Freeman Liu | 096030e | 2019-10-29 11:42:37 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | // Copyright (C) 2019 Spreadtrum Communications Inc. |
| 3 | |
| 4 | #include <linux/clk.h> |
| 5 | #include <linux/delay.h> |
| 6 | #include <linux/hwspinlock.h> |
| 7 | #include <linux/io.h> |
| 8 | #include <linux/module.h> |
| 9 | #include <linux/nvmem-provider.h> |
| 10 | #include <linux/of_device.h> |
| 11 | #include <linux/platform_device.h> |
| 12 | |
| 13 | #define SPRD_EFUSE_ENABLE 0x20 |
| 14 | #define SPRD_EFUSE_ERR_FLAG 0x24 |
| 15 | #define SPRD_EFUSE_ERR_CLR 0x28 |
| 16 | #define SPRD_EFUSE_MAGIC_NUM 0x2c |
| 17 | #define SPRD_EFUSE_FW_CFG 0x50 |
| 18 | #define SPRD_EFUSE_PW_SWT 0x54 |
| 19 | #define SPRD_EFUSE_MEM(val) (0x1000 + ((val) << 2)) |
| 20 | |
| 21 | #define SPRD_EFUSE_VDD_EN BIT(0) |
| 22 | #define SPRD_EFUSE_AUTO_CHECK_EN BIT(1) |
| 23 | #define SPRD_EFUSE_DOUBLE_EN BIT(2) |
| 24 | #define SPRD_EFUSE_MARGIN_RD_EN BIT(3) |
| 25 | #define SPRD_EFUSE_LOCK_WR_EN BIT(4) |
| 26 | |
| 27 | #define SPRD_EFUSE_ERR_CLR_MASK GENMASK(13, 0) |
| 28 | |
| 29 | #define SPRD_EFUSE_ENK1_ON BIT(0) |
| 30 | #define SPRD_EFUSE_ENK2_ON BIT(1) |
| 31 | #define SPRD_EFUSE_PROG_EN BIT(2) |
| 32 | |
| 33 | #define SPRD_EFUSE_MAGIC_NUMBER 0x8810 |
| 34 | |
| 35 | /* Block width (bytes) definitions */ |
| 36 | #define SPRD_EFUSE_BLOCK_WIDTH 4 |
| 37 | |
| 38 | /* |
| 39 | * The Spreadtrum AP efuse contains 2 parts: normal efuse and secure efuse, |
| 40 | * and we can only access the normal efuse in kernel. So define the normal |
| 41 | * block offset index and normal block numbers. |
| 42 | */ |
| 43 | #define SPRD_EFUSE_NORMAL_BLOCK_NUMS 24 |
| 44 | #define SPRD_EFUSE_NORMAL_BLOCK_OFFSET 72 |
| 45 | |
| 46 | /* Timeout (ms) for the trylock of hardware spinlocks */ |
| 47 | #define SPRD_EFUSE_HWLOCK_TIMEOUT 5000 |
| 48 | |
| 49 | /* |
| 50 | * Since different Spreadtrum SoC chip can have different normal block numbers |
| 51 | * and offset. And some SoC can support block double feature, which means |
| 52 | * when reading or writing data to efuse memory, the controller can save double |
| 53 | * data in case one data become incorrect after a long period. |
| 54 | * |
| 55 | * Thus we should save them in the device data structure. |
| 56 | */ |
| 57 | struct sprd_efuse_variant_data { |
| 58 | u32 blk_nums; |
| 59 | u32 blk_offset; |
| 60 | bool blk_double; |
| 61 | }; |
| 62 | |
| 63 | struct sprd_efuse { |
| 64 | struct device *dev; |
| 65 | struct clk *clk; |
| 66 | struct hwspinlock *hwlock; |
| 67 | struct mutex mutex; |
| 68 | void __iomem *base; |
| 69 | const struct sprd_efuse_variant_data *data; |
| 70 | }; |
| 71 | |
| 72 | static const struct sprd_efuse_variant_data ums312_data = { |
| 73 | .blk_nums = SPRD_EFUSE_NORMAL_BLOCK_NUMS, |
| 74 | .blk_offset = SPRD_EFUSE_NORMAL_BLOCK_OFFSET, |
| 75 | .blk_double = false, |
| 76 | }; |
| 77 | |
| 78 | /* |
| 79 | * On Spreadtrum platform, we have multi-subsystems will access the unique |
| 80 | * efuse controller, so we need one hardware spinlock to synchronize between |
| 81 | * the multiple subsystems. |
| 82 | */ |
| 83 | static int sprd_efuse_lock(struct sprd_efuse *efuse) |
| 84 | { |
| 85 | int ret; |
| 86 | |
| 87 | mutex_lock(&efuse->mutex); |
| 88 | |
| 89 | ret = hwspin_lock_timeout_raw(efuse->hwlock, |
| 90 | SPRD_EFUSE_HWLOCK_TIMEOUT); |
| 91 | if (ret) { |
| 92 | dev_err(efuse->dev, "timeout get the hwspinlock\n"); |
| 93 | mutex_unlock(&efuse->mutex); |
| 94 | return ret; |
| 95 | } |
| 96 | |
| 97 | return 0; |
| 98 | } |
| 99 | |
| 100 | static void sprd_efuse_unlock(struct sprd_efuse *efuse) |
| 101 | { |
| 102 | hwspin_unlock_raw(efuse->hwlock); |
| 103 | mutex_unlock(&efuse->mutex); |
| 104 | } |
| 105 | |
| 106 | static void sprd_efuse_set_prog_power(struct sprd_efuse *efuse, bool en) |
| 107 | { |
| 108 | u32 val = readl(efuse->base + SPRD_EFUSE_PW_SWT); |
| 109 | |
| 110 | if (en) |
| 111 | val &= ~SPRD_EFUSE_ENK2_ON; |
| 112 | else |
| 113 | val &= ~SPRD_EFUSE_ENK1_ON; |
| 114 | |
| 115 | writel(val, efuse->base + SPRD_EFUSE_PW_SWT); |
| 116 | |
| 117 | /* Open or close efuse power need wait 1000us to make power stable. */ |
| 118 | usleep_range(1000, 1200); |
| 119 | |
| 120 | if (en) |
| 121 | val |= SPRD_EFUSE_ENK1_ON; |
| 122 | else |
| 123 | val |= SPRD_EFUSE_ENK2_ON; |
| 124 | |
| 125 | writel(val, efuse->base + SPRD_EFUSE_PW_SWT); |
| 126 | |
| 127 | /* Open or close efuse power need wait 1000us to make power stable. */ |
| 128 | usleep_range(1000, 1200); |
| 129 | } |
| 130 | |
| 131 | static void sprd_efuse_set_read_power(struct sprd_efuse *efuse, bool en) |
| 132 | { |
| 133 | u32 val = readl(efuse->base + SPRD_EFUSE_ENABLE); |
| 134 | |
| 135 | if (en) |
| 136 | val |= SPRD_EFUSE_VDD_EN; |
| 137 | else |
| 138 | val &= ~SPRD_EFUSE_VDD_EN; |
| 139 | |
| 140 | writel(val, efuse->base + SPRD_EFUSE_ENABLE); |
| 141 | |
| 142 | /* Open or close efuse power need wait 1000us to make power stable. */ |
| 143 | usleep_range(1000, 1200); |
| 144 | } |
| 145 | |
| 146 | static void sprd_efuse_set_prog_lock(struct sprd_efuse *efuse, bool en) |
| 147 | { |
| 148 | u32 val = readl(efuse->base + SPRD_EFUSE_ENABLE); |
| 149 | |
| 150 | if (en) |
| 151 | val |= SPRD_EFUSE_LOCK_WR_EN; |
| 152 | else |
| 153 | val &= ~SPRD_EFUSE_LOCK_WR_EN; |
| 154 | |
| 155 | writel(val, efuse->base + SPRD_EFUSE_ENABLE); |
| 156 | } |
| 157 | |
| 158 | static void sprd_efuse_set_auto_check(struct sprd_efuse *efuse, bool en) |
| 159 | { |
| 160 | u32 val = readl(efuse->base + SPRD_EFUSE_ENABLE); |
| 161 | |
| 162 | if (en) |
| 163 | val |= SPRD_EFUSE_AUTO_CHECK_EN; |
| 164 | else |
| 165 | val &= ~SPRD_EFUSE_AUTO_CHECK_EN; |
| 166 | |
| 167 | writel(val, efuse->base + SPRD_EFUSE_ENABLE); |
| 168 | } |
| 169 | |
| 170 | static void sprd_efuse_set_data_double(struct sprd_efuse *efuse, bool en) |
| 171 | { |
| 172 | u32 val = readl(efuse->base + SPRD_EFUSE_ENABLE); |
| 173 | |
| 174 | if (en) |
| 175 | val |= SPRD_EFUSE_DOUBLE_EN; |
| 176 | else |
| 177 | val &= ~SPRD_EFUSE_DOUBLE_EN; |
| 178 | |
| 179 | writel(val, efuse->base + SPRD_EFUSE_ENABLE); |
| 180 | } |
| 181 | |
| 182 | static void sprd_efuse_set_prog_en(struct sprd_efuse *efuse, bool en) |
| 183 | { |
| 184 | u32 val = readl(efuse->base + SPRD_EFUSE_PW_SWT); |
| 185 | |
| 186 | if (en) |
| 187 | val |= SPRD_EFUSE_PROG_EN; |
| 188 | else |
| 189 | val &= ~SPRD_EFUSE_PROG_EN; |
| 190 | |
| 191 | writel(val, efuse->base + SPRD_EFUSE_PW_SWT); |
| 192 | } |
| 193 | |
| 194 | static int sprd_efuse_raw_prog(struct sprd_efuse *efuse, u32 blk, bool doub, |
| 195 | bool lock, u32 *data) |
| 196 | { |
| 197 | u32 status; |
| 198 | int ret = 0; |
| 199 | |
| 200 | /* |
| 201 | * We need set the correct magic number before writing the efuse to |
| 202 | * allow programming, and block other programming until we clear the |
| 203 | * magic number. |
| 204 | */ |
| 205 | writel(SPRD_EFUSE_MAGIC_NUMBER, |
| 206 | efuse->base + SPRD_EFUSE_MAGIC_NUM); |
| 207 | |
| 208 | /* |
| 209 | * Power on the efuse, enable programme and enable double data |
| 210 | * if asked. |
| 211 | */ |
| 212 | sprd_efuse_set_prog_power(efuse, true); |
| 213 | sprd_efuse_set_prog_en(efuse, true); |
| 214 | sprd_efuse_set_data_double(efuse, doub); |
| 215 | |
| 216 | /* |
| 217 | * Enable the auto-check function to validate if the programming is |
| 218 | * successful. |
| 219 | */ |
| 220 | sprd_efuse_set_auto_check(efuse, true); |
| 221 | |
| 222 | writel(*data, efuse->base + SPRD_EFUSE_MEM(blk)); |
| 223 | |
| 224 | /* Disable auto-check and data double after programming */ |
| 225 | sprd_efuse_set_auto_check(efuse, false); |
| 226 | sprd_efuse_set_data_double(efuse, false); |
| 227 | |
| 228 | /* |
| 229 | * Check the efuse error status, if the programming is successful, |
| 230 | * we should lock this efuse block to avoid programming again. |
| 231 | */ |
| 232 | status = readl(efuse->base + SPRD_EFUSE_ERR_FLAG); |
| 233 | if (status) { |
| 234 | dev_err(efuse->dev, |
| 235 | "write error status %d of block %d\n", ret, blk); |
| 236 | |
| 237 | writel(SPRD_EFUSE_ERR_CLR_MASK, |
| 238 | efuse->base + SPRD_EFUSE_ERR_CLR); |
| 239 | ret = -EBUSY; |
| 240 | } else { |
| 241 | sprd_efuse_set_prog_lock(efuse, lock); |
Freeman Liu | c66ebde | 2020-03-23 15:00:03 +0000 | [diff] [blame^] | 242 | writel(0, efuse->base + SPRD_EFUSE_MEM(blk)); |
Freeman Liu | 096030e | 2019-10-29 11:42:37 +0000 | [diff] [blame] | 243 | sprd_efuse_set_prog_lock(efuse, false); |
| 244 | } |
| 245 | |
| 246 | sprd_efuse_set_prog_power(efuse, false); |
| 247 | writel(0, efuse->base + SPRD_EFUSE_MAGIC_NUM); |
| 248 | |
| 249 | return ret; |
| 250 | } |
| 251 | |
| 252 | static int sprd_efuse_raw_read(struct sprd_efuse *efuse, int blk, u32 *val, |
| 253 | bool doub) |
| 254 | { |
| 255 | u32 status; |
| 256 | |
| 257 | /* |
| 258 | * Need power on the efuse before reading data from efuse, and will |
| 259 | * power off the efuse after reading process. |
| 260 | */ |
| 261 | sprd_efuse_set_read_power(efuse, true); |
| 262 | |
| 263 | /* Enable double data if asked */ |
| 264 | sprd_efuse_set_data_double(efuse, doub); |
| 265 | |
| 266 | /* Start to read data from efuse block */ |
| 267 | *val = readl(efuse->base + SPRD_EFUSE_MEM(blk)); |
| 268 | |
| 269 | /* Disable double data */ |
| 270 | sprd_efuse_set_data_double(efuse, false); |
| 271 | |
| 272 | /* Power off the efuse */ |
| 273 | sprd_efuse_set_read_power(efuse, false); |
| 274 | |
| 275 | /* |
| 276 | * Check the efuse error status and clear them if there are some |
| 277 | * errors occurred. |
| 278 | */ |
| 279 | status = readl(efuse->base + SPRD_EFUSE_ERR_FLAG); |
| 280 | if (status) { |
| 281 | dev_err(efuse->dev, |
| 282 | "read error status %d of block %d\n", status, blk); |
| 283 | |
| 284 | writel(SPRD_EFUSE_ERR_CLR_MASK, |
| 285 | efuse->base + SPRD_EFUSE_ERR_CLR); |
| 286 | return -EBUSY; |
| 287 | } |
| 288 | |
| 289 | return 0; |
| 290 | } |
| 291 | |
| 292 | static int sprd_efuse_read(void *context, u32 offset, void *val, size_t bytes) |
| 293 | { |
| 294 | struct sprd_efuse *efuse = context; |
| 295 | bool blk_double = efuse->data->blk_double; |
| 296 | u32 index = offset / SPRD_EFUSE_BLOCK_WIDTH + efuse->data->blk_offset; |
| 297 | u32 blk_offset = (offset % SPRD_EFUSE_BLOCK_WIDTH) * BITS_PER_BYTE; |
| 298 | u32 data; |
| 299 | int ret; |
| 300 | |
| 301 | ret = sprd_efuse_lock(efuse); |
| 302 | if (ret) |
| 303 | return ret; |
| 304 | |
| 305 | ret = clk_prepare_enable(efuse->clk); |
| 306 | if (ret) |
| 307 | goto unlock; |
| 308 | |
| 309 | ret = sprd_efuse_raw_read(efuse, index, &data, blk_double); |
| 310 | if (!ret) { |
| 311 | data >>= blk_offset; |
| 312 | memcpy(val, &data, bytes); |
| 313 | } |
| 314 | |
| 315 | clk_disable_unprepare(efuse->clk); |
| 316 | |
| 317 | unlock: |
| 318 | sprd_efuse_unlock(efuse); |
| 319 | return ret; |
| 320 | } |
| 321 | |
| 322 | static int sprd_efuse_write(void *context, u32 offset, void *val, size_t bytes) |
| 323 | { |
| 324 | struct sprd_efuse *efuse = context; |
| 325 | int ret; |
| 326 | |
| 327 | ret = sprd_efuse_lock(efuse); |
| 328 | if (ret) |
| 329 | return ret; |
| 330 | |
| 331 | ret = clk_prepare_enable(efuse->clk); |
| 332 | if (ret) |
| 333 | goto unlock; |
| 334 | |
| 335 | ret = sprd_efuse_raw_prog(efuse, offset, false, false, val); |
| 336 | |
| 337 | clk_disable_unprepare(efuse->clk); |
| 338 | |
| 339 | unlock: |
| 340 | sprd_efuse_unlock(efuse); |
| 341 | return ret; |
| 342 | } |
| 343 | |
| 344 | static int sprd_efuse_probe(struct platform_device *pdev) |
| 345 | { |
| 346 | struct device_node *np = pdev->dev.of_node; |
| 347 | struct nvmem_device *nvmem; |
| 348 | struct nvmem_config econfig = { }; |
| 349 | struct sprd_efuse *efuse; |
| 350 | const struct sprd_efuse_variant_data *pdata; |
| 351 | int ret; |
| 352 | |
| 353 | pdata = of_device_get_match_data(&pdev->dev); |
| 354 | if (!pdata) { |
| 355 | dev_err(&pdev->dev, "No matching driver data found\n"); |
| 356 | return -EINVAL; |
| 357 | } |
| 358 | |
| 359 | efuse = devm_kzalloc(&pdev->dev, sizeof(*efuse), GFP_KERNEL); |
| 360 | if (!efuse) |
| 361 | return -ENOMEM; |
| 362 | |
| 363 | efuse->base = devm_platform_ioremap_resource(pdev, 0); |
| 364 | if (!efuse->base) |
| 365 | return -ENOMEM; |
| 366 | |
| 367 | ret = of_hwspin_lock_get_id(np, 0); |
| 368 | if (ret < 0) { |
| 369 | dev_err(&pdev->dev, "failed to get hwlock id\n"); |
| 370 | return ret; |
| 371 | } |
| 372 | |
| 373 | efuse->hwlock = devm_hwspin_lock_request_specific(&pdev->dev, ret); |
| 374 | if (!efuse->hwlock) { |
| 375 | dev_err(&pdev->dev, "failed to request hwlock\n"); |
| 376 | return -ENXIO; |
| 377 | } |
| 378 | |
| 379 | efuse->clk = devm_clk_get(&pdev->dev, "enable"); |
| 380 | if (IS_ERR(efuse->clk)) { |
| 381 | dev_err(&pdev->dev, "failed to get enable clock\n"); |
| 382 | return PTR_ERR(efuse->clk); |
| 383 | } |
| 384 | |
| 385 | mutex_init(&efuse->mutex); |
| 386 | efuse->dev = &pdev->dev; |
| 387 | efuse->data = pdata; |
| 388 | |
| 389 | econfig.stride = 1; |
| 390 | econfig.word_size = 1; |
| 391 | econfig.read_only = false; |
| 392 | econfig.name = "sprd-efuse"; |
| 393 | econfig.size = efuse->data->blk_nums * SPRD_EFUSE_BLOCK_WIDTH; |
| 394 | econfig.reg_read = sprd_efuse_read; |
| 395 | econfig.reg_write = sprd_efuse_write; |
| 396 | econfig.priv = efuse; |
| 397 | econfig.dev = &pdev->dev; |
| 398 | nvmem = devm_nvmem_register(&pdev->dev, &econfig); |
| 399 | if (IS_ERR(nvmem)) { |
| 400 | dev_err(&pdev->dev, "failed to register nvmem\n"); |
| 401 | return PTR_ERR(nvmem); |
| 402 | } |
| 403 | |
| 404 | return 0; |
| 405 | } |
| 406 | |
| 407 | static const struct of_device_id sprd_efuse_of_match[] = { |
| 408 | { .compatible = "sprd,ums312-efuse", .data = &ums312_data }, |
| 409 | { } |
| 410 | }; |
| 411 | |
| 412 | static struct platform_driver sprd_efuse_driver = { |
| 413 | .probe = sprd_efuse_probe, |
| 414 | .driver = { |
| 415 | .name = "sprd-efuse", |
| 416 | .of_match_table = sprd_efuse_of_match, |
| 417 | }, |
| 418 | }; |
| 419 | |
| 420 | module_platform_driver(sprd_efuse_driver); |
| 421 | |
| 422 | MODULE_AUTHOR("Freeman Liu <freeman.liu@spreadtrum.com>"); |
| 423 | MODULE_DESCRIPTION("Spreadtrum AP efuse driver"); |
| 424 | MODULE_LICENSE("GPL v2"); |