blob: f571581888fa4ae654f669b9b8232cf78a78ad47 [file] [log] [blame]
Thomas Gleixnercaab2772019-06-03 07:44:50 +02001/* SPDX-License-Identifier: GPL-2.0-only */
zhichang.yuan192c4d92014-04-28 13:11:33 +08002/*
3 * Copyright (C) 2013 ARM Ltd.
4 * Copyright (C) 2013 Linaro.
5 *
6 * This code is based on glibc cortex strings work originally authored by Linaro
zhichang.yuan192c4d92014-04-28 13:11:33 +08007 * be found @
8 *
9 * http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
10 * files/head:/src/aarch64/
zhichang.yuan192c4d92014-04-28 13:11:33 +080011 */
12
13#include <linux/linkage.h>
14#include <asm/assembler.h>
15
16/*
17 * compare two strings
18 *
19 * Parameters:
20 * x0 - const string 1 pointer
21 * x1 - const string 2 pointer
22 * x2 - the maximal length to be compared
23 * Returns:
24 * x0 - an integer less than, equal to, or greater than zero if s1 is found,
25 * respectively, to be less than, to match, or be greater than s2.
26 */
27
28#define REP8_01 0x0101010101010101
29#define REP8_7f 0x7f7f7f7f7f7f7f7f
30#define REP8_80 0x8080808080808080
31
32/* Parameters and result. */
33src1 .req x0
34src2 .req x1
35limit .req x2
36result .req x0
37
38/* Internal variables. */
39data1 .req x3
40data1w .req w3
41data2 .req x4
42data2w .req w4
43has_nul .req x5
44diff .req x6
45syndrome .req x7
46tmp1 .req x8
47tmp2 .req x9
48tmp3 .req x10
49zeroones .req x11
50pos .req x12
51limit_wd .req x13
52mask .req x14
53endloop .req x15
54
Andrey Ryabinin19a2ca02018-10-26 15:02:30 -070055WEAK(strncmp)
zhichang.yuan192c4d92014-04-28 13:11:33 +080056 cbz limit, .Lret0
57 eor tmp1, src1, src2
58 mov zeroones, #REP8_01
59 tst tmp1, #7
60 b.ne .Lmisaligned8
61 ands tmp1, src1, #7
62 b.ne .Lmutual_align
63 /* Calculate the number of full and partial words -1. */
64 /*
65 * when limit is mulitply of 8, if not sub 1,
66 * the judgement of last dword will wrong.
67 */
68 sub limit_wd, limit, #1 /* limit != 0, so no underflow. */
69 lsr limit_wd, limit_wd, #3 /* Convert to Dwords. */
70
71 /*
72 * NUL detection works on the principle that (X - 1) & (~X) & 0x80
73 * (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
74 * can be done in parallel across the entire word.
75 */
76.Lloop_aligned:
77 ldr data1, [src1], #8
78 ldr data2, [src2], #8
79.Lstart_realigned:
80 subs limit_wd, limit_wd, #1
81 sub tmp1, data1, zeroones
82 orr tmp2, data1, #REP8_7f
83 eor diff, data1, data2 /* Non-zero if differences found. */
84 csinv endloop, diff, xzr, pl /* Last Dword or differences.*/
85 bics has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */
86 ccmp endloop, #0, #0, eq
87 b.eq .Lloop_aligned
88
89 /*Not reached the limit, must have found the end or a diff. */
90 tbz limit_wd, #63, .Lnot_limit
91
92 /* Limit % 8 == 0 => all bytes significant. */
93 ands limit, limit, #7
94 b.eq .Lnot_limit
95
96 lsl limit, limit, #3 /* Bits -> bytes. */
97 mov mask, #~0
98CPU_BE( lsr mask, mask, limit )
99CPU_LE( lsl mask, mask, limit )
100 bic data1, data1, mask
101 bic data2, data2, mask
102
103 /* Make sure that the NUL byte is marked in the syndrome. */
104 orr has_nul, has_nul, mask
105
106.Lnot_limit:
107 orr syndrome, diff, has_nul
108 b .Lcal_cmpresult
109
110.Lmutual_align:
111 /*
112 * Sources are mutually aligned, but are not currently at an
113 * alignment boundary. Round down the addresses and then mask off
114 * the bytes that precede the start point.
115 * We also need to adjust the limit calculations, but without
116 * overflowing if the limit is near ULONG_MAX.
117 */
118 bic src1, src1, #7
119 bic src2, src2, #7
120 ldr data1, [src1], #8
121 neg tmp3, tmp1, lsl #3 /* 64 - bits(bytes beyond align). */
122 ldr data2, [src2], #8
123 mov tmp2, #~0
124 sub limit_wd, limit, #1 /* limit != 0, so no underflow. */
125 /* Big-endian. Early bytes are at MSB. */
126CPU_BE( lsl tmp2, tmp2, tmp3 ) /* Shift (tmp1 & 63). */
127 /* Little-endian. Early bytes are at LSB. */
128CPU_LE( lsr tmp2, tmp2, tmp3 ) /* Shift (tmp1 & 63). */
129
130 and tmp3, limit_wd, #7
131 lsr limit_wd, limit_wd, #3
132 /* Adjust the limit. Only low 3 bits used, so overflow irrelevant.*/
133 add limit, limit, tmp1
134 add tmp3, tmp3, tmp1
135 orr data1, data1, tmp2
136 orr data2, data2, tmp2
137 add limit_wd, limit_wd, tmp3, lsr #3
138 b .Lstart_realigned
139
140/*when src1 offset is not equal to src2 offset...*/
141.Lmisaligned8:
142 cmp limit, #8
143 b.lo .Ltiny8proc /*limit < 8... */
144 /*
145 * Get the align offset length to compare per byte first.
146 * After this process, one string's address will be aligned.*/
147 and tmp1, src1, #7
148 neg tmp1, tmp1
149 add tmp1, tmp1, #8
150 and tmp2, src2, #7
151 neg tmp2, tmp2
152 add tmp2, tmp2, #8
153 subs tmp3, tmp1, tmp2
154 csel pos, tmp1, tmp2, hi /*Choose the maximum. */
155 /*
156 * Here, limit is not less than 8, so directly run .Ltinycmp
157 * without checking the limit.*/
158 sub limit, limit, pos
159.Ltinycmp:
160 ldrb data1w, [src1], #1
161 ldrb data2w, [src2], #1
162 subs pos, pos, #1
163 ccmp data1w, #1, #0, ne /* NZCV = 0b0000. */
164 ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */
165 b.eq .Ltinycmp
166 cbnz pos, 1f /*find the null or unequal...*/
167 cmp data1w, #1
168 ccmp data1w, data2w, #0, cs
169 b.eq .Lstart_align /*the last bytes are equal....*/
1701:
171 sub result, data1, data2
172 ret
173
174.Lstart_align:
175 lsr limit_wd, limit, #3
176 cbz limit_wd, .Lremain8
177 /*process more leading bytes to make str1 aligned...*/
178 ands xzr, src1, #7
179 b.eq .Lrecal_offset
180 add src1, src1, tmp3 /*tmp3 is positive in this branch.*/
181 add src2, src2, tmp3
182 ldr data1, [src1], #8
183 ldr data2, [src2], #8
184
185 sub limit, limit, tmp3
186 lsr limit_wd, limit, #3
187 subs limit_wd, limit_wd, #1
188
189 sub tmp1, data1, zeroones
190 orr tmp2, data1, #REP8_7f
191 eor diff, data1, data2 /* Non-zero if differences found. */
192 csinv endloop, diff, xzr, ne/*if limit_wd is 0,will finish the cmp*/
193 bics has_nul, tmp1, tmp2
194 ccmp endloop, #0, #0, eq /*has_null is ZERO: no null byte*/
195 b.ne .Lunequal_proc
196 /*How far is the current str2 from the alignment boundary...*/
197 and tmp3, tmp3, #7
198.Lrecal_offset:
199 neg pos, tmp3
200.Lloopcmp_proc:
201 /*
202 * Divide the eight bytes into two parts. First,backwards the src2
203 * to an alignment boundary,load eight bytes from the SRC2 alignment
204 * boundary,then compare with the relative bytes from SRC1.
205 * If all 8 bytes are equal,then start the second part's comparison.
206 * Otherwise finish the comparison.
207 * This special handle can garantee all the accesses are in the
208 * thread/task space in avoid to overrange access.
209 */
210 ldr data1, [src1,pos]
211 ldr data2, [src2,pos]
212 sub tmp1, data1, zeroones
213 orr tmp2, data1, #REP8_7f
214 bics has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */
215 eor diff, data1, data2 /* Non-zero if differences found. */
216 csinv endloop, diff, xzr, eq
217 cbnz endloop, .Lunequal_proc
218
219 /*The second part process*/
220 ldr data1, [src1], #8
221 ldr data2, [src2], #8
222 subs limit_wd, limit_wd, #1
223 sub tmp1, data1, zeroones
224 orr tmp2, data1, #REP8_7f
225 eor diff, data1, data2 /* Non-zero if differences found. */
226 csinv endloop, diff, xzr, ne/*if limit_wd is 0,will finish the cmp*/
227 bics has_nul, tmp1, tmp2
228 ccmp endloop, #0, #0, eq /*has_null is ZERO: no null byte*/
229 b.eq .Lloopcmp_proc
230
231.Lunequal_proc:
232 orr syndrome, diff, has_nul
233 cbz syndrome, .Lremain8
234.Lcal_cmpresult:
235 /*
236 * reversed the byte-order as big-endian,then CLZ can find the most
237 * significant zero bits.
238 */
239CPU_LE( rev syndrome, syndrome )
240CPU_LE( rev data1, data1 )
241CPU_LE( rev data2, data2 )
242 /*
243 * For big-endian we cannot use the trick with the syndrome value
244 * as carry-propagation can corrupt the upper bits if the trailing
245 * bytes in the string contain 0x01.
246 * However, if there is no NUL byte in the dword, we can generate
247 * the result directly. We can't just subtract the bytes as the
248 * MSB might be significant.
249 */
250CPU_BE( cbnz has_nul, 1f )
251CPU_BE( cmp data1, data2 )
252CPU_BE( cset result, ne )
253CPU_BE( cneg result, result, lo )
254CPU_BE( ret )
255CPU_BE( 1: )
256 /* Re-compute the NUL-byte detection, using a byte-reversed value.*/
257CPU_BE( rev tmp3, data1 )
258CPU_BE( sub tmp1, tmp3, zeroones )
259CPU_BE( orr tmp2, tmp3, #REP8_7f )
260CPU_BE( bic has_nul, tmp1, tmp2 )
261CPU_BE( rev has_nul, has_nul )
262CPU_BE( orr syndrome, diff, has_nul )
263 /*
264 * The MS-non-zero bit of the syndrome marks either the first bit
265 * that is different, or the top bit of the first zero byte.
266 * Shifting left now will bring the critical information into the
267 * top bits.
268 */
269 clz pos, syndrome
270 lsl data1, data1, pos
271 lsl data2, data2, pos
272 /*
273 * But we need to zero-extend (char is unsigned) the value and then
274 * perform a signed 32-bit subtraction.
275 */
276 lsr data1, data1, #56
277 sub result, data1, data2, lsr #56
278 ret
279
280.Lremain8:
281 /* Limit % 8 == 0 => all bytes significant. */
282 ands limit, limit, #7
283 b.eq .Lret0
284.Ltiny8proc:
285 ldrb data1w, [src1], #1
286 ldrb data2w, [src2], #1
287 subs limit, limit, #1
288
289 ccmp data1w, #1, #0, ne /* NZCV = 0b0000. */
290 ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */
291 b.eq .Ltiny8proc
292 sub result, data1, data2
293 ret
294
295.Lret0:
296 mov result, #0
297 ret
Ard Biesheuvel20791842015-10-08 20:02:03 +0100298ENDPIPROC(strncmp)
Mark Rutlandac0e8c72018-12-07 18:08:21 +0000299EXPORT_SYMBOL_NOKASAN(strncmp)