blob: 259d97bc2abd39df8df646c2ebc34ea272e1fd70 [file] [log] [blame]
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02001// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2
3/* COMMON Applications Kept Enhanced (CAKE) discipline
4 *
5 * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com>
6 * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk>
7 * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com>
8 * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de>
9 * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk>
10 * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au>
11 *
12 * The CAKE Principles:
13 * (or, how to have your cake and eat it too)
14 *
15 * This is a combination of several shaping, AQM and FQ techniques into one
16 * easy-to-use package:
17 *
18 * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE
19 * equipment and bloated MACs. This operates in deficit mode (as in sch_fq),
20 * eliminating the need for any sort of burst parameter (eg. token bucket
21 * depth). Burst support is limited to that necessary to overcome scheduling
22 * latency.
23 *
24 * - A Diffserv-aware priority queue, giving more priority to certain classes,
25 * up to a specified fraction of bandwidth. Above that bandwidth threshold,
26 * the priority is reduced to avoid starving other tins.
27 *
28 * - Each priority tin has a separate Flow Queue system, to isolate traffic
29 * flows from each other. This prevents a burst on one flow from increasing
30 * the delay to another. Flows are distributed to queues using a
31 * set-associative hash function.
32 *
33 * - Each queue is actively managed by Cobalt, which is a combination of the
34 * Codel and Blue AQM algorithms. This serves flows fairly, and signals
35 * congestion early via ECN (if available) and/or packet drops, to keep
36 * latency low. The codel parameters are auto-tuned based on the bandwidth
37 * setting, as is necessary at low bandwidths.
38 *
39 * The configuration parameters are kept deliberately simple for ease of use.
40 * Everything has sane defaults. Complete generality of configuration is *not*
41 * a goal.
42 *
43 * The priority queue operates according to a weighted DRR scheme, combined with
44 * a bandwidth tracker which reuses the shaper logic to detect which side of the
45 * bandwidth sharing threshold the tin is operating. This determines whether a
46 * priority-based weight (high) or a bandwidth-based weight (low) is used for
47 * that tin in the current pass.
48 *
49 * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly
50 * granted us permission to leverage.
51 */
52
53#include <linux/module.h>
54#include <linux/types.h>
55#include <linux/kernel.h>
56#include <linux/jiffies.h>
57#include <linux/string.h>
58#include <linux/in.h>
59#include <linux/errno.h>
60#include <linux/init.h>
61#include <linux/skbuff.h>
62#include <linux/jhash.h>
63#include <linux/slab.h>
64#include <linux/vmalloc.h>
65#include <linux/reciprocal_div.h>
66#include <net/netlink.h>
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +020067#include <linux/if_vlan.h>
68#include <net/pkt_sched.h>
69#include <net/pkt_cls.h>
70#include <net/tcp.h>
71#include <net/flow_dissector.h>
72
Toke Høiland-Jørgensenea825112018-07-06 17:37:19 +020073#if IS_ENABLED(CONFIG_NF_CONNTRACK)
74#include <net/netfilter/nf_conntrack_core.h>
75#endif
76
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +020077#define CAKE_SET_WAYS (8)
78#define CAKE_MAX_TINS (8)
79#define CAKE_QUEUES (1024)
80#define CAKE_FLOW_MASK 63
81#define CAKE_FLOW_NAT_FLAG 64
82
83/* struct cobalt_params - contains codel and blue parameters
84 * @interval: codel initial drop rate
85 * @target: maximum persistent sojourn time & blue update rate
86 * @mtu_time: serialisation delay of maximum-size packet
87 * @p_inc: increment of blue drop probability (0.32 fxp)
88 * @p_dec: decrement of blue drop probability (0.32 fxp)
89 */
90struct cobalt_params {
91 u64 interval;
92 u64 target;
93 u64 mtu_time;
94 u32 p_inc;
95 u32 p_dec;
96};
97
98/* struct cobalt_vars - contains codel and blue variables
99 * @count: codel dropping frequency
100 * @rec_inv_sqrt: reciprocal value of sqrt(count) >> 1
101 * @drop_next: time to drop next packet, or when we dropped last
102 * @blue_timer: Blue time to next drop
103 * @p_drop: BLUE drop probability (0.32 fxp)
104 * @dropping: set if in dropping state
105 * @ecn_marked: set if marked
106 */
107struct cobalt_vars {
108 u32 count;
109 u32 rec_inv_sqrt;
110 ktime_t drop_next;
111 ktime_t blue_timer;
112 u32 p_drop;
113 bool dropping;
114 bool ecn_marked;
115};
116
117enum {
118 CAKE_SET_NONE = 0,
119 CAKE_SET_SPARSE,
120 CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */
121 CAKE_SET_BULK,
122 CAKE_SET_DECAYING
123};
124
125struct cake_flow {
126 /* this stuff is all needed per-flow at dequeue time */
127 struct sk_buff *head;
128 struct sk_buff *tail;
129 struct list_head flowchain;
130 s32 deficit;
131 u32 dropped;
132 struct cobalt_vars cvars;
133 u16 srchost; /* index into cake_host table */
134 u16 dsthost;
135 u8 set;
136}; /* please try to keep this structure <= 64 bytes */
137
138struct cake_host {
139 u32 srchost_tag;
140 u32 dsthost_tag;
George Amanakis71263992019-03-01 16:04:05 +0100141 u16 srchost_bulk_flow_count;
142 u16 dsthost_bulk_flow_count;
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +0200143};
144
145struct cake_heap_entry {
146 u16 t:3, b:10;
147};
148
149struct cake_tin_data {
150 struct cake_flow flows[CAKE_QUEUES];
151 u32 backlogs[CAKE_QUEUES];
152 u32 tags[CAKE_QUEUES]; /* for set association */
153 u16 overflow_idx[CAKE_QUEUES];
154 struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */
155 u16 flow_quantum;
156
157 struct cobalt_params cparams;
158 u32 drop_overlimit;
159 u16 bulk_flow_count;
160 u16 sparse_flow_count;
161 u16 decaying_flow_count;
162 u16 unresponsive_flow_count;
163
164 u32 max_skblen;
165
166 struct list_head new_flows;
167 struct list_head old_flows;
168 struct list_head decaying_flows;
169
170 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
171 ktime_t time_next_packet;
172 u64 tin_rate_ns;
173 u64 tin_rate_bps;
174 u16 tin_rate_shft;
175
176 u16 tin_quantum_prio;
177 u16 tin_quantum_band;
178 s32 tin_deficit;
179 u32 tin_backlog;
180 u32 tin_dropped;
181 u32 tin_ecn_mark;
182
183 u32 packets;
184 u64 bytes;
185
186 u32 ack_drops;
187
188 /* moving averages */
189 u64 avge_delay;
190 u64 peak_delay;
191 u64 base_delay;
192
193 /* hash function stats */
194 u32 way_directs;
195 u32 way_hits;
196 u32 way_misses;
197 u32 way_collisions;
198}; /* number of tins is small, so size of this struct doesn't matter much */
199
200struct cake_sched_data {
201 struct tcf_proto __rcu *filter_list; /* optional external classifier */
202 struct tcf_block *block;
203 struct cake_tin_data *tins;
204
205 struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS];
206 u16 overflow_timeout;
207
208 u16 tin_cnt;
209 u8 tin_mode;
210 u8 flow_mode;
211 u8 ack_filter;
212 u8 atm_mode;
213
Toke Høiland-Jørgenseneab2fc82019-03-14 23:08:22 +0100214 u32 fwmark_mask;
215 u16 fwmark_shft;
216
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +0200217 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
218 u16 rate_shft;
219 ktime_t time_next_packet;
220 ktime_t failsafe_next_packet;
221 u64 rate_ns;
222 u64 rate_bps;
223 u16 rate_flags;
224 s16 rate_overhead;
225 u16 rate_mpu;
226 u64 interval;
227 u64 target;
228
229 /* resource tracking */
230 u32 buffer_used;
231 u32 buffer_max_used;
232 u32 buffer_limit;
233 u32 buffer_config_limit;
234
235 /* indices for dequeue */
236 u16 cur_tin;
237 u16 cur_flow;
238
239 struct qdisc_watchdog watchdog;
240 const u8 *tin_index;
241 const u8 *tin_order;
242
243 /* bandwidth capacity estimate */
244 ktime_t last_packet_time;
245 ktime_t avg_window_begin;
246 u64 avg_packet_interval;
247 u64 avg_window_bytes;
248 u64 avg_peak_bandwidth;
249 ktime_t last_reconfig_time;
250
251 /* packet length stats */
252 u32 avg_netoff;
253 u16 max_netlen;
254 u16 max_adjlen;
255 u16 min_netlen;
256 u16 min_adjlen;
257};
258
259enum {
260 CAKE_FLAG_OVERHEAD = BIT(0),
261 CAKE_FLAG_AUTORATE_INGRESS = BIT(1),
262 CAKE_FLAG_INGRESS = BIT(2),
263 CAKE_FLAG_WASH = BIT(3),
Toke Høiland-Jørgenseneab2fc82019-03-14 23:08:22 +0100264 CAKE_FLAG_SPLIT_GSO = BIT(4)
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +0200265};
266
267/* COBALT operates the Codel and BLUE algorithms in parallel, in order to
268 * obtain the best features of each. Codel is excellent on flows which
269 * respond to congestion signals in a TCP-like way. BLUE is more effective on
270 * unresponsive flows.
271 */
272
273struct cobalt_skb_cb {
274 ktime_t enqueue_time;
Toke Høiland-Jørgensena729b7f2018-07-06 17:37:19 +0200275 u32 adjusted_len;
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +0200276};
277
278static u64 us_to_ns(u64 us)
279{
280 return us * NSEC_PER_USEC;
281}
282
283static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb)
284{
285 qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb));
286 return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data;
287}
288
289static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb)
290{
291 return get_cobalt_cb(skb)->enqueue_time;
292}
293
294static void cobalt_set_enqueue_time(struct sk_buff *skb,
295 ktime_t now)
296{
297 get_cobalt_cb(skb)->enqueue_time = now;
298}
299
300static u16 quantum_div[CAKE_QUEUES + 1] = {0};
301
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +0200302/* Diffserv lookup tables */
303
304static const u8 precedence[] = {
305 0, 0, 0, 0, 0, 0, 0, 0,
306 1, 1, 1, 1, 1, 1, 1, 1,
307 2, 2, 2, 2, 2, 2, 2, 2,
308 3, 3, 3, 3, 3, 3, 3, 3,
309 4, 4, 4, 4, 4, 4, 4, 4,
310 5, 5, 5, 5, 5, 5, 5, 5,
311 6, 6, 6, 6, 6, 6, 6, 6,
312 7, 7, 7, 7, 7, 7, 7, 7,
313};
314
315static const u8 diffserv8[] = {
316 2, 5, 1, 2, 4, 2, 2, 2,
317 0, 2, 1, 2, 1, 2, 1, 2,
318 5, 2, 4, 2, 4, 2, 4, 2,
319 3, 2, 3, 2, 3, 2, 3, 2,
320 6, 2, 3, 2, 3, 2, 3, 2,
321 6, 2, 2, 2, 6, 2, 6, 2,
322 7, 2, 2, 2, 2, 2, 2, 2,
323 7, 2, 2, 2, 2, 2, 2, 2,
324};
325
326static const u8 diffserv4[] = {
327 0, 2, 0, 0, 2, 0, 0, 0,
328 1, 0, 0, 0, 0, 0, 0, 0,
329 2, 0, 2, 0, 2, 0, 2, 0,
330 2, 0, 2, 0, 2, 0, 2, 0,
331 3, 0, 2, 0, 2, 0, 2, 0,
332 3, 0, 0, 0, 3, 0, 3, 0,
333 3, 0, 0, 0, 0, 0, 0, 0,
334 3, 0, 0, 0, 0, 0, 0, 0,
335};
336
337static const u8 diffserv3[] = {
338 0, 0, 0, 0, 2, 0, 0, 0,
339 1, 0, 0, 0, 0, 0, 0, 0,
340 0, 0, 0, 0, 0, 0, 0, 0,
341 0, 0, 0, 0, 0, 0, 0, 0,
342 0, 0, 0, 0, 0, 0, 0, 0,
343 0, 0, 0, 0, 2, 0, 2, 0,
344 2, 0, 0, 0, 0, 0, 0, 0,
345 2, 0, 0, 0, 0, 0, 0, 0,
346};
347
348static const u8 besteffort[] = {
349 0, 0, 0, 0, 0, 0, 0, 0,
350 0, 0, 0, 0, 0, 0, 0, 0,
351 0, 0, 0, 0, 0, 0, 0, 0,
352 0, 0, 0, 0, 0, 0, 0, 0,
353 0, 0, 0, 0, 0, 0, 0, 0,
354 0, 0, 0, 0, 0, 0, 0, 0,
355 0, 0, 0, 0, 0, 0, 0, 0,
356 0, 0, 0, 0, 0, 0, 0, 0,
357};
358
359/* tin priority order for stats dumping */
360
361static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7};
362static const u8 bulk_order[] = {1, 0, 2, 3};
363
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +0200364#define REC_INV_SQRT_CACHE (16)
365static u32 cobalt_rec_inv_sqrt_cache[REC_INV_SQRT_CACHE] = {0};
366
367/* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
368 * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
369 *
370 * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
371 */
372
373static void cobalt_newton_step(struct cobalt_vars *vars)
374{
375 u32 invsqrt, invsqrt2;
376 u64 val;
377
378 invsqrt = vars->rec_inv_sqrt;
379 invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
380 val = (3LL << 32) - ((u64)vars->count * invsqrt2);
381
382 val >>= 2; /* avoid overflow in following multiply */
383 val = (val * invsqrt) >> (32 - 2 + 1);
384
385 vars->rec_inv_sqrt = val;
386}
387
388static void cobalt_invsqrt(struct cobalt_vars *vars)
389{
390 if (vars->count < REC_INV_SQRT_CACHE)
391 vars->rec_inv_sqrt = cobalt_rec_inv_sqrt_cache[vars->count];
392 else
393 cobalt_newton_step(vars);
394}
395
396/* There is a big difference in timing between the accurate values placed in
397 * the cache and the approximations given by a single Newton step for small
398 * count values, particularly when stepping from count 1 to 2 or vice versa.
399 * Above 16, a single Newton step gives sufficient accuracy in either
400 * direction, given the precision stored.
401 *
402 * The magnitude of the error when stepping up to count 2 is such as to give
403 * the value that *should* have been produced at count 4.
404 */
405
406static void cobalt_cache_init(void)
407{
408 struct cobalt_vars v;
409
410 memset(&v, 0, sizeof(v));
411 v.rec_inv_sqrt = ~0U;
412 cobalt_rec_inv_sqrt_cache[0] = v.rec_inv_sqrt;
413
414 for (v.count = 1; v.count < REC_INV_SQRT_CACHE; v.count++) {
415 cobalt_newton_step(&v);
416 cobalt_newton_step(&v);
417 cobalt_newton_step(&v);
418 cobalt_newton_step(&v);
419
420 cobalt_rec_inv_sqrt_cache[v.count] = v.rec_inv_sqrt;
421 }
422}
423
424static void cobalt_vars_init(struct cobalt_vars *vars)
425{
426 memset(vars, 0, sizeof(*vars));
427
428 if (!cobalt_rec_inv_sqrt_cache[0]) {
429 cobalt_cache_init();
430 cobalt_rec_inv_sqrt_cache[0] = ~0;
431 }
432}
433
434/* CoDel control_law is t + interval/sqrt(count)
435 * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
436 * both sqrt() and divide operation.
437 */
438static ktime_t cobalt_control(ktime_t t,
439 u64 interval,
440 u32 rec_inv_sqrt)
441{
442 return ktime_add_ns(t, reciprocal_scale(interval,
443 rec_inv_sqrt));
444}
445
446/* Call this when a packet had to be dropped due to queue overflow. Returns
447 * true if the BLUE state was quiescent before but active after this call.
448 */
449static bool cobalt_queue_full(struct cobalt_vars *vars,
450 struct cobalt_params *p,
451 ktime_t now)
452{
453 bool up = false;
454
455 if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
456 up = !vars->p_drop;
457 vars->p_drop += p->p_inc;
458 if (vars->p_drop < p->p_inc)
459 vars->p_drop = ~0;
460 vars->blue_timer = now;
461 }
462 vars->dropping = true;
463 vars->drop_next = now;
464 if (!vars->count)
465 vars->count = 1;
466
467 return up;
468}
469
470/* Call this when the queue was serviced but turned out to be empty. Returns
471 * true if the BLUE state was active before but quiescent after this call.
472 */
473static bool cobalt_queue_empty(struct cobalt_vars *vars,
474 struct cobalt_params *p,
475 ktime_t now)
476{
477 bool down = false;
478
479 if (vars->p_drop &&
480 ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
481 if (vars->p_drop < p->p_dec)
482 vars->p_drop = 0;
483 else
484 vars->p_drop -= p->p_dec;
485 vars->blue_timer = now;
486 down = !vars->p_drop;
487 }
488 vars->dropping = false;
489
490 if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) {
491 vars->count--;
492 cobalt_invsqrt(vars);
493 vars->drop_next = cobalt_control(vars->drop_next,
494 p->interval,
495 vars->rec_inv_sqrt);
496 }
497
498 return down;
499}
500
501/* Call this with a freshly dequeued packet for possible congestion marking.
502 * Returns true as an instruction to drop the packet, false for delivery.
503 */
504static bool cobalt_should_drop(struct cobalt_vars *vars,
505 struct cobalt_params *p,
506 ktime_t now,
Toke Høiland-Jørgensen7298de92018-07-06 17:37:19 +0200507 struct sk_buff *skb,
508 u32 bulk_flows)
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +0200509{
510 bool next_due, over_target, drop = false;
511 ktime_t schedule;
512 u64 sojourn;
513
514/* The 'schedule' variable records, in its sign, whether 'now' is before or
515 * after 'drop_next'. This allows 'drop_next' to be updated before the next
516 * scheduling decision is actually branched, without destroying that
517 * information. Similarly, the first 'schedule' value calculated is preserved
518 * in the boolean 'next_due'.
519 *
520 * As for 'drop_next', we take advantage of the fact that 'interval' is both
521 * the delay between first exceeding 'target' and the first signalling event,
522 * *and* the scaling factor for the signalling frequency. It's therefore very
523 * natural to use a single mechanism for both purposes, and eliminates a
524 * significant amount of reference Codel's spaghetti code. To help with this,
525 * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close
526 * as possible to 1.0 in fixed-point.
527 */
528
529 sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
530 schedule = ktime_sub(now, vars->drop_next);
531 over_target = sojourn > p->target &&
Toke Høiland-Jørgensen7298de92018-07-06 17:37:19 +0200532 sojourn > p->mtu_time * bulk_flows * 2 &&
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +0200533 sojourn > p->mtu_time * 4;
534 next_due = vars->count && ktime_to_ns(schedule) >= 0;
535
536 vars->ecn_marked = false;
537
538 if (over_target) {
539 if (!vars->dropping) {
540 vars->dropping = true;
541 vars->drop_next = cobalt_control(now,
542 p->interval,
543 vars->rec_inv_sqrt);
544 }
545 if (!vars->count)
546 vars->count = 1;
547 } else if (vars->dropping) {
548 vars->dropping = false;
549 }
550
551 if (next_due && vars->dropping) {
552 /* Use ECN mark if possible, otherwise drop */
553 drop = !(vars->ecn_marked = INET_ECN_set_ce(skb));
554
555 vars->count++;
556 if (!vars->count)
557 vars->count--;
558 cobalt_invsqrt(vars);
559 vars->drop_next = cobalt_control(vars->drop_next,
560 p->interval,
561 vars->rec_inv_sqrt);
562 schedule = ktime_sub(now, vars->drop_next);
563 } else {
564 while (next_due) {
565 vars->count--;
566 cobalt_invsqrt(vars);
567 vars->drop_next = cobalt_control(vars->drop_next,
568 p->interval,
569 vars->rec_inv_sqrt);
570 schedule = ktime_sub(now, vars->drop_next);
571 next_due = vars->count && ktime_to_ns(schedule) >= 0;
572 }
573 }
574
575 /* Simple BLUE implementation. Lack of ECN is deliberate. */
576 if (vars->p_drop)
577 drop |= (prandom_u32() < vars->p_drop);
578
579 /* Overload the drop_next field as an activity timeout */
580 if (!vars->count)
581 vars->drop_next = ktime_add_ns(now, p->interval);
582 else if (ktime_to_ns(schedule) > 0 && !drop)
583 vars->drop_next = now;
584
585 return drop;
586}
587
Toke Høiland-Jørgensenea825112018-07-06 17:37:19 +0200588static void cake_update_flowkeys(struct flow_keys *keys,
589 const struct sk_buff *skb)
590{
591#if IS_ENABLED(CONFIG_NF_CONNTRACK)
592 struct nf_conntrack_tuple tuple = {};
593 bool rev = !skb->_nfct;
594
595 if (tc_skb_protocol(skb) != htons(ETH_P_IP))
596 return;
597
598 if (!nf_ct_get_tuple_skb(&tuple, skb))
599 return;
600
601 keys->addrs.v4addrs.src = rev ? tuple.dst.u3.ip : tuple.src.u3.ip;
602 keys->addrs.v4addrs.dst = rev ? tuple.src.u3.ip : tuple.dst.u3.ip;
603
604 if (keys->ports.ports) {
605 keys->ports.src = rev ? tuple.dst.u.all : tuple.src.u.all;
606 keys->ports.dst = rev ? tuple.src.u.all : tuple.dst.u.all;
607 }
608#endif
609}
610
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +0200611/* Cake has several subtle multiple bit settings. In these cases you
612 * would be matching triple isolate mode as well.
613 */
614
615static bool cake_dsrc(int flow_mode)
616{
617 return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC;
618}
619
620static bool cake_ddst(int flow_mode)
621{
622 return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST;
623}
624
625static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb,
Toke Høiland-Jørgensen93cfb6c2018-08-22 12:29:43 +0200626 int flow_mode, u16 flow_override, u16 host_override)
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +0200627{
Toke Høiland-Jørgensen93cfb6c2018-08-22 12:29:43 +0200628 u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0;
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +0200629 u16 reduced_hash, srchost_idx, dsthost_idx;
630 struct flow_keys keys, host_keys;
631
632 if (unlikely(flow_mode == CAKE_FLOW_NONE))
633 return 0;
634
Toke Høiland-Jørgensen93cfb6c2018-08-22 12:29:43 +0200635 /* If both overrides are set we can skip packet dissection entirely */
636 if ((flow_override || !(flow_mode & CAKE_FLOW_FLOWS)) &&
637 (host_override || !(flow_mode & CAKE_FLOW_HOSTS)))
638 goto skip_hash;
639
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +0200640 skb_flow_dissect_flow_keys(skb, &keys,
641 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
642
Toke Høiland-Jørgensenea825112018-07-06 17:37:19 +0200643 if (flow_mode & CAKE_FLOW_NAT_FLAG)
644 cake_update_flowkeys(&keys, skb);
645
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +0200646 /* flow_hash_from_keys() sorts the addresses by value, so we have
647 * to preserve their order in a separate data structure to treat
648 * src and dst host addresses as independently selectable.
649 */
650 host_keys = keys;
651 host_keys.ports.ports = 0;
652 host_keys.basic.ip_proto = 0;
653 host_keys.keyid.keyid = 0;
654 host_keys.tags.flow_label = 0;
655
656 switch (host_keys.control.addr_type) {
657 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
658 host_keys.addrs.v4addrs.src = 0;
659 dsthost_hash = flow_hash_from_keys(&host_keys);
660 host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
661 host_keys.addrs.v4addrs.dst = 0;
662 srchost_hash = flow_hash_from_keys(&host_keys);
663 break;
664
665 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
666 memset(&host_keys.addrs.v6addrs.src, 0,
667 sizeof(host_keys.addrs.v6addrs.src));
668 dsthost_hash = flow_hash_from_keys(&host_keys);
669 host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
670 memset(&host_keys.addrs.v6addrs.dst, 0,
671 sizeof(host_keys.addrs.v6addrs.dst));
672 srchost_hash = flow_hash_from_keys(&host_keys);
673 break;
674
675 default:
676 dsthost_hash = 0;
677 srchost_hash = 0;
678 }
679
680 /* This *must* be after the above switch, since as a
681 * side-effect it sorts the src and dst addresses.
682 */
683 if (flow_mode & CAKE_FLOW_FLOWS)
684 flow_hash = flow_hash_from_keys(&keys);
685
Toke Høiland-Jørgensen93cfb6c2018-08-22 12:29:43 +0200686skip_hash:
687 if (flow_override)
688 flow_hash = flow_override - 1;
689 if (host_override) {
690 dsthost_hash = host_override - 1;
691 srchost_hash = host_override - 1;
692 }
693
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +0200694 if (!(flow_mode & CAKE_FLOW_FLOWS)) {
695 if (flow_mode & CAKE_FLOW_SRC_IP)
696 flow_hash ^= srchost_hash;
697
698 if (flow_mode & CAKE_FLOW_DST_IP)
699 flow_hash ^= dsthost_hash;
700 }
701
702 reduced_hash = flow_hash % CAKE_QUEUES;
703
704 /* set-associative hashing */
705 /* fast path if no hash collision (direct lookup succeeds) */
706 if (likely(q->tags[reduced_hash] == flow_hash &&
707 q->flows[reduced_hash].set)) {
708 q->way_directs++;
709 } else {
710 u32 inner_hash = reduced_hash % CAKE_SET_WAYS;
711 u32 outer_hash = reduced_hash - inner_hash;
712 bool allocate_src = false;
713 bool allocate_dst = false;
714 u32 i, k;
715
716 /* check if any active queue in the set is reserved for
717 * this flow.
718 */
719 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
720 i++, k = (k + 1) % CAKE_SET_WAYS) {
721 if (q->tags[outer_hash + k] == flow_hash) {
722 if (i)
723 q->way_hits++;
724
725 if (!q->flows[outer_hash + k].set) {
726 /* need to increment host refcnts */
727 allocate_src = cake_dsrc(flow_mode);
728 allocate_dst = cake_ddst(flow_mode);
729 }
730
731 goto found;
732 }
733 }
734
735 /* no queue is reserved for this flow, look for an
736 * empty one.
737 */
738 for (i = 0; i < CAKE_SET_WAYS;
739 i++, k = (k + 1) % CAKE_SET_WAYS) {
740 if (!q->flows[outer_hash + k].set) {
741 q->way_misses++;
742 allocate_src = cake_dsrc(flow_mode);
743 allocate_dst = cake_ddst(flow_mode);
744 goto found;
745 }
746 }
747
748 /* With no empty queues, default to the original
749 * queue, accept the collision, update the host tags.
750 */
751 q->way_collisions++;
George Amanakis71263992019-03-01 16:04:05 +0100752 if (q->flows[outer_hash + k].set == CAKE_SET_BULK) {
753 q->hosts[q->flows[reduced_hash].srchost].srchost_bulk_flow_count--;
754 q->hosts[q->flows[reduced_hash].dsthost].dsthost_bulk_flow_count--;
755 }
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +0200756 allocate_src = cake_dsrc(flow_mode);
757 allocate_dst = cake_ddst(flow_mode);
758found:
759 /* reserve queue for future packets in same flow */
760 reduced_hash = outer_hash + k;
761 q->tags[reduced_hash] = flow_hash;
762
763 if (allocate_src) {
764 srchost_idx = srchost_hash % CAKE_QUEUES;
765 inner_hash = srchost_idx % CAKE_SET_WAYS;
766 outer_hash = srchost_idx - inner_hash;
767 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
768 i++, k = (k + 1) % CAKE_SET_WAYS) {
769 if (q->hosts[outer_hash + k].srchost_tag ==
770 srchost_hash)
771 goto found_src;
772 }
773 for (i = 0; i < CAKE_SET_WAYS;
774 i++, k = (k + 1) % CAKE_SET_WAYS) {
George Amanakis71263992019-03-01 16:04:05 +0100775 if (!q->hosts[outer_hash + k].srchost_bulk_flow_count)
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +0200776 break;
777 }
778 q->hosts[outer_hash + k].srchost_tag = srchost_hash;
779found_src:
780 srchost_idx = outer_hash + k;
George Amanakis71263992019-03-01 16:04:05 +0100781 if (q->flows[reduced_hash].set == CAKE_SET_BULK)
782 q->hosts[srchost_idx].srchost_bulk_flow_count++;
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +0200783 q->flows[reduced_hash].srchost = srchost_idx;
784 }
785
786 if (allocate_dst) {
787 dsthost_idx = dsthost_hash % CAKE_QUEUES;
788 inner_hash = dsthost_idx % CAKE_SET_WAYS;
789 outer_hash = dsthost_idx - inner_hash;
790 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
791 i++, k = (k + 1) % CAKE_SET_WAYS) {
792 if (q->hosts[outer_hash + k].dsthost_tag ==
793 dsthost_hash)
794 goto found_dst;
795 }
796 for (i = 0; i < CAKE_SET_WAYS;
797 i++, k = (k + 1) % CAKE_SET_WAYS) {
George Amanakis71263992019-03-01 16:04:05 +0100798 if (!q->hosts[outer_hash + k].dsthost_bulk_flow_count)
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +0200799 break;
800 }
801 q->hosts[outer_hash + k].dsthost_tag = dsthost_hash;
802found_dst:
803 dsthost_idx = outer_hash + k;
George Amanakis71263992019-03-01 16:04:05 +0100804 if (q->flows[reduced_hash].set == CAKE_SET_BULK)
805 q->hosts[dsthost_idx].dsthost_bulk_flow_count++;
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +0200806 q->flows[reduced_hash].dsthost = dsthost_idx;
807 }
808 }
809
810 return reduced_hash;
811}
812
813/* helper functions : might be changed when/if skb use a standard list_head */
814/* remove one skb from head of slot queue */
815
816static struct sk_buff *dequeue_head(struct cake_flow *flow)
817{
818 struct sk_buff *skb = flow->head;
819
820 if (skb) {
821 flow->head = skb->next;
David S. Millera8305bf2018-07-29 20:42:53 -0700822 skb_mark_not_on_list(skb);
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +0200823 }
824
825 return skb;
826}
827
828/* add skb to flow queue (tail add) */
829
830static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb)
831{
832 if (!flow->head)
833 flow->head = skb;
834 else
835 flow->tail->next = skb;
836 flow->tail = skb;
837 skb->next = NULL;
838}
839
Toke Høiland-Jørgensen8b713882018-07-06 17:37:19 +0200840static struct iphdr *cake_get_iphdr(const struct sk_buff *skb,
841 struct ipv6hdr *buf)
842{
843 unsigned int offset = skb_network_offset(skb);
844 struct iphdr *iph;
845
846 iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf);
847
848 if (!iph)
849 return NULL;
850
851 if (iph->version == 4 && iph->protocol == IPPROTO_IPV6)
852 return skb_header_pointer(skb, offset + iph->ihl * 4,
853 sizeof(struct ipv6hdr), buf);
854
855 else if (iph->version == 4)
856 return iph;
857
858 else if (iph->version == 6)
859 return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr),
860 buf);
861
862 return NULL;
863}
864
865static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb,
866 void *buf, unsigned int bufsize)
867{
868 unsigned int offset = skb_network_offset(skb);
869 const struct ipv6hdr *ipv6h;
870 const struct tcphdr *tcph;
871 const struct iphdr *iph;
872 struct ipv6hdr _ipv6h;
873 struct tcphdr _tcph;
874
875 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
876
877 if (!ipv6h)
878 return NULL;
879
880 if (ipv6h->version == 4) {
881 iph = (struct iphdr *)ipv6h;
882 offset += iph->ihl * 4;
883
884 /* special-case 6in4 tunnelling, as that is a common way to get
885 * v6 connectivity in the home
886 */
887 if (iph->protocol == IPPROTO_IPV6) {
888 ipv6h = skb_header_pointer(skb, offset,
889 sizeof(_ipv6h), &_ipv6h);
890
891 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
892 return NULL;
893
894 offset += sizeof(struct ipv6hdr);
895
896 } else if (iph->protocol != IPPROTO_TCP) {
897 return NULL;
898 }
899
900 } else if (ipv6h->version == 6) {
901 if (ipv6h->nexthdr != IPPROTO_TCP)
902 return NULL;
903
904 offset += sizeof(struct ipv6hdr);
905 } else {
906 return NULL;
907 }
908
909 tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
910 if (!tcph)
911 return NULL;
912
913 return skb_header_pointer(skb, offset,
914 min(__tcp_hdrlen(tcph), bufsize), buf);
915}
916
917static const void *cake_get_tcpopt(const struct tcphdr *tcph,
918 int code, int *oplen)
919{
920 /* inspired by tcp_parse_options in tcp_input.c */
921 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
922 const u8 *ptr = (const u8 *)(tcph + 1);
923
924 while (length > 0) {
925 int opcode = *ptr++;
926 int opsize;
927
928 if (opcode == TCPOPT_EOL)
929 break;
930 if (opcode == TCPOPT_NOP) {
931 length--;
932 continue;
933 }
934 opsize = *ptr++;
935 if (opsize < 2 || opsize > length)
936 break;
937
938 if (opcode == code) {
939 *oplen = opsize;
940 return ptr;
941 }
942
943 ptr += opsize - 2;
944 length -= opsize;
945 }
946
947 return NULL;
948}
949
950/* Compare two SACK sequences. A sequence is considered greater if it SACKs more
951 * bytes than the other. In the case where both sequences ACKs bytes that the
952 * other doesn't, A is considered greater. DSACKs in A also makes A be
953 * considered greater.
954 *
955 * @return -1, 0 or 1 as normal compare functions
956 */
957static int cake_tcph_sack_compare(const struct tcphdr *tcph_a,
958 const struct tcphdr *tcph_b)
959{
960 const struct tcp_sack_block_wire *sack_a, *sack_b;
961 u32 ack_seq_a = ntohl(tcph_a->ack_seq);
962 u32 bytes_a = 0, bytes_b = 0;
963 int oplen_a, oplen_b;
964 bool first = true;
965
966 sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a);
967 sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b);
968
969 /* pointers point to option contents */
970 oplen_a -= TCPOLEN_SACK_BASE;
971 oplen_b -= TCPOLEN_SACK_BASE;
972
973 if (sack_a && oplen_a >= sizeof(*sack_a) &&
974 (!sack_b || oplen_b < sizeof(*sack_b)))
975 return -1;
976 else if (sack_b && oplen_b >= sizeof(*sack_b) &&
977 (!sack_a || oplen_a < sizeof(*sack_a)))
978 return 1;
979 else if ((!sack_a || oplen_a < sizeof(*sack_a)) &&
980 (!sack_b || oplen_b < sizeof(*sack_b)))
981 return 0;
982
983 while (oplen_a >= sizeof(*sack_a)) {
984 const struct tcp_sack_block_wire *sack_tmp = sack_b;
985 u32 start_a = get_unaligned_be32(&sack_a->start_seq);
986 u32 end_a = get_unaligned_be32(&sack_a->end_seq);
987 int oplen_tmp = oplen_b;
988 bool found = false;
989
990 /* DSACK; always considered greater to prevent dropping */
991 if (before(start_a, ack_seq_a))
992 return -1;
993
994 bytes_a += end_a - start_a;
995
996 while (oplen_tmp >= sizeof(*sack_tmp)) {
997 u32 start_b = get_unaligned_be32(&sack_tmp->start_seq);
998 u32 end_b = get_unaligned_be32(&sack_tmp->end_seq);
999
1000 /* first time through we count the total size */
1001 if (first)
1002 bytes_b += end_b - start_b;
1003
1004 if (!after(start_b, start_a) && !before(end_b, end_a)) {
1005 found = true;
1006 if (!first)
1007 break;
1008 }
1009 oplen_tmp -= sizeof(*sack_tmp);
1010 sack_tmp++;
1011 }
1012
1013 if (!found)
1014 return -1;
1015
1016 oplen_a -= sizeof(*sack_a);
1017 sack_a++;
1018 first = false;
1019 }
1020
1021 /* If we made it this far, all ranges SACKed by A are covered by B, so
1022 * either the SACKs are equal, or B SACKs more bytes.
1023 */
1024 return bytes_b > bytes_a ? 1 : 0;
1025}
1026
1027static void cake_tcph_get_tstamp(const struct tcphdr *tcph,
1028 u32 *tsval, u32 *tsecr)
1029{
1030 const u8 *ptr;
1031 int opsize;
1032
1033 ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize);
1034
1035 if (ptr && opsize == TCPOLEN_TIMESTAMP) {
1036 *tsval = get_unaligned_be32(ptr);
1037 *tsecr = get_unaligned_be32(ptr + 4);
1038 }
1039}
1040
1041static bool cake_tcph_may_drop(const struct tcphdr *tcph,
1042 u32 tstamp_new, u32 tsecr_new)
1043{
1044 /* inspired by tcp_parse_options in tcp_input.c */
1045 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
1046 const u8 *ptr = (const u8 *)(tcph + 1);
1047 u32 tstamp, tsecr;
1048
1049 /* 3 reserved flags must be unset to avoid future breakage
1050 * ACK must be set
1051 * ECE/CWR are handled separately
1052 * All other flags URG/PSH/RST/SYN/FIN must be unset
1053 * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero)
1054 * 0x00C00000 = CWR/ECE (handled separately)
1055 * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000
1056 */
1057 if (((tcp_flag_word(tcph) &
1058 cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK))
1059 return false;
1060
1061 while (length > 0) {
1062 int opcode = *ptr++;
1063 int opsize;
1064
1065 if (opcode == TCPOPT_EOL)
1066 break;
1067 if (opcode == TCPOPT_NOP) {
1068 length--;
1069 continue;
1070 }
1071 opsize = *ptr++;
1072 if (opsize < 2 || opsize > length)
1073 break;
1074
1075 switch (opcode) {
1076 case TCPOPT_MD5SIG: /* doesn't influence state */
1077 break;
1078
1079 case TCPOPT_SACK: /* stricter checking performed later */
1080 if (opsize % 8 != 2)
1081 return false;
1082 break;
1083
1084 case TCPOPT_TIMESTAMP:
1085 /* only drop timestamps lower than new */
1086 if (opsize != TCPOLEN_TIMESTAMP)
1087 return false;
1088 tstamp = get_unaligned_be32(ptr);
1089 tsecr = get_unaligned_be32(ptr + 4);
1090 if (after(tstamp, tstamp_new) ||
1091 after(tsecr, tsecr_new))
1092 return false;
1093 break;
1094
1095 case TCPOPT_MSS: /* these should only be set on SYN */
1096 case TCPOPT_WINDOW:
1097 case TCPOPT_SACK_PERM:
1098 case TCPOPT_FASTOPEN:
1099 case TCPOPT_EXP:
1100 default: /* don't drop if any unknown options are present */
1101 return false;
1102 }
1103
1104 ptr += opsize - 2;
1105 length -= opsize;
1106 }
1107
1108 return true;
1109}
1110
1111static struct sk_buff *cake_ack_filter(struct cake_sched_data *q,
1112 struct cake_flow *flow)
1113{
1114 bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE;
1115 struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL;
1116 struct sk_buff *skb_check, *skb_prev = NULL;
1117 const struct ipv6hdr *ipv6h, *ipv6h_check;
1118 unsigned char _tcph[64], _tcph_check[64];
1119 const struct tcphdr *tcph, *tcph_check;
1120 const struct iphdr *iph, *iph_check;
1121 struct ipv6hdr _iph, _iph_check;
1122 const struct sk_buff *skb;
1123 int seglen, num_found = 0;
1124 u32 tstamp = 0, tsecr = 0;
1125 __be32 elig_flags = 0;
1126 int sack_comp;
1127
1128 /* no other possible ACKs to filter */
1129 if (flow->head == flow->tail)
1130 return NULL;
1131
1132 skb = flow->tail;
1133 tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph));
1134 iph = cake_get_iphdr(skb, &_iph);
1135 if (!tcph)
1136 return NULL;
1137
1138 cake_tcph_get_tstamp(tcph, &tstamp, &tsecr);
1139
1140 /* the 'triggering' packet need only have the ACK flag set.
1141 * also check that SYN is not set, as there won't be any previous ACKs.
1142 */
1143 if ((tcp_flag_word(tcph) &
1144 (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK)
1145 return NULL;
1146
1147 /* the 'triggering' ACK is at the tail of the queue, we have already
1148 * returned if it is the only packet in the flow. loop through the rest
1149 * of the queue looking for pure ACKs with the same 5-tuple as the
1150 * triggering one.
1151 */
1152 for (skb_check = flow->head;
1153 skb_check && skb_check != skb;
1154 skb_prev = skb_check, skb_check = skb_check->next) {
1155 iph_check = cake_get_iphdr(skb_check, &_iph_check);
1156 tcph_check = cake_get_tcphdr(skb_check, &_tcph_check,
1157 sizeof(_tcph_check));
1158
1159 /* only TCP packets with matching 5-tuple are eligible, and only
1160 * drop safe headers
1161 */
1162 if (!tcph_check || iph->version != iph_check->version ||
1163 tcph_check->source != tcph->source ||
1164 tcph_check->dest != tcph->dest)
1165 continue;
1166
1167 if (iph_check->version == 4) {
1168 if (iph_check->saddr != iph->saddr ||
1169 iph_check->daddr != iph->daddr)
1170 continue;
1171
1172 seglen = ntohs(iph_check->tot_len) -
1173 (4 * iph_check->ihl);
1174 } else if (iph_check->version == 6) {
1175 ipv6h = (struct ipv6hdr *)iph;
1176 ipv6h_check = (struct ipv6hdr *)iph_check;
1177
1178 if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) ||
1179 ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr))
1180 continue;
1181
1182 seglen = ntohs(ipv6h_check->payload_len);
1183 } else {
1184 WARN_ON(1); /* shouldn't happen */
1185 continue;
1186 }
1187
1188 /* If the ECE/CWR flags changed from the previous eligible
1189 * packet in the same flow, we should no longer be dropping that
1190 * previous packet as this would lose information.
1191 */
1192 if (elig_ack && (tcp_flag_word(tcph_check) &
1193 (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) {
1194 elig_ack = NULL;
1195 elig_ack_prev = NULL;
1196 num_found--;
1197 }
1198
1199 /* Check TCP options and flags, don't drop ACKs with segment
1200 * data, and don't drop ACKs with a higher cumulative ACK
1201 * counter than the triggering packet. Check ACK seqno here to
1202 * avoid parsing SACK options of packets we are going to exclude
1203 * anyway.
1204 */
1205 if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) ||
1206 (seglen - __tcp_hdrlen(tcph_check)) != 0 ||
1207 after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq)))
1208 continue;
1209
1210 /* Check SACK options. The triggering packet must SACK more data
1211 * than the ACK under consideration, or SACK the same range but
1212 * have a larger cumulative ACK counter. The latter is a
1213 * pathological case, but is contained in the following check
1214 * anyway, just to be safe.
1215 */
1216 sack_comp = cake_tcph_sack_compare(tcph_check, tcph);
1217
1218 if (sack_comp < 0 ||
1219 (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) &&
1220 sack_comp == 0))
1221 continue;
1222
1223 /* At this point we have found an eligible pure ACK to drop; if
1224 * we are in aggressive mode, we are done. Otherwise, keep
1225 * searching unless this is the second eligible ACK we
1226 * found.
1227 *
1228 * Since we want to drop ACK closest to the head of the queue,
1229 * save the first eligible ACK we find, even if we need to loop
1230 * again.
1231 */
1232 if (!elig_ack) {
1233 elig_ack = skb_check;
1234 elig_ack_prev = skb_prev;
1235 elig_flags = (tcp_flag_word(tcph_check)
1236 & (TCP_FLAG_ECE | TCP_FLAG_CWR));
1237 }
1238
1239 if (num_found++ > 0)
1240 goto found;
1241 }
1242
1243 /* We made it through the queue without finding two eligible ACKs . If
1244 * we found a single eligible ACK we can drop it in aggressive mode if
1245 * we can guarantee that this does not interfere with ECN flag
1246 * information. We ensure this by dropping it only if the enqueued
1247 * packet is consecutive with the eligible ACK, and their flags match.
1248 */
1249 if (elig_ack && aggressive && elig_ack->next == skb &&
1250 (elig_flags == (tcp_flag_word(tcph) &
1251 (TCP_FLAG_ECE | TCP_FLAG_CWR))))
1252 goto found;
1253
1254 return NULL;
1255
1256found:
1257 if (elig_ack_prev)
1258 elig_ack_prev->next = elig_ack->next;
1259 else
1260 flow->head = elig_ack->next;
1261
David S. Millera8305bf2018-07-29 20:42:53 -07001262 skb_mark_not_on_list(elig_ack);
Toke Høiland-Jørgensen8b713882018-07-06 17:37:19 +02001263
1264 return elig_ack;
1265}
1266
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02001267static u64 cake_ewma(u64 avg, u64 sample, u32 shift)
1268{
1269 avg -= avg >> shift;
1270 avg += sample >> shift;
1271 return avg;
1272}
1273
Toke Høiland-Jørgensena729b7f2018-07-06 17:37:19 +02001274static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off)
1275{
1276 if (q->rate_flags & CAKE_FLAG_OVERHEAD)
1277 len -= off;
1278
1279 if (q->max_netlen < len)
1280 q->max_netlen = len;
1281 if (q->min_netlen > len)
1282 q->min_netlen = len;
1283
1284 len += q->rate_overhead;
1285
1286 if (len < q->rate_mpu)
1287 len = q->rate_mpu;
1288
1289 if (q->atm_mode == CAKE_ATM_ATM) {
1290 len += 47;
1291 len /= 48;
1292 len *= 53;
1293 } else if (q->atm_mode == CAKE_ATM_PTM) {
1294 /* Add one byte per 64 bytes or part thereof.
1295 * This is conservative and easier to calculate than the
1296 * precise value.
1297 */
1298 len += (len + 63) / 64;
1299 }
1300
1301 if (q->max_adjlen < len)
1302 q->max_adjlen = len;
1303 if (q->min_adjlen > len)
1304 q->min_adjlen = len;
1305
1306 return len;
1307}
1308
1309static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb)
1310{
1311 const struct skb_shared_info *shinfo = skb_shinfo(skb);
1312 unsigned int hdr_len, last_len = 0;
1313 u32 off = skb_network_offset(skb);
1314 u32 len = qdisc_pkt_len(skb);
1315 u16 segs = 1;
1316
1317 q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8);
1318
1319 if (!shinfo->gso_size)
1320 return cake_calc_overhead(q, len, off);
1321
1322 /* borrowed from qdisc_pkt_len_init() */
1323 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
1324
1325 /* + transport layer */
1326 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 |
1327 SKB_GSO_TCPV6))) {
1328 const struct tcphdr *th;
1329 struct tcphdr _tcphdr;
1330
1331 th = skb_header_pointer(skb, skb_transport_offset(skb),
1332 sizeof(_tcphdr), &_tcphdr);
1333 if (likely(th))
1334 hdr_len += __tcp_hdrlen(th);
1335 } else {
1336 struct udphdr _udphdr;
1337
1338 if (skb_header_pointer(skb, skb_transport_offset(skb),
1339 sizeof(_udphdr), &_udphdr))
1340 hdr_len += sizeof(struct udphdr);
1341 }
1342
1343 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY))
1344 segs = DIV_ROUND_UP(skb->len - hdr_len,
1345 shinfo->gso_size);
1346 else
1347 segs = shinfo->gso_segs;
1348
1349 len = shinfo->gso_size + hdr_len;
1350 last_len = skb->len - shinfo->gso_size * (segs - 1);
1351
1352 return (cake_calc_overhead(q, len, off) * (segs - 1) +
1353 cake_calc_overhead(q, last_len, off));
1354}
1355
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02001356static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j)
1357{
1358 struct cake_heap_entry ii = q->overflow_heap[i];
1359 struct cake_heap_entry jj = q->overflow_heap[j];
1360
1361 q->overflow_heap[i] = jj;
1362 q->overflow_heap[j] = ii;
1363
1364 q->tins[ii.t].overflow_idx[ii.b] = j;
1365 q->tins[jj.t].overflow_idx[jj.b] = i;
1366}
1367
1368static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i)
1369{
1370 struct cake_heap_entry ii = q->overflow_heap[i];
1371
1372 return q->tins[ii.t].backlogs[ii.b];
1373}
1374
1375static void cake_heapify(struct cake_sched_data *q, u16 i)
1376{
1377 static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES;
1378 u32 mb = cake_heap_get_backlog(q, i);
1379 u32 m = i;
1380
1381 while (m < a) {
1382 u32 l = m + m + 1;
1383 u32 r = l + 1;
1384
1385 if (l < a) {
1386 u32 lb = cake_heap_get_backlog(q, l);
1387
1388 if (lb > mb) {
1389 m = l;
1390 mb = lb;
1391 }
1392 }
1393
1394 if (r < a) {
1395 u32 rb = cake_heap_get_backlog(q, r);
1396
1397 if (rb > mb) {
1398 m = r;
1399 mb = rb;
1400 }
1401 }
1402
1403 if (m != i) {
1404 cake_heap_swap(q, i, m);
1405 i = m;
1406 } else {
1407 break;
1408 }
1409 }
1410}
1411
1412static void cake_heapify_up(struct cake_sched_data *q, u16 i)
1413{
1414 while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) {
1415 u16 p = (i - 1) >> 1;
1416 u32 ib = cake_heap_get_backlog(q, i);
1417 u32 pb = cake_heap_get_backlog(q, p);
1418
1419 if (ib > pb) {
1420 cake_heap_swap(q, i, p);
1421 i = p;
1422 } else {
1423 break;
1424 }
1425 }
1426}
1427
1428static int cake_advance_shaper(struct cake_sched_data *q,
1429 struct cake_tin_data *b,
1430 struct sk_buff *skb,
1431 ktime_t now, bool drop)
1432{
Toke Høiland-Jørgensena729b7f2018-07-06 17:37:19 +02001433 u32 len = get_cobalt_cb(skb)->adjusted_len;
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02001434
1435 /* charge packet bandwidth to this tin
1436 * and to the global shaper.
1437 */
1438 if (q->rate_ns) {
1439 u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft;
1440 u64 global_dur = (len * q->rate_ns) >> q->rate_shft;
1441 u64 failsafe_dur = global_dur + (global_dur >> 1);
1442
1443 if (ktime_before(b->time_next_packet, now))
1444 b->time_next_packet = ktime_add_ns(b->time_next_packet,
1445 tin_dur);
1446
1447 else if (ktime_before(b->time_next_packet,
1448 ktime_add_ns(now, tin_dur)))
1449 b->time_next_packet = ktime_add_ns(now, tin_dur);
1450
1451 q->time_next_packet = ktime_add_ns(q->time_next_packet,
1452 global_dur);
1453 if (!drop)
1454 q->failsafe_next_packet = \
1455 ktime_add_ns(q->failsafe_next_packet,
1456 failsafe_dur);
1457 }
1458 return len;
1459}
1460
1461static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free)
1462{
1463 struct cake_sched_data *q = qdisc_priv(sch);
1464 ktime_t now = ktime_get();
1465 u32 idx = 0, tin = 0, len;
1466 struct cake_heap_entry qq;
1467 struct cake_tin_data *b;
1468 struct cake_flow *flow;
1469 struct sk_buff *skb;
1470
1471 if (!q->overflow_timeout) {
1472 int i;
1473 /* Build fresh max-heap */
1474 for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2; i >= 0; i--)
1475 cake_heapify(q, i);
1476 }
1477 q->overflow_timeout = 65535;
1478
1479 /* select longest queue for pruning */
1480 qq = q->overflow_heap[0];
1481 tin = qq.t;
1482 idx = qq.b;
1483
1484 b = &q->tins[tin];
1485 flow = &b->flows[idx];
1486 skb = dequeue_head(flow);
1487 if (unlikely(!skb)) {
1488 /* heap has gone wrong, rebuild it next time */
1489 q->overflow_timeout = 0;
1490 return idx + (tin << 16);
1491 }
1492
1493 if (cobalt_queue_full(&flow->cvars, &b->cparams, now))
1494 b->unresponsive_flow_count++;
1495
1496 len = qdisc_pkt_len(skb);
1497 q->buffer_used -= skb->truesize;
1498 b->backlogs[idx] -= len;
1499 b->tin_backlog -= len;
1500 sch->qstats.backlog -= len;
1501 qdisc_tree_reduce_backlog(sch, 1, len);
1502
1503 flow->dropped++;
1504 b->tin_dropped++;
1505 sch->qstats.drops++;
1506
Toke Høiland-Jørgensen7298de92018-07-06 17:37:19 +02001507 if (q->rate_flags & CAKE_FLAG_INGRESS)
1508 cake_advance_shaper(q, b, skb, now, true);
1509
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02001510 __qdisc_drop(skb, to_free);
1511 sch->q.qlen--;
1512
1513 cake_heapify(q, 0);
1514
1515 return idx + (tin << 16);
1516}
1517
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +02001518static u8 cake_handle_diffserv(struct sk_buff *skb, u16 wash)
1519{
Toke Høiland-Jørgensenc87b4ec2019-04-04 15:01:33 +02001520 int wlen = skb_network_offset(skb);
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +02001521 u8 dscp;
1522
Toke Høiland-Jørgensenb2100cc2019-04-04 15:01:33 +02001523 switch (tc_skb_protocol(skb)) {
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +02001524 case htons(ETH_P_IP):
Toke Høiland-Jørgensenc87b4ec2019-04-04 15:01:33 +02001525 wlen += sizeof(struct iphdr);
1526 if (!pskb_may_pull(skb, wlen) ||
1527 skb_try_make_writable(skb, wlen))
1528 return 0;
1529
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +02001530 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
1531 if (wash && dscp)
1532 ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
1533 return dscp;
1534
1535 case htons(ETH_P_IPV6):
Toke Høiland-Jørgensenc87b4ec2019-04-04 15:01:33 +02001536 wlen += sizeof(struct ipv6hdr);
1537 if (!pskb_may_pull(skb, wlen) ||
1538 skb_try_make_writable(skb, wlen))
1539 return 0;
1540
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +02001541 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
1542 if (wash && dscp)
1543 ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
1544 return dscp;
1545
1546 case htons(ETH_P_ARP):
1547 return 0x38; /* CS7 - Net Control */
1548
1549 default:
1550 /* If there is no Diffserv field, treat as best-effort */
1551 return 0;
1552 }
1553}
1554
1555static struct cake_tin_data *cake_select_tin(struct Qdisc *sch,
1556 struct sk_buff *skb)
1557{
1558 struct cake_sched_data *q = qdisc_priv(sch);
Toke Høiland-Jørgenseneab2fc82019-03-14 23:08:22 +01001559 u32 tin, mark;
Toke Høiland-Jørgensen4976e3c2019-03-01 16:04:05 +01001560 u8 dscp;
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +02001561
Toke Høiland-Jørgensen4976e3c2019-03-01 16:04:05 +01001562 /* Tin selection: Default to diffserv-based selection, allow overriding
1563 * using firewall marks or skb->priority.
1564 */
1565 dscp = cake_handle_diffserv(skb,
1566 q->rate_flags & CAKE_FLAG_WASH);
Toke Høiland-Jørgenseneab2fc82019-03-14 23:08:22 +01001567 mark = (skb->mark & q->fwmark_mask) >> q->fwmark_shft;
Toke Høiland-Jørgensen4976e3c2019-03-01 16:04:05 +01001568
1569 if (q->tin_mode == CAKE_DIFFSERV_BESTEFFORT)
1570 tin = 0;
1571
Toke Høiland-Jørgenseneab2fc82019-03-14 23:08:22 +01001572 else if (mark && mark <= q->tin_cnt)
1573 tin = q->tin_order[mark - 1];
Toke Høiland-Jørgensen4976e3c2019-03-01 16:04:05 +01001574
1575 else if (TC_H_MAJ(skb->priority) == sch->handle &&
1576 TC_H_MIN(skb->priority) > 0 &&
1577 TC_H_MIN(skb->priority) <= q->tin_cnt)
Toke Høiland-Jørgensen301f9352018-07-16 16:45:09 +02001578 tin = q->tin_order[TC_H_MIN(skb->priority) - 1];
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +02001579
Toke Høiland-Jørgensen4976e3c2019-03-01 16:04:05 +01001580 else {
1581 tin = q->tin_index[dscp];
1582
1583 if (unlikely(tin >= q->tin_cnt))
1584 tin = 0;
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +02001585 }
1586
1587 return &q->tins[tin];
1588}
1589
1590static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t,
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02001591 struct sk_buff *skb, int flow_mode, int *qerr)
1592{
1593 struct cake_sched_data *q = qdisc_priv(sch);
1594 struct tcf_proto *filter;
1595 struct tcf_result res;
Toke Høiland-Jørgensen93cfb6c2018-08-22 12:29:43 +02001596 u16 flow = 0, host = 0;
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02001597 int result;
1598
1599 filter = rcu_dereference_bh(q->filter_list);
1600 if (!filter)
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +02001601 goto hash;
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02001602
1603 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
1604 result = tcf_classify(skb, filter, &res, false);
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +02001605
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02001606 if (result >= 0) {
1607#ifdef CONFIG_NET_CLS_ACT
1608 switch (result) {
1609 case TC_ACT_STOLEN:
1610 case TC_ACT_QUEUED:
1611 case TC_ACT_TRAP:
1612 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
1613 /* fall through */
1614 case TC_ACT_SHOT:
1615 return 0;
1616 }
1617#endif
1618 if (TC_H_MIN(res.classid) <= CAKE_QUEUES)
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +02001619 flow = TC_H_MIN(res.classid);
Toke Høiland-Jørgensen93cfb6c2018-08-22 12:29:43 +02001620 if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16))
1621 host = TC_H_MAJ(res.classid) >> 16;
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02001622 }
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +02001623hash:
1624 *t = cake_select_tin(sch, skb);
Toke Høiland-Jørgensen93cfb6c2018-08-22 12:29:43 +02001625 return cake_hash(*t, skb, flow_mode, flow, host) + 1;
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02001626}
1627
Toke Høiland-Jørgensen7298de92018-07-06 17:37:19 +02001628static void cake_reconfigure(struct Qdisc *sch);
1629
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02001630static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1631 struct sk_buff **to_free)
1632{
1633 struct cake_sched_data *q = qdisc_priv(sch);
1634 int len = qdisc_pkt_len(skb);
1635 int uninitialized_var(ret);
Toke Høiland-Jørgensen8b713882018-07-06 17:37:19 +02001636 struct sk_buff *ack = NULL;
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02001637 ktime_t now = ktime_get();
1638 struct cake_tin_data *b;
1639 struct cake_flow *flow;
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +02001640 u32 idx;
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02001641
1642 /* choose flow to insert into */
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +02001643 idx = cake_classify(sch, &b, skb, q->flow_mode, &ret);
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02001644 if (idx == 0) {
1645 if (ret & __NET_XMIT_BYPASS)
1646 qdisc_qstats_drop(sch);
1647 __qdisc_drop(skb, to_free);
1648 return ret;
1649 }
1650 idx--;
1651 flow = &b->flows[idx];
1652
1653 /* ensure shaper state isn't stale */
1654 if (!b->tin_backlog) {
1655 if (ktime_before(b->time_next_packet, now))
1656 b->time_next_packet = now;
1657
1658 if (!sch->q.qlen) {
1659 if (ktime_before(q->time_next_packet, now)) {
1660 q->failsafe_next_packet = now;
1661 q->time_next_packet = now;
1662 } else if (ktime_after(q->time_next_packet, now) &&
1663 ktime_after(q->failsafe_next_packet, now)) {
1664 u64 next = \
1665 min(ktime_to_ns(q->time_next_packet),
1666 ktime_to_ns(
1667 q->failsafe_next_packet));
1668 sch->qstats.overlimits++;
1669 qdisc_watchdog_schedule_ns(&q->watchdog, next);
1670 }
1671 }
1672 }
1673
1674 if (unlikely(len > b->max_skblen))
1675 b->max_skblen = len;
1676
Toke Høiland-Jørgensen0c850342018-07-06 17:37:19 +02001677 if (skb_is_gso(skb) && q->rate_flags & CAKE_FLAG_SPLIT_GSO) {
1678 struct sk_buff *segs, *nskb;
1679 netdev_features_t features = netif_skb_features(skb);
Toke Høiland-Jørgensen8c6c37f2019-01-09 17:09:44 +01001680 unsigned int slen = 0, numsegs = 0;
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02001681
Toke Høiland-Jørgensen0c850342018-07-06 17:37:19 +02001682 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
1683 if (IS_ERR_OR_NULL(segs))
1684 return qdisc_drop(skb, sch, to_free);
Toke Høiland-Jørgensen8b713882018-07-06 17:37:19 +02001685
Toke Høiland-Jørgensen0c850342018-07-06 17:37:19 +02001686 while (segs) {
1687 nskb = segs->next;
David S. Millera8305bf2018-07-29 20:42:53 -07001688 skb_mark_not_on_list(segs);
Toke Høiland-Jørgensen0c850342018-07-06 17:37:19 +02001689 qdisc_skb_cb(segs)->pkt_len = segs->len;
1690 cobalt_set_enqueue_time(segs, now);
1691 get_cobalt_cb(segs)->adjusted_len = cake_overhead(q,
1692 segs);
1693 flow_queue_add(flow, segs);
Toke Høiland-Jørgensen8b713882018-07-06 17:37:19 +02001694
Toke Høiland-Jørgensen0c850342018-07-06 17:37:19 +02001695 sch->q.qlen++;
Toke Høiland-Jørgensen8c6c37f2019-01-09 17:09:44 +01001696 numsegs++;
Toke Høiland-Jørgensen0c850342018-07-06 17:37:19 +02001697 slen += segs->len;
1698 q->buffer_used += segs->truesize;
1699 b->packets++;
1700 segs = nskb;
1701 }
1702
1703 /* stats */
1704 b->bytes += slen;
1705 b->backlogs[idx] += slen;
1706 b->tin_backlog += slen;
1707 sch->qstats.backlog += slen;
1708 q->avg_window_bytes += slen;
1709
Toke Høiland-Jørgensen8c6c37f2019-01-09 17:09:44 +01001710 qdisc_tree_reduce_backlog(sch, 1-numsegs, len-slen);
Toke Høiland-Jørgensen0c850342018-07-06 17:37:19 +02001711 consume_skb(skb);
Toke Høiland-Jørgensen8b713882018-07-06 17:37:19 +02001712 } else {
Toke Høiland-Jørgensen0c850342018-07-06 17:37:19 +02001713 /* not splitting */
1714 cobalt_set_enqueue_time(skb, now);
1715 get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb);
1716 flow_queue_add(flow, skb);
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02001717
Toke Høiland-Jørgensen0c850342018-07-06 17:37:19 +02001718 if (q->ack_filter)
1719 ack = cake_ack_filter(q, flow);
1720
1721 if (ack) {
1722 b->ack_drops++;
1723 sch->qstats.drops++;
1724 b->bytes += qdisc_pkt_len(ack);
1725 len -= qdisc_pkt_len(ack);
1726 q->buffer_used += skb->truesize - ack->truesize;
1727 if (q->rate_flags & CAKE_FLAG_INGRESS)
1728 cake_advance_shaper(q, b, ack, now, true);
1729
1730 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack));
1731 consume_skb(ack);
1732 } else {
1733 sch->q.qlen++;
1734 q->buffer_used += skb->truesize;
1735 }
1736
1737 /* stats */
1738 b->packets++;
1739 b->bytes += len;
1740 b->backlogs[idx] += len;
1741 b->tin_backlog += len;
1742 sch->qstats.backlog += len;
1743 q->avg_window_bytes += len;
1744 }
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02001745
1746 if (q->overflow_timeout)
1747 cake_heapify_up(q, b->overflow_idx[idx]);
1748
1749 /* incoming bandwidth capacity estimate */
Toke Høiland-Jørgensen7298de92018-07-06 17:37:19 +02001750 if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) {
1751 u64 packet_interval = \
1752 ktime_to_ns(ktime_sub(now, q->last_packet_time));
1753
1754 if (packet_interval > NSEC_PER_SEC)
1755 packet_interval = NSEC_PER_SEC;
1756
1757 /* filter out short-term bursts, eg. wifi aggregation */
1758 q->avg_packet_interval = \
1759 cake_ewma(q->avg_packet_interval,
1760 packet_interval,
1761 (packet_interval > q->avg_packet_interval ?
1762 2 : 8));
1763
1764 q->last_packet_time = now;
1765
1766 if (packet_interval > q->avg_packet_interval) {
1767 u64 window_interval = \
1768 ktime_to_ns(ktime_sub(now,
1769 q->avg_window_begin));
1770 u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC;
1771
1772 do_div(b, window_interval);
1773 q->avg_peak_bandwidth =
1774 cake_ewma(q->avg_peak_bandwidth, b,
1775 b > q->avg_peak_bandwidth ? 2 : 8);
1776 q->avg_window_bytes = 0;
1777 q->avg_window_begin = now;
1778
1779 if (ktime_after(now,
1780 ktime_add_ms(q->last_reconfig_time,
1781 250))) {
1782 q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4;
1783 cake_reconfigure(sch);
1784 }
1785 }
1786 } else {
1787 q->avg_window_bytes = 0;
1788 q->last_packet_time = now;
1789 }
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02001790
1791 /* flowchain */
1792 if (!flow->set || flow->set == CAKE_SET_DECAYING) {
1793 struct cake_host *srchost = &b->hosts[flow->srchost];
1794 struct cake_host *dsthost = &b->hosts[flow->dsthost];
1795 u16 host_load = 1;
1796
1797 if (!flow->set) {
1798 list_add_tail(&flow->flowchain, &b->new_flows);
1799 } else {
1800 b->decaying_flow_count--;
1801 list_move_tail(&flow->flowchain, &b->new_flows);
1802 }
1803 flow->set = CAKE_SET_SPARSE;
1804 b->sparse_flow_count++;
1805
1806 if (cake_dsrc(q->flow_mode))
George Amanakis71263992019-03-01 16:04:05 +01001807 host_load = max(host_load, srchost->srchost_bulk_flow_count);
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02001808
1809 if (cake_ddst(q->flow_mode))
George Amanakis71263992019-03-01 16:04:05 +01001810 host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02001811
1812 flow->deficit = (b->flow_quantum *
1813 quantum_div[host_load]) >> 16;
1814 } else if (flow->set == CAKE_SET_SPARSE_WAIT) {
George Amanakis71263992019-03-01 16:04:05 +01001815 struct cake_host *srchost = &b->hosts[flow->srchost];
1816 struct cake_host *dsthost = &b->hosts[flow->dsthost];
1817
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02001818 /* this flow was empty, accounted as a sparse flow, but actually
1819 * in the bulk rotation.
1820 */
1821 flow->set = CAKE_SET_BULK;
1822 b->sparse_flow_count--;
1823 b->bulk_flow_count++;
George Amanakis71263992019-03-01 16:04:05 +01001824
1825 if (cake_dsrc(q->flow_mode))
1826 srchost->srchost_bulk_flow_count++;
1827
1828 if (cake_ddst(q->flow_mode))
1829 dsthost->dsthost_bulk_flow_count++;
1830
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02001831 }
1832
1833 if (q->buffer_used > q->buffer_max_used)
1834 q->buffer_max_used = q->buffer_used;
1835
1836 if (q->buffer_used > q->buffer_limit) {
1837 u32 dropped = 0;
1838
1839 while (q->buffer_used > q->buffer_limit) {
1840 dropped++;
1841 cake_drop(sch, to_free);
1842 }
1843 b->drop_overlimit += dropped;
1844 }
1845 return NET_XMIT_SUCCESS;
1846}
1847
1848static struct sk_buff *cake_dequeue_one(struct Qdisc *sch)
1849{
1850 struct cake_sched_data *q = qdisc_priv(sch);
1851 struct cake_tin_data *b = &q->tins[q->cur_tin];
1852 struct cake_flow *flow = &b->flows[q->cur_flow];
1853 struct sk_buff *skb = NULL;
1854 u32 len;
1855
1856 if (flow->head) {
1857 skb = dequeue_head(flow);
1858 len = qdisc_pkt_len(skb);
1859 b->backlogs[q->cur_flow] -= len;
1860 b->tin_backlog -= len;
1861 sch->qstats.backlog -= len;
1862 q->buffer_used -= skb->truesize;
1863 sch->q.qlen--;
1864
1865 if (q->overflow_timeout)
1866 cake_heapify(q, b->overflow_idx[q->cur_flow]);
1867 }
1868 return skb;
1869}
1870
1871/* Discard leftover packets from a tin no longer in use. */
1872static void cake_clear_tin(struct Qdisc *sch, u16 tin)
1873{
1874 struct cake_sched_data *q = qdisc_priv(sch);
1875 struct sk_buff *skb;
1876
1877 q->cur_tin = tin;
1878 for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++)
1879 while (!!(skb = cake_dequeue_one(sch)))
1880 kfree_skb(skb);
1881}
1882
1883static struct sk_buff *cake_dequeue(struct Qdisc *sch)
1884{
1885 struct cake_sched_data *q = qdisc_priv(sch);
1886 struct cake_tin_data *b = &q->tins[q->cur_tin];
1887 struct cake_host *srchost, *dsthost;
1888 ktime_t now = ktime_get();
1889 struct cake_flow *flow;
1890 struct list_head *head;
1891 bool first_flow = true;
1892 struct sk_buff *skb;
1893 u16 host_load;
1894 u64 delay;
1895 u32 len;
1896
1897begin:
1898 if (!sch->q.qlen)
1899 return NULL;
1900
1901 /* global hard shaper */
1902 if (ktime_after(q->time_next_packet, now) &&
1903 ktime_after(q->failsafe_next_packet, now)) {
1904 u64 next = min(ktime_to_ns(q->time_next_packet),
1905 ktime_to_ns(q->failsafe_next_packet));
1906
1907 sch->qstats.overlimits++;
1908 qdisc_watchdog_schedule_ns(&q->watchdog, next);
1909 return NULL;
1910 }
1911
1912 /* Choose a class to work on. */
1913 if (!q->rate_ns) {
1914 /* In unlimited mode, can't rely on shaper timings, just balance
1915 * with DRR
1916 */
1917 bool wrapped = false, empty = true;
1918
1919 while (b->tin_deficit < 0 ||
1920 !(b->sparse_flow_count + b->bulk_flow_count)) {
1921 if (b->tin_deficit <= 0)
1922 b->tin_deficit += b->tin_quantum_band;
1923 if (b->sparse_flow_count + b->bulk_flow_count)
1924 empty = false;
1925
1926 q->cur_tin++;
1927 b++;
1928 if (q->cur_tin >= q->tin_cnt) {
1929 q->cur_tin = 0;
1930 b = q->tins;
1931
1932 if (wrapped) {
1933 /* It's possible for q->qlen to be
1934 * nonzero when we actually have no
1935 * packets anywhere.
1936 */
1937 if (empty)
1938 return NULL;
1939 } else {
1940 wrapped = true;
1941 }
1942 }
1943 }
1944 } else {
1945 /* In shaped mode, choose:
1946 * - Highest-priority tin with queue and meeting schedule, or
1947 * - The earliest-scheduled tin with queue.
1948 */
1949 ktime_t best_time = KTIME_MAX;
1950 int tin, best_tin = 0;
1951
1952 for (tin = 0; tin < q->tin_cnt; tin++) {
1953 b = q->tins + tin;
1954 if ((b->sparse_flow_count + b->bulk_flow_count) > 0) {
1955 ktime_t time_to_pkt = \
1956 ktime_sub(b->time_next_packet, now);
1957
1958 if (ktime_to_ns(time_to_pkt) <= 0 ||
1959 ktime_compare(time_to_pkt,
1960 best_time) <= 0) {
1961 best_time = time_to_pkt;
1962 best_tin = tin;
1963 }
1964 }
1965 }
1966
1967 q->cur_tin = best_tin;
1968 b = q->tins + best_tin;
1969
1970 /* No point in going further if no packets to deliver. */
1971 if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count)))
1972 return NULL;
1973 }
1974
1975retry:
1976 /* service this class */
1977 head = &b->decaying_flows;
1978 if (!first_flow || list_empty(head)) {
1979 head = &b->new_flows;
1980 if (list_empty(head)) {
1981 head = &b->old_flows;
1982 if (unlikely(list_empty(head))) {
1983 head = &b->decaying_flows;
1984 if (unlikely(list_empty(head)))
1985 goto begin;
1986 }
1987 }
1988 }
1989 flow = list_first_entry(head, struct cake_flow, flowchain);
1990 q->cur_flow = flow - b->flows;
1991 first_flow = false;
1992
1993 /* triple isolation (modified DRR++) */
1994 srchost = &b->hosts[flow->srchost];
1995 dsthost = &b->hosts[flow->dsthost];
1996 host_load = 1;
1997
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02001998 /* flow isolation (DRR++) */
1999 if (flow->deficit <= 0) {
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002000 /* Keep all flows with deficits out of the sparse and decaying
2001 * rotations. No non-empty flow can go into the decaying
2002 * rotation, so they can't get deficits
2003 */
2004 if (flow->set == CAKE_SET_SPARSE) {
2005 if (flow->head) {
2006 b->sparse_flow_count--;
2007 b->bulk_flow_count++;
George Amanakis71263992019-03-01 16:04:05 +01002008
2009 if (cake_dsrc(q->flow_mode))
2010 srchost->srchost_bulk_flow_count++;
2011
2012 if (cake_ddst(q->flow_mode))
2013 dsthost->dsthost_bulk_flow_count++;
2014
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002015 flow->set = CAKE_SET_BULK;
2016 } else {
2017 /* we've moved it to the bulk rotation for
2018 * correct deficit accounting but we still want
2019 * to count it as a sparse flow, not a bulk one.
2020 */
2021 flow->set = CAKE_SET_SPARSE_WAIT;
2022 }
2023 }
George Amanakis71263992019-03-01 16:04:05 +01002024
2025 if (cake_dsrc(q->flow_mode))
2026 host_load = max(host_load, srchost->srchost_bulk_flow_count);
2027
2028 if (cake_ddst(q->flow_mode))
2029 host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
2030
2031 WARN_ON(host_load > CAKE_QUEUES);
2032
2033 /* The shifted prandom_u32() is a way to apply dithering to
2034 * avoid accumulating roundoff errors
2035 */
2036 flow->deficit += (b->flow_quantum * quantum_div[host_load] +
2037 (prandom_u32() >> 16)) >> 16;
2038 list_move_tail(&flow->flowchain, &b->old_flows);
2039
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002040 goto retry;
2041 }
2042
2043 /* Retrieve a packet via the AQM */
2044 while (1) {
2045 skb = cake_dequeue_one(sch);
2046 if (!skb) {
2047 /* this queue was actually empty */
2048 if (cobalt_queue_empty(&flow->cvars, &b->cparams, now))
2049 b->unresponsive_flow_count--;
2050
2051 if (flow->cvars.p_drop || flow->cvars.count ||
2052 ktime_before(now, flow->cvars.drop_next)) {
2053 /* keep in the flowchain until the state has
2054 * decayed to rest
2055 */
2056 list_move_tail(&flow->flowchain,
2057 &b->decaying_flows);
2058 if (flow->set == CAKE_SET_BULK) {
2059 b->bulk_flow_count--;
George Amanakis71263992019-03-01 16:04:05 +01002060
2061 if (cake_dsrc(q->flow_mode))
2062 srchost->srchost_bulk_flow_count--;
2063
2064 if (cake_ddst(q->flow_mode))
2065 dsthost->dsthost_bulk_flow_count--;
2066
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002067 b->decaying_flow_count++;
2068 } else if (flow->set == CAKE_SET_SPARSE ||
2069 flow->set == CAKE_SET_SPARSE_WAIT) {
2070 b->sparse_flow_count--;
2071 b->decaying_flow_count++;
2072 }
2073 flow->set = CAKE_SET_DECAYING;
2074 } else {
2075 /* remove empty queue from the flowchain */
2076 list_del_init(&flow->flowchain);
2077 if (flow->set == CAKE_SET_SPARSE ||
2078 flow->set == CAKE_SET_SPARSE_WAIT)
2079 b->sparse_flow_count--;
George Amanakis71263992019-03-01 16:04:05 +01002080 else if (flow->set == CAKE_SET_BULK) {
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002081 b->bulk_flow_count--;
George Amanakis71263992019-03-01 16:04:05 +01002082
2083 if (cake_dsrc(q->flow_mode))
2084 srchost->srchost_bulk_flow_count--;
2085
2086 if (cake_ddst(q->flow_mode))
2087 dsthost->dsthost_bulk_flow_count--;
2088
2089 } else
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002090 b->decaying_flow_count--;
2091
2092 flow->set = CAKE_SET_NONE;
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002093 }
2094 goto begin;
2095 }
2096
2097 /* Last packet in queue may be marked, shouldn't be dropped */
Toke Høiland-Jørgensen7298de92018-07-06 17:37:19 +02002098 if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb,
2099 (b->bulk_flow_count *
2100 !!(q->rate_flags &
2101 CAKE_FLAG_INGRESS))) ||
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002102 !flow->head)
2103 break;
2104
Toke Høiland-Jørgensen7298de92018-07-06 17:37:19 +02002105 /* drop this packet, get another one */
2106 if (q->rate_flags & CAKE_FLAG_INGRESS) {
2107 len = cake_advance_shaper(q, b, skb,
2108 now, true);
2109 flow->deficit -= len;
2110 b->tin_deficit -= len;
2111 }
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002112 flow->dropped++;
2113 b->tin_dropped++;
2114 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
2115 qdisc_qstats_drop(sch);
2116 kfree_skb(skb);
Toke Høiland-Jørgensen7298de92018-07-06 17:37:19 +02002117 if (q->rate_flags & CAKE_FLAG_INGRESS)
2118 goto retry;
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002119 }
2120
2121 b->tin_ecn_mark += !!flow->cvars.ecn_marked;
2122 qdisc_bstats_update(sch, skb);
2123
2124 /* collect delay stats */
2125 delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
2126 b->avge_delay = cake_ewma(b->avge_delay, delay, 8);
2127 b->peak_delay = cake_ewma(b->peak_delay, delay,
2128 delay > b->peak_delay ? 2 : 8);
2129 b->base_delay = cake_ewma(b->base_delay, delay,
2130 delay < b->base_delay ? 2 : 8);
2131
2132 len = cake_advance_shaper(q, b, skb, now, false);
2133 flow->deficit -= len;
2134 b->tin_deficit -= len;
2135
2136 if (ktime_after(q->time_next_packet, now) && sch->q.qlen) {
2137 u64 next = min(ktime_to_ns(q->time_next_packet),
2138 ktime_to_ns(q->failsafe_next_packet));
2139
2140 qdisc_watchdog_schedule_ns(&q->watchdog, next);
2141 } else if (!sch->q.qlen) {
2142 int i;
2143
2144 for (i = 0; i < q->tin_cnt; i++) {
2145 if (q->tins[i].decaying_flow_count) {
2146 ktime_t next = \
2147 ktime_add_ns(now,
2148 q->tins[i].cparams.target);
2149
2150 qdisc_watchdog_schedule_ns(&q->watchdog,
2151 ktime_to_ns(next));
2152 break;
2153 }
2154 }
2155 }
2156
2157 if (q->overflow_timeout)
2158 q->overflow_timeout--;
2159
2160 return skb;
2161}
2162
2163static void cake_reset(struct Qdisc *sch)
2164{
2165 u32 c;
2166
2167 for (c = 0; c < CAKE_MAX_TINS; c++)
2168 cake_clear_tin(sch, c);
2169}
2170
2171static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = {
2172 [TCA_CAKE_BASE_RATE64] = { .type = NLA_U64 },
2173 [TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 },
2174 [TCA_CAKE_ATM] = { .type = NLA_U32 },
2175 [TCA_CAKE_FLOW_MODE] = { .type = NLA_U32 },
2176 [TCA_CAKE_OVERHEAD] = { .type = NLA_S32 },
2177 [TCA_CAKE_RTT] = { .type = NLA_U32 },
2178 [TCA_CAKE_TARGET] = { .type = NLA_U32 },
2179 [TCA_CAKE_AUTORATE] = { .type = NLA_U32 },
2180 [TCA_CAKE_MEMORY] = { .type = NLA_U32 },
2181 [TCA_CAKE_NAT] = { .type = NLA_U32 },
2182 [TCA_CAKE_RAW] = { .type = NLA_U32 },
2183 [TCA_CAKE_WASH] = { .type = NLA_U32 },
2184 [TCA_CAKE_MPU] = { .type = NLA_U32 },
2185 [TCA_CAKE_INGRESS] = { .type = NLA_U32 },
2186 [TCA_CAKE_ACK_FILTER] = { .type = NLA_U32 },
Toke Høiland-Jørgenseneab2fc82019-03-14 23:08:22 +01002187 [TCA_CAKE_FWMARK] = { .type = NLA_U32 },
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002188};
2189
2190static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu,
2191 u64 target_ns, u64 rtt_est_ns)
2192{
2193 /* convert byte-rate into time-per-byte
2194 * so it will always unwedge in reasonable time.
2195 */
2196 static const u64 MIN_RATE = 64;
2197 u32 byte_target = mtu;
2198 u64 byte_target_ns;
2199 u8 rate_shft = 0;
2200 u64 rate_ns = 0;
2201
2202 b->flow_quantum = 1514;
2203 if (rate) {
2204 b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL);
2205 rate_shft = 34;
2206 rate_ns = ((u64)NSEC_PER_SEC) << rate_shft;
2207 rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate));
2208 while (!!(rate_ns >> 34)) {
2209 rate_ns >>= 1;
2210 rate_shft--;
2211 }
2212 } /* else unlimited, ie. zero delay */
2213
2214 b->tin_rate_bps = rate;
2215 b->tin_rate_ns = rate_ns;
2216 b->tin_rate_shft = rate_shft;
2217
2218 byte_target_ns = (byte_target * rate_ns) >> rate_shft;
2219
2220 b->cparams.target = max((byte_target_ns * 3) / 2, target_ns);
2221 b->cparams.interval = max(rtt_est_ns +
2222 b->cparams.target - target_ns,
2223 b->cparams.target * 2);
2224 b->cparams.mtu_time = byte_target_ns;
2225 b->cparams.p_inc = 1 << 24; /* 1/256 */
2226 b->cparams.p_dec = 1 << 20; /* 1/4096 */
2227}
2228
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +02002229static int cake_config_besteffort(struct Qdisc *sch)
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002230{
2231 struct cake_sched_data *q = qdisc_priv(sch);
2232 struct cake_tin_data *b = &q->tins[0];
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +02002233 u32 mtu = psched_mtu(qdisc_dev(sch));
2234 u64 rate = q->rate_bps;
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002235
2236 q->tin_cnt = 1;
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +02002237
2238 q->tin_index = besteffort;
2239 q->tin_order = normal_order;
2240
2241 cake_set_rate(b, rate, mtu,
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002242 us_to_ns(q->target), us_to_ns(q->interval));
2243 b->tin_quantum_band = 65535;
2244 b->tin_quantum_prio = 65535;
2245
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +02002246 return 0;
2247}
2248
2249static int cake_config_precedence(struct Qdisc *sch)
2250{
2251 /* convert high-level (user visible) parameters into internal format */
2252 struct cake_sched_data *q = qdisc_priv(sch);
2253 u32 mtu = psched_mtu(qdisc_dev(sch));
2254 u64 rate = q->rate_bps;
2255 u32 quantum1 = 256;
2256 u32 quantum2 = 256;
2257 u32 i;
2258
2259 q->tin_cnt = 8;
2260 q->tin_index = precedence;
2261 q->tin_order = normal_order;
2262
2263 for (i = 0; i < q->tin_cnt; i++) {
2264 struct cake_tin_data *b = &q->tins[i];
2265
2266 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2267 us_to_ns(q->interval));
2268
2269 b->tin_quantum_prio = max_t(u16, 1U, quantum1);
2270 b->tin_quantum_band = max_t(u16, 1U, quantum2);
2271
2272 /* calculate next class's parameters */
2273 rate *= 7;
2274 rate >>= 3;
2275
2276 quantum1 *= 3;
2277 quantum1 >>= 1;
2278
2279 quantum2 *= 7;
2280 quantum2 >>= 3;
2281 }
2282
2283 return 0;
2284}
2285
2286/* List of known Diffserv codepoints:
2287 *
2288 * Least Effort (CS1)
2289 * Best Effort (CS0)
2290 * Max Reliability & LLT "Lo" (TOS1)
2291 * Max Throughput (TOS2)
2292 * Min Delay (TOS4)
2293 * LLT "La" (TOS5)
2294 * Assured Forwarding 1 (AF1x) - x3
2295 * Assured Forwarding 2 (AF2x) - x3
2296 * Assured Forwarding 3 (AF3x) - x3
2297 * Assured Forwarding 4 (AF4x) - x3
2298 * Precedence Class 2 (CS2)
2299 * Precedence Class 3 (CS3)
2300 * Precedence Class 4 (CS4)
2301 * Precedence Class 5 (CS5)
2302 * Precedence Class 6 (CS6)
2303 * Precedence Class 7 (CS7)
2304 * Voice Admit (VA)
2305 * Expedited Forwarding (EF)
2306
2307 * Total 25 codepoints.
2308 */
2309
2310/* List of traffic classes in RFC 4594:
2311 * (roughly descending order of contended priority)
2312 * (roughly ascending order of uncontended throughput)
2313 *
2314 * Network Control (CS6,CS7) - routing traffic
2315 * Telephony (EF,VA) - aka. VoIP streams
2316 * Signalling (CS5) - VoIP setup
2317 * Multimedia Conferencing (AF4x) - aka. video calls
2318 * Realtime Interactive (CS4) - eg. games
2319 * Multimedia Streaming (AF3x) - eg. YouTube, NetFlix, Twitch
2320 * Broadcast Video (CS3)
2321 * Low Latency Data (AF2x,TOS4) - eg. database
2322 * Ops, Admin, Management (CS2,TOS1) - eg. ssh
2323 * Standard Service (CS0 & unrecognised codepoints)
2324 * High Throughput Data (AF1x,TOS2) - eg. web traffic
2325 * Low Priority Data (CS1) - eg. BitTorrent
2326
2327 * Total 12 traffic classes.
2328 */
2329
2330static int cake_config_diffserv8(struct Qdisc *sch)
2331{
2332/* Pruned list of traffic classes for typical applications:
2333 *
2334 * Network Control (CS6, CS7)
2335 * Minimum Latency (EF, VA, CS5, CS4)
2336 * Interactive Shell (CS2, TOS1)
2337 * Low Latency Transactions (AF2x, TOS4)
2338 * Video Streaming (AF4x, AF3x, CS3)
2339 * Bog Standard (CS0 etc.)
2340 * High Throughput (AF1x, TOS2)
2341 * Background Traffic (CS1)
2342 *
2343 * Total 8 traffic classes.
2344 */
2345
2346 struct cake_sched_data *q = qdisc_priv(sch);
2347 u32 mtu = psched_mtu(qdisc_dev(sch));
2348 u64 rate = q->rate_bps;
2349 u32 quantum1 = 256;
2350 u32 quantum2 = 256;
2351 u32 i;
2352
2353 q->tin_cnt = 8;
2354
2355 /* codepoint to class mapping */
2356 q->tin_index = diffserv8;
2357 q->tin_order = normal_order;
2358
2359 /* class characteristics */
2360 for (i = 0; i < q->tin_cnt; i++) {
2361 struct cake_tin_data *b = &q->tins[i];
2362
2363 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2364 us_to_ns(q->interval));
2365
2366 b->tin_quantum_prio = max_t(u16, 1U, quantum1);
2367 b->tin_quantum_band = max_t(u16, 1U, quantum2);
2368
2369 /* calculate next class's parameters */
2370 rate *= 7;
2371 rate >>= 3;
2372
2373 quantum1 *= 3;
2374 quantum1 >>= 1;
2375
2376 quantum2 *= 7;
2377 quantum2 >>= 3;
2378 }
2379
2380 return 0;
2381}
2382
2383static int cake_config_diffserv4(struct Qdisc *sch)
2384{
2385/* Further pruned list of traffic classes for four-class system:
2386 *
2387 * Latency Sensitive (CS7, CS6, EF, VA, CS5, CS4)
2388 * Streaming Media (AF4x, AF3x, CS3, AF2x, TOS4, CS2, TOS1)
2389 * Best Effort (CS0, AF1x, TOS2, and those not specified)
2390 * Background Traffic (CS1)
2391 *
2392 * Total 4 traffic classes.
2393 */
2394
2395 struct cake_sched_data *q = qdisc_priv(sch);
2396 u32 mtu = psched_mtu(qdisc_dev(sch));
2397 u64 rate = q->rate_bps;
2398 u32 quantum = 1024;
2399
2400 q->tin_cnt = 4;
2401
2402 /* codepoint to class mapping */
2403 q->tin_index = diffserv4;
2404 q->tin_order = bulk_order;
2405
2406 /* class characteristics */
2407 cake_set_rate(&q->tins[0], rate, mtu,
2408 us_to_ns(q->target), us_to_ns(q->interval));
2409 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2410 us_to_ns(q->target), us_to_ns(q->interval));
2411 cake_set_rate(&q->tins[2], rate >> 1, mtu,
2412 us_to_ns(q->target), us_to_ns(q->interval));
2413 cake_set_rate(&q->tins[3], rate >> 2, mtu,
2414 us_to_ns(q->target), us_to_ns(q->interval));
2415
2416 /* priority weights */
2417 q->tins[0].tin_quantum_prio = quantum;
2418 q->tins[1].tin_quantum_prio = quantum >> 4;
2419 q->tins[2].tin_quantum_prio = quantum << 2;
2420 q->tins[3].tin_quantum_prio = quantum << 4;
2421
2422 /* bandwidth-sharing weights */
2423 q->tins[0].tin_quantum_band = quantum;
2424 q->tins[1].tin_quantum_band = quantum >> 4;
2425 q->tins[2].tin_quantum_band = quantum >> 1;
2426 q->tins[3].tin_quantum_band = quantum >> 2;
2427
2428 return 0;
2429}
2430
2431static int cake_config_diffserv3(struct Qdisc *sch)
2432{
2433/* Simplified Diffserv structure with 3 tins.
2434 * Low Priority (CS1)
2435 * Best Effort
2436 * Latency Sensitive (TOS4, VA, EF, CS6, CS7)
2437 */
2438 struct cake_sched_data *q = qdisc_priv(sch);
2439 u32 mtu = psched_mtu(qdisc_dev(sch));
2440 u64 rate = q->rate_bps;
2441 u32 quantum = 1024;
2442
2443 q->tin_cnt = 3;
2444
2445 /* codepoint to class mapping */
2446 q->tin_index = diffserv3;
2447 q->tin_order = bulk_order;
2448
2449 /* class characteristics */
2450 cake_set_rate(&q->tins[0], rate, mtu,
2451 us_to_ns(q->target), us_to_ns(q->interval));
2452 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2453 us_to_ns(q->target), us_to_ns(q->interval));
2454 cake_set_rate(&q->tins[2], rate >> 2, mtu,
2455 us_to_ns(q->target), us_to_ns(q->interval));
2456
2457 /* priority weights */
2458 q->tins[0].tin_quantum_prio = quantum;
2459 q->tins[1].tin_quantum_prio = quantum >> 4;
2460 q->tins[2].tin_quantum_prio = quantum << 4;
2461
2462 /* bandwidth-sharing weights */
2463 q->tins[0].tin_quantum_band = quantum;
2464 q->tins[1].tin_quantum_band = quantum >> 4;
2465 q->tins[2].tin_quantum_band = quantum >> 2;
2466
2467 return 0;
2468}
2469
2470static void cake_reconfigure(struct Qdisc *sch)
2471{
2472 struct cake_sched_data *q = qdisc_priv(sch);
2473 int c, ft;
2474
2475 switch (q->tin_mode) {
2476 case CAKE_DIFFSERV_BESTEFFORT:
2477 ft = cake_config_besteffort(sch);
2478 break;
2479
2480 case CAKE_DIFFSERV_PRECEDENCE:
2481 ft = cake_config_precedence(sch);
2482 break;
2483
2484 case CAKE_DIFFSERV_DIFFSERV8:
2485 ft = cake_config_diffserv8(sch);
2486 break;
2487
2488 case CAKE_DIFFSERV_DIFFSERV4:
2489 ft = cake_config_diffserv4(sch);
2490 break;
2491
2492 case CAKE_DIFFSERV_DIFFSERV3:
2493 default:
2494 ft = cake_config_diffserv3(sch);
2495 break;
2496 }
2497
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002498 for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) {
2499 cake_clear_tin(sch, c);
2500 q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time;
2501 }
2502
2503 q->rate_ns = q->tins[ft].tin_rate_ns;
2504 q->rate_shft = q->tins[ft].tin_rate_shft;
2505
2506 if (q->buffer_config_limit) {
2507 q->buffer_limit = q->buffer_config_limit;
2508 } else if (q->rate_bps) {
2509 u64 t = q->rate_bps * q->interval;
2510
2511 do_div(t, USEC_PER_SEC / 4);
2512 q->buffer_limit = max_t(u32, t, 4U << 20);
2513 } else {
2514 q->buffer_limit = ~0;
2515 }
2516
2517 sch->flags &= ~TCQ_F_CAN_BYPASS;
2518
2519 q->buffer_limit = min(q->buffer_limit,
2520 max(sch->limit * psched_mtu(qdisc_dev(sch)),
2521 q->buffer_config_limit));
2522}
2523
2524static int cake_change(struct Qdisc *sch, struct nlattr *opt,
2525 struct netlink_ext_ack *extack)
2526{
2527 struct cake_sched_data *q = qdisc_priv(sch);
2528 struct nlattr *tb[TCA_CAKE_MAX + 1];
2529 int err;
2530
2531 if (!opt)
2532 return -EINVAL;
2533
2534 err = nla_parse_nested(tb, TCA_CAKE_MAX, opt, cake_policy, extack);
2535 if (err < 0)
2536 return err;
2537
Toke Høiland-Jørgensenea825112018-07-06 17:37:19 +02002538 if (tb[TCA_CAKE_NAT]) {
2539#if IS_ENABLED(CONFIG_NF_CONNTRACK)
2540 q->flow_mode &= ~CAKE_FLOW_NAT_FLAG;
2541 q->flow_mode |= CAKE_FLOW_NAT_FLAG *
2542 !!nla_get_u32(tb[TCA_CAKE_NAT]);
2543#else
2544 NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT],
2545 "No conntrack support in kernel");
2546 return -EOPNOTSUPP;
2547#endif
2548 }
2549
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002550 if (tb[TCA_CAKE_BASE_RATE64])
2551 q->rate_bps = nla_get_u64(tb[TCA_CAKE_BASE_RATE64]);
2552
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +02002553 if (tb[TCA_CAKE_DIFFSERV_MODE])
2554 q->tin_mode = nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]);
2555
2556 if (tb[TCA_CAKE_WASH]) {
2557 if (!!nla_get_u32(tb[TCA_CAKE_WASH]))
2558 q->rate_flags |= CAKE_FLAG_WASH;
2559 else
2560 q->rate_flags &= ~CAKE_FLAG_WASH;
2561 }
2562
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002563 if (tb[TCA_CAKE_FLOW_MODE])
Toke Høiland-Jørgensenea825112018-07-06 17:37:19 +02002564 q->flow_mode = ((q->flow_mode & CAKE_FLOW_NAT_FLAG) |
2565 (nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) &
2566 CAKE_FLOW_MASK));
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002567
Toke Høiland-Jørgensena729b7f2018-07-06 17:37:19 +02002568 if (tb[TCA_CAKE_ATM])
2569 q->atm_mode = nla_get_u32(tb[TCA_CAKE_ATM]);
2570
2571 if (tb[TCA_CAKE_OVERHEAD]) {
2572 q->rate_overhead = nla_get_s32(tb[TCA_CAKE_OVERHEAD]);
2573 q->rate_flags |= CAKE_FLAG_OVERHEAD;
2574
2575 q->max_netlen = 0;
2576 q->max_adjlen = 0;
2577 q->min_netlen = ~0;
2578 q->min_adjlen = ~0;
2579 }
2580
2581 if (tb[TCA_CAKE_RAW]) {
2582 q->rate_flags &= ~CAKE_FLAG_OVERHEAD;
2583
2584 q->max_netlen = 0;
2585 q->max_adjlen = 0;
2586 q->min_netlen = ~0;
2587 q->min_adjlen = ~0;
2588 }
2589
2590 if (tb[TCA_CAKE_MPU])
2591 q->rate_mpu = nla_get_u32(tb[TCA_CAKE_MPU]);
2592
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002593 if (tb[TCA_CAKE_RTT]) {
2594 q->interval = nla_get_u32(tb[TCA_CAKE_RTT]);
2595
2596 if (!q->interval)
2597 q->interval = 1;
2598 }
2599
2600 if (tb[TCA_CAKE_TARGET]) {
2601 q->target = nla_get_u32(tb[TCA_CAKE_TARGET]);
2602
2603 if (!q->target)
2604 q->target = 1;
2605 }
2606
Toke Høiland-Jørgensen7298de92018-07-06 17:37:19 +02002607 if (tb[TCA_CAKE_AUTORATE]) {
2608 if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE]))
2609 q->rate_flags |= CAKE_FLAG_AUTORATE_INGRESS;
2610 else
2611 q->rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS;
2612 }
2613
2614 if (tb[TCA_CAKE_INGRESS]) {
2615 if (!!nla_get_u32(tb[TCA_CAKE_INGRESS]))
2616 q->rate_flags |= CAKE_FLAG_INGRESS;
2617 else
2618 q->rate_flags &= ~CAKE_FLAG_INGRESS;
2619 }
2620
Toke Høiland-Jørgensen8b713882018-07-06 17:37:19 +02002621 if (tb[TCA_CAKE_ACK_FILTER])
2622 q->ack_filter = nla_get_u32(tb[TCA_CAKE_ACK_FILTER]);
2623
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002624 if (tb[TCA_CAKE_MEMORY])
2625 q->buffer_config_limit = nla_get_u32(tb[TCA_CAKE_MEMORY]);
2626
Dave Taht2db6dc22018-07-26 19:45:10 -07002627 if (tb[TCA_CAKE_SPLIT_GSO]) {
2628 if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO]))
2629 q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2630 else
2631 q->rate_flags &= ~CAKE_FLAG_SPLIT_GSO;
2632 }
Toke Høiland-Jørgensen0c850342018-07-06 17:37:19 +02002633
Kevin Darbyshire-Bryant0b5c7ef2019-03-01 16:04:05 +01002634 if (tb[TCA_CAKE_FWMARK]) {
Toke Høiland-Jørgenseneab2fc82019-03-14 23:08:22 +01002635 q->fwmark_mask = nla_get_u32(tb[TCA_CAKE_FWMARK]);
2636 q->fwmark_shft = q->fwmark_mask ? __ffs(q->fwmark_mask) : 0;
Kevin Darbyshire-Bryant0b5c7ef2019-03-01 16:04:05 +01002637 }
2638
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002639 if (q->tins) {
2640 sch_tree_lock(sch);
2641 cake_reconfigure(sch);
2642 sch_tree_unlock(sch);
2643 }
2644
2645 return 0;
2646}
2647
2648static void cake_destroy(struct Qdisc *sch)
2649{
2650 struct cake_sched_data *q = qdisc_priv(sch);
2651
2652 qdisc_watchdog_cancel(&q->watchdog);
2653 tcf_block_put(q->block);
2654 kvfree(q->tins);
2655}
2656
2657static int cake_init(struct Qdisc *sch, struct nlattr *opt,
2658 struct netlink_ext_ack *extack)
2659{
2660 struct cake_sched_data *q = qdisc_priv(sch);
2661 int i, j, err;
2662
2663 sch->limit = 10240;
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +02002664 q->tin_mode = CAKE_DIFFSERV_DIFFSERV3;
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002665 q->flow_mode = CAKE_FLOW_TRIPLE;
2666
2667 q->rate_bps = 0; /* unlimited by default */
2668
2669 q->interval = 100000; /* 100ms default */
2670 q->target = 5000; /* 5ms: codel RFC argues
2671 * for 5 to 10% of interval
2672 */
Dave Taht2db6dc22018-07-26 19:45:10 -07002673 q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002674 q->cur_tin = 0;
2675 q->cur_flow = 0;
2676
2677 qdisc_watchdog_init(&q->watchdog, sch);
2678
2679 if (opt) {
2680 int err = cake_change(sch, opt, extack);
2681
2682 if (err)
2683 return err;
2684 }
2685
2686 err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
2687 if (err)
2688 return err;
2689
2690 quantum_div[0] = ~0;
2691 for (i = 1; i <= CAKE_QUEUES; i++)
2692 quantum_div[i] = 65535 / i;
2693
Kees Cook329e0982018-10-05 16:21:46 -07002694 q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data),
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002695 GFP_KERNEL);
2696 if (!q->tins)
2697 goto nomem;
2698
2699 for (i = 0; i < CAKE_MAX_TINS; i++) {
2700 struct cake_tin_data *b = q->tins + i;
2701
2702 INIT_LIST_HEAD(&b->new_flows);
2703 INIT_LIST_HEAD(&b->old_flows);
2704 INIT_LIST_HEAD(&b->decaying_flows);
2705 b->sparse_flow_count = 0;
2706 b->bulk_flow_count = 0;
2707 b->decaying_flow_count = 0;
2708
2709 for (j = 0; j < CAKE_QUEUES; j++) {
2710 struct cake_flow *flow = b->flows + j;
2711 u32 k = j * CAKE_MAX_TINS + i;
2712
2713 INIT_LIST_HEAD(&flow->flowchain);
2714 cobalt_vars_init(&flow->cvars);
2715
2716 q->overflow_heap[k].t = i;
2717 q->overflow_heap[k].b = j;
2718 b->overflow_idx[j] = k;
2719 }
2720 }
2721
2722 cake_reconfigure(sch);
2723 q->avg_peak_bandwidth = q->rate_bps;
2724 q->min_netlen = ~0;
2725 q->min_adjlen = ~0;
2726 return 0;
2727
2728nomem:
2729 cake_destroy(sch);
2730 return -ENOMEM;
2731}
2732
2733static int cake_dump(struct Qdisc *sch, struct sk_buff *skb)
2734{
2735 struct cake_sched_data *q = qdisc_priv(sch);
2736 struct nlattr *opts;
2737
2738 opts = nla_nest_start(skb, TCA_OPTIONS);
2739 if (!opts)
2740 goto nla_put_failure;
2741
2742 if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64, q->rate_bps,
2743 TCA_CAKE_PAD))
2744 goto nla_put_failure;
2745
2746 if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE,
2747 q->flow_mode & CAKE_FLOW_MASK))
2748 goto nla_put_failure;
2749
2750 if (nla_put_u32(skb, TCA_CAKE_RTT, q->interval))
2751 goto nla_put_failure;
2752
2753 if (nla_put_u32(skb, TCA_CAKE_TARGET, q->target))
2754 goto nla_put_failure;
2755
2756 if (nla_put_u32(skb, TCA_CAKE_MEMORY, q->buffer_config_limit))
2757 goto nla_put_failure;
2758
Toke Høiland-Jørgensen7298de92018-07-06 17:37:19 +02002759 if (nla_put_u32(skb, TCA_CAKE_AUTORATE,
2760 !!(q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS)))
2761 goto nla_put_failure;
2762
2763 if (nla_put_u32(skb, TCA_CAKE_INGRESS,
2764 !!(q->rate_flags & CAKE_FLAG_INGRESS)))
2765 goto nla_put_failure;
2766
Toke Høiland-Jørgensen8b713882018-07-06 17:37:19 +02002767 if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, q->ack_filter))
2768 goto nla_put_failure;
2769
Toke Høiland-Jørgensenea825112018-07-06 17:37:19 +02002770 if (nla_put_u32(skb, TCA_CAKE_NAT,
2771 !!(q->flow_mode & CAKE_FLOW_NAT_FLAG)))
2772 goto nla_put_failure;
2773
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +02002774 if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, q->tin_mode))
2775 goto nla_put_failure;
2776
2777 if (nla_put_u32(skb, TCA_CAKE_WASH,
2778 !!(q->rate_flags & CAKE_FLAG_WASH)))
2779 goto nla_put_failure;
2780
Toke Høiland-Jørgensena729b7f2018-07-06 17:37:19 +02002781 if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, q->rate_overhead))
2782 goto nla_put_failure;
2783
2784 if (!(q->rate_flags & CAKE_FLAG_OVERHEAD))
2785 if (nla_put_u32(skb, TCA_CAKE_RAW, 0))
2786 goto nla_put_failure;
2787
2788 if (nla_put_u32(skb, TCA_CAKE_ATM, q->atm_mode))
2789 goto nla_put_failure;
2790
2791 if (nla_put_u32(skb, TCA_CAKE_MPU, q->rate_mpu))
2792 goto nla_put_failure;
2793
Toke Høiland-Jørgensen0c850342018-07-06 17:37:19 +02002794 if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO,
2795 !!(q->rate_flags & CAKE_FLAG_SPLIT_GSO)))
2796 goto nla_put_failure;
2797
Toke Høiland-Jørgenseneab2fc82019-03-14 23:08:22 +01002798 if (nla_put_u32(skb, TCA_CAKE_FWMARK, q->fwmark_mask))
Kevin Darbyshire-Bryant0b5c7ef2019-03-01 16:04:05 +01002799 goto nla_put_failure;
2800
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002801 return nla_nest_end(skb, opts);
2802
2803nla_put_failure:
2804 return -1;
2805}
2806
2807static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
2808{
2809 struct nlattr *stats = nla_nest_start(d->skb, TCA_STATS_APP);
2810 struct cake_sched_data *q = qdisc_priv(sch);
2811 struct nlattr *tstats, *ts;
2812 int i;
2813
2814 if (!stats)
2815 return -1;
2816
2817#define PUT_STAT_U32(attr, data) do { \
2818 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2819 goto nla_put_failure; \
2820 } while (0)
2821#define PUT_STAT_U64(attr, data) do { \
2822 if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \
2823 data, TCA_CAKE_STATS_PAD)) \
2824 goto nla_put_failure; \
2825 } while (0)
2826
2827 PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth);
2828 PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit);
2829 PUT_STAT_U32(MEMORY_USED, q->buffer_max_used);
2830 PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16));
2831 PUT_STAT_U32(MAX_NETLEN, q->max_netlen);
2832 PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen);
2833 PUT_STAT_U32(MIN_NETLEN, q->min_netlen);
2834 PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen);
2835
2836#undef PUT_STAT_U32
2837#undef PUT_STAT_U64
2838
2839 tstats = nla_nest_start(d->skb, TCA_CAKE_STATS_TIN_STATS);
2840 if (!tstats)
2841 goto nla_put_failure;
2842
2843#define PUT_TSTAT_U32(attr, data) do { \
2844 if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \
2845 goto nla_put_failure; \
2846 } while (0)
2847#define PUT_TSTAT_U64(attr, data) do { \
2848 if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \
2849 data, TCA_CAKE_TIN_STATS_PAD)) \
2850 goto nla_put_failure; \
2851 } while (0)
2852
2853 for (i = 0; i < q->tin_cnt; i++) {
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +02002854 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002855
2856 ts = nla_nest_start(d->skb, i + 1);
2857 if (!ts)
2858 goto nla_put_failure;
2859
2860 PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps);
2861 PUT_TSTAT_U64(SENT_BYTES64, b->bytes);
2862 PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog);
2863
2864 PUT_TSTAT_U32(TARGET_US,
2865 ktime_to_us(ns_to_ktime(b->cparams.target)));
2866 PUT_TSTAT_U32(INTERVAL_US,
2867 ktime_to_us(ns_to_ktime(b->cparams.interval)));
2868
2869 PUT_TSTAT_U32(SENT_PACKETS, b->packets);
2870 PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped);
2871 PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark);
2872 PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops);
2873
2874 PUT_TSTAT_U32(PEAK_DELAY_US,
2875 ktime_to_us(ns_to_ktime(b->peak_delay)));
2876 PUT_TSTAT_U32(AVG_DELAY_US,
2877 ktime_to_us(ns_to_ktime(b->avge_delay)));
2878 PUT_TSTAT_U32(BASE_DELAY_US,
2879 ktime_to_us(ns_to_ktime(b->base_delay)));
2880
2881 PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits);
2882 PUT_TSTAT_U32(WAY_MISSES, b->way_misses);
2883 PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions);
2884
2885 PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count +
2886 b->decaying_flow_count);
2887 PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count);
2888 PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count);
2889 PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen);
2890
2891 PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum);
2892 nla_nest_end(d->skb, ts);
2893 }
2894
2895#undef PUT_TSTAT_U32
2896#undef PUT_TSTAT_U64
2897
2898 nla_nest_end(d->skb, tstats);
2899 return nla_nest_end(d->skb, stats);
2900
2901nla_put_failure:
2902 nla_nest_cancel(d->skb, stats);
2903 return -1;
2904}
2905
2906static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg)
2907{
2908 return NULL;
2909}
2910
2911static unsigned long cake_find(struct Qdisc *sch, u32 classid)
2912{
2913 return 0;
2914}
2915
2916static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent,
2917 u32 classid)
2918{
2919 return 0;
2920}
2921
2922static void cake_unbind(struct Qdisc *q, unsigned long cl)
2923{
2924}
2925
2926static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl,
2927 struct netlink_ext_ack *extack)
2928{
2929 struct cake_sched_data *q = qdisc_priv(sch);
2930
2931 if (cl)
2932 return NULL;
2933 return q->block;
2934}
2935
2936static int cake_dump_class(struct Qdisc *sch, unsigned long cl,
2937 struct sk_buff *skb, struct tcmsg *tcm)
2938{
2939 tcm->tcm_handle |= TC_H_MIN(cl);
2940 return 0;
2941}
2942
2943static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2944 struct gnet_dump *d)
2945{
2946 struct cake_sched_data *q = qdisc_priv(sch);
2947 const struct cake_flow *flow = NULL;
2948 struct gnet_stats_queue qs = { 0 };
2949 struct nlattr *stats;
2950 u32 idx = cl - 1;
2951
2952 if (idx < CAKE_QUEUES * q->tin_cnt) {
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +02002953 const struct cake_tin_data *b = \
2954 &q->tins[q->tin_order[idx / CAKE_QUEUES]];
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02002955 const struct sk_buff *skb;
2956
2957 flow = &b->flows[idx % CAKE_QUEUES];
2958
2959 if (flow->head) {
2960 sch_tree_lock(sch);
2961 skb = flow->head;
2962 while (skb) {
2963 qs.qlen++;
2964 skb = skb->next;
2965 }
2966 sch_tree_unlock(sch);
2967 }
2968 qs.backlog = b->backlogs[idx % CAKE_QUEUES];
2969 qs.drops = flow->dropped;
2970 }
2971 if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
2972 return -1;
2973 if (flow) {
2974 ktime_t now = ktime_get();
2975
2976 stats = nla_nest_start(d->skb, TCA_STATS_APP);
2977 if (!stats)
2978 return -1;
2979
2980#define PUT_STAT_U32(attr, data) do { \
2981 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2982 goto nla_put_failure; \
2983 } while (0)
2984#define PUT_STAT_S32(attr, data) do { \
2985 if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2986 goto nla_put_failure; \
2987 } while (0)
2988
2989 PUT_STAT_S32(DEFICIT, flow->deficit);
2990 PUT_STAT_U32(DROPPING, flow->cvars.dropping);
2991 PUT_STAT_U32(COBALT_COUNT, flow->cvars.count);
2992 PUT_STAT_U32(P_DROP, flow->cvars.p_drop);
2993 if (flow->cvars.p_drop) {
2994 PUT_STAT_S32(BLUE_TIMER_US,
2995 ktime_to_us(
2996 ktime_sub(now,
2997 flow->cvars.blue_timer)));
2998 }
2999 if (flow->cvars.dropping) {
3000 PUT_STAT_S32(DROP_NEXT_US,
3001 ktime_to_us(
3002 ktime_sub(now,
3003 flow->cvars.drop_next)));
3004 }
3005
3006 if (nla_nest_end(d->skb, stats) < 0)
3007 return -1;
3008 }
3009
3010 return 0;
3011
3012nla_put_failure:
3013 nla_nest_cancel(d->skb, stats);
3014 return -1;
3015}
3016
3017static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg)
3018{
3019 struct cake_sched_data *q = qdisc_priv(sch);
3020 unsigned int i, j;
3021
3022 if (arg->stop)
3023 return;
3024
3025 for (i = 0; i < q->tin_cnt; i++) {
Toke Høiland-Jørgensen83f8fd62018-07-06 17:37:19 +02003026 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
Toke Høiland-Jørgensen046f6fd2018-07-06 17:37:19 +02003027
3028 for (j = 0; j < CAKE_QUEUES; j++) {
3029 if (list_empty(&b->flows[j].flowchain) ||
3030 arg->count < arg->skip) {
3031 arg->count++;
3032 continue;
3033 }
3034 if (arg->fn(sch, i * CAKE_QUEUES + j + 1, arg) < 0) {
3035 arg->stop = 1;
3036 break;
3037 }
3038 arg->count++;
3039 }
3040 }
3041}
3042
3043static const struct Qdisc_class_ops cake_class_ops = {
3044 .leaf = cake_leaf,
3045 .find = cake_find,
3046 .tcf_block = cake_tcf_block,
3047 .bind_tcf = cake_bind,
3048 .unbind_tcf = cake_unbind,
3049 .dump = cake_dump_class,
3050 .dump_stats = cake_dump_class_stats,
3051 .walk = cake_walk,
3052};
3053
3054static struct Qdisc_ops cake_qdisc_ops __read_mostly = {
3055 .cl_ops = &cake_class_ops,
3056 .id = "cake",
3057 .priv_size = sizeof(struct cake_sched_data),
3058 .enqueue = cake_enqueue,
3059 .dequeue = cake_dequeue,
3060 .peek = qdisc_peek_dequeued,
3061 .init = cake_init,
3062 .reset = cake_reset,
3063 .destroy = cake_destroy,
3064 .change = cake_change,
3065 .dump = cake_dump,
3066 .dump_stats = cake_dump_stats,
3067 .owner = THIS_MODULE,
3068};
3069
3070static int __init cake_module_init(void)
3071{
3072 return register_qdisc(&cake_qdisc_ops);
3073}
3074
3075static void __exit cake_module_exit(void)
3076{
3077 unregister_qdisc(&cake_qdisc_ops);
3078}
3079
3080module_init(cake_module_init)
3081module_exit(cake_module_exit)
3082MODULE_AUTHOR("Jonathan Morton");
3083MODULE_LICENSE("Dual BSD/GPL");
3084MODULE_DESCRIPTION("The CAKE shaper.");