spe_pmu_buf *buf;
822
823 /* We need at least two pages for this to work. */
824 if (nr_pages < 2)
825 return NULL;
826
827 /*
828 * We require an even number of pages for snapshot mode, so that
829 * we can effectively treat the buffer as consisting of two equal
830 * parts and give userspace a fighting chance of getting some
831 * useful data out of it.
832 */
833 if (!nr_pages || (snapshot && (nr_pages & 1)))
834 return NULL;
835
836 if (cpu == -1)
837 cpu = raw_smp_processor_id();
838
839 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
840 if (!buf)
841 return NULL;
842
843 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
844 if (!pglist)
845 goto out_free_buf;
846
Will Deacon14ae42a2019-05-13 17:53:03 +0100847 for (i = 0; i < nr_pages; ++i)
Will Deacond5d96962016-09-22 11:36:32 +0100848 pglist[i] = virt_to_page(pages[i]);
Will Deacond5d96962016-09-22 11:36:32 +0100849
850 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
851 if (!buf->base)
852 goto out_free_pglist;
853
854 buf->nr_pages = nr_pages;
855 buf->snapshot = snapshot;
856
857 kfree(pglist);
858 return buf;
859
860out_free_pglist:
861 kfree(pglist);
862out_free_buf:
863 kfree(buf);
864 return NULL;
865}
866
867static void arm_spe_pmu_free_aux(void *aux)
868{
869 struct arm_spe_pmu_buf *buf = aux;
870
871 vunmap(buf->base);
872 kfree(buf);
873}
874
875/* Initialisation and teardown functions */
876static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
877{
878 static atomic_t pmu_idx = ATOMIC_INIT(-1);
879
880 int idx;
881 char *name;
882 struct device *dev = &spe_pmu->pdev->dev;
883
884 spe_pmu->pmu = (struct pmu) {
Suzuki K Poulose19b4aff2017-11-03 11:45:17 +0000885 .module = THIS_MODULE,
Will Deacond5d96962016-09-22 11:36:32 +0100886 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
887 .attr_groups = arm_spe_pmu_attr_groups,
888 /*
889 * We hitch a ride on the software context here, so that
890 * we can support per-task profiling (which is not possible
891 * with the invalid context as it doesn't get sched callbacks).
892 * This requires that userspace either uses a dummy event for
893 * perf_event_open, since the aux buffer is not setup until
894 * a subsequent mmap, or creates the profiling event in a
895 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
896 * once the buffer has been created.
897 */
898 .task_ctx_nr = perf_sw_context,
899 .event_init = arm_spe_pmu_event_init,
900 .add = arm_spe_pmu_add,
901 .del = arm_spe_pmu_del,
902 .start = arm_spe_pmu_start,
903 .stop = arm_spe_pmu_stop,
904 .read = arm_spe_pmu_read,
905 .setup_aux = arm_spe_pmu_setup_aux,
906 .free_aux = arm_spe_pmu_free_aux,
907 };
908
909 idx = atomic_inc_return(&pmu_idx);
910 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
Nicholas Mc Guire754a58d2018-11-28 12:24:47 +0100911 if (!name) {
912 dev_err(dev, "failed to allocate name for pmu %d\n", idx);
913 return -ENOMEM;
914 }
915
Will Deacond5d96962016-09-22 11:36:32 +0100916 return perf_pmu_register(&spe_pmu->pmu, name, -1);
917}
918
919static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
920{
921 perf_pmu_unregister(&spe_pmu->pmu);
922}
923
924static void __arm_spe_pmu_dev_probe(void *info)
925{
926 int fld;
927 u64 reg;
928 struct arm_spe_pmu *spe_pmu = info;
929 struct device *dev = &spe_pmu->pdev->dev;
930
931 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
932 ID_AA64DFR0_PMSVER_SHIFT);
933 if (!fld) {
934 dev_err(dev,
935 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
936 fld, smp_processor_id());
937 return;
938 }
939
940 /* Read PMBIDR first to determine whether or not we have access */
941 reg = read_sysreg_s(SYS_PMBIDR_EL1);
942 if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
943 dev_err(dev,
944 "profiling buffer owned by higher exception level\n");
945 return;
946 }
947
948 /* Minimum alignment. If it's out-of-range, then fail the probe */
949 fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
950 spe_pmu->align = 1 << fld;
951 if (spe_pmu->align > SZ_2K) {
952 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
953 fld, smp_processor_id());
954 return;
955 }
956
957 /* It's now safe to read PMSIDR and figure out what we've got */
958 reg = read_sysreg_s(SYS_PMSIDR_EL1);
959 if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
960 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
961
962 if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
963 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
964
965 if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
966 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
967
968 if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
969 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
970
971 if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
972 spe_pmu->features |= SPE_PMU_FEAT_LDS;
973
974 if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
975 spe_pmu->features |= SPE_PMU_FEAT_ERND;
976
977 /* This field has a spaced out encoding, so just use a look-up */
978 fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
979 switch (fld) {
980 case 0:
981 spe_pmu->min_period = 256;
982 break;
983 case 2:
984 spe_pmu->min_period = 512;
985 break;
986 case 3:
987 spe_pmu->min_period = 768;
988 break;
989 case 4:
990 spe_pmu->min_period = 1024;
991 break;
992 case 5:
993 spe_pmu->min_period = 1536;
994 break;
995 case 6:
996 spe_pmu->min_period = 2048;
997 break;
998 case 7:
999 spe_pmu->min_period = 3072;
1000 break;
1001 default:
1002 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1003 fld);
1004 /* Fallthrough */
1005 case 8:
1006 spe_pmu->min_period = 4096;
1007 }
1008
1009 /* Maximum record size. If it's out-of-range, then fail the probe */
1010 fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1011 spe_pmu->max_record_sz = 1 << fld;
1012 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1013 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1014 fld, smp_processor_id());
1015 return;
1016 }
1017
1018 fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1019 switch (fld) {
1020 default:
1021 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1022 fld);
1023 /* Fallthrough */
1024 case 2:
1025 spe_pmu->counter_sz = 12;
1026 }
1027
1028 dev_info(dev,
1029 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1030 cpumask_pr_args(&spe_pmu->supported_cpus),
1031 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1032
1033 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1034 return;
1035}
1036
1037static void __arm_spe_pmu_reset_local(void)
1038{
1039 /*
1040 * This is probably overkill, as we have no idea where we're
1041 * draining any buffered data to...
1042 */
1043 arm_spe_pmu_disable_and_drain_local();
1044
1045 /* Reset the buffer base pointer */
1046 write_sysreg_s(0, SYS_PMBPTR_EL1);
1047 isb();
1048
1049 /* Clear any pending management interrupts */
1050 write_sysreg_s(0, SYS_PMBSR_EL1);
1051 isb();
1052}
1053
1054static void __arm_spe_pmu_setup_one(void *info)
1055{
1056 struct arm_spe_pmu *spe_pmu = info;
1057
1058 __arm_spe_pmu_reset_local();
1059 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1060}
1061
1062static void __arm_spe_pmu_stop_one(void *info)
1063{
1064 struct arm_spe_pmu *spe_pmu = info;
1065
1066 disable_percpu_irq(spe_pmu->irq);
1067 __arm_spe_pmu_reset_local();
1068}
1069
1070static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1071{
1072 struct arm_spe_pmu *spe_pmu;
1073
1074 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1075 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1076 return 0;
1077
1078 __arm_spe_pmu_setup_one(spe_pmu);
1079 return 0;
1080}
1081
1082static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1083{
1084 struct arm_spe_pmu *spe_pmu;
1085
1086 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1087 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1088 return 0;
1089
1090 __arm_spe_pmu_stop_one(spe_pmu);
1091 return 0;
1092}
1093
1094static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1095{
1096 int ret;
1097 cpumask_t *mask = &spe_pmu->supported_cpus;
1098
1099 /* Make sure we probe the hardware on a relevant CPU */
1100 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1);
1101 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1102 return -ENXIO;
1103
1104 /* Request our PPIs (note that the IRQ is still disabled) */
1105 ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1106 spe_pmu->handle);
1107 if (ret)
1108 return ret;
1109
1110 /*
1111 * Register our hotplug notifier now so we don't miss any events.
1112 * This will enable the IRQ for any supported CPUs that are already
1113 * up.
1114 */
1115 ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1116 &spe_pmu->hotplug_node);
1117 if (ret)
1118 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1119
1120 return ret;
1121}
1122
1123static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1124{
1125 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1126 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1127}
1128
1129/* Driver and device probing */
1130static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1131{
1132 struct platform_device *pdev = spe_pmu->pdev;
1133 int irq = platform_get_irq(pdev, 0);
1134
1135 if (irq < 0) {
1136 dev_err(&pdev->dev, "failed to get IRQ (%d)\n", irq);
1137 return -ENXIO;
1138 }
1139
1140 if (!irq_is_percpu(irq)) {
1141 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1142 return -EINVAL;
1143 }
1144
1145 if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1146 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1147 return -EINVAL;
1148 }
1149
1150 spe_pmu->irq = irq;
1151 return 0;
1152}
1153
1154static const struct of_device_id arm_spe_pmu_of_match[] = {
1155 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1156 { /* Sentinel */ },
1157};
Jeremy Linton472dc9f2018-10-12 14:24:09 -05001158MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
Will Deacond5d96962016-09-22 11:36:32 +01001159
1160static int arm_spe_pmu_device_dt_probe(struct platform_device *pdev)
1161{
1162 int ret;
1163 struct arm_spe_pmu *spe_pmu;
1164 struct device *dev = &pdev->dev;
1165
Will Deacon7a4a0c12017-11-27 15:49:53 +00001166 /*
1167 * If kernelspace is unmapped when running at EL0, then the SPE
1168 * buffer will fault and prematurely terminate the AUX session.
1169 */
1170 if (arm64_kernel_unmapped_at_el0()) {
1171 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1172 return -EPERM;
1173 }
1174
Will Deacond5d96962016-09-22 11:36:32 +01001175 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1176 if (!spe_pmu) {
1177 dev_err(dev, "failed to allocate spe_pmu\n");
1178 return -ENOMEM;
1179 }
1180
1181 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1182 if (!spe_pmu->handle)
1183 return -ENOMEM;
1184
1185 spe_pmu->pdev = pdev;
1186 platform_set_drvdata(pdev, spe_pmu);
1187
1188 ret = arm_spe_pmu_irq_probe(spe_pmu);
1189 if (ret)
1190 goto out_free_handle;
1191
1192 ret = arm_spe_pmu_dev_init(spe_pmu);
1193 if (ret)
1194 goto out_free_handle;
1195
1196 ret = arm_spe_pmu_perf_init(spe_pmu);
1197 if (ret)
1198 goto out_teardown_dev;
1199
1200 return 0;
1201
1202out_teardown_dev:
1203 arm_spe_pmu_dev_teardown(spe_pmu);
1204out_free_handle:
1205 free_percpu(spe_pmu->handle);
1206 return ret;
1207}
1208
1209static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1210{
1211 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1212
1213 arm_spe_pmu_perf_destroy(spe_pmu);
1214 arm_spe_pmu_dev_teardown(spe_pmu);
1215 free_percpu(spe_pmu->handle);
1216 return 0;
1217}
1218
1219static struct platform_driver arm_spe_pmu_driver = {
1220 .driver = {
1221 .name = DRVNAME,
1222 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1223 },
1224 .probe = arm_spe_pmu_device_dt_probe,
1225 .remove = arm_spe_pmu_device_remove,
1226};
1227
1228static int __init arm_spe_pmu_init(void)
1229{
1230 int ret;
1231
1232 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1233 arm_spe_pmu_cpu_startup,
1234 arm_spe_pmu_cpu_teardown);
1235 if (ret < 0)
1236 return ret;
1237 arm_spe_pmu_online = ret;
1238
1239 ret = platform_driver_register(&arm_spe_pmu_driver);
1240 if (ret)
1241 cpuhp_remove_multi_state(arm_spe_pmu_online);
1242
1243 return ret;
1244}
1245
1246static void __exit arm_spe_pmu_exit(void)
1247{
1248 platform_driver_unregister(&arm_spe_pmu_driver);
1249 cpuhp_remove_multi_state(arm_spe_pmu_online);
1250}
1251
1252module_init(arm_spe_pmu_init);
1253module_exit(arm_spe_pmu_exit);
1254
1255MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1256MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1257MODULE_LICENSE("GPL v2");