James Hogan | c992a4f | 2017-03-14 10:15:31 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * This file is subject to the terms and conditions of the GNU General Public |
| 3 | * License. See the file "COPYING" in the main directory of this archive |
| 4 | * for more details. |
| 5 | * |
| 6 | * KVM/MIPS: Support for hardware virtualization extensions |
| 7 | * |
| 8 | * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. |
| 9 | * Authors: Yann Le Du <ledu@kymasys.com> |
| 10 | */ |
| 11 | |
| 12 | #include <linux/errno.h> |
| 13 | #include <linux/err.h> |
| 14 | #include <linux/module.h> |
| 15 | #include <linux/preempt.h> |
| 16 | #include <linux/vmalloc.h> |
| 17 | #include <asm/cacheflush.h> |
| 18 | #include <asm/cacheops.h> |
| 19 | #include <asm/cmpxchg.h> |
| 20 | #include <asm/fpu.h> |
| 21 | #include <asm/hazards.h> |
| 22 | #include <asm/inst.h> |
| 23 | #include <asm/mmu_context.h> |
| 24 | #include <asm/r4kcache.h> |
| 25 | #include <asm/time.h> |
| 26 | #include <asm/tlb.h> |
| 27 | #include <asm/tlbex.h> |
| 28 | |
| 29 | #include <linux/kvm_host.h> |
| 30 | |
| 31 | #include "interrupt.h" |
| 32 | |
| 33 | #include "trace.h" |
| 34 | |
| 35 | /* Pointers to last VCPU loaded on each physical CPU */ |
| 36 | static struct kvm_vcpu *last_vcpu[NR_CPUS]; |
| 37 | /* Pointers to last VCPU executed on each physical CPU */ |
| 38 | static struct kvm_vcpu *last_exec_vcpu[NR_CPUS]; |
| 39 | |
| 40 | /* |
| 41 | * Number of guest VTLB entries to use, so we can catch inconsistency between |
| 42 | * CPUs. |
| 43 | */ |
| 44 | static unsigned int kvm_vz_guest_vtlb_size; |
| 45 | |
| 46 | static inline long kvm_vz_read_gc0_ebase(void) |
| 47 | { |
| 48 | if (sizeof(long) == 8 && cpu_has_ebase_wg) |
| 49 | return read_gc0_ebase_64(); |
| 50 | else |
| 51 | return read_gc0_ebase(); |
| 52 | } |
| 53 | |
| 54 | static inline void kvm_vz_write_gc0_ebase(long v) |
| 55 | { |
| 56 | /* |
| 57 | * First write with WG=1 to write upper bits, then write again in case |
| 58 | * WG should be left at 0. |
| 59 | * write_gc0_ebase_64() is no longer UNDEFINED since R6. |
| 60 | */ |
| 61 | if (sizeof(long) == 8 && |
| 62 | (cpu_has_mips64r6 || cpu_has_ebase_wg)) { |
| 63 | write_gc0_ebase_64(v | MIPS_EBASE_WG); |
| 64 | write_gc0_ebase_64(v); |
| 65 | } else { |
| 66 | write_gc0_ebase(v | MIPS_EBASE_WG); |
| 67 | write_gc0_ebase(v); |
| 68 | } |
| 69 | } |
| 70 | |
| 71 | /* |
| 72 | * These Config bits may be writable by the guest: |
| 73 | * Config: [K23, KU] (!TLB), K0 |
| 74 | * Config1: (none) |
| 75 | * Config2: [TU, SU] (impl) |
| 76 | * Config3: ISAOnExc |
| 77 | * Config4: FTLBPageSize |
| 78 | * Config5: K, CV, MSAEn, UFE, FRE, SBRI, UFR |
| 79 | */ |
| 80 | |
| 81 | static inline unsigned int kvm_vz_config_guest_wrmask(struct kvm_vcpu *vcpu) |
| 82 | { |
| 83 | return CONF_CM_CMASK; |
| 84 | } |
| 85 | |
| 86 | static inline unsigned int kvm_vz_config1_guest_wrmask(struct kvm_vcpu *vcpu) |
| 87 | { |
| 88 | return 0; |
| 89 | } |
| 90 | |
| 91 | static inline unsigned int kvm_vz_config2_guest_wrmask(struct kvm_vcpu *vcpu) |
| 92 | { |
| 93 | return 0; |
| 94 | } |
| 95 | |
| 96 | static inline unsigned int kvm_vz_config3_guest_wrmask(struct kvm_vcpu *vcpu) |
| 97 | { |
| 98 | return MIPS_CONF3_ISA_OE; |
| 99 | } |
| 100 | |
| 101 | static inline unsigned int kvm_vz_config4_guest_wrmask(struct kvm_vcpu *vcpu) |
| 102 | { |
| 103 | /* no need to be exact */ |
| 104 | return MIPS_CONF4_VFTLBPAGESIZE; |
| 105 | } |
| 106 | |
| 107 | static inline unsigned int kvm_vz_config5_guest_wrmask(struct kvm_vcpu *vcpu) |
| 108 | { |
| 109 | unsigned int mask = MIPS_CONF5_K | MIPS_CONF5_CV | MIPS_CONF5_SBRI; |
| 110 | |
| 111 | /* Permit MSAEn changes if MSA supported and enabled */ |
| 112 | if (kvm_mips_guest_has_msa(&vcpu->arch)) |
| 113 | mask |= MIPS_CONF5_MSAEN; |
| 114 | |
| 115 | /* |
| 116 | * Permit guest FPU mode changes if FPU is enabled and the relevant |
| 117 | * feature exists according to FIR register. |
| 118 | */ |
| 119 | if (kvm_mips_guest_has_fpu(&vcpu->arch)) { |
| 120 | if (cpu_has_ufr) |
| 121 | mask |= MIPS_CONF5_UFR; |
| 122 | if (cpu_has_fre) |
| 123 | mask |= MIPS_CONF5_FRE | MIPS_CONF5_UFE; |
| 124 | } |
| 125 | |
| 126 | return mask; |
| 127 | } |
| 128 | |
| 129 | /* |
| 130 | * VZ optionally allows these additional Config bits to be written by root: |
| 131 | * Config: M, [MT] |
| 132 | * Config1: M, [MMUSize-1, C2, MD, PC, WR, CA], FP |
| 133 | * Config2: M |
| 134 | * Config3: M, MSAP, [BPG], ULRI, [DSP2P, DSPP, CTXTC, ITL, LPA, VEIC, |
| 135 | * VInt, SP, CDMM, MT, SM, TL] |
| 136 | * Config4: M, [VTLBSizeExt, MMUSizeExt] |
| 137 | * Config5: [MRP] |
| 138 | */ |
| 139 | |
| 140 | static inline unsigned int kvm_vz_config_user_wrmask(struct kvm_vcpu *vcpu) |
| 141 | { |
| 142 | return kvm_vz_config_guest_wrmask(vcpu) | MIPS_CONF_M; |
| 143 | } |
| 144 | |
| 145 | static inline unsigned int kvm_vz_config1_user_wrmask(struct kvm_vcpu *vcpu) |
| 146 | { |
| 147 | unsigned int mask = kvm_vz_config1_guest_wrmask(vcpu) | MIPS_CONF_M; |
| 148 | |
| 149 | /* Permit FPU to be present if FPU is supported */ |
| 150 | if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) |
| 151 | mask |= MIPS_CONF1_FP; |
| 152 | |
| 153 | return mask; |
| 154 | } |
| 155 | |
| 156 | static inline unsigned int kvm_vz_config2_user_wrmask(struct kvm_vcpu *vcpu) |
| 157 | { |
| 158 | return kvm_vz_config2_guest_wrmask(vcpu) | MIPS_CONF_M; |
| 159 | } |
| 160 | |
| 161 | static inline unsigned int kvm_vz_config3_user_wrmask(struct kvm_vcpu *vcpu) |
| 162 | { |
| 163 | unsigned int mask = kvm_vz_config3_guest_wrmask(vcpu) | MIPS_CONF_M | |
| 164 | MIPS_CONF3_ULRI; |
| 165 | |
| 166 | /* Permit MSA to be present if MSA is supported */ |
| 167 | if (kvm_mips_guest_can_have_msa(&vcpu->arch)) |
| 168 | mask |= MIPS_CONF3_MSA; |
| 169 | |
| 170 | return mask; |
| 171 | } |
| 172 | |
| 173 | static inline unsigned int kvm_vz_config4_user_wrmask(struct kvm_vcpu *vcpu) |
| 174 | { |
| 175 | return kvm_vz_config4_guest_wrmask(vcpu) | MIPS_CONF_M; |
| 176 | } |
| 177 | |
| 178 | static inline unsigned int kvm_vz_config5_user_wrmask(struct kvm_vcpu *vcpu) |
| 179 | { |
| 180 | return kvm_vz_config5_guest_wrmask(vcpu); |
| 181 | } |
| 182 | |
| 183 | static gpa_t kvm_vz_gva_to_gpa_cb(gva_t gva) |
| 184 | { |
| 185 | /* VZ guest has already converted gva to gpa */ |
| 186 | return gva; |
| 187 | } |
| 188 | |
| 189 | static void kvm_vz_queue_irq(struct kvm_vcpu *vcpu, unsigned int priority) |
| 190 | { |
| 191 | set_bit(priority, &vcpu->arch.pending_exceptions); |
| 192 | clear_bit(priority, &vcpu->arch.pending_exceptions_clr); |
| 193 | } |
| 194 | |
| 195 | static void kvm_vz_dequeue_irq(struct kvm_vcpu *vcpu, unsigned int priority) |
| 196 | { |
| 197 | clear_bit(priority, &vcpu->arch.pending_exceptions); |
| 198 | set_bit(priority, &vcpu->arch.pending_exceptions_clr); |
| 199 | } |
| 200 | |
| 201 | static void kvm_vz_queue_timer_int_cb(struct kvm_vcpu *vcpu) |
| 202 | { |
| 203 | /* |
| 204 | * timer expiry is asynchronous to vcpu execution therefore defer guest |
| 205 | * cp0 accesses |
| 206 | */ |
| 207 | kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER); |
| 208 | } |
| 209 | |
| 210 | static void kvm_vz_dequeue_timer_int_cb(struct kvm_vcpu *vcpu) |
| 211 | { |
| 212 | /* |
| 213 | * timer expiry is asynchronous to vcpu execution therefore defer guest |
| 214 | * cp0 accesses |
| 215 | */ |
| 216 | kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_TIMER); |
| 217 | } |
| 218 | |
| 219 | static void kvm_vz_queue_io_int_cb(struct kvm_vcpu *vcpu, |
| 220 | struct kvm_mips_interrupt *irq) |
| 221 | { |
| 222 | int intr = (int)irq->irq; |
| 223 | |
| 224 | /* |
| 225 | * interrupts are asynchronous to vcpu execution therefore defer guest |
| 226 | * cp0 accesses |
| 227 | */ |
| 228 | switch (intr) { |
| 229 | case 2: |
| 230 | kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_IO); |
| 231 | break; |
| 232 | |
| 233 | case 3: |
| 234 | kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_IPI_1); |
| 235 | break; |
| 236 | |
| 237 | case 4: |
| 238 | kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_IPI_2); |
| 239 | break; |
| 240 | |
| 241 | default: |
| 242 | break; |
| 243 | } |
| 244 | |
| 245 | } |
| 246 | |
| 247 | static void kvm_vz_dequeue_io_int_cb(struct kvm_vcpu *vcpu, |
| 248 | struct kvm_mips_interrupt *irq) |
| 249 | { |
| 250 | int intr = (int)irq->irq; |
| 251 | |
| 252 | /* |
| 253 | * interrupts are asynchronous to vcpu execution therefore defer guest |
| 254 | * cp0 accesses |
| 255 | */ |
| 256 | switch (intr) { |
| 257 | case -2: |
| 258 | kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_IO); |
| 259 | break; |
| 260 | |
| 261 | case -3: |
| 262 | kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_IPI_1); |
| 263 | break; |
| 264 | |
| 265 | case -4: |
| 266 | kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_IPI_2); |
| 267 | break; |
| 268 | |
| 269 | default: |
| 270 | break; |
| 271 | } |
| 272 | |
| 273 | } |
| 274 | |
| 275 | static u32 kvm_vz_priority_to_irq[MIPS_EXC_MAX] = { |
| 276 | [MIPS_EXC_INT_TIMER] = C_IRQ5, |
| 277 | [MIPS_EXC_INT_IO] = C_IRQ0, |
| 278 | [MIPS_EXC_INT_IPI_1] = C_IRQ1, |
| 279 | [MIPS_EXC_INT_IPI_2] = C_IRQ2, |
| 280 | }; |
| 281 | |
| 282 | static int kvm_vz_irq_deliver_cb(struct kvm_vcpu *vcpu, unsigned int priority, |
| 283 | u32 cause) |
| 284 | { |
| 285 | u32 irq = (priority < MIPS_EXC_MAX) ? |
| 286 | kvm_vz_priority_to_irq[priority] : 0; |
| 287 | |
| 288 | switch (priority) { |
| 289 | case MIPS_EXC_INT_TIMER: |
| 290 | set_gc0_cause(C_TI); |
| 291 | break; |
| 292 | |
| 293 | case MIPS_EXC_INT_IO: |
| 294 | case MIPS_EXC_INT_IPI_1: |
| 295 | case MIPS_EXC_INT_IPI_2: |
| 296 | if (cpu_has_guestctl2) |
| 297 | set_c0_guestctl2(irq); |
| 298 | else |
| 299 | set_gc0_cause(irq); |
| 300 | break; |
| 301 | |
| 302 | default: |
| 303 | break; |
| 304 | } |
| 305 | |
| 306 | clear_bit(priority, &vcpu->arch.pending_exceptions); |
| 307 | return 1; |
| 308 | } |
| 309 | |
| 310 | static int kvm_vz_irq_clear_cb(struct kvm_vcpu *vcpu, unsigned int priority, |
| 311 | u32 cause) |
| 312 | { |
| 313 | u32 irq = (priority < MIPS_EXC_MAX) ? |
| 314 | kvm_vz_priority_to_irq[priority] : 0; |
| 315 | |
| 316 | switch (priority) { |
| 317 | case MIPS_EXC_INT_TIMER: |
| 318 | /* |
| 319 | * Call to kvm_write_c0_guest_compare() clears Cause.TI in |
| 320 | * kvm_mips_emulate_CP0(). Explicitly clear irq associated with |
| 321 | * Cause.IP[IPTI] if GuestCtl2 virtual interrupt register not |
| 322 | * supported or if not using GuestCtl2 Hardware Clear. |
| 323 | */ |
| 324 | if (cpu_has_guestctl2) { |
| 325 | if (!(read_c0_guestctl2() & (irq << 14))) |
| 326 | clear_c0_guestctl2(irq); |
| 327 | } else { |
| 328 | clear_gc0_cause(irq); |
| 329 | } |
| 330 | break; |
| 331 | |
| 332 | case MIPS_EXC_INT_IO: |
| 333 | case MIPS_EXC_INT_IPI_1: |
| 334 | case MIPS_EXC_INT_IPI_2: |
| 335 | /* Clear GuestCtl2.VIP irq if not using Hardware Clear */ |
| 336 | if (cpu_has_guestctl2) { |
| 337 | if (!(read_c0_guestctl2() & (irq << 14))) |
| 338 | clear_c0_guestctl2(irq); |
| 339 | } else { |
| 340 | clear_gc0_cause(irq); |
| 341 | } |
| 342 | break; |
| 343 | |
| 344 | default: |
| 345 | break; |
| 346 | } |
| 347 | |
| 348 | clear_bit(priority, &vcpu->arch.pending_exceptions_clr); |
| 349 | return 1; |
| 350 | } |
| 351 | |
| 352 | /* |
| 353 | * VZ guest timer handling. |
| 354 | */ |
| 355 | |
| 356 | /** |
| 357 | * _kvm_vz_restore_stimer() - Restore soft timer state. |
| 358 | * @vcpu: Virtual CPU. |
| 359 | * @compare: CP0_Compare register value, restored by caller. |
| 360 | * @cause: CP0_Cause register to restore. |
| 361 | * |
| 362 | * Restore VZ state relating to the soft timer. |
| 363 | */ |
| 364 | static void _kvm_vz_restore_stimer(struct kvm_vcpu *vcpu, u32 compare, |
| 365 | u32 cause) |
| 366 | { |
| 367 | /* |
| 368 | * Avoid spurious counter interrupts by setting Guest CP0_Count to just |
| 369 | * after Guest CP0_Compare. |
| 370 | */ |
| 371 | write_c0_gtoffset(compare - read_c0_count()); |
| 372 | |
| 373 | back_to_back_c0_hazard(); |
| 374 | write_gc0_cause(cause); |
| 375 | } |
| 376 | |
| 377 | /** |
| 378 | * kvm_vz_restore_timer() - Restore guest timer state. |
| 379 | * @vcpu: Virtual CPU. |
| 380 | * |
| 381 | * Restore soft timer state from saved context. |
| 382 | */ |
| 383 | static void kvm_vz_restore_timer(struct kvm_vcpu *vcpu) |
| 384 | { |
| 385 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 386 | u32 cause, compare; |
| 387 | |
| 388 | compare = kvm_read_sw_gc0_compare(cop0); |
| 389 | cause = kvm_read_sw_gc0_cause(cop0); |
| 390 | |
| 391 | write_gc0_compare(compare); |
| 392 | _kvm_vz_restore_stimer(vcpu, compare, cause); |
| 393 | } |
| 394 | |
| 395 | /** |
| 396 | * kvm_vz_save_timer() - Save guest timer state. |
| 397 | * @vcpu: Virtual CPU. |
| 398 | * |
| 399 | * Save VZ guest timer state. |
| 400 | */ |
| 401 | static void kvm_vz_save_timer(struct kvm_vcpu *vcpu) |
| 402 | { |
| 403 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 404 | u32 compare, cause; |
| 405 | |
| 406 | compare = read_gc0_compare(); |
| 407 | cause = read_gc0_cause(); |
| 408 | |
| 409 | /* save timer-related state to VCPU context */ |
| 410 | kvm_write_sw_gc0_cause(cop0, cause); |
| 411 | kvm_write_sw_gc0_compare(cop0, compare); |
| 412 | } |
| 413 | |
| 414 | /** |
| 415 | * kvm_vz_gva_to_gpa() - Convert valid GVA to GPA. |
| 416 | * @vcpu: KVM VCPU state. |
| 417 | * @gva: Guest virtual address to convert. |
| 418 | * @gpa: Output guest physical address. |
| 419 | * |
| 420 | * Convert a guest virtual address (GVA) which is valid according to the guest |
| 421 | * context, to a guest physical address (GPA). |
| 422 | * |
| 423 | * Returns: 0 on success. |
| 424 | * -errno on failure. |
| 425 | */ |
| 426 | static int kvm_vz_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, |
| 427 | unsigned long *gpa) |
| 428 | { |
| 429 | u32 gva32 = gva; |
| 430 | |
| 431 | if ((long)gva == (s32)gva32) { |
| 432 | /* Handle canonical 32-bit virtual address */ |
| 433 | if ((s32)gva32 < (s32)0xc0000000) { |
| 434 | /* legacy unmapped KSeg0 or KSeg1 */ |
| 435 | *gpa = gva32 & 0x1fffffff; |
| 436 | return 0; |
| 437 | } |
| 438 | #ifdef CONFIG_64BIT |
| 439 | } else if ((gva & 0xc000000000000000) == 0x8000000000000000) { |
| 440 | /* XKPHYS */ |
| 441 | /* |
| 442 | * Traditionally fully unmapped. |
| 443 | * Bits 61:59 specify the CCA, which we can just mask off here. |
| 444 | * Bits 58:PABITS should be zero, but we shouldn't have got here |
| 445 | * if it wasn't. |
| 446 | */ |
| 447 | *gpa = gva & 0x07ffffffffffffff; |
| 448 | return 0; |
| 449 | #endif |
| 450 | } |
| 451 | |
| 452 | return kvm_vz_guest_tlb_lookup(vcpu, gva, gpa); |
| 453 | } |
| 454 | |
| 455 | /** |
| 456 | * kvm_vz_badvaddr_to_gpa() - Convert GVA BadVAddr from root exception to GPA. |
| 457 | * @vcpu: KVM VCPU state. |
| 458 | * @badvaddr: Root BadVAddr. |
| 459 | * @gpa: Output guest physical address. |
| 460 | * |
| 461 | * VZ implementations are permitted to report guest virtual addresses (GVA) in |
| 462 | * BadVAddr on a root exception during guest execution, instead of the more |
| 463 | * convenient guest physical addresses (GPA). When we get a GVA, this function |
| 464 | * converts it to a GPA, taking into account guest segmentation and guest TLB |
| 465 | * state. |
| 466 | * |
| 467 | * Returns: 0 on success. |
| 468 | * -errno on failure. |
| 469 | */ |
| 470 | static int kvm_vz_badvaddr_to_gpa(struct kvm_vcpu *vcpu, unsigned long badvaddr, |
| 471 | unsigned long *gpa) |
| 472 | { |
| 473 | unsigned int gexccode = (vcpu->arch.host_cp0_guestctl0 & |
| 474 | MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT; |
| 475 | |
| 476 | /* If BadVAddr is GPA, then all is well in the world */ |
| 477 | if (likely(gexccode == MIPS_GCTL0_GEXC_GPA)) { |
| 478 | *gpa = badvaddr; |
| 479 | return 0; |
| 480 | } |
| 481 | |
| 482 | /* Otherwise we'd expect it to be GVA ... */ |
| 483 | if (WARN(gexccode != MIPS_GCTL0_GEXC_GVA, |
| 484 | "Unexpected gexccode %#x\n", gexccode)) |
| 485 | return -EINVAL; |
| 486 | |
| 487 | /* ... and we need to perform the GVA->GPA translation in software */ |
| 488 | return kvm_vz_gva_to_gpa(vcpu, badvaddr, gpa); |
| 489 | } |
| 490 | |
| 491 | static int kvm_trap_vz_no_handler(struct kvm_vcpu *vcpu) |
| 492 | { |
| 493 | u32 *opc = (u32 *) vcpu->arch.pc; |
| 494 | u32 cause = vcpu->arch.host_cp0_cause; |
| 495 | u32 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; |
| 496 | unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; |
| 497 | u32 inst = 0; |
| 498 | |
| 499 | /* |
| 500 | * Fetch the instruction. |
| 501 | */ |
| 502 | if (cause & CAUSEF_BD) |
| 503 | opc += 1; |
| 504 | kvm_get_badinstr(opc, vcpu, &inst); |
| 505 | |
| 506 | kvm_err("Exception Code: %d not handled @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n", |
| 507 | exccode, opc, inst, badvaddr, |
| 508 | read_gc0_status()); |
| 509 | kvm_arch_vcpu_dump_regs(vcpu); |
| 510 | vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| 511 | return RESUME_HOST; |
| 512 | } |
| 513 | |
| 514 | static enum emulation_result kvm_vz_gpsi_cop0(union mips_instruction inst, |
| 515 | u32 *opc, u32 cause, |
| 516 | struct kvm_run *run, |
| 517 | struct kvm_vcpu *vcpu) |
| 518 | { |
| 519 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 520 | enum emulation_result er = EMULATE_DONE; |
| 521 | u32 rt, rd, sel; |
| 522 | unsigned long curr_pc; |
| 523 | unsigned long val; |
| 524 | |
| 525 | /* |
| 526 | * Update PC and hold onto current PC in case there is |
| 527 | * an error and we want to rollback the PC |
| 528 | */ |
| 529 | curr_pc = vcpu->arch.pc; |
| 530 | er = update_pc(vcpu, cause); |
| 531 | if (er == EMULATE_FAIL) |
| 532 | return er; |
| 533 | |
| 534 | if (inst.co_format.co) { |
| 535 | switch (inst.co_format.func) { |
| 536 | case wait_op: |
| 537 | er = kvm_mips_emul_wait(vcpu); |
| 538 | break; |
| 539 | default: |
| 540 | er = EMULATE_FAIL; |
| 541 | } |
| 542 | } else { |
| 543 | rt = inst.c0r_format.rt; |
| 544 | rd = inst.c0r_format.rd; |
| 545 | sel = inst.c0r_format.sel; |
| 546 | |
| 547 | switch (inst.c0r_format.rs) { |
| 548 | case dmfc_op: |
| 549 | case mfc_op: |
| 550 | #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS |
| 551 | cop0->stat[rd][sel]++; |
| 552 | #endif |
| 553 | if (rd == MIPS_CP0_COUNT && |
| 554 | sel == 0) { /* Count */ |
| 555 | val = kvm_mips_read_count(vcpu); |
| 556 | } else if (rd == MIPS_CP0_COMPARE && |
| 557 | sel == 0) { /* Compare */ |
| 558 | val = read_gc0_compare(); |
| 559 | } else if ((rd == MIPS_CP0_PRID && |
| 560 | (sel == 0 || /* PRid */ |
| 561 | sel == 2 || /* CDMMBase */ |
| 562 | sel == 3)) || /* CMGCRBase */ |
| 563 | (rd == MIPS_CP0_STATUS && |
| 564 | (sel == 2 || /* SRSCtl */ |
| 565 | sel == 3)) || /* SRSMap */ |
| 566 | (rd == MIPS_CP0_CONFIG && |
| 567 | (sel == 7)) || /* Config7 */ |
| 568 | (rd == MIPS_CP0_ERRCTL && |
| 569 | (sel == 0))) { /* ErrCtl */ |
| 570 | val = cop0->reg[rd][sel]; |
| 571 | } else { |
| 572 | val = 0; |
| 573 | er = EMULATE_FAIL; |
| 574 | } |
| 575 | |
| 576 | if (er != EMULATE_FAIL) { |
| 577 | /* Sign extend */ |
| 578 | if (inst.c0r_format.rs == mfc_op) |
| 579 | val = (int)val; |
| 580 | vcpu->arch.gprs[rt] = val; |
| 581 | } |
| 582 | |
| 583 | trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mfc_op) ? |
| 584 | KVM_TRACE_MFC0 : KVM_TRACE_DMFC0, |
| 585 | KVM_TRACE_COP0(rd, sel), val); |
| 586 | break; |
| 587 | |
| 588 | case dmtc_op: |
| 589 | case mtc_op: |
| 590 | #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS |
| 591 | cop0->stat[rd][sel]++; |
| 592 | #endif |
| 593 | val = vcpu->arch.gprs[rt]; |
| 594 | trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mtc_op) ? |
| 595 | KVM_TRACE_MTC0 : KVM_TRACE_DMTC0, |
| 596 | KVM_TRACE_COP0(rd, sel), val); |
| 597 | |
| 598 | if (rd == MIPS_CP0_COUNT && |
| 599 | sel == 0) { /* Count */ |
| 600 | kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]); |
| 601 | } else if (rd == MIPS_CP0_COMPARE && |
| 602 | sel == 0) { /* Compare */ |
| 603 | kvm_mips_write_compare(vcpu, |
| 604 | vcpu->arch.gprs[rt], |
| 605 | true); |
| 606 | } else if (rd == MIPS_CP0_ERRCTL && |
| 607 | (sel == 0)) { /* ErrCtl */ |
| 608 | /* ignore the written value */ |
| 609 | } else { |
| 610 | er = EMULATE_FAIL; |
| 611 | } |
| 612 | break; |
| 613 | |
| 614 | default: |
| 615 | er = EMULATE_FAIL; |
| 616 | break; |
| 617 | } |
| 618 | } |
| 619 | /* Rollback PC only if emulation was unsuccessful */ |
| 620 | if (er == EMULATE_FAIL) { |
| 621 | kvm_err("[%#lx]%s: unsupported cop0 instruction 0x%08x\n", |
| 622 | curr_pc, __func__, inst.word); |
| 623 | |
| 624 | vcpu->arch.pc = curr_pc; |
| 625 | } |
| 626 | |
| 627 | return er; |
| 628 | } |
| 629 | |
| 630 | static enum emulation_result kvm_vz_gpsi_cache(union mips_instruction inst, |
| 631 | u32 *opc, u32 cause, |
| 632 | struct kvm_run *run, |
| 633 | struct kvm_vcpu *vcpu) |
| 634 | { |
| 635 | enum emulation_result er = EMULATE_DONE; |
| 636 | u32 cache, op_inst, op, base; |
| 637 | s16 offset; |
| 638 | struct kvm_vcpu_arch *arch = &vcpu->arch; |
| 639 | unsigned long va, curr_pc; |
| 640 | |
| 641 | /* |
| 642 | * Update PC and hold onto current PC in case there is |
| 643 | * an error and we want to rollback the PC |
| 644 | */ |
| 645 | curr_pc = vcpu->arch.pc; |
| 646 | er = update_pc(vcpu, cause); |
| 647 | if (er == EMULATE_FAIL) |
| 648 | return er; |
| 649 | |
| 650 | base = inst.i_format.rs; |
| 651 | op_inst = inst.i_format.rt; |
| 652 | if (cpu_has_mips_r6) |
| 653 | offset = inst.spec3_format.simmediate; |
| 654 | else |
| 655 | offset = inst.i_format.simmediate; |
| 656 | cache = op_inst & CacheOp_Cache; |
| 657 | op = op_inst & CacheOp_Op; |
| 658 | |
| 659 | va = arch->gprs[base] + offset; |
| 660 | |
| 661 | kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", |
| 662 | cache, op, base, arch->gprs[base], offset); |
| 663 | |
| 664 | /* Secondary or tirtiary cache ops ignored */ |
| 665 | if (cache != Cache_I && cache != Cache_D) |
| 666 | return EMULATE_DONE; |
| 667 | |
| 668 | switch (op_inst) { |
| 669 | case Index_Invalidate_I: |
| 670 | flush_icache_line_indexed(va); |
| 671 | return EMULATE_DONE; |
| 672 | case Index_Writeback_Inv_D: |
| 673 | flush_dcache_line_indexed(va); |
| 674 | return EMULATE_DONE; |
| 675 | default: |
| 676 | break; |
| 677 | }; |
| 678 | |
| 679 | kvm_err("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", |
| 680 | curr_pc, vcpu->arch.gprs[31], cache, op, base, arch->gprs[base], |
| 681 | offset); |
| 682 | /* Rollback PC */ |
| 683 | vcpu->arch.pc = curr_pc; |
| 684 | |
| 685 | return EMULATE_FAIL; |
| 686 | } |
| 687 | |
| 688 | static enum emulation_result kvm_trap_vz_handle_gpsi(u32 cause, u32 *opc, |
| 689 | struct kvm_vcpu *vcpu) |
| 690 | { |
| 691 | enum emulation_result er = EMULATE_DONE; |
| 692 | struct kvm_vcpu_arch *arch = &vcpu->arch; |
| 693 | struct kvm_run *run = vcpu->run; |
| 694 | union mips_instruction inst; |
| 695 | int rd, rt, sel; |
| 696 | int err; |
| 697 | |
| 698 | /* |
| 699 | * Fetch the instruction. |
| 700 | */ |
| 701 | if (cause & CAUSEF_BD) |
| 702 | opc += 1; |
| 703 | err = kvm_get_badinstr(opc, vcpu, &inst.word); |
| 704 | if (err) |
| 705 | return EMULATE_FAIL; |
| 706 | |
| 707 | switch (inst.r_format.opcode) { |
| 708 | case cop0_op: |
| 709 | er = kvm_vz_gpsi_cop0(inst, opc, cause, run, vcpu); |
| 710 | break; |
| 711 | #ifndef CONFIG_CPU_MIPSR6 |
| 712 | case cache_op: |
| 713 | trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE); |
| 714 | er = kvm_vz_gpsi_cache(inst, opc, cause, run, vcpu); |
| 715 | break; |
| 716 | #endif |
| 717 | case spec3_op: |
| 718 | switch (inst.spec3_format.func) { |
| 719 | #ifdef CONFIG_CPU_MIPSR6 |
| 720 | case cache6_op: |
| 721 | trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE); |
| 722 | er = kvm_vz_gpsi_cache(inst, opc, cause, run, vcpu); |
| 723 | break; |
| 724 | #endif |
| 725 | case rdhwr_op: |
| 726 | if (inst.r_format.rs || (inst.r_format.re >> 3)) |
| 727 | goto unknown; |
| 728 | |
| 729 | rd = inst.r_format.rd; |
| 730 | rt = inst.r_format.rt; |
| 731 | sel = inst.r_format.re & 0x7; |
| 732 | |
| 733 | switch (rd) { |
| 734 | case MIPS_HWR_CC: /* Read count register */ |
| 735 | arch->gprs[rt] = |
| 736 | (long)(int)kvm_mips_read_count(vcpu); |
| 737 | break; |
| 738 | default: |
| 739 | trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, |
| 740 | KVM_TRACE_HWR(rd, sel), 0); |
| 741 | goto unknown; |
| 742 | }; |
| 743 | |
| 744 | trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, |
| 745 | KVM_TRACE_HWR(rd, sel), arch->gprs[rt]); |
| 746 | |
| 747 | er = update_pc(vcpu, cause); |
| 748 | break; |
| 749 | default: |
| 750 | goto unknown; |
| 751 | }; |
| 752 | break; |
| 753 | unknown: |
| 754 | |
| 755 | default: |
| 756 | kvm_err("GPSI exception not supported (%p/%#x)\n", |
| 757 | opc, inst.word); |
| 758 | kvm_arch_vcpu_dump_regs(vcpu); |
| 759 | er = EMULATE_FAIL; |
| 760 | break; |
| 761 | } |
| 762 | |
| 763 | return er; |
| 764 | } |
| 765 | |
| 766 | static enum emulation_result kvm_trap_vz_handle_gsfc(u32 cause, u32 *opc, |
| 767 | struct kvm_vcpu *vcpu) |
| 768 | { |
| 769 | enum emulation_result er = EMULATE_DONE; |
| 770 | struct kvm_vcpu_arch *arch = &vcpu->arch; |
| 771 | union mips_instruction inst; |
| 772 | int err; |
| 773 | |
| 774 | /* |
| 775 | * Fetch the instruction. |
| 776 | */ |
| 777 | if (cause & CAUSEF_BD) |
| 778 | opc += 1; |
| 779 | err = kvm_get_badinstr(opc, vcpu, &inst.word); |
| 780 | if (err) |
| 781 | return EMULATE_FAIL; |
| 782 | |
| 783 | /* complete MTC0 on behalf of guest and advance EPC */ |
| 784 | if (inst.c0r_format.opcode == cop0_op && |
| 785 | inst.c0r_format.rs == mtc_op && |
| 786 | inst.c0r_format.z == 0) { |
| 787 | int rt = inst.c0r_format.rt; |
| 788 | int rd = inst.c0r_format.rd; |
| 789 | int sel = inst.c0r_format.sel; |
| 790 | unsigned int val = arch->gprs[rt]; |
| 791 | unsigned int old_val, change; |
| 792 | |
| 793 | trace_kvm_hwr(vcpu, KVM_TRACE_MTC0, KVM_TRACE_COP0(rd, sel), |
| 794 | val); |
| 795 | |
| 796 | if ((rd == MIPS_CP0_STATUS) && (sel == 0)) { |
| 797 | /* FR bit should read as zero if no FPU */ |
| 798 | if (!kvm_mips_guest_has_fpu(&vcpu->arch)) |
| 799 | val &= ~(ST0_CU1 | ST0_FR); |
| 800 | |
| 801 | /* |
| 802 | * Also don't allow FR to be set if host doesn't support |
| 803 | * it. |
| 804 | */ |
| 805 | if (!(boot_cpu_data.fpu_id & MIPS_FPIR_F64)) |
| 806 | val &= ~ST0_FR; |
| 807 | |
| 808 | old_val = read_gc0_status(); |
| 809 | change = val ^ old_val; |
| 810 | |
| 811 | if (change & ST0_FR) { |
| 812 | /* |
| 813 | * FPU and Vector register state is made |
| 814 | * UNPREDICTABLE by a change of FR, so don't |
| 815 | * even bother saving it. |
| 816 | */ |
| 817 | kvm_drop_fpu(vcpu); |
| 818 | } |
| 819 | |
| 820 | /* |
| 821 | * If MSA state is already live, it is undefined how it |
| 822 | * interacts with FR=0 FPU state, and we don't want to |
| 823 | * hit reserved instruction exceptions trying to save |
| 824 | * the MSA state later when CU=1 && FR=1, so play it |
| 825 | * safe and save it first. |
| 826 | */ |
| 827 | if (change & ST0_CU1 && !(val & ST0_FR) && |
| 828 | vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) |
| 829 | kvm_lose_fpu(vcpu); |
| 830 | |
| 831 | write_gc0_status(val); |
| 832 | } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) { |
| 833 | u32 old_cause = read_gc0_cause(); |
| 834 | u32 change = old_cause ^ val; |
| 835 | |
| 836 | /* DC bit enabling/disabling timer? */ |
| 837 | if (change & CAUSEF_DC) { |
| 838 | if (val & CAUSEF_DC) |
| 839 | kvm_mips_count_disable_cause(vcpu); |
| 840 | else |
| 841 | kvm_mips_count_enable_cause(vcpu); |
| 842 | } |
| 843 | |
| 844 | /* Only certain bits are RW to the guest */ |
| 845 | change &= (CAUSEF_DC | CAUSEF_IV | CAUSEF_WP | |
| 846 | CAUSEF_IP0 | CAUSEF_IP1); |
| 847 | |
| 848 | /* WP can only be cleared */ |
| 849 | change &= ~CAUSEF_WP | old_cause; |
| 850 | |
| 851 | write_gc0_cause(old_cause ^ change); |
| 852 | } else if ((rd == MIPS_CP0_STATUS) && (sel == 1)) { /* IntCtl */ |
| 853 | write_gc0_intctl(val); |
| 854 | } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) { |
| 855 | old_val = read_gc0_config5(); |
| 856 | change = val ^ old_val; |
| 857 | /* Handle changes in FPU/MSA modes */ |
| 858 | preempt_disable(); |
| 859 | |
| 860 | /* |
| 861 | * Propagate FRE changes immediately if the FPU |
| 862 | * context is already loaded. |
| 863 | */ |
| 864 | if (change & MIPS_CONF5_FRE && |
| 865 | vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) |
| 866 | change_c0_config5(MIPS_CONF5_FRE, val); |
| 867 | |
| 868 | preempt_enable(); |
| 869 | |
| 870 | val = old_val ^ |
| 871 | (change & kvm_vz_config5_guest_wrmask(vcpu)); |
| 872 | write_gc0_config5(val); |
| 873 | } else { |
| 874 | kvm_err("Handle GSFC, unsupported field change @ %p: %#x\n", |
| 875 | opc, inst.word); |
| 876 | er = EMULATE_FAIL; |
| 877 | } |
| 878 | |
| 879 | if (er != EMULATE_FAIL) |
| 880 | er = update_pc(vcpu, cause); |
| 881 | } else { |
| 882 | kvm_err("Handle GSFC, unrecognized instruction @ %p: %#x\n", |
| 883 | opc, inst.word); |
| 884 | er = EMULATE_FAIL; |
| 885 | } |
| 886 | |
| 887 | return er; |
| 888 | } |
| 889 | |
| 890 | static enum emulation_result kvm_trap_vz_handle_hc(u32 cause, u32 *opc, |
| 891 | struct kvm_vcpu *vcpu) |
| 892 | { |
| 893 | enum emulation_result er; |
| 894 | union mips_instruction inst; |
| 895 | unsigned long curr_pc; |
| 896 | int err; |
| 897 | |
| 898 | if (cause & CAUSEF_BD) |
| 899 | opc += 1; |
| 900 | err = kvm_get_badinstr(opc, vcpu, &inst.word); |
| 901 | if (err) |
| 902 | return EMULATE_FAIL; |
| 903 | |
| 904 | /* |
| 905 | * Update PC and hold onto current PC in case there is |
| 906 | * an error and we want to rollback the PC |
| 907 | */ |
| 908 | curr_pc = vcpu->arch.pc; |
| 909 | er = update_pc(vcpu, cause); |
| 910 | if (er == EMULATE_FAIL) |
| 911 | return er; |
| 912 | |
| 913 | er = kvm_mips_emul_hypcall(vcpu, inst); |
| 914 | if (er == EMULATE_FAIL) |
| 915 | vcpu->arch.pc = curr_pc; |
| 916 | |
| 917 | return er; |
| 918 | } |
| 919 | |
| 920 | static enum emulation_result kvm_trap_vz_no_handler_guest_exit(u32 gexccode, |
| 921 | u32 cause, |
| 922 | u32 *opc, |
| 923 | struct kvm_vcpu *vcpu) |
| 924 | { |
| 925 | u32 inst; |
| 926 | |
| 927 | /* |
| 928 | * Fetch the instruction. |
| 929 | */ |
| 930 | if (cause & CAUSEF_BD) |
| 931 | opc += 1; |
| 932 | kvm_get_badinstr(opc, vcpu, &inst); |
| 933 | |
| 934 | kvm_err("Guest Exception Code: %d not yet handled @ PC: %p, inst: 0x%08x Status: %#x\n", |
| 935 | gexccode, opc, inst, read_gc0_status()); |
| 936 | |
| 937 | return EMULATE_FAIL; |
| 938 | } |
| 939 | |
| 940 | static int kvm_trap_vz_handle_guest_exit(struct kvm_vcpu *vcpu) |
| 941 | { |
| 942 | u32 *opc = (u32 *) vcpu->arch.pc; |
| 943 | u32 cause = vcpu->arch.host_cp0_cause; |
| 944 | enum emulation_result er = EMULATE_DONE; |
| 945 | u32 gexccode = (vcpu->arch.host_cp0_guestctl0 & |
| 946 | MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT; |
| 947 | int ret = RESUME_GUEST; |
| 948 | |
| 949 | trace_kvm_exit(vcpu, KVM_TRACE_EXIT_GEXCCODE_BASE + gexccode); |
| 950 | switch (gexccode) { |
| 951 | case MIPS_GCTL0_GEXC_GPSI: |
| 952 | ++vcpu->stat.vz_gpsi_exits; |
| 953 | er = kvm_trap_vz_handle_gpsi(cause, opc, vcpu); |
| 954 | break; |
| 955 | case MIPS_GCTL0_GEXC_GSFC: |
| 956 | ++vcpu->stat.vz_gsfc_exits; |
| 957 | er = kvm_trap_vz_handle_gsfc(cause, opc, vcpu); |
| 958 | break; |
| 959 | case MIPS_GCTL0_GEXC_HC: |
| 960 | ++vcpu->stat.vz_hc_exits; |
| 961 | er = kvm_trap_vz_handle_hc(cause, opc, vcpu); |
| 962 | break; |
| 963 | case MIPS_GCTL0_GEXC_GRR: |
| 964 | ++vcpu->stat.vz_grr_exits; |
| 965 | er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc, |
| 966 | vcpu); |
| 967 | break; |
| 968 | case MIPS_GCTL0_GEXC_GVA: |
| 969 | ++vcpu->stat.vz_gva_exits; |
| 970 | er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc, |
| 971 | vcpu); |
| 972 | break; |
| 973 | case MIPS_GCTL0_GEXC_GHFC: |
| 974 | ++vcpu->stat.vz_ghfc_exits; |
| 975 | er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc, |
| 976 | vcpu); |
| 977 | break; |
| 978 | case MIPS_GCTL0_GEXC_GPA: |
| 979 | ++vcpu->stat.vz_gpa_exits; |
| 980 | er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc, |
| 981 | vcpu); |
| 982 | break; |
| 983 | default: |
| 984 | ++vcpu->stat.vz_resvd_exits; |
| 985 | er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc, |
| 986 | vcpu); |
| 987 | break; |
| 988 | |
| 989 | } |
| 990 | |
| 991 | if (er == EMULATE_DONE) { |
| 992 | ret = RESUME_GUEST; |
| 993 | } else if (er == EMULATE_HYPERCALL) { |
| 994 | ret = kvm_mips_handle_hypcall(vcpu); |
| 995 | } else { |
| 996 | vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| 997 | ret = RESUME_HOST; |
| 998 | } |
| 999 | return ret; |
| 1000 | } |
| 1001 | |
| 1002 | /** |
| 1003 | * kvm_trap_vz_handle_cop_unusuable() - Guest used unusable coprocessor. |
| 1004 | * @vcpu: Virtual CPU context. |
| 1005 | * |
| 1006 | * Handle when the guest attempts to use a coprocessor which hasn't been allowed |
| 1007 | * by the root context. |
| 1008 | */ |
| 1009 | static int kvm_trap_vz_handle_cop_unusable(struct kvm_vcpu *vcpu) |
| 1010 | { |
| 1011 | struct kvm_run *run = vcpu->run; |
| 1012 | u32 cause = vcpu->arch.host_cp0_cause; |
| 1013 | enum emulation_result er = EMULATE_FAIL; |
| 1014 | int ret = RESUME_GUEST; |
| 1015 | |
| 1016 | if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 1) { |
| 1017 | /* |
| 1018 | * If guest FPU not present, the FPU operation should have been |
| 1019 | * treated as a reserved instruction! |
| 1020 | * If FPU already in use, we shouldn't get this at all. |
| 1021 | */ |
| 1022 | if (WARN_ON(!kvm_mips_guest_has_fpu(&vcpu->arch) || |
| 1023 | vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) { |
| 1024 | preempt_enable(); |
| 1025 | return EMULATE_FAIL; |
| 1026 | } |
| 1027 | |
| 1028 | kvm_own_fpu(vcpu); |
| 1029 | er = EMULATE_DONE; |
| 1030 | } |
| 1031 | /* other coprocessors not handled */ |
| 1032 | |
| 1033 | switch (er) { |
| 1034 | case EMULATE_DONE: |
| 1035 | ret = RESUME_GUEST; |
| 1036 | break; |
| 1037 | |
| 1038 | case EMULATE_FAIL: |
| 1039 | run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| 1040 | ret = RESUME_HOST; |
| 1041 | break; |
| 1042 | |
| 1043 | default: |
| 1044 | BUG(); |
| 1045 | } |
| 1046 | return ret; |
| 1047 | } |
| 1048 | |
| 1049 | /** |
| 1050 | * kvm_trap_vz_handle_msa_disabled() - Guest used MSA while disabled in root. |
| 1051 | * @vcpu: Virtual CPU context. |
| 1052 | * |
| 1053 | * Handle when the guest attempts to use MSA when it is disabled in the root |
| 1054 | * context. |
| 1055 | */ |
| 1056 | static int kvm_trap_vz_handle_msa_disabled(struct kvm_vcpu *vcpu) |
| 1057 | { |
| 1058 | struct kvm_run *run = vcpu->run; |
| 1059 | |
| 1060 | /* |
| 1061 | * If MSA not present or not exposed to guest or FR=0, the MSA operation |
| 1062 | * should have been treated as a reserved instruction! |
| 1063 | * Same if CU1=1, FR=0. |
| 1064 | * If MSA already in use, we shouldn't get this at all. |
| 1065 | */ |
| 1066 | if (!kvm_mips_guest_has_msa(&vcpu->arch) || |
| 1067 | (read_gc0_status() & (ST0_CU1 | ST0_FR)) == ST0_CU1 || |
| 1068 | !(read_gc0_config5() & MIPS_CONF5_MSAEN) || |
| 1069 | vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) { |
| 1070 | run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| 1071 | return RESUME_HOST; |
| 1072 | } |
| 1073 | |
| 1074 | kvm_own_msa(vcpu); |
| 1075 | |
| 1076 | return RESUME_GUEST; |
| 1077 | } |
| 1078 | |
| 1079 | static int kvm_trap_vz_handle_tlb_ld_miss(struct kvm_vcpu *vcpu) |
| 1080 | { |
| 1081 | struct kvm_run *run = vcpu->run; |
| 1082 | u32 *opc = (u32 *) vcpu->arch.pc; |
| 1083 | u32 cause = vcpu->arch.host_cp0_cause; |
| 1084 | ulong badvaddr = vcpu->arch.host_cp0_badvaddr; |
| 1085 | union mips_instruction inst; |
| 1086 | enum emulation_result er = EMULATE_DONE; |
| 1087 | int err, ret = RESUME_GUEST; |
| 1088 | |
| 1089 | if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, false)) { |
| 1090 | /* A code fetch fault doesn't count as an MMIO */ |
| 1091 | if (kvm_is_ifetch_fault(&vcpu->arch)) { |
| 1092 | run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| 1093 | return RESUME_HOST; |
| 1094 | } |
| 1095 | |
| 1096 | /* Fetch the instruction */ |
| 1097 | if (cause & CAUSEF_BD) |
| 1098 | opc += 1; |
| 1099 | err = kvm_get_badinstr(opc, vcpu, &inst.word); |
| 1100 | if (err) { |
| 1101 | run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| 1102 | return RESUME_HOST; |
| 1103 | } |
| 1104 | |
| 1105 | /* Treat as MMIO */ |
| 1106 | er = kvm_mips_emulate_load(inst, cause, run, vcpu); |
| 1107 | if (er == EMULATE_FAIL) { |
| 1108 | kvm_err("Guest Emulate Load from MMIO space failed: PC: %p, BadVaddr: %#lx\n", |
| 1109 | opc, badvaddr); |
| 1110 | run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| 1111 | } |
| 1112 | } |
| 1113 | |
| 1114 | if (er == EMULATE_DONE) { |
| 1115 | ret = RESUME_GUEST; |
| 1116 | } else if (er == EMULATE_DO_MMIO) { |
| 1117 | run->exit_reason = KVM_EXIT_MMIO; |
| 1118 | ret = RESUME_HOST; |
| 1119 | } else { |
| 1120 | run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| 1121 | ret = RESUME_HOST; |
| 1122 | } |
| 1123 | return ret; |
| 1124 | } |
| 1125 | |
| 1126 | static int kvm_trap_vz_handle_tlb_st_miss(struct kvm_vcpu *vcpu) |
| 1127 | { |
| 1128 | struct kvm_run *run = vcpu->run; |
| 1129 | u32 *opc = (u32 *) vcpu->arch.pc; |
| 1130 | u32 cause = vcpu->arch.host_cp0_cause; |
| 1131 | ulong badvaddr = vcpu->arch.host_cp0_badvaddr; |
| 1132 | union mips_instruction inst; |
| 1133 | enum emulation_result er = EMULATE_DONE; |
| 1134 | int err; |
| 1135 | int ret = RESUME_GUEST; |
| 1136 | |
| 1137 | /* Just try the access again if we couldn't do the translation */ |
| 1138 | if (kvm_vz_badvaddr_to_gpa(vcpu, badvaddr, &badvaddr)) |
| 1139 | return RESUME_GUEST; |
| 1140 | vcpu->arch.host_cp0_badvaddr = badvaddr; |
| 1141 | |
| 1142 | if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, true)) { |
| 1143 | /* Fetch the instruction */ |
| 1144 | if (cause & CAUSEF_BD) |
| 1145 | opc += 1; |
| 1146 | err = kvm_get_badinstr(opc, vcpu, &inst.word); |
| 1147 | if (err) { |
| 1148 | run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| 1149 | return RESUME_HOST; |
| 1150 | } |
| 1151 | |
| 1152 | /* Treat as MMIO */ |
| 1153 | er = kvm_mips_emulate_store(inst, cause, run, vcpu); |
| 1154 | if (er == EMULATE_FAIL) { |
| 1155 | kvm_err("Guest Emulate Store to MMIO space failed: PC: %p, BadVaddr: %#lx\n", |
| 1156 | opc, badvaddr); |
| 1157 | run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| 1158 | } |
| 1159 | } |
| 1160 | |
| 1161 | if (er == EMULATE_DONE) { |
| 1162 | ret = RESUME_GUEST; |
| 1163 | } else if (er == EMULATE_DO_MMIO) { |
| 1164 | run->exit_reason = KVM_EXIT_MMIO; |
| 1165 | ret = RESUME_HOST; |
| 1166 | } else { |
| 1167 | run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| 1168 | ret = RESUME_HOST; |
| 1169 | } |
| 1170 | return ret; |
| 1171 | } |
| 1172 | |
| 1173 | static u64 kvm_vz_get_one_regs[] = { |
| 1174 | KVM_REG_MIPS_CP0_INDEX, |
| 1175 | KVM_REG_MIPS_CP0_ENTRYLO0, |
| 1176 | KVM_REG_MIPS_CP0_ENTRYLO1, |
| 1177 | KVM_REG_MIPS_CP0_CONTEXT, |
| 1178 | KVM_REG_MIPS_CP0_PAGEMASK, |
| 1179 | KVM_REG_MIPS_CP0_PAGEGRAIN, |
| 1180 | KVM_REG_MIPS_CP0_WIRED, |
| 1181 | KVM_REG_MIPS_CP0_HWRENA, |
| 1182 | KVM_REG_MIPS_CP0_BADVADDR, |
| 1183 | KVM_REG_MIPS_CP0_COUNT, |
| 1184 | KVM_REG_MIPS_CP0_ENTRYHI, |
| 1185 | KVM_REG_MIPS_CP0_COMPARE, |
| 1186 | KVM_REG_MIPS_CP0_STATUS, |
| 1187 | KVM_REG_MIPS_CP0_INTCTL, |
| 1188 | KVM_REG_MIPS_CP0_CAUSE, |
| 1189 | KVM_REG_MIPS_CP0_EPC, |
| 1190 | KVM_REG_MIPS_CP0_PRID, |
| 1191 | KVM_REG_MIPS_CP0_EBASE, |
| 1192 | KVM_REG_MIPS_CP0_CONFIG, |
| 1193 | KVM_REG_MIPS_CP0_CONFIG1, |
| 1194 | KVM_REG_MIPS_CP0_CONFIG2, |
| 1195 | KVM_REG_MIPS_CP0_CONFIG3, |
| 1196 | KVM_REG_MIPS_CP0_CONFIG4, |
| 1197 | KVM_REG_MIPS_CP0_CONFIG5, |
| 1198 | #ifdef CONFIG_64BIT |
| 1199 | KVM_REG_MIPS_CP0_XCONTEXT, |
| 1200 | #endif |
| 1201 | KVM_REG_MIPS_CP0_ERROREPC, |
| 1202 | |
| 1203 | KVM_REG_MIPS_COUNT_CTL, |
| 1204 | KVM_REG_MIPS_COUNT_RESUME, |
| 1205 | KVM_REG_MIPS_COUNT_HZ, |
| 1206 | }; |
| 1207 | |
| 1208 | static u64 kvm_vz_get_one_regs_kscratch[] = { |
| 1209 | KVM_REG_MIPS_CP0_KSCRATCH1, |
| 1210 | KVM_REG_MIPS_CP0_KSCRATCH2, |
| 1211 | KVM_REG_MIPS_CP0_KSCRATCH3, |
| 1212 | KVM_REG_MIPS_CP0_KSCRATCH4, |
| 1213 | KVM_REG_MIPS_CP0_KSCRATCH5, |
| 1214 | KVM_REG_MIPS_CP0_KSCRATCH6, |
| 1215 | }; |
| 1216 | |
| 1217 | static unsigned long kvm_vz_num_regs(struct kvm_vcpu *vcpu) |
| 1218 | { |
| 1219 | unsigned long ret; |
| 1220 | |
| 1221 | ret = ARRAY_SIZE(kvm_vz_get_one_regs); |
| 1222 | if (cpu_guest_has_userlocal) |
| 1223 | ++ret; |
| 1224 | ret += __arch_hweight8(cpu_data[0].guest.kscratch_mask); |
| 1225 | |
| 1226 | return ret; |
| 1227 | } |
| 1228 | |
| 1229 | static int kvm_vz_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices) |
| 1230 | { |
| 1231 | u64 index; |
| 1232 | unsigned int i; |
| 1233 | |
| 1234 | if (copy_to_user(indices, kvm_vz_get_one_regs, |
| 1235 | sizeof(kvm_vz_get_one_regs))) |
| 1236 | return -EFAULT; |
| 1237 | indices += ARRAY_SIZE(kvm_vz_get_one_regs); |
| 1238 | |
| 1239 | if (cpu_guest_has_userlocal) { |
| 1240 | index = KVM_REG_MIPS_CP0_USERLOCAL; |
| 1241 | if (copy_to_user(indices, &index, sizeof(index))) |
| 1242 | return -EFAULT; |
| 1243 | ++indices; |
| 1244 | } |
| 1245 | for (i = 0; i < 6; ++i) { |
| 1246 | if (!cpu_guest_has_kscr(i + 2)) |
| 1247 | continue; |
| 1248 | |
| 1249 | if (copy_to_user(indices, &kvm_vz_get_one_regs_kscratch[i], |
| 1250 | sizeof(kvm_vz_get_one_regs_kscratch[i]))) |
| 1251 | return -EFAULT; |
| 1252 | ++indices; |
| 1253 | } |
| 1254 | |
| 1255 | return 0; |
| 1256 | } |
| 1257 | |
| 1258 | static inline s64 entrylo_kvm_to_user(unsigned long v) |
| 1259 | { |
| 1260 | s64 mask, ret = v; |
| 1261 | |
| 1262 | if (BITS_PER_LONG == 32) { |
| 1263 | /* |
| 1264 | * KVM API exposes 64-bit version of the register, so move the |
| 1265 | * RI/XI bits up into place. |
| 1266 | */ |
| 1267 | mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI; |
| 1268 | ret &= ~mask; |
| 1269 | ret |= ((s64)v & mask) << 32; |
| 1270 | } |
| 1271 | return ret; |
| 1272 | } |
| 1273 | |
| 1274 | static inline unsigned long entrylo_user_to_kvm(s64 v) |
| 1275 | { |
| 1276 | unsigned long mask, ret = v; |
| 1277 | |
| 1278 | if (BITS_PER_LONG == 32) { |
| 1279 | /* |
| 1280 | * KVM API exposes 64-bit versiono of the register, so move the |
| 1281 | * RI/XI bits down into place. |
| 1282 | */ |
| 1283 | mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI; |
| 1284 | ret &= ~mask; |
| 1285 | ret |= (v >> 32) & mask; |
| 1286 | } |
| 1287 | return ret; |
| 1288 | } |
| 1289 | |
| 1290 | static int kvm_vz_get_one_reg(struct kvm_vcpu *vcpu, |
| 1291 | const struct kvm_one_reg *reg, |
| 1292 | s64 *v) |
| 1293 | { |
| 1294 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 1295 | unsigned int idx; |
| 1296 | |
| 1297 | switch (reg->id) { |
| 1298 | case KVM_REG_MIPS_CP0_INDEX: |
| 1299 | *v = (long)read_gc0_index(); |
| 1300 | break; |
| 1301 | case KVM_REG_MIPS_CP0_ENTRYLO0: |
| 1302 | *v = entrylo_kvm_to_user(read_gc0_entrylo0()); |
| 1303 | break; |
| 1304 | case KVM_REG_MIPS_CP0_ENTRYLO1: |
| 1305 | *v = entrylo_kvm_to_user(read_gc0_entrylo1()); |
| 1306 | break; |
| 1307 | case KVM_REG_MIPS_CP0_CONTEXT: |
| 1308 | *v = (long)read_gc0_context(); |
| 1309 | break; |
| 1310 | case KVM_REG_MIPS_CP0_USERLOCAL: |
| 1311 | if (!cpu_guest_has_userlocal) |
| 1312 | return -EINVAL; |
| 1313 | *v = read_gc0_userlocal(); |
| 1314 | break; |
| 1315 | case KVM_REG_MIPS_CP0_PAGEMASK: |
| 1316 | *v = (long)read_gc0_pagemask(); |
| 1317 | break; |
| 1318 | case KVM_REG_MIPS_CP0_PAGEGRAIN: |
| 1319 | *v = (long)read_gc0_pagegrain(); |
| 1320 | break; |
| 1321 | case KVM_REG_MIPS_CP0_WIRED: |
| 1322 | *v = (long)read_gc0_wired(); |
| 1323 | break; |
| 1324 | case KVM_REG_MIPS_CP0_HWRENA: |
| 1325 | *v = (long)read_gc0_hwrena(); |
| 1326 | break; |
| 1327 | case KVM_REG_MIPS_CP0_BADVADDR: |
| 1328 | *v = (long)read_gc0_badvaddr(); |
| 1329 | break; |
| 1330 | case KVM_REG_MIPS_CP0_COUNT: |
| 1331 | *v = kvm_mips_read_count(vcpu); |
| 1332 | break; |
| 1333 | case KVM_REG_MIPS_CP0_ENTRYHI: |
| 1334 | *v = (long)read_gc0_entryhi(); |
| 1335 | break; |
| 1336 | case KVM_REG_MIPS_CP0_COMPARE: |
| 1337 | *v = (long)read_gc0_compare(); |
| 1338 | break; |
| 1339 | case KVM_REG_MIPS_CP0_STATUS: |
| 1340 | *v = (long)read_gc0_status(); |
| 1341 | break; |
| 1342 | case KVM_REG_MIPS_CP0_INTCTL: |
| 1343 | *v = read_gc0_intctl(); |
| 1344 | break; |
| 1345 | case KVM_REG_MIPS_CP0_CAUSE: |
| 1346 | *v = (long)read_gc0_cause(); |
| 1347 | break; |
| 1348 | case KVM_REG_MIPS_CP0_EPC: |
| 1349 | *v = (long)read_gc0_epc(); |
| 1350 | break; |
| 1351 | case KVM_REG_MIPS_CP0_PRID: |
| 1352 | *v = (long)kvm_read_c0_guest_prid(cop0); |
| 1353 | break; |
| 1354 | case KVM_REG_MIPS_CP0_EBASE: |
| 1355 | *v = kvm_vz_read_gc0_ebase(); |
| 1356 | break; |
| 1357 | case KVM_REG_MIPS_CP0_CONFIG: |
| 1358 | *v = read_gc0_config(); |
| 1359 | break; |
| 1360 | case KVM_REG_MIPS_CP0_CONFIG1: |
| 1361 | if (!cpu_guest_has_conf1) |
| 1362 | return -EINVAL; |
| 1363 | *v = read_gc0_config1(); |
| 1364 | break; |
| 1365 | case KVM_REG_MIPS_CP0_CONFIG2: |
| 1366 | if (!cpu_guest_has_conf2) |
| 1367 | return -EINVAL; |
| 1368 | *v = read_gc0_config2(); |
| 1369 | break; |
| 1370 | case KVM_REG_MIPS_CP0_CONFIG3: |
| 1371 | if (!cpu_guest_has_conf3) |
| 1372 | return -EINVAL; |
| 1373 | *v = read_gc0_config3(); |
| 1374 | break; |
| 1375 | case KVM_REG_MIPS_CP0_CONFIG4: |
| 1376 | if (!cpu_guest_has_conf4) |
| 1377 | return -EINVAL; |
| 1378 | *v = read_gc0_config4(); |
| 1379 | break; |
| 1380 | case KVM_REG_MIPS_CP0_CONFIG5: |
| 1381 | if (!cpu_guest_has_conf5) |
| 1382 | return -EINVAL; |
| 1383 | *v = read_gc0_config5(); |
| 1384 | break; |
| 1385 | #ifdef CONFIG_64BIT |
| 1386 | case KVM_REG_MIPS_CP0_XCONTEXT: |
| 1387 | *v = read_gc0_xcontext(); |
| 1388 | break; |
| 1389 | #endif |
| 1390 | case KVM_REG_MIPS_CP0_ERROREPC: |
| 1391 | *v = (long)read_gc0_errorepc(); |
| 1392 | break; |
| 1393 | case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6: |
| 1394 | idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2; |
| 1395 | if (!cpu_guest_has_kscr(idx)) |
| 1396 | return -EINVAL; |
| 1397 | switch (idx) { |
| 1398 | case 2: |
| 1399 | *v = (long)read_gc0_kscratch1(); |
| 1400 | break; |
| 1401 | case 3: |
| 1402 | *v = (long)read_gc0_kscratch2(); |
| 1403 | break; |
| 1404 | case 4: |
| 1405 | *v = (long)read_gc0_kscratch3(); |
| 1406 | break; |
| 1407 | case 5: |
| 1408 | *v = (long)read_gc0_kscratch4(); |
| 1409 | break; |
| 1410 | case 6: |
| 1411 | *v = (long)read_gc0_kscratch5(); |
| 1412 | break; |
| 1413 | case 7: |
| 1414 | *v = (long)read_gc0_kscratch6(); |
| 1415 | break; |
| 1416 | } |
| 1417 | break; |
| 1418 | case KVM_REG_MIPS_COUNT_CTL: |
| 1419 | *v = vcpu->arch.count_ctl; |
| 1420 | break; |
| 1421 | case KVM_REG_MIPS_COUNT_RESUME: |
| 1422 | *v = ktime_to_ns(vcpu->arch.count_resume); |
| 1423 | break; |
| 1424 | case KVM_REG_MIPS_COUNT_HZ: |
| 1425 | *v = vcpu->arch.count_hz; |
| 1426 | break; |
| 1427 | default: |
| 1428 | return -EINVAL; |
| 1429 | } |
| 1430 | return 0; |
| 1431 | } |
| 1432 | |
| 1433 | static int kvm_vz_set_one_reg(struct kvm_vcpu *vcpu, |
| 1434 | const struct kvm_one_reg *reg, |
| 1435 | s64 v) |
| 1436 | { |
| 1437 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 1438 | unsigned int idx; |
| 1439 | int ret = 0; |
| 1440 | unsigned int cur, change; |
| 1441 | |
| 1442 | switch (reg->id) { |
| 1443 | case KVM_REG_MIPS_CP0_INDEX: |
| 1444 | write_gc0_index(v); |
| 1445 | break; |
| 1446 | case KVM_REG_MIPS_CP0_ENTRYLO0: |
| 1447 | write_gc0_entrylo0(entrylo_user_to_kvm(v)); |
| 1448 | break; |
| 1449 | case KVM_REG_MIPS_CP0_ENTRYLO1: |
| 1450 | write_gc0_entrylo1(entrylo_user_to_kvm(v)); |
| 1451 | break; |
| 1452 | case KVM_REG_MIPS_CP0_CONTEXT: |
| 1453 | write_gc0_context(v); |
| 1454 | break; |
| 1455 | case KVM_REG_MIPS_CP0_USERLOCAL: |
| 1456 | if (!cpu_guest_has_userlocal) |
| 1457 | return -EINVAL; |
| 1458 | write_gc0_userlocal(v); |
| 1459 | break; |
| 1460 | case KVM_REG_MIPS_CP0_PAGEMASK: |
| 1461 | write_gc0_pagemask(v); |
| 1462 | break; |
| 1463 | case KVM_REG_MIPS_CP0_PAGEGRAIN: |
| 1464 | write_gc0_pagegrain(v); |
| 1465 | break; |
| 1466 | case KVM_REG_MIPS_CP0_WIRED: |
| 1467 | change_gc0_wired(MIPSR6_WIRED_WIRED, v); |
| 1468 | break; |
| 1469 | case KVM_REG_MIPS_CP0_HWRENA: |
| 1470 | write_gc0_hwrena(v); |
| 1471 | break; |
| 1472 | case KVM_REG_MIPS_CP0_BADVADDR: |
| 1473 | write_gc0_badvaddr(v); |
| 1474 | break; |
| 1475 | case KVM_REG_MIPS_CP0_COUNT: |
| 1476 | kvm_mips_write_count(vcpu, v); |
| 1477 | break; |
| 1478 | case KVM_REG_MIPS_CP0_ENTRYHI: |
| 1479 | write_gc0_entryhi(v); |
| 1480 | break; |
| 1481 | case KVM_REG_MIPS_CP0_COMPARE: |
| 1482 | kvm_mips_write_compare(vcpu, v, false); |
| 1483 | break; |
| 1484 | case KVM_REG_MIPS_CP0_STATUS: |
| 1485 | write_gc0_status(v); |
| 1486 | break; |
| 1487 | case KVM_REG_MIPS_CP0_INTCTL: |
| 1488 | write_gc0_intctl(v); |
| 1489 | break; |
| 1490 | case KVM_REG_MIPS_CP0_CAUSE: |
| 1491 | /* |
| 1492 | * If the timer is stopped or started (DC bit) it must look |
| 1493 | * atomic with changes to the timer interrupt pending bit (TI). |
| 1494 | * A timer interrupt should not happen in between. |
| 1495 | */ |
| 1496 | if ((read_gc0_cause() ^ v) & CAUSEF_DC) { |
| 1497 | if (v & CAUSEF_DC) { |
| 1498 | /* disable timer first */ |
| 1499 | kvm_mips_count_disable_cause(vcpu); |
| 1500 | change_gc0_cause((u32)~CAUSEF_DC, v); |
| 1501 | } else { |
| 1502 | /* enable timer last */ |
| 1503 | change_gc0_cause((u32)~CAUSEF_DC, v); |
| 1504 | kvm_mips_count_enable_cause(vcpu); |
| 1505 | } |
| 1506 | } else { |
| 1507 | write_gc0_cause(v); |
| 1508 | } |
| 1509 | break; |
| 1510 | case KVM_REG_MIPS_CP0_EPC: |
| 1511 | write_gc0_epc(v); |
| 1512 | break; |
| 1513 | case KVM_REG_MIPS_CP0_PRID: |
| 1514 | kvm_write_c0_guest_prid(cop0, v); |
| 1515 | break; |
| 1516 | case KVM_REG_MIPS_CP0_EBASE: |
| 1517 | kvm_vz_write_gc0_ebase(v); |
| 1518 | break; |
| 1519 | case KVM_REG_MIPS_CP0_CONFIG: |
| 1520 | cur = read_gc0_config(); |
| 1521 | change = (cur ^ v) & kvm_vz_config_user_wrmask(vcpu); |
| 1522 | if (change) { |
| 1523 | v = cur ^ change; |
| 1524 | write_gc0_config(v); |
| 1525 | } |
| 1526 | break; |
| 1527 | case KVM_REG_MIPS_CP0_CONFIG1: |
| 1528 | if (!cpu_guest_has_conf1) |
| 1529 | break; |
| 1530 | cur = read_gc0_config1(); |
| 1531 | change = (cur ^ v) & kvm_vz_config1_user_wrmask(vcpu); |
| 1532 | if (change) { |
| 1533 | v = cur ^ change; |
| 1534 | write_gc0_config1(v); |
| 1535 | } |
| 1536 | break; |
| 1537 | case KVM_REG_MIPS_CP0_CONFIG2: |
| 1538 | if (!cpu_guest_has_conf2) |
| 1539 | break; |
| 1540 | cur = read_gc0_config2(); |
| 1541 | change = (cur ^ v) & kvm_vz_config2_user_wrmask(vcpu); |
| 1542 | if (change) { |
| 1543 | v = cur ^ change; |
| 1544 | write_gc0_config2(v); |
| 1545 | } |
| 1546 | break; |
| 1547 | case KVM_REG_MIPS_CP0_CONFIG3: |
| 1548 | if (!cpu_guest_has_conf3) |
| 1549 | break; |
| 1550 | cur = read_gc0_config3(); |
| 1551 | change = (cur ^ v) & kvm_vz_config3_user_wrmask(vcpu); |
| 1552 | if (change) { |
| 1553 | v = cur ^ change; |
| 1554 | write_gc0_config3(v); |
| 1555 | } |
| 1556 | break; |
| 1557 | case KVM_REG_MIPS_CP0_CONFIG4: |
| 1558 | if (!cpu_guest_has_conf4) |
| 1559 | break; |
| 1560 | cur = read_gc0_config4(); |
| 1561 | change = (cur ^ v) & kvm_vz_config4_user_wrmask(vcpu); |
| 1562 | if (change) { |
| 1563 | v = cur ^ change; |
| 1564 | write_gc0_config4(v); |
| 1565 | } |
| 1566 | break; |
| 1567 | case KVM_REG_MIPS_CP0_CONFIG5: |
| 1568 | if (!cpu_guest_has_conf5) |
| 1569 | break; |
| 1570 | cur = read_gc0_config5(); |
| 1571 | change = (cur ^ v) & kvm_vz_config5_user_wrmask(vcpu); |
| 1572 | if (change) { |
| 1573 | v = cur ^ change; |
| 1574 | write_gc0_config5(v); |
| 1575 | } |
| 1576 | break; |
| 1577 | #ifdef CONFIG_64BIT |
| 1578 | case KVM_REG_MIPS_CP0_XCONTEXT: |
| 1579 | write_gc0_xcontext(v); |
| 1580 | break; |
| 1581 | #endif |
| 1582 | case KVM_REG_MIPS_CP0_ERROREPC: |
| 1583 | write_gc0_errorepc(v); |
| 1584 | break; |
| 1585 | case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6: |
| 1586 | idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2; |
| 1587 | if (!cpu_guest_has_kscr(idx)) |
| 1588 | return -EINVAL; |
| 1589 | switch (idx) { |
| 1590 | case 2: |
| 1591 | write_gc0_kscratch1(v); |
| 1592 | break; |
| 1593 | case 3: |
| 1594 | write_gc0_kscratch2(v); |
| 1595 | break; |
| 1596 | case 4: |
| 1597 | write_gc0_kscratch3(v); |
| 1598 | break; |
| 1599 | case 5: |
| 1600 | write_gc0_kscratch4(v); |
| 1601 | break; |
| 1602 | case 6: |
| 1603 | write_gc0_kscratch5(v); |
| 1604 | break; |
| 1605 | case 7: |
| 1606 | write_gc0_kscratch6(v); |
| 1607 | break; |
| 1608 | } |
| 1609 | break; |
| 1610 | case KVM_REG_MIPS_COUNT_CTL: |
| 1611 | ret = kvm_mips_set_count_ctl(vcpu, v); |
| 1612 | break; |
| 1613 | case KVM_REG_MIPS_COUNT_RESUME: |
| 1614 | ret = kvm_mips_set_count_resume(vcpu, v); |
| 1615 | break; |
| 1616 | case KVM_REG_MIPS_COUNT_HZ: |
| 1617 | ret = kvm_mips_set_count_hz(vcpu, v); |
| 1618 | break; |
| 1619 | default: |
| 1620 | return -EINVAL; |
| 1621 | } |
| 1622 | return ret; |
| 1623 | } |
| 1624 | |
| 1625 | #define guestid_cache(cpu) (cpu_data[cpu].guestid_cache) |
| 1626 | static void kvm_vz_get_new_guestid(unsigned long cpu, struct kvm_vcpu *vcpu) |
| 1627 | { |
| 1628 | unsigned long guestid = guestid_cache(cpu); |
| 1629 | |
| 1630 | if (!(++guestid & GUESTID_MASK)) { |
| 1631 | if (cpu_has_vtag_icache) |
| 1632 | flush_icache_all(); |
| 1633 | |
| 1634 | if (!guestid) /* fix version if needed */ |
| 1635 | guestid = GUESTID_FIRST_VERSION; |
| 1636 | |
| 1637 | ++guestid; /* guestid 0 reserved for root */ |
| 1638 | |
| 1639 | /* start new guestid cycle */ |
| 1640 | kvm_vz_local_flush_roottlb_all_guests(); |
| 1641 | kvm_vz_local_flush_guesttlb_all(); |
| 1642 | } |
| 1643 | |
| 1644 | guestid_cache(cpu) = guestid; |
| 1645 | } |
| 1646 | |
| 1647 | /* Returns 1 if the guest TLB may be clobbered */ |
| 1648 | static int kvm_vz_check_requests(struct kvm_vcpu *vcpu, int cpu) |
| 1649 | { |
| 1650 | int ret = 0; |
| 1651 | int i; |
| 1652 | |
| 1653 | if (!vcpu->requests) |
| 1654 | return 0; |
| 1655 | |
| 1656 | if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { |
| 1657 | if (cpu_has_guestid) { |
| 1658 | /* Drop all GuestIDs for this VCPU */ |
| 1659 | for_each_possible_cpu(i) |
| 1660 | vcpu->arch.vzguestid[i] = 0; |
| 1661 | /* This will clobber guest TLB contents too */ |
| 1662 | ret = 1; |
| 1663 | } |
| 1664 | /* |
| 1665 | * For Root ASID Dealias (RAD) we don't do anything here, but we |
| 1666 | * still need the request to ensure we recheck asid_flush_mask. |
| 1667 | * We can still return 0 as only the root TLB will be affected |
| 1668 | * by a root ASID flush. |
| 1669 | */ |
| 1670 | } |
| 1671 | |
| 1672 | return ret; |
| 1673 | } |
| 1674 | |
| 1675 | static void kvm_vz_vcpu_save_wired(struct kvm_vcpu *vcpu) |
| 1676 | { |
| 1677 | unsigned int wired = read_gc0_wired(); |
| 1678 | struct kvm_mips_tlb *tlbs; |
| 1679 | int i; |
| 1680 | |
| 1681 | /* Expand the wired TLB array if necessary */ |
| 1682 | wired &= MIPSR6_WIRED_WIRED; |
| 1683 | if (wired > vcpu->arch.wired_tlb_limit) { |
| 1684 | tlbs = krealloc(vcpu->arch.wired_tlb, wired * |
| 1685 | sizeof(*vcpu->arch.wired_tlb), GFP_ATOMIC); |
| 1686 | if (WARN_ON(!tlbs)) { |
| 1687 | /* Save whatever we can */ |
| 1688 | wired = vcpu->arch.wired_tlb_limit; |
| 1689 | } else { |
| 1690 | vcpu->arch.wired_tlb = tlbs; |
| 1691 | vcpu->arch.wired_tlb_limit = wired; |
| 1692 | } |
| 1693 | } |
| 1694 | |
| 1695 | if (wired) |
| 1696 | /* Save wired entries from the guest TLB */ |
| 1697 | kvm_vz_save_guesttlb(vcpu->arch.wired_tlb, 0, wired); |
| 1698 | /* Invalidate any dropped entries since last time */ |
| 1699 | for (i = wired; i < vcpu->arch.wired_tlb_used; ++i) { |
| 1700 | vcpu->arch.wired_tlb[i].tlb_hi = UNIQUE_GUEST_ENTRYHI(i); |
| 1701 | vcpu->arch.wired_tlb[i].tlb_lo[0] = 0; |
| 1702 | vcpu->arch.wired_tlb[i].tlb_lo[1] = 0; |
| 1703 | vcpu->arch.wired_tlb[i].tlb_mask = 0; |
| 1704 | } |
| 1705 | vcpu->arch.wired_tlb_used = wired; |
| 1706 | } |
| 1707 | |
| 1708 | static void kvm_vz_vcpu_load_wired(struct kvm_vcpu *vcpu) |
| 1709 | { |
| 1710 | /* Load wired entries into the guest TLB */ |
| 1711 | if (vcpu->arch.wired_tlb) |
| 1712 | kvm_vz_load_guesttlb(vcpu->arch.wired_tlb, 0, |
| 1713 | vcpu->arch.wired_tlb_used); |
| 1714 | } |
| 1715 | |
| 1716 | static void kvm_vz_vcpu_load_tlb(struct kvm_vcpu *vcpu, int cpu) |
| 1717 | { |
| 1718 | struct kvm *kvm = vcpu->kvm; |
| 1719 | struct mm_struct *gpa_mm = &kvm->arch.gpa_mm; |
| 1720 | bool migrated; |
| 1721 | |
| 1722 | /* |
| 1723 | * Are we entering guest context on a different CPU to last time? |
| 1724 | * If so, the VCPU's guest TLB state on this CPU may be stale. |
| 1725 | */ |
| 1726 | migrated = (vcpu->arch.last_exec_cpu != cpu); |
| 1727 | vcpu->arch.last_exec_cpu = cpu; |
| 1728 | |
| 1729 | /* |
| 1730 | * A vcpu's GuestID is set in GuestCtl1.ID when the vcpu is loaded and |
| 1731 | * remains set until another vcpu is loaded in. As a rule GuestRID |
| 1732 | * remains zeroed when in root context unless the kernel is busy |
| 1733 | * manipulating guest tlb entries. |
| 1734 | */ |
| 1735 | if (cpu_has_guestid) { |
| 1736 | /* |
| 1737 | * Check if our GuestID is of an older version and thus invalid. |
| 1738 | * |
| 1739 | * We also discard the stored GuestID if we've executed on |
| 1740 | * another CPU, as the guest mappings may have changed without |
| 1741 | * hypervisor knowledge. |
| 1742 | */ |
| 1743 | if (migrated || |
| 1744 | (vcpu->arch.vzguestid[cpu] ^ guestid_cache(cpu)) & |
| 1745 | GUESTID_VERSION_MASK) { |
| 1746 | kvm_vz_get_new_guestid(cpu, vcpu); |
| 1747 | vcpu->arch.vzguestid[cpu] = guestid_cache(cpu); |
| 1748 | trace_kvm_guestid_change(vcpu, |
| 1749 | vcpu->arch.vzguestid[cpu]); |
| 1750 | } |
| 1751 | |
| 1752 | /* Restore GuestID */ |
| 1753 | change_c0_guestctl1(GUESTID_MASK, vcpu->arch.vzguestid[cpu]); |
| 1754 | } else { |
| 1755 | /* |
| 1756 | * The Guest TLB only stores a single guest's TLB state, so |
| 1757 | * flush it if another VCPU has executed on this CPU. |
| 1758 | * |
| 1759 | * We also flush if we've executed on another CPU, as the guest |
| 1760 | * mappings may have changed without hypervisor knowledge. |
| 1761 | */ |
| 1762 | if (migrated || last_exec_vcpu[cpu] != vcpu) |
| 1763 | kvm_vz_local_flush_guesttlb_all(); |
| 1764 | last_exec_vcpu[cpu] = vcpu; |
| 1765 | |
| 1766 | /* |
| 1767 | * Root ASID dealiases guest GPA mappings in the root TLB. |
| 1768 | * Allocate new root ASID if needed. |
| 1769 | */ |
| 1770 | if (cpumask_test_and_clear_cpu(cpu, &kvm->arch.asid_flush_mask) |
| 1771 | || (cpu_context(cpu, gpa_mm) ^ asid_cache(cpu)) & |
| 1772 | asid_version_mask(cpu)) |
| 1773 | get_new_mmu_context(gpa_mm, cpu); |
| 1774 | } |
| 1775 | } |
| 1776 | |
| 1777 | static int kvm_vz_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| 1778 | { |
| 1779 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 1780 | bool migrated, all; |
| 1781 | |
| 1782 | /* |
| 1783 | * Have we migrated to a different CPU? |
| 1784 | * If so, any old guest TLB state may be stale. |
| 1785 | */ |
| 1786 | migrated = (vcpu->arch.last_sched_cpu != cpu); |
| 1787 | |
| 1788 | /* |
| 1789 | * Was this the last VCPU to run on this CPU? |
| 1790 | * If not, any old guest state from this VCPU will have been clobbered. |
| 1791 | */ |
| 1792 | all = migrated || (last_vcpu[cpu] != vcpu); |
| 1793 | last_vcpu[cpu] = vcpu; |
| 1794 | |
| 1795 | /* |
| 1796 | * Restore CP0_Wired unconditionally as we clear it after use, and |
| 1797 | * restore wired guest TLB entries (while in guest context). |
| 1798 | */ |
| 1799 | kvm_restore_gc0_wired(cop0); |
| 1800 | if (current->flags & PF_VCPU) { |
| 1801 | tlbw_use_hazard(); |
| 1802 | kvm_vz_vcpu_load_tlb(vcpu, cpu); |
| 1803 | kvm_vz_vcpu_load_wired(vcpu); |
| 1804 | } |
| 1805 | |
| 1806 | /* |
| 1807 | * Restore timer state regardless, as e.g. Cause.TI can change over time |
| 1808 | * if left unmaintained. |
| 1809 | */ |
| 1810 | kvm_vz_restore_timer(vcpu); |
| 1811 | |
| 1812 | /* Don't bother restoring registers multiple times unless necessary */ |
| 1813 | if (!all) |
| 1814 | return 0; |
| 1815 | |
| 1816 | /* |
| 1817 | * Restore config registers first, as some implementations restrict |
| 1818 | * writes to other registers when the corresponding feature bits aren't |
| 1819 | * set. For example Status.CU1 cannot be set unless Config1.FP is set. |
| 1820 | */ |
| 1821 | kvm_restore_gc0_config(cop0); |
| 1822 | if (cpu_guest_has_conf1) |
| 1823 | kvm_restore_gc0_config1(cop0); |
| 1824 | if (cpu_guest_has_conf2) |
| 1825 | kvm_restore_gc0_config2(cop0); |
| 1826 | if (cpu_guest_has_conf3) |
| 1827 | kvm_restore_gc0_config3(cop0); |
| 1828 | if (cpu_guest_has_conf4) |
| 1829 | kvm_restore_gc0_config4(cop0); |
| 1830 | if (cpu_guest_has_conf5) |
| 1831 | kvm_restore_gc0_config5(cop0); |
| 1832 | if (cpu_guest_has_conf6) |
| 1833 | kvm_restore_gc0_config6(cop0); |
| 1834 | if (cpu_guest_has_conf7) |
| 1835 | kvm_restore_gc0_config7(cop0); |
| 1836 | |
| 1837 | kvm_restore_gc0_index(cop0); |
| 1838 | kvm_restore_gc0_entrylo0(cop0); |
| 1839 | kvm_restore_gc0_entrylo1(cop0); |
| 1840 | kvm_restore_gc0_context(cop0); |
| 1841 | #ifdef CONFIG_64BIT |
| 1842 | kvm_restore_gc0_xcontext(cop0); |
| 1843 | #endif |
| 1844 | kvm_restore_gc0_pagemask(cop0); |
| 1845 | kvm_restore_gc0_pagegrain(cop0); |
| 1846 | kvm_restore_gc0_hwrena(cop0); |
| 1847 | kvm_restore_gc0_badvaddr(cop0); |
| 1848 | kvm_restore_gc0_entryhi(cop0); |
| 1849 | kvm_restore_gc0_status(cop0); |
| 1850 | kvm_restore_gc0_intctl(cop0); |
| 1851 | kvm_restore_gc0_epc(cop0); |
| 1852 | kvm_vz_write_gc0_ebase(kvm_read_sw_gc0_ebase(cop0)); |
| 1853 | if (cpu_guest_has_userlocal) |
| 1854 | kvm_restore_gc0_userlocal(cop0); |
| 1855 | |
| 1856 | kvm_restore_gc0_errorepc(cop0); |
| 1857 | |
| 1858 | /* restore KScratch registers if enabled in guest */ |
| 1859 | if (cpu_guest_has_conf4) { |
| 1860 | if (cpu_guest_has_kscr(2)) |
| 1861 | kvm_restore_gc0_kscratch1(cop0); |
| 1862 | if (cpu_guest_has_kscr(3)) |
| 1863 | kvm_restore_gc0_kscratch2(cop0); |
| 1864 | if (cpu_guest_has_kscr(4)) |
| 1865 | kvm_restore_gc0_kscratch3(cop0); |
| 1866 | if (cpu_guest_has_kscr(5)) |
| 1867 | kvm_restore_gc0_kscratch4(cop0); |
| 1868 | if (cpu_guest_has_kscr(6)) |
| 1869 | kvm_restore_gc0_kscratch5(cop0); |
| 1870 | if (cpu_guest_has_kscr(7)) |
| 1871 | kvm_restore_gc0_kscratch6(cop0); |
| 1872 | } |
| 1873 | |
| 1874 | /* restore Root.GuestCtl2 from unused Guest guestctl2 register */ |
| 1875 | if (cpu_has_guestctl2) |
| 1876 | write_c0_guestctl2( |
| 1877 | cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL]); |
| 1878 | |
| 1879 | return 0; |
| 1880 | } |
| 1881 | |
| 1882 | static int kvm_vz_vcpu_put(struct kvm_vcpu *vcpu, int cpu) |
| 1883 | { |
| 1884 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 1885 | |
| 1886 | if (current->flags & PF_VCPU) |
| 1887 | kvm_vz_vcpu_save_wired(vcpu); |
| 1888 | |
| 1889 | kvm_lose_fpu(vcpu); |
| 1890 | |
| 1891 | kvm_save_gc0_index(cop0); |
| 1892 | kvm_save_gc0_entrylo0(cop0); |
| 1893 | kvm_save_gc0_entrylo1(cop0); |
| 1894 | kvm_save_gc0_context(cop0); |
| 1895 | #ifdef CONFIG_64BIT |
| 1896 | kvm_save_gc0_xcontext(cop0); |
| 1897 | #endif |
| 1898 | kvm_save_gc0_pagemask(cop0); |
| 1899 | kvm_save_gc0_pagegrain(cop0); |
| 1900 | kvm_save_gc0_wired(cop0); |
| 1901 | /* allow wired TLB entries to be overwritten */ |
| 1902 | clear_gc0_wired(MIPSR6_WIRED_WIRED); |
| 1903 | kvm_save_gc0_hwrena(cop0); |
| 1904 | kvm_save_gc0_badvaddr(cop0); |
| 1905 | kvm_save_gc0_entryhi(cop0); |
| 1906 | kvm_save_gc0_status(cop0); |
| 1907 | kvm_save_gc0_intctl(cop0); |
| 1908 | kvm_save_gc0_epc(cop0); |
| 1909 | kvm_write_sw_gc0_ebase(cop0, kvm_vz_read_gc0_ebase()); |
| 1910 | if (cpu_guest_has_userlocal) |
| 1911 | kvm_save_gc0_userlocal(cop0); |
| 1912 | |
| 1913 | /* only save implemented config registers */ |
| 1914 | kvm_save_gc0_config(cop0); |
| 1915 | if (cpu_guest_has_conf1) |
| 1916 | kvm_save_gc0_config1(cop0); |
| 1917 | if (cpu_guest_has_conf2) |
| 1918 | kvm_save_gc0_config2(cop0); |
| 1919 | if (cpu_guest_has_conf3) |
| 1920 | kvm_save_gc0_config3(cop0); |
| 1921 | if (cpu_guest_has_conf4) |
| 1922 | kvm_save_gc0_config4(cop0); |
| 1923 | if (cpu_guest_has_conf5) |
| 1924 | kvm_save_gc0_config5(cop0); |
| 1925 | if (cpu_guest_has_conf6) |
| 1926 | kvm_save_gc0_config6(cop0); |
| 1927 | if (cpu_guest_has_conf7) |
| 1928 | kvm_save_gc0_config7(cop0); |
| 1929 | |
| 1930 | kvm_save_gc0_errorepc(cop0); |
| 1931 | |
| 1932 | /* save KScratch registers if enabled in guest */ |
| 1933 | if (cpu_guest_has_conf4) { |
| 1934 | if (cpu_guest_has_kscr(2)) |
| 1935 | kvm_save_gc0_kscratch1(cop0); |
| 1936 | if (cpu_guest_has_kscr(3)) |
| 1937 | kvm_save_gc0_kscratch2(cop0); |
| 1938 | if (cpu_guest_has_kscr(4)) |
| 1939 | kvm_save_gc0_kscratch3(cop0); |
| 1940 | if (cpu_guest_has_kscr(5)) |
| 1941 | kvm_save_gc0_kscratch4(cop0); |
| 1942 | if (cpu_guest_has_kscr(6)) |
| 1943 | kvm_save_gc0_kscratch5(cop0); |
| 1944 | if (cpu_guest_has_kscr(7)) |
| 1945 | kvm_save_gc0_kscratch6(cop0); |
| 1946 | } |
| 1947 | |
| 1948 | kvm_vz_save_timer(vcpu); |
| 1949 | |
| 1950 | /* save Root.GuestCtl2 in unused Guest guestctl2 register */ |
| 1951 | if (cpu_has_guestctl2) |
| 1952 | cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] = |
| 1953 | read_c0_guestctl2(); |
| 1954 | |
| 1955 | return 0; |
| 1956 | } |
| 1957 | |
| 1958 | /** |
| 1959 | * kvm_vz_resize_guest_vtlb() - Attempt to resize guest VTLB. |
| 1960 | * @size: Number of guest VTLB entries (0 < @size <= root VTLB entries). |
| 1961 | * |
| 1962 | * Attempt to resize the guest VTLB by writing guest Config registers. This is |
| 1963 | * necessary for cores with a shared root/guest TLB to avoid overlap with wired |
| 1964 | * entries in the root VTLB. |
| 1965 | * |
| 1966 | * Returns: The resulting guest VTLB size. |
| 1967 | */ |
| 1968 | static unsigned int kvm_vz_resize_guest_vtlb(unsigned int size) |
| 1969 | { |
| 1970 | unsigned int config4 = 0, ret = 0, limit; |
| 1971 | |
| 1972 | /* Write MMUSize - 1 into guest Config registers */ |
| 1973 | if (cpu_guest_has_conf1) |
| 1974 | change_gc0_config1(MIPS_CONF1_TLBS, |
| 1975 | (size - 1) << MIPS_CONF1_TLBS_SHIFT); |
| 1976 | if (cpu_guest_has_conf4) { |
| 1977 | config4 = read_gc0_config4(); |
| 1978 | if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) == |
| 1979 | MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT) { |
| 1980 | config4 &= ~MIPS_CONF4_VTLBSIZEEXT; |
| 1981 | config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) << |
| 1982 | MIPS_CONF4_VTLBSIZEEXT_SHIFT; |
| 1983 | } else if ((config4 & MIPS_CONF4_MMUEXTDEF) == |
| 1984 | MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT) { |
| 1985 | config4 &= ~MIPS_CONF4_MMUSIZEEXT; |
| 1986 | config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) << |
| 1987 | MIPS_CONF4_MMUSIZEEXT_SHIFT; |
| 1988 | } |
| 1989 | write_gc0_config4(config4); |
| 1990 | } |
| 1991 | |
| 1992 | /* |
| 1993 | * Set Guest.Wired.Limit = 0 (no limit up to Guest.MMUSize-1), unless it |
| 1994 | * would exceed Root.Wired.Limit (clearing Guest.Wired.Wired so write |
| 1995 | * not dropped) |
| 1996 | */ |
| 1997 | if (cpu_has_mips_r6) { |
| 1998 | limit = (read_c0_wired() & MIPSR6_WIRED_LIMIT) >> |
| 1999 | MIPSR6_WIRED_LIMIT_SHIFT; |
| 2000 | if (size - 1 <= limit) |
| 2001 | limit = 0; |
| 2002 | write_gc0_wired(limit << MIPSR6_WIRED_LIMIT_SHIFT); |
| 2003 | } |
| 2004 | |
| 2005 | /* Read back MMUSize - 1 */ |
| 2006 | back_to_back_c0_hazard(); |
| 2007 | if (cpu_guest_has_conf1) |
| 2008 | ret = (read_gc0_config1() & MIPS_CONF1_TLBS) >> |
| 2009 | MIPS_CONF1_TLBS_SHIFT; |
| 2010 | if (config4) { |
| 2011 | if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) == |
| 2012 | MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT) |
| 2013 | ret |= ((config4 & MIPS_CONF4_VTLBSIZEEXT) >> |
| 2014 | MIPS_CONF4_VTLBSIZEEXT_SHIFT) << |
| 2015 | MIPS_CONF1_TLBS_SIZE; |
| 2016 | else if ((config4 & MIPS_CONF4_MMUEXTDEF) == |
| 2017 | MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT) |
| 2018 | ret |= ((config4 & MIPS_CONF4_MMUSIZEEXT) >> |
| 2019 | MIPS_CONF4_MMUSIZEEXT_SHIFT) << |
| 2020 | MIPS_CONF1_TLBS_SIZE; |
| 2021 | } |
| 2022 | return ret + 1; |
| 2023 | } |
| 2024 | |
| 2025 | static int kvm_vz_hardware_enable(void) |
| 2026 | { |
| 2027 | unsigned int mmu_size, guest_mmu_size, ftlb_size; |
| 2028 | |
| 2029 | /* |
| 2030 | * ImgTec cores tend to use a shared root/guest TLB. To avoid overlap of |
| 2031 | * root wired and guest entries, the guest TLB may need resizing. |
| 2032 | */ |
| 2033 | mmu_size = current_cpu_data.tlbsizevtlb; |
| 2034 | ftlb_size = current_cpu_data.tlbsize - mmu_size; |
| 2035 | |
| 2036 | /* Try switching to maximum guest VTLB size for flush */ |
| 2037 | guest_mmu_size = kvm_vz_resize_guest_vtlb(mmu_size); |
| 2038 | current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size; |
| 2039 | kvm_vz_local_flush_guesttlb_all(); |
| 2040 | |
| 2041 | /* |
| 2042 | * Reduce to make space for root wired entries and at least 2 root |
| 2043 | * non-wired entries. This does assume that long-term wired entries |
| 2044 | * won't be added later. |
| 2045 | */ |
| 2046 | guest_mmu_size = mmu_size - num_wired_entries() - 2; |
| 2047 | guest_mmu_size = kvm_vz_resize_guest_vtlb(guest_mmu_size); |
| 2048 | current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size; |
| 2049 | |
| 2050 | /* |
| 2051 | * Write the VTLB size, but if another CPU has already written, check it |
| 2052 | * matches or we won't provide a consistent view to the guest. If this |
| 2053 | * ever happens it suggests an asymmetric number of wired entries. |
| 2054 | */ |
| 2055 | if (cmpxchg(&kvm_vz_guest_vtlb_size, 0, guest_mmu_size) && |
| 2056 | WARN(guest_mmu_size != kvm_vz_guest_vtlb_size, |
| 2057 | "Available guest VTLB size mismatch")) |
| 2058 | return -EINVAL; |
| 2059 | |
| 2060 | /* |
| 2061 | * Enable virtualization features granting guest direct control of |
| 2062 | * certain features: |
| 2063 | * CP0=1: Guest coprocessor 0 context. |
| 2064 | * AT=Guest: Guest MMU. |
| 2065 | * CG=1: Hit (virtual address) CACHE operations (optional). |
| 2066 | * CF=1: Guest Config registers. |
| 2067 | * CGI=1: Indexed flush CACHE operations (optional). |
| 2068 | */ |
| 2069 | write_c0_guestctl0(MIPS_GCTL0_CP0 | |
| 2070 | (MIPS_GCTL0_AT_GUEST << MIPS_GCTL0_AT_SHIFT) | |
| 2071 | MIPS_GCTL0_CG | MIPS_GCTL0_CF); |
| 2072 | if (cpu_has_guestctl0ext) |
| 2073 | set_c0_guestctl0ext(MIPS_GCTL0EXT_CGI); |
| 2074 | |
| 2075 | if (cpu_has_guestid) { |
| 2076 | write_c0_guestctl1(0); |
| 2077 | kvm_vz_local_flush_roottlb_all_guests(); |
| 2078 | |
| 2079 | GUESTID_MASK = current_cpu_data.guestid_mask; |
| 2080 | GUESTID_FIRST_VERSION = GUESTID_MASK + 1; |
| 2081 | GUESTID_VERSION_MASK = ~GUESTID_MASK; |
| 2082 | |
| 2083 | current_cpu_data.guestid_cache = GUESTID_FIRST_VERSION; |
| 2084 | } |
| 2085 | |
| 2086 | /* clear any pending injected virtual guest interrupts */ |
| 2087 | if (cpu_has_guestctl2) |
| 2088 | clear_c0_guestctl2(0x3f << 10); |
| 2089 | |
| 2090 | return 0; |
| 2091 | } |
| 2092 | |
| 2093 | static void kvm_vz_hardware_disable(void) |
| 2094 | { |
| 2095 | kvm_vz_local_flush_guesttlb_all(); |
| 2096 | |
| 2097 | if (cpu_has_guestid) { |
| 2098 | write_c0_guestctl1(0); |
| 2099 | kvm_vz_local_flush_roottlb_all_guests(); |
| 2100 | } |
| 2101 | } |
| 2102 | |
| 2103 | static int kvm_vz_check_extension(struct kvm *kvm, long ext) |
| 2104 | { |
| 2105 | int r; |
| 2106 | |
| 2107 | switch (ext) { |
| 2108 | case KVM_CAP_MIPS_VZ: |
| 2109 | /* we wouldn't be here unless cpu_has_vz */ |
| 2110 | r = 1; |
| 2111 | break; |
| 2112 | #ifdef CONFIG_64BIT |
| 2113 | case KVM_CAP_MIPS_64BIT: |
| 2114 | /* We support 64-bit registers/operations and addresses */ |
| 2115 | r = 2; |
| 2116 | break; |
| 2117 | #endif |
| 2118 | default: |
| 2119 | r = 0; |
| 2120 | break; |
| 2121 | } |
| 2122 | |
| 2123 | return r; |
| 2124 | } |
| 2125 | |
| 2126 | static int kvm_vz_vcpu_init(struct kvm_vcpu *vcpu) |
| 2127 | { |
| 2128 | int i; |
| 2129 | |
| 2130 | for_each_possible_cpu(i) |
| 2131 | vcpu->arch.vzguestid[i] = 0; |
| 2132 | |
| 2133 | return 0; |
| 2134 | } |
| 2135 | |
| 2136 | static void kvm_vz_vcpu_uninit(struct kvm_vcpu *vcpu) |
| 2137 | { |
| 2138 | int cpu; |
| 2139 | |
| 2140 | /* |
| 2141 | * If the VCPU is freed and reused as another VCPU, we don't want the |
| 2142 | * matching pointer wrongly hanging around in last_vcpu[] or |
| 2143 | * last_exec_vcpu[]. |
| 2144 | */ |
| 2145 | for_each_possible_cpu(cpu) { |
| 2146 | if (last_vcpu[cpu] == vcpu) |
| 2147 | last_vcpu[cpu] = NULL; |
| 2148 | if (last_exec_vcpu[cpu] == vcpu) |
| 2149 | last_exec_vcpu[cpu] = NULL; |
| 2150 | } |
| 2151 | } |
| 2152 | |
| 2153 | static int kvm_vz_vcpu_setup(struct kvm_vcpu *vcpu) |
| 2154 | { |
| 2155 | struct mips_coproc *cop0 = vcpu->arch.cop0; |
| 2156 | unsigned long count_hz = 100*1000*1000; /* default to 100 MHz */ |
| 2157 | |
| 2158 | /* |
| 2159 | * Start off the timer at the same frequency as the host timer, but the |
| 2160 | * soft timer doesn't handle frequencies greater than 1GHz yet. |
| 2161 | */ |
| 2162 | if (mips_hpt_frequency && mips_hpt_frequency <= NSEC_PER_SEC) |
| 2163 | count_hz = mips_hpt_frequency; |
| 2164 | kvm_mips_init_count(vcpu, count_hz); |
| 2165 | |
| 2166 | /* |
| 2167 | * Initialize guest register state to valid architectural reset state. |
| 2168 | */ |
| 2169 | |
| 2170 | /* PageGrain */ |
| 2171 | if (cpu_has_mips_r6) |
| 2172 | kvm_write_sw_gc0_pagegrain(cop0, PG_RIE | PG_XIE | PG_IEC); |
| 2173 | /* Wired */ |
| 2174 | if (cpu_has_mips_r6) |
| 2175 | kvm_write_sw_gc0_wired(cop0, |
| 2176 | read_gc0_wired() & MIPSR6_WIRED_LIMIT); |
| 2177 | /* Status */ |
| 2178 | kvm_write_sw_gc0_status(cop0, ST0_BEV | ST0_ERL); |
| 2179 | if (cpu_has_mips_r6) |
| 2180 | kvm_change_sw_gc0_status(cop0, ST0_FR, read_gc0_status()); |
| 2181 | /* IntCtl */ |
| 2182 | kvm_write_sw_gc0_intctl(cop0, read_gc0_intctl() & |
| 2183 | (INTCTLF_IPFDC | INTCTLF_IPPCI | INTCTLF_IPTI)); |
| 2184 | /* PRId */ |
| 2185 | kvm_write_sw_gc0_prid(cop0, boot_cpu_data.processor_id); |
| 2186 | /* EBase */ |
| 2187 | kvm_write_sw_gc0_ebase(cop0, (s32)0x80000000 | vcpu->vcpu_id); |
| 2188 | /* Config */ |
| 2189 | kvm_save_gc0_config(cop0); |
| 2190 | /* architecturally writable (e.g. from guest) */ |
| 2191 | kvm_change_sw_gc0_config(cop0, CONF_CM_CMASK, |
| 2192 | _page_cachable_default >> _CACHE_SHIFT); |
| 2193 | /* architecturally read only, but maybe writable from root */ |
| 2194 | kvm_change_sw_gc0_config(cop0, MIPS_CONF_MT, read_c0_config()); |
| 2195 | if (cpu_guest_has_conf1) { |
| 2196 | kvm_set_sw_gc0_config(cop0, MIPS_CONF_M); |
| 2197 | /* Config1 */ |
| 2198 | kvm_save_gc0_config1(cop0); |
| 2199 | /* architecturally read only, but maybe writable from root */ |
| 2200 | kvm_clear_sw_gc0_config1(cop0, MIPS_CONF1_C2 | |
| 2201 | MIPS_CONF1_MD | |
| 2202 | MIPS_CONF1_PC | |
| 2203 | MIPS_CONF1_WR | |
| 2204 | MIPS_CONF1_CA | |
| 2205 | MIPS_CONF1_FP); |
| 2206 | } |
| 2207 | if (cpu_guest_has_conf2) { |
| 2208 | kvm_set_sw_gc0_config1(cop0, MIPS_CONF_M); |
| 2209 | /* Config2 */ |
| 2210 | kvm_save_gc0_config2(cop0); |
| 2211 | } |
| 2212 | if (cpu_guest_has_conf3) { |
| 2213 | kvm_set_sw_gc0_config2(cop0, MIPS_CONF_M); |
| 2214 | /* Config3 */ |
| 2215 | kvm_save_gc0_config3(cop0); |
| 2216 | /* architecturally writable (e.g. from guest) */ |
| 2217 | kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_ISA_OE); |
| 2218 | /* architecturally read only, but maybe writable from root */ |
| 2219 | kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_MSA | |
| 2220 | MIPS_CONF3_BPG | |
| 2221 | MIPS_CONF3_ULRI | |
| 2222 | MIPS_CONF3_DSP | |
| 2223 | MIPS_CONF3_CTXTC | |
| 2224 | MIPS_CONF3_ITL | |
| 2225 | MIPS_CONF3_LPA | |
| 2226 | MIPS_CONF3_VEIC | |
| 2227 | MIPS_CONF3_VINT | |
| 2228 | MIPS_CONF3_SP | |
| 2229 | MIPS_CONF3_CDMM | |
| 2230 | MIPS_CONF3_MT | |
| 2231 | MIPS_CONF3_SM | |
| 2232 | MIPS_CONF3_TL); |
| 2233 | } |
| 2234 | if (cpu_guest_has_conf4) { |
| 2235 | kvm_set_sw_gc0_config3(cop0, MIPS_CONF_M); |
| 2236 | /* Config4 */ |
| 2237 | kvm_save_gc0_config4(cop0); |
| 2238 | } |
| 2239 | if (cpu_guest_has_conf5) { |
| 2240 | kvm_set_sw_gc0_config4(cop0, MIPS_CONF_M); |
| 2241 | /* Config5 */ |
| 2242 | kvm_save_gc0_config5(cop0); |
| 2243 | /* architecturally writable (e.g. from guest) */ |
| 2244 | kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_K | |
| 2245 | MIPS_CONF5_CV | |
| 2246 | MIPS_CONF5_MSAEN | |
| 2247 | MIPS_CONF5_UFE | |
| 2248 | MIPS_CONF5_FRE | |
| 2249 | MIPS_CONF5_SBRI | |
| 2250 | MIPS_CONF5_UFR); |
| 2251 | /* architecturally read only, but maybe writable from root */ |
| 2252 | kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_MRP); |
| 2253 | } |
| 2254 | |
| 2255 | /* start with no pending virtual guest interrupts */ |
| 2256 | if (cpu_has_guestctl2) |
| 2257 | cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] = 0; |
| 2258 | |
| 2259 | /* Put PC at reset vector */ |
| 2260 | vcpu->arch.pc = CKSEG1ADDR(0x1fc00000); |
| 2261 | |
| 2262 | return 0; |
| 2263 | } |
| 2264 | |
| 2265 | static void kvm_vz_flush_shadow_all(struct kvm *kvm) |
| 2266 | { |
| 2267 | if (cpu_has_guestid) { |
| 2268 | /* Flush GuestID for each VCPU individually */ |
| 2269 | kvm_flush_remote_tlbs(kvm); |
| 2270 | } else { |
| 2271 | /* |
| 2272 | * For each CPU there is a single GPA ASID used by all VCPUs in |
| 2273 | * the VM, so it doesn't make sense for the VCPUs to handle |
| 2274 | * invalidation of these ASIDs individually. |
| 2275 | * |
| 2276 | * Instead mark all CPUs as needing ASID invalidation in |
| 2277 | * asid_flush_mask, and just use kvm_flush_remote_tlbs(kvm) to |
| 2278 | * kick any running VCPUs so they check asid_flush_mask. |
| 2279 | */ |
| 2280 | cpumask_setall(&kvm->arch.asid_flush_mask); |
| 2281 | kvm_flush_remote_tlbs(kvm); |
| 2282 | } |
| 2283 | } |
| 2284 | |
| 2285 | static void kvm_vz_flush_shadow_memslot(struct kvm *kvm, |
| 2286 | const struct kvm_memory_slot *slot) |
| 2287 | { |
| 2288 | kvm_vz_flush_shadow_all(kvm); |
| 2289 | } |
| 2290 | |
| 2291 | static void kvm_vz_vcpu_reenter(struct kvm_run *run, struct kvm_vcpu *vcpu) |
| 2292 | { |
| 2293 | int cpu = smp_processor_id(); |
| 2294 | int preserve_guest_tlb; |
| 2295 | |
| 2296 | preserve_guest_tlb = kvm_vz_check_requests(vcpu, cpu); |
| 2297 | |
| 2298 | if (preserve_guest_tlb) |
| 2299 | kvm_vz_vcpu_save_wired(vcpu); |
| 2300 | |
| 2301 | kvm_vz_vcpu_load_tlb(vcpu, cpu); |
| 2302 | |
| 2303 | if (preserve_guest_tlb) |
| 2304 | kvm_vz_vcpu_load_wired(vcpu); |
| 2305 | } |
| 2306 | |
| 2307 | static int kvm_vz_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu) |
| 2308 | { |
| 2309 | int cpu = smp_processor_id(); |
| 2310 | int r; |
| 2311 | |
| 2312 | /* Check if we have any exceptions/interrupts pending */ |
| 2313 | kvm_mips_deliver_interrupts(vcpu, read_gc0_cause()); |
| 2314 | |
| 2315 | kvm_vz_check_requests(vcpu, cpu); |
| 2316 | kvm_vz_vcpu_load_tlb(vcpu, cpu); |
| 2317 | kvm_vz_vcpu_load_wired(vcpu); |
| 2318 | |
| 2319 | r = vcpu->arch.vcpu_run(run, vcpu); |
| 2320 | |
| 2321 | kvm_vz_vcpu_save_wired(vcpu); |
| 2322 | |
| 2323 | return r; |
| 2324 | } |
| 2325 | |
| 2326 | static struct kvm_mips_callbacks kvm_vz_callbacks = { |
| 2327 | .handle_cop_unusable = kvm_trap_vz_handle_cop_unusable, |
| 2328 | .handle_tlb_mod = kvm_trap_vz_handle_tlb_st_miss, |
| 2329 | .handle_tlb_ld_miss = kvm_trap_vz_handle_tlb_ld_miss, |
| 2330 | .handle_tlb_st_miss = kvm_trap_vz_handle_tlb_st_miss, |
| 2331 | .handle_addr_err_st = kvm_trap_vz_no_handler, |
| 2332 | .handle_addr_err_ld = kvm_trap_vz_no_handler, |
| 2333 | .handle_syscall = kvm_trap_vz_no_handler, |
| 2334 | .handle_res_inst = kvm_trap_vz_no_handler, |
| 2335 | .handle_break = kvm_trap_vz_no_handler, |
| 2336 | .handle_msa_disabled = kvm_trap_vz_handle_msa_disabled, |
| 2337 | .handle_guest_exit = kvm_trap_vz_handle_guest_exit, |
| 2338 | |
| 2339 | .hardware_enable = kvm_vz_hardware_enable, |
| 2340 | .hardware_disable = kvm_vz_hardware_disable, |
| 2341 | .check_extension = kvm_vz_check_extension, |
| 2342 | .vcpu_init = kvm_vz_vcpu_init, |
| 2343 | .vcpu_uninit = kvm_vz_vcpu_uninit, |
| 2344 | .vcpu_setup = kvm_vz_vcpu_setup, |
| 2345 | .flush_shadow_all = kvm_vz_flush_shadow_all, |
| 2346 | .flush_shadow_memslot = kvm_vz_flush_shadow_memslot, |
| 2347 | .gva_to_gpa = kvm_vz_gva_to_gpa_cb, |
| 2348 | .queue_timer_int = kvm_vz_queue_timer_int_cb, |
| 2349 | .dequeue_timer_int = kvm_vz_dequeue_timer_int_cb, |
| 2350 | .queue_io_int = kvm_vz_queue_io_int_cb, |
| 2351 | .dequeue_io_int = kvm_vz_dequeue_io_int_cb, |
| 2352 | .irq_deliver = kvm_vz_irq_deliver_cb, |
| 2353 | .irq_clear = kvm_vz_irq_clear_cb, |
| 2354 | .num_regs = kvm_vz_num_regs, |
| 2355 | .copy_reg_indices = kvm_vz_copy_reg_indices, |
| 2356 | .get_one_reg = kvm_vz_get_one_reg, |
| 2357 | .set_one_reg = kvm_vz_set_one_reg, |
| 2358 | .vcpu_load = kvm_vz_vcpu_load, |
| 2359 | .vcpu_put = kvm_vz_vcpu_put, |
| 2360 | .vcpu_run = kvm_vz_vcpu_run, |
| 2361 | .vcpu_reenter = kvm_vz_vcpu_reenter, |
| 2362 | }; |
| 2363 | |
| 2364 | int kvm_mips_emulation_init(struct kvm_mips_callbacks **install_callbacks) |
| 2365 | { |
| 2366 | if (!cpu_has_vz) |
| 2367 | return -ENODEV; |
| 2368 | |
| 2369 | /* |
| 2370 | * VZ requires at least 2 KScratch registers, so it should have been |
| 2371 | * possible to allocate pgd_reg. |
| 2372 | */ |
| 2373 | if (WARN(pgd_reg == -1, |
| 2374 | "pgd_reg not allocated even though cpu_has_vz\n")) |
| 2375 | return -ENODEV; |
| 2376 | |
| 2377 | pr_info("Starting KVM with MIPS VZ extensions\n"); |
| 2378 | |
| 2379 | *install_callbacks = &kvm_vz_callbacks; |
| 2380 | return 0; |
| 2381 | } |