blob: 1b3148e842af92a48af0c6df5833bccc9c433108 [file] [log] [blame]
Bagalkote, Sreenivasc4a3e0a2005-09-20 17:46:58 -04001/*
2 *
3 * Linux MegaRAID driver for SAS based RAID controllers
4 *
5 * Copyright (c) 2003-2005 LSI Logic Corporation.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * FILE : megaraid_sas.c
13 * Version : v00.00.02.00-rc4
14 *
15 * Authors:
16 * Sreenivas Bagalkote <Sreenivas.Bagalkote@lsil.com>
17 * Sumant Patro <Sumant.Patro@lsil.com>
18 *
19 * List of supported controllers
20 *
21 * OEM Product Name VID DID SSVID SSID
22 * --- ------------ --- --- ---- ----
23 */
24
25#include <linux/kernel.h>
26#include <linux/types.h>
27#include <linux/pci.h>
28#include <linux/list.h>
29#include <linux/version.h>
30#include <linux/moduleparam.h>
31#include <linux/module.h>
32#include <linux/spinlock.h>
33#include <linux/interrupt.h>
34#include <linux/delay.h>
35#include <linux/uio.h>
36#include <asm/uaccess.h>
37#include <linux/compat.h>
38
39#include <scsi/scsi.h>
40#include <scsi/scsi_cmnd.h>
41#include <scsi/scsi_device.h>
42#include <scsi/scsi_host.h>
43#include "megaraid_sas.h"
44
45MODULE_LICENSE("GPL");
46MODULE_VERSION(MEGASAS_VERSION);
47MODULE_AUTHOR("sreenivas.bagalkote@lsil.com");
48MODULE_DESCRIPTION("LSI Logic MegaRAID SAS Driver");
49
50/*
51 * PCI ID table for all supported controllers
52 */
53static struct pci_device_id megasas_pci_table[] = {
54
55 {
56 PCI_VENDOR_ID_LSI_LOGIC,
57 PCI_DEVICE_ID_LSI_SAS1064R,
58 PCI_ANY_ID,
59 PCI_ANY_ID,
60 },
61 {
62 PCI_VENDOR_ID_DELL,
63 PCI_DEVICE_ID_DELL_PERC5,
64 PCI_ANY_ID,
65 PCI_ANY_ID,
66 },
67 {0} /* Terminating entry */
68};
69
70MODULE_DEVICE_TABLE(pci, megasas_pci_table);
71
72static int megasas_mgmt_majorno;
73static struct megasas_mgmt_info megasas_mgmt_info;
74static struct fasync_struct *megasas_async_queue;
75static DECLARE_MUTEX(megasas_async_queue_mutex);
76
77/**
78 * megasas_get_cmd - Get a command from the free pool
79 * @instance: Adapter soft state
80 *
81 * Returns a free command from the pool
82 */
83static inline struct megasas_cmd *megasas_get_cmd(struct megasas_instance
84 *instance)
85{
86 unsigned long flags;
87 struct megasas_cmd *cmd = NULL;
88
89 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
90
91 if (!list_empty(&instance->cmd_pool)) {
92 cmd = list_entry((&instance->cmd_pool)->next,
93 struct megasas_cmd, list);
94 list_del_init(&cmd->list);
95 } else {
96 printk(KERN_ERR "megasas: Command pool empty!\n");
97 }
98
99 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
100 return cmd;
101}
102
103/**
104 * megasas_return_cmd - Return a cmd to free command pool
105 * @instance: Adapter soft state
106 * @cmd: Command packet to be returned to free command pool
107 */
108static inline void
109megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
110{
111 unsigned long flags;
112
113 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
114
115 cmd->scmd = NULL;
116 list_add_tail(&cmd->list, &instance->cmd_pool);
117
118 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
119}
120
121/**
122 * megasas_enable_intr - Enables interrupts
123 * @regs: MFI register set
124 */
125static inline void
126megasas_enable_intr(struct megasas_register_set __iomem * regs)
127{
128 writel(1, &(regs)->outbound_intr_mask);
129
130 /* Dummy readl to force pci flush */
131 readl(&regs->outbound_intr_mask);
132}
133
134/**
135 * megasas_disable_intr - Disables interrupts
136 * @regs: MFI register set
137 */
138static inline void
139megasas_disable_intr(struct megasas_register_set __iomem * regs)
140{
141 u32 mask = readl(&regs->outbound_intr_mask) & (~0x00000001);
142 writel(mask, &regs->outbound_intr_mask);
143
144 /* Dummy readl to force pci flush */
145 readl(&regs->outbound_intr_mask);
146}
147
148/**
149 * megasas_issue_polled - Issues a polling command
150 * @instance: Adapter soft state
151 * @cmd: Command packet to be issued
152 *
153 * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
154 */
155static int
156megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
157{
158 int i;
159 u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
160
161 struct megasas_header *frame_hdr = &cmd->frame->hdr;
162
163 frame_hdr->cmd_status = 0xFF;
164 frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
165
166 /*
167 * Issue the frame using inbound queue port
168 */
169 writel(cmd->frame_phys_addr >> 3,
170 &instance->reg_set->inbound_queue_port);
171
172 /*
173 * Wait for cmd_status to change
174 */
175 for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
176 rmb();
177 msleep(1);
178 }
179
180 if (frame_hdr->cmd_status == 0xff)
181 return -ETIME;
182
183 return 0;
184}
185
186/**
187 * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds
188 * @instance: Adapter soft state
189 * @cmd: Command to be issued
190 *
191 * This function waits on an event for the command to be returned from ISR.
192 * Used to issue ioctl commands.
193 */
194static int
195megasas_issue_blocked_cmd(struct megasas_instance *instance,
196 struct megasas_cmd *cmd)
197{
198 cmd->cmd_status = ENODATA;
199
200 writel(cmd->frame_phys_addr >> 3,
201 &instance->reg_set->inbound_queue_port);
202
203 wait_event(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA));
204
205 return 0;
206}
207
208/**
209 * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd
210 * @instance: Adapter soft state
211 * @cmd_to_abort: Previously issued cmd to be aborted
212 *
213 * MFI firmware can abort previously issued AEN comamnd (automatic event
214 * notification). The megasas_issue_blocked_abort_cmd() issues such abort
215 * cmd and blocks till it is completed.
216 */
217static int
218megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
219 struct megasas_cmd *cmd_to_abort)
220{
221 struct megasas_cmd *cmd;
222 struct megasas_abort_frame *abort_fr;
223
224 cmd = megasas_get_cmd(instance);
225
226 if (!cmd)
227 return -1;
228
229 abort_fr = &cmd->frame->abort;
230
231 /*
232 * Prepare and issue the abort frame
233 */
234 abort_fr->cmd = MFI_CMD_ABORT;
235 abort_fr->cmd_status = 0xFF;
236 abort_fr->flags = 0;
237 abort_fr->abort_context = cmd_to_abort->index;
238 abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
239 abort_fr->abort_mfi_phys_addr_hi = 0;
240
241 cmd->sync_cmd = 1;
242 cmd->cmd_status = 0xFF;
243
244 writel(cmd->frame_phys_addr >> 3,
245 &instance->reg_set->inbound_queue_port);
246
247 /*
248 * Wait for this cmd to complete
249 */
250 wait_event(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF));
251
252 megasas_return_cmd(instance, cmd);
253 return 0;
254}
255
256/**
257 * megasas_make_sgl32 - Prepares 32-bit SGL
258 * @instance: Adapter soft state
259 * @scp: SCSI command from the mid-layer
260 * @mfi_sgl: SGL to be filled in
261 *
262 * If successful, this function returns the number of SG elements. Otherwise,
263 * it returnes -1.
264 */
265static inline int
266megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
267 union megasas_sgl *mfi_sgl)
268{
269 int i;
270 int sge_count;
271 struct scatterlist *os_sgl;
272
273 /*
274 * Return 0 if there is no data transfer
275 */
276 if (!scp->request_buffer || !scp->request_bufflen)
277 return 0;
278
279 if (!scp->use_sg) {
280 mfi_sgl->sge32[0].phys_addr = pci_map_single(instance->pdev,
281 scp->
282 request_buffer,
283 scp->
284 request_bufflen,
285 scp->
286 sc_data_direction);
287 mfi_sgl->sge32[0].length = scp->request_bufflen;
288
289 return 1;
290 }
291
292 os_sgl = (struct scatterlist *)scp->request_buffer;
293 sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
294 scp->sc_data_direction);
295
296 for (i = 0; i < sge_count; i++, os_sgl++) {
297 mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
298 mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
299 }
300
301 return sge_count;
302}
303
304/**
305 * megasas_make_sgl64 - Prepares 64-bit SGL
306 * @instance: Adapter soft state
307 * @scp: SCSI command from the mid-layer
308 * @mfi_sgl: SGL to be filled in
309 *
310 * If successful, this function returns the number of SG elements. Otherwise,
311 * it returnes -1.
312 */
313static inline int
314megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
315 union megasas_sgl *mfi_sgl)
316{
317 int i;
318 int sge_count;
319 struct scatterlist *os_sgl;
320
321 /*
322 * Return 0 if there is no data transfer
323 */
324 if (!scp->request_buffer || !scp->request_bufflen)
325 return 0;
326
327 if (!scp->use_sg) {
328 mfi_sgl->sge64[0].phys_addr = pci_map_single(instance->pdev,
329 scp->
330 request_buffer,
331 scp->
332 request_bufflen,
333 scp->
334 sc_data_direction);
335
336 mfi_sgl->sge64[0].length = scp->request_bufflen;
337
338 return 1;
339 }
340
341 os_sgl = (struct scatterlist *)scp->request_buffer;
342 sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
343 scp->sc_data_direction);
344
345 for (i = 0; i < sge_count; i++, os_sgl++) {
346 mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
347 mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
348 }
349
350 return sge_count;
351}
352
353/**
354 * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
355 * @instance: Adapter soft state
356 * @scp: SCSI command
357 * @cmd: Command to be prepared in
358 *
359 * This function prepares CDB commands. These are typcially pass-through
360 * commands to the devices.
361 */
362static inline int
363megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
364 struct megasas_cmd *cmd)
365{
366 u32 sge_sz;
367 int sge_bytes;
368 u32 is_logical;
369 u32 device_id;
370 u16 flags = 0;
371 struct megasas_pthru_frame *pthru;
372
373 is_logical = MEGASAS_IS_LOGICAL(scp);
374 device_id = MEGASAS_DEV_INDEX(instance, scp);
375 pthru = (struct megasas_pthru_frame *)cmd->frame;
376
377 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
378 flags = MFI_FRAME_DIR_WRITE;
379 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
380 flags = MFI_FRAME_DIR_READ;
381 else if (scp->sc_data_direction == PCI_DMA_NONE)
382 flags = MFI_FRAME_DIR_NONE;
383
384 /*
385 * Prepare the DCDB frame
386 */
387 pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
388 pthru->cmd_status = 0x0;
389 pthru->scsi_status = 0x0;
390 pthru->target_id = device_id;
391 pthru->lun = scp->device->lun;
392 pthru->cdb_len = scp->cmd_len;
393 pthru->timeout = 0;
394 pthru->flags = flags;
395 pthru->data_xfer_len = scp->request_bufflen;
396
397 memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
398
399 /*
400 * Construct SGL
401 */
402 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
403 sizeof(struct megasas_sge32);
404
405 if (IS_DMA64) {
406 pthru->flags |= MFI_FRAME_SGL64;
407 pthru->sge_count = megasas_make_sgl64(instance, scp,
408 &pthru->sgl);
409 } else
410 pthru->sge_count = megasas_make_sgl32(instance, scp,
411 &pthru->sgl);
412
413 /*
414 * Sense info specific
415 */
416 pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
417 pthru->sense_buf_phys_addr_hi = 0;
418 pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
419
420 sge_bytes = sge_sz * pthru->sge_count;
421
422 /*
423 * Compute the total number of frames this command consumes. FW uses
424 * this number to pull sufficient number of frames from host memory.
425 */
426 cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
427 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
428
429 if (cmd->frame_count > 7)
430 cmd->frame_count = 8;
431
432 return cmd->frame_count;
433}
434
435/**
436 * megasas_build_ldio - Prepares IOs to logical devices
437 * @instance: Adapter soft state
438 * @scp: SCSI command
439 * @cmd: Command to to be prepared
440 *
441 * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
442 */
443static inline int
444megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
445 struct megasas_cmd *cmd)
446{
447 u32 sge_sz;
448 int sge_bytes;
449 u32 device_id;
450 u8 sc = scp->cmnd[0];
451 u16 flags = 0;
452 struct megasas_io_frame *ldio;
453
454 device_id = MEGASAS_DEV_INDEX(instance, scp);
455 ldio = (struct megasas_io_frame *)cmd->frame;
456
457 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
458 flags = MFI_FRAME_DIR_WRITE;
459 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
460 flags = MFI_FRAME_DIR_READ;
461
462 /*
463 * Preare the Logical IO frame: 2nd bit is zero for all read cmds
464 */
465 ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
466 ldio->cmd_status = 0x0;
467 ldio->scsi_status = 0x0;
468 ldio->target_id = device_id;
469 ldio->timeout = 0;
470 ldio->reserved_0 = 0;
471 ldio->pad_0 = 0;
472 ldio->flags = flags;
473 ldio->start_lba_hi = 0;
474 ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
475
476 /*
477 * 6-byte READ(0x08) or WRITE(0x0A) cdb
478 */
479 if (scp->cmd_len == 6) {
480 ldio->lba_count = (u32) scp->cmnd[4];
481 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
482 ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
483
484 ldio->start_lba_lo &= 0x1FFFFF;
485 }
486
487 /*
488 * 10-byte READ(0x28) or WRITE(0x2A) cdb
489 */
490 else if (scp->cmd_len == 10) {
491 ldio->lba_count = (u32) scp->cmnd[8] |
492 ((u32) scp->cmnd[7] << 8);
493 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
494 ((u32) scp->cmnd[3] << 16) |
495 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
496 }
497
498 /*
499 * 12-byte READ(0xA8) or WRITE(0xAA) cdb
500 */
501 else if (scp->cmd_len == 12) {
502 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
503 ((u32) scp->cmnd[7] << 16) |
504 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
505
506 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
507 ((u32) scp->cmnd[3] << 16) |
508 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
509 }
510
511 /*
512 * 16-byte READ(0x88) or WRITE(0x8A) cdb
513 */
514 else if (scp->cmd_len == 16) {
515 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
516 ((u32) scp->cmnd[11] << 16) |
517 ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
518
519 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
520 ((u32) scp->cmnd[7] << 16) |
521 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
522
523 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
524 ((u32) scp->cmnd[3] << 16) |
525 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
526
527 }
528
529 /*
530 * Construct SGL
531 */
532 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
533 sizeof(struct megasas_sge32);
534
535 if (IS_DMA64) {
536 ldio->flags |= MFI_FRAME_SGL64;
537 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
538 } else
539 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
540
541 /*
542 * Sense info specific
543 */
544 ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
545 ldio->sense_buf_phys_addr_hi = 0;
546 ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
547
548 sge_bytes = sge_sz * ldio->sge_count;
549
550 cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
551 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
552
553 if (cmd->frame_count > 7)
554 cmd->frame_count = 8;
555
556 return cmd->frame_count;
557}
558
559/**
560 * megasas_build_cmd - Prepares a command packet
561 * @instance: Adapter soft state
562 * @scp: SCSI command
563 * @frame_count: [OUT] Number of frames used to prepare this command
564 */
565static inline struct megasas_cmd *megasas_build_cmd(struct megasas_instance
566 *instance,
567 struct scsi_cmnd *scp,
568 int *frame_count)
569{
570 u32 logical_cmd;
571 struct megasas_cmd *cmd;
572
573 /*
574 * Find out if this is logical or physical drive command.
575 */
576 logical_cmd = MEGASAS_IS_LOGICAL(scp);
577
578 /*
579 * Logical drive command
580 */
581 if (logical_cmd) {
582
583 if (scp->device->id >= MEGASAS_MAX_LD) {
584 scp->result = DID_BAD_TARGET << 16;
585 return NULL;
586 }
587
588 switch (scp->cmnd[0]) {
589
590 case READ_10:
591 case WRITE_10:
592 case READ_12:
593 case WRITE_12:
594 case READ_6:
595 case WRITE_6:
596 case READ_16:
597 case WRITE_16:
598 /*
599 * Fail for LUN > 0
600 */
601 if (scp->device->lun) {
602 scp->result = DID_BAD_TARGET << 16;
603 return NULL;
604 }
605
606 cmd = megasas_get_cmd(instance);
607
608 if (!cmd) {
609 scp->result = DID_IMM_RETRY << 16;
610 return NULL;
611 }
612
613 *frame_count = megasas_build_ldio(instance, scp, cmd);
614
615 if (!(*frame_count)) {
616 megasas_return_cmd(instance, cmd);
617 return NULL;
618 }
619
620 return cmd;
621
622 default:
623 /*
624 * Fail for LUN > 0
625 */
626 if (scp->device->lun) {
627 scp->result = DID_BAD_TARGET << 16;
628 return NULL;
629 }
630
631 cmd = megasas_get_cmd(instance);
632
633 if (!cmd) {
634 scp->result = DID_IMM_RETRY << 16;
635 return NULL;
636 }
637
638 *frame_count = megasas_build_dcdb(instance, scp, cmd);
639
640 if (!(*frame_count)) {
641 megasas_return_cmd(instance, cmd);
642 return NULL;
643 }
644
645 return cmd;
646 }
647 } else {
648 cmd = megasas_get_cmd(instance);
649
650 if (!cmd) {
651 scp->result = DID_IMM_RETRY << 16;
652 return NULL;
653 }
654
655 *frame_count = megasas_build_dcdb(instance, scp, cmd);
656
657 if (!(*frame_count)) {
658 megasas_return_cmd(instance, cmd);
659 return NULL;
660 }
661
662 return cmd;
663 }
664
665 return NULL;
666}
667
668/**
669 * megasas_queue_command - Queue entry point
670 * @scmd: SCSI command to be queued
671 * @done: Callback entry point
672 */
673static int
674megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
675{
676 u32 frame_count;
677 unsigned long flags;
678 struct megasas_cmd *cmd;
679 struct megasas_instance *instance;
680
681 instance = (struct megasas_instance *)
682 scmd->device->host->hostdata;
683 scmd->scsi_done = done;
684 scmd->result = 0;
685
686 cmd = megasas_build_cmd(instance, scmd, &frame_count);
687
688 if (!cmd) {
689 done(scmd);
690 return 0;
691 }
692
693 cmd->scmd = scmd;
694 scmd->SCp.ptr = (char *)cmd;
695 scmd->SCp.sent_command = jiffies;
696
697 /*
698 * Issue the command to the FW
699 */
700 spin_lock_irqsave(&instance->instance_lock, flags);
701 instance->fw_outstanding++;
702 spin_unlock_irqrestore(&instance->instance_lock, flags);
703
704 writel(((cmd->frame_phys_addr >> 3) | (cmd->frame_count - 1)),
705 &instance->reg_set->inbound_queue_port);
706
707 return 0;
708}
709
710/**
711 * megasas_wait_for_outstanding - Wait for all outstanding cmds
712 * @instance: Adapter soft state
713 *
714 * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
715 * complete all its outstanding commands. Returns error if one or more IOs
716 * are pending after this time period. It also marks the controller dead.
717 */
718static int megasas_wait_for_outstanding(struct megasas_instance *instance)
719{
720 int i;
721 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
722
723 for (i = 0; i < wait_time; i++) {
724
725 if (!instance->fw_outstanding)
726 break;
727
728 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
729 printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
730 "commands to complete\n", i,
731 instance->fw_outstanding);
732 }
733
734 msleep(1000);
735 }
736
737 if (instance->fw_outstanding) {
738 instance->hw_crit_error = 1;
739 return FAILED;
740 }
741
742 return SUCCESS;
743}
744
745/**
746 * megasas_generic_reset - Generic reset routine
747 * @scmd: Mid-layer SCSI command
748 *
749 * This routine implements a generic reset handler for device, bus and host
750 * reset requests. Device, bus and host specific reset handlers can use this
751 * function after they do their specific tasks.
752 */
753static int megasas_generic_reset(struct scsi_cmnd *scmd)
754{
755 int ret_val;
756 struct megasas_instance *instance;
757
758 instance = (struct megasas_instance *)scmd->device->host->hostdata;
759
760 printk(KERN_NOTICE "megasas: RESET -%ld cmd=%x <c=%d t=%d l=%d>\n",
761 scmd->serial_number, scmd->cmnd[0], scmd->device->channel,
762 scmd->device->id, scmd->device->lun);
763
764 if (instance->hw_crit_error) {
765 printk(KERN_ERR "megasas: cannot recover from previous reset "
766 "failures\n");
767 return FAILED;
768 }
769
770 spin_unlock(scmd->device->host->host_lock);
771
772 ret_val = megasas_wait_for_outstanding(instance);
773
774 if (ret_val == SUCCESS)
775 printk(KERN_NOTICE "megasas: reset successful \n");
776 else
777 printk(KERN_ERR "megasas: failed to do reset\n");
778
779 spin_lock(scmd->device->host->host_lock);
780
781 return ret_val;
782}
783
784static enum scsi_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
785{
786 unsigned long seconds;
787
788 if (scmd->SCp.ptr) {
789 seconds = (jiffies - scmd->SCp.sent_command) / HZ;
790
791 if (seconds < 90) {
792 return EH_RESET_TIMER;
793 } else {
794 return EH_NOT_HANDLED;
795 }
796 }
797
798 return EH_HANDLED;
799}
800
801/**
802 * megasas_reset_device - Device reset handler entry point
803 */
804static int megasas_reset_device(struct scsi_cmnd *scmd)
805{
806 int ret;
807
808 /*
809 * First wait for all commands to complete
810 */
811 ret = megasas_generic_reset(scmd);
812
813 return ret;
814}
815
816/**
817 * megasas_reset_bus_host - Bus & host reset handler entry point
818 */
819static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
820{
821 int ret;
822
823 /*
824 * Frist wait for all commands to complete
825 */
826 ret = megasas_generic_reset(scmd);
827
828 return ret;
829}
830
831/**
832 * megasas_service_aen - Processes an event notification
833 * @instance: Adapter soft state
834 * @cmd: AEN command completed by the ISR
835 *
836 * For AEN, driver sends a command down to FW that is held by the FW till an
837 * event occurs. When an event of interest occurs, FW completes the command
838 * that it was previously holding.
839 *
840 * This routines sends SIGIO signal to processes that have registered with the
841 * driver for AEN.
842 */
843static void
844megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
845{
846 /*
847 * Don't signal app if it is just an aborted previously registered aen
848 */
849 if (!cmd->abort_aen)
850 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
851 else
852 cmd->abort_aen = 0;
853
854 instance->aen_cmd = NULL;
855 megasas_return_cmd(instance, cmd);
856}
857
858/*
859 * Scsi host template for megaraid_sas driver
860 */
861static struct scsi_host_template megasas_template = {
862
863 .module = THIS_MODULE,
864 .name = "LSI Logic SAS based MegaRAID driver",
865 .proc_name = "megaraid_sas",
866 .queuecommand = megasas_queue_command,
867 .eh_device_reset_handler = megasas_reset_device,
868 .eh_bus_reset_handler = megasas_reset_bus_host,
869 .eh_host_reset_handler = megasas_reset_bus_host,
870 .eh_timed_out = megasas_reset_timer,
871 .use_clustering = ENABLE_CLUSTERING,
872};
873
874/**
875 * megasas_complete_int_cmd - Completes an internal command
876 * @instance: Adapter soft state
877 * @cmd: Command to be completed
878 *
879 * The megasas_issue_blocked_cmd() function waits for a command to complete
880 * after it issues a command. This function wakes up that waiting routine by
881 * calling wake_up() on the wait queue.
882 */
883static void
884megasas_complete_int_cmd(struct megasas_instance *instance,
885 struct megasas_cmd *cmd)
886{
887 cmd->cmd_status = cmd->frame->io.cmd_status;
888
889 if (cmd->cmd_status == ENODATA) {
890 cmd->cmd_status = 0;
891 }
892 wake_up(&instance->int_cmd_wait_q);
893}
894
895/**
896 * megasas_complete_abort - Completes aborting a command
897 * @instance: Adapter soft state
898 * @cmd: Cmd that was issued to abort another cmd
899 *
900 * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
901 * after it issues an abort on a previously issued command. This function
902 * wakes up all functions waiting on the same wait queue.
903 */
904static void
905megasas_complete_abort(struct megasas_instance *instance,
906 struct megasas_cmd *cmd)
907{
908 if (cmd->sync_cmd) {
909 cmd->sync_cmd = 0;
910 cmd->cmd_status = 0;
911 wake_up(&instance->abort_cmd_wait_q);
912 }
913
914 return;
915}
916
917/**
918 * megasas_unmap_sgbuf - Unmap SG buffers
919 * @instance: Adapter soft state
920 * @cmd: Completed command
921 */
922static inline void
923megasas_unmap_sgbuf(struct megasas_instance *instance, struct megasas_cmd *cmd)
924{
925 dma_addr_t buf_h;
926 u8 opcode;
927
928 if (cmd->scmd->use_sg) {
929 pci_unmap_sg(instance->pdev, cmd->scmd->request_buffer,
930 cmd->scmd->use_sg, cmd->scmd->sc_data_direction);
931 return;
932 }
933
934 if (!cmd->scmd->request_bufflen)
935 return;
936
937 opcode = cmd->frame->hdr.cmd;
938
939 if ((opcode == MFI_CMD_LD_READ) || (opcode == MFI_CMD_LD_WRITE)) {
940 if (IS_DMA64)
941 buf_h = cmd->frame->io.sgl.sge64[0].phys_addr;
942 else
943 buf_h = cmd->frame->io.sgl.sge32[0].phys_addr;
944 } else {
945 if (IS_DMA64)
946 buf_h = cmd->frame->pthru.sgl.sge64[0].phys_addr;
947 else
948 buf_h = cmd->frame->pthru.sgl.sge32[0].phys_addr;
949 }
950
951 pci_unmap_single(instance->pdev, buf_h, cmd->scmd->request_bufflen,
952 cmd->scmd->sc_data_direction);
953 return;
954}
955
956/**
957 * megasas_complete_cmd - Completes a command
958 * @instance: Adapter soft state
959 * @cmd: Command to be completed
960 * @alt_status: If non-zero, use this value as status to
961 * SCSI mid-layer instead of the value returned
962 * by the FW. This should be used if caller wants
963 * an alternate status (as in the case of aborted
964 * commands)
965 */
966static inline void
967megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
968 u8 alt_status)
969{
970 int exception = 0;
971 struct megasas_header *hdr = &cmd->frame->hdr;
972 unsigned long flags;
973
974 if (cmd->scmd) {
975 cmd->scmd->SCp.ptr = (char *)0;
976 }
977
978 switch (hdr->cmd) {
979
980 case MFI_CMD_PD_SCSI_IO:
981 case MFI_CMD_LD_SCSI_IO:
982
983 /*
984 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
985 * issued either through an IO path or an IOCTL path. If it
986 * was via IOCTL, we will send it to internal completion.
987 */
988 if (cmd->sync_cmd) {
989 cmd->sync_cmd = 0;
990 megasas_complete_int_cmd(instance, cmd);
991 break;
992 }
993
994 /*
995 * Don't export physical disk devices to mid-layer.
996 */
997 if (!MEGASAS_IS_LOGICAL(cmd->scmd) &&
998 (hdr->cmd_status == MFI_STAT_OK) &&
999 (cmd->scmd->cmnd[0] == INQUIRY)) {
1000
1001 if (((*(u8 *) cmd->scmd->request_buffer) & 0x1F) ==
1002 TYPE_DISK) {
1003 cmd->scmd->result = DID_BAD_TARGET << 16;
1004 exception = 1;
1005 }
1006 }
1007
1008 case MFI_CMD_LD_READ:
1009 case MFI_CMD_LD_WRITE:
1010
1011 if (alt_status) {
1012 cmd->scmd->result = alt_status << 16;
1013 exception = 1;
1014 }
1015
1016 if (exception) {
1017
1018 spin_lock_irqsave(&instance->instance_lock, flags);
1019 instance->fw_outstanding--;
1020 spin_unlock_irqrestore(&instance->instance_lock, flags);
1021
1022 megasas_unmap_sgbuf(instance, cmd);
1023 cmd->scmd->scsi_done(cmd->scmd);
1024 megasas_return_cmd(instance, cmd);
1025
1026 break;
1027 }
1028
1029 switch (hdr->cmd_status) {
1030
1031 case MFI_STAT_OK:
1032 cmd->scmd->result = DID_OK << 16;
1033 break;
1034
1035 case MFI_STAT_SCSI_IO_FAILED:
1036 case MFI_STAT_LD_INIT_IN_PROGRESS:
1037 cmd->scmd->result =
1038 (DID_ERROR << 16) | hdr->scsi_status;
1039 break;
1040
1041 case MFI_STAT_SCSI_DONE_WITH_ERROR:
1042
1043 cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1044
1045 if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1046 memset(cmd->scmd->sense_buffer, 0,
1047 SCSI_SENSE_BUFFERSIZE);
1048 memcpy(cmd->scmd->sense_buffer, cmd->sense,
1049 hdr->sense_len);
1050
1051 cmd->scmd->result |= DRIVER_SENSE << 24;
1052 }
1053
1054 break;
1055
1056 case MFI_STAT_LD_OFFLINE:
1057 case MFI_STAT_DEVICE_NOT_FOUND:
1058 cmd->scmd->result = DID_BAD_TARGET << 16;
1059 break;
1060
1061 default:
1062 printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1063 hdr->cmd_status);
1064 cmd->scmd->result = DID_ERROR << 16;
1065 break;
1066 }
1067
1068 spin_lock_irqsave(&instance->instance_lock, flags);
1069 instance->fw_outstanding--;
1070 spin_unlock_irqrestore(&instance->instance_lock, flags);
1071
1072 megasas_unmap_sgbuf(instance, cmd);
1073 cmd->scmd->scsi_done(cmd->scmd);
1074 megasas_return_cmd(instance, cmd);
1075
1076 break;
1077
1078 case MFI_CMD_SMP:
1079 case MFI_CMD_STP:
1080 case MFI_CMD_DCMD:
1081
1082 /*
1083 * See if got an event notification
1084 */
1085 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1086 megasas_service_aen(instance, cmd);
1087 else
1088 megasas_complete_int_cmd(instance, cmd);
1089
1090 break;
1091
1092 case MFI_CMD_ABORT:
1093 /*
1094 * Cmd issued to abort another cmd returned
1095 */
1096 megasas_complete_abort(instance, cmd);
1097 break;
1098
1099 default:
1100 printk("megasas: Unknown command completed! [0x%X]\n",
1101 hdr->cmd);
1102 break;
1103 }
1104}
1105
1106/**
1107 * megasas_deplete_reply_queue - Processes all completed commands
1108 * @instance: Adapter soft state
1109 * @alt_status: Alternate status to be returned to
1110 * SCSI mid-layer instead of the status
1111 * returned by the FW
1112 */
1113static inline int
1114megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1115{
1116 u32 status;
1117 u32 producer;
1118 u32 consumer;
1119 u32 context;
1120 struct megasas_cmd *cmd;
1121
1122 /*
1123 * Check if it is our interrupt
1124 */
1125 status = readl(&instance->reg_set->outbound_intr_status);
1126
1127 if (!(status & MFI_OB_INTR_STATUS_MASK)) {
1128 return IRQ_NONE;
1129 }
1130
1131 /*
1132 * Clear the interrupt by writing back the same value
1133 */
1134 writel(status, &instance->reg_set->outbound_intr_status);
1135
1136 producer = *instance->producer;
1137 consumer = *instance->consumer;
1138
1139 while (consumer != producer) {
1140 context = instance->reply_queue[consumer];
1141
1142 cmd = instance->cmd_list[context];
1143
1144 megasas_complete_cmd(instance, cmd, alt_status);
1145
1146 consumer++;
1147 if (consumer == (instance->max_fw_cmds + 1)) {
1148 consumer = 0;
1149 }
1150 }
1151
1152 *instance->consumer = producer;
1153
1154 return IRQ_HANDLED;
1155}
1156
1157/**
1158 * megasas_isr - isr entry point
1159 */
1160static irqreturn_t megasas_isr(int irq, void *devp, struct pt_regs *regs)
1161{
1162 return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1163 DID_OK);
1164}
1165
1166/**
1167 * megasas_transition_to_ready - Move the FW to READY state
1168 * @reg_set: MFI register set
1169 *
1170 * During the initialization, FW passes can potentially be in any one of
1171 * several possible states. If the FW in operational, waiting-for-handshake
1172 * states, driver must take steps to bring it to ready state. Otherwise, it
1173 * has to wait for the ready state.
1174 */
1175static int
1176megasas_transition_to_ready(struct megasas_register_set __iomem * reg_set)
1177{
1178 int i;
1179 u8 max_wait;
1180 u32 fw_state;
1181 u32 cur_state;
1182
1183 fw_state = readl(&reg_set->outbound_msg_0) & MFI_STATE_MASK;
1184
1185 while (fw_state != MFI_STATE_READY) {
1186
1187 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1188 " state\n");
1189 switch (fw_state) {
1190
1191 case MFI_STATE_FAULT:
1192
1193 printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1194 return -ENODEV;
1195
1196 case MFI_STATE_WAIT_HANDSHAKE:
1197 /*
1198 * Set the CLR bit in inbound doorbell
1199 */
1200 writel(MFI_INIT_CLEAR_HANDSHAKE,
1201 &reg_set->inbound_doorbell);
1202
1203 max_wait = 2;
1204 cur_state = MFI_STATE_WAIT_HANDSHAKE;
1205 break;
1206
1207 case MFI_STATE_OPERATIONAL:
1208 /*
1209 * Bring it to READY state; assuming max wait 2 secs
1210 */
1211 megasas_disable_intr(reg_set);
1212 writel(MFI_INIT_READY, &reg_set->inbound_doorbell);
1213
1214 max_wait = 10;
1215 cur_state = MFI_STATE_OPERATIONAL;
1216 break;
1217
1218 case MFI_STATE_UNDEFINED:
1219 /*
1220 * This state should not last for more than 2 seconds
1221 */
1222 max_wait = 2;
1223 cur_state = MFI_STATE_UNDEFINED;
1224 break;
1225
1226 case MFI_STATE_BB_INIT:
1227 max_wait = 2;
1228 cur_state = MFI_STATE_BB_INIT;
1229 break;
1230
1231 case MFI_STATE_FW_INIT:
1232 max_wait = 20;
1233 cur_state = MFI_STATE_FW_INIT;
1234 break;
1235
1236 case MFI_STATE_FW_INIT_2:
1237 max_wait = 20;
1238 cur_state = MFI_STATE_FW_INIT_2;
1239 break;
1240
1241 case MFI_STATE_DEVICE_SCAN:
1242 max_wait = 20;
1243 cur_state = MFI_STATE_DEVICE_SCAN;
1244 break;
1245
1246 case MFI_STATE_FLUSH_CACHE:
1247 max_wait = 20;
1248 cur_state = MFI_STATE_FLUSH_CACHE;
1249 break;
1250
1251 default:
1252 printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1253 fw_state);
1254 return -ENODEV;
1255 }
1256
1257 /*
1258 * The cur_state should not last for more than max_wait secs
1259 */
1260 for (i = 0; i < (max_wait * 1000); i++) {
1261 fw_state = MFI_STATE_MASK &
1262 readl(&reg_set->outbound_msg_0);
1263
1264 if (fw_state == cur_state) {
1265 msleep(1);
1266 } else
1267 break;
1268 }
1269
1270 /*
1271 * Return error if fw_state hasn't changed after max_wait
1272 */
1273 if (fw_state == cur_state) {
1274 printk(KERN_DEBUG "FW state [%d] hasn't changed "
1275 "in %d secs\n", fw_state, max_wait);
1276 return -ENODEV;
1277 }
1278 };
1279
1280 return 0;
1281}
1282
1283/**
1284 * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool
1285 * @instance: Adapter soft state
1286 */
1287static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1288{
1289 int i;
1290 u32 max_cmd = instance->max_fw_cmds;
1291 struct megasas_cmd *cmd;
1292
1293 if (!instance->frame_dma_pool)
1294 return;
1295
1296 /*
1297 * Return all frames to pool
1298 */
1299 for (i = 0; i < max_cmd; i++) {
1300
1301 cmd = instance->cmd_list[i];
1302
1303 if (cmd->frame)
1304 pci_pool_free(instance->frame_dma_pool, cmd->frame,
1305 cmd->frame_phys_addr);
1306
1307 if (cmd->sense)
1308 pci_pool_free(instance->sense_dma_pool, cmd->frame,
1309 cmd->sense_phys_addr);
1310 }
1311
1312 /*
1313 * Now destroy the pool itself
1314 */
1315 pci_pool_destroy(instance->frame_dma_pool);
1316 pci_pool_destroy(instance->sense_dma_pool);
1317
1318 instance->frame_dma_pool = NULL;
1319 instance->sense_dma_pool = NULL;
1320}
1321
1322/**
1323 * megasas_create_frame_pool - Creates DMA pool for cmd frames
1324 * @instance: Adapter soft state
1325 *
1326 * Each command packet has an embedded DMA memory buffer that is used for
1327 * filling MFI frame and the SG list that immediately follows the frame. This
1328 * function creates those DMA memory buffers for each command packet by using
1329 * PCI pool facility.
1330 */
1331static int megasas_create_frame_pool(struct megasas_instance *instance)
1332{
1333 int i;
1334 u32 max_cmd;
1335 u32 sge_sz;
1336 u32 sgl_sz;
1337 u32 total_sz;
1338 u32 frame_count;
1339 struct megasas_cmd *cmd;
1340
1341 max_cmd = instance->max_fw_cmds;
1342
1343 /*
1344 * Size of our frame is 64 bytes for MFI frame, followed by max SG
1345 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1346 */
1347 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1348 sizeof(struct megasas_sge32);
1349
1350 /*
1351 * Calculated the number of 64byte frames required for SGL
1352 */
1353 sgl_sz = sge_sz * instance->max_num_sge;
1354 frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1355
1356 /*
1357 * We need one extra frame for the MFI command
1358 */
1359 frame_count++;
1360
1361 total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1362 /*
1363 * Use DMA pool facility provided by PCI layer
1364 */
1365 instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1366 instance->pdev, total_sz, 64,
1367 0);
1368
1369 if (!instance->frame_dma_pool) {
1370 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1371 return -ENOMEM;
1372 }
1373
1374 instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1375 instance->pdev, 128, 4, 0);
1376
1377 if (!instance->sense_dma_pool) {
1378 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1379
1380 pci_pool_destroy(instance->frame_dma_pool);
1381 instance->frame_dma_pool = NULL;
1382
1383 return -ENOMEM;
1384 }
1385
1386 /*
1387 * Allocate and attach a frame to each of the commands in cmd_list.
1388 * By making cmd->index as the context instead of the &cmd, we can
1389 * always use 32bit context regardless of the architecture
1390 */
1391 for (i = 0; i < max_cmd; i++) {
1392
1393 cmd = instance->cmd_list[i];
1394
1395 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1396 GFP_KERNEL, &cmd->frame_phys_addr);
1397
1398 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1399 GFP_KERNEL, &cmd->sense_phys_addr);
1400
1401 /*
1402 * megasas_teardown_frame_pool() takes care of freeing
1403 * whatever has been allocated
1404 */
1405 if (!cmd->frame || !cmd->sense) {
1406 printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1407 megasas_teardown_frame_pool(instance);
1408 return -ENOMEM;
1409 }
1410
1411 cmd->frame->io.context = cmd->index;
1412 }
1413
1414 return 0;
1415}
1416
1417/**
1418 * megasas_free_cmds - Free all the cmds in the free cmd pool
1419 * @instance: Adapter soft state
1420 */
1421static void megasas_free_cmds(struct megasas_instance *instance)
1422{
1423 int i;
1424 /* First free the MFI frame pool */
1425 megasas_teardown_frame_pool(instance);
1426
1427 /* Free all the commands in the cmd_list */
1428 for (i = 0; i < instance->max_fw_cmds; i++)
1429 kfree(instance->cmd_list[i]);
1430
1431 /* Free the cmd_list buffer itself */
1432 kfree(instance->cmd_list);
1433 instance->cmd_list = NULL;
1434
1435 INIT_LIST_HEAD(&instance->cmd_pool);
1436}
1437
1438/**
1439 * megasas_alloc_cmds - Allocates the command packets
1440 * @instance: Adapter soft state
1441 *
1442 * Each command that is issued to the FW, whether IO commands from the OS or
1443 * internal commands like IOCTLs, are wrapped in local data structure called
1444 * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1445 * the FW.
1446 *
1447 * Each frame has a 32-bit field called context (tag). This context is used
1448 * to get back the megasas_cmd from the frame when a frame gets completed in
1449 * the ISR. Typically the address of the megasas_cmd itself would be used as
1450 * the context. But we wanted to keep the differences between 32 and 64 bit
1451 * systems to the mininum. We always use 32 bit integers for the context. In
1452 * this driver, the 32 bit values are the indices into an array cmd_list.
1453 * This array is used only to look up the megasas_cmd given the context. The
1454 * free commands themselves are maintained in a linked list called cmd_pool.
1455 */
1456static int megasas_alloc_cmds(struct megasas_instance *instance)
1457{
1458 int i;
1459 int j;
1460 u32 max_cmd;
1461 struct megasas_cmd *cmd;
1462
1463 max_cmd = instance->max_fw_cmds;
1464
1465 /*
1466 * instance->cmd_list is an array of struct megasas_cmd pointers.
1467 * Allocate the dynamic array first and then allocate individual
1468 * commands.
1469 */
1470 instance->cmd_list = kmalloc(sizeof(struct megasas_cmd *) * max_cmd,
1471 GFP_KERNEL);
1472
1473 if (!instance->cmd_list) {
1474 printk(KERN_DEBUG "megasas: out of memory\n");
1475 return -ENOMEM;
1476 }
1477
1478 memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) * max_cmd);
1479
1480 for (i = 0; i < max_cmd; i++) {
1481 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1482 GFP_KERNEL);
1483
1484 if (!instance->cmd_list[i]) {
1485
1486 for (j = 0; j < i; j++)
1487 kfree(instance->cmd_list[j]);
1488
1489 kfree(instance->cmd_list);
1490 instance->cmd_list = NULL;
1491
1492 return -ENOMEM;
1493 }
1494 }
1495
1496 /*
1497 * Add all the commands to command pool (instance->cmd_pool)
1498 */
1499 for (i = 0; i < max_cmd; i++) {
1500 cmd = instance->cmd_list[i];
1501 memset(cmd, 0, sizeof(struct megasas_cmd));
1502 cmd->index = i;
1503 cmd->instance = instance;
1504
1505 list_add_tail(&cmd->list, &instance->cmd_pool);
1506 }
1507
1508 /*
1509 * Create a frame pool and assign one frame to each cmd
1510 */
1511 if (megasas_create_frame_pool(instance)) {
1512 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1513 megasas_free_cmds(instance);
1514 }
1515
1516 return 0;
1517}
1518
1519/**
1520 * megasas_get_controller_info - Returns FW's controller structure
1521 * @instance: Adapter soft state
1522 * @ctrl_info: Controller information structure
1523 *
1524 * Issues an internal command (DCMD) to get the FW's controller structure.
1525 * This information is mainly used to find out the maximum IO transfer per
1526 * command supported by the FW.
1527 */
1528static int
1529megasas_get_ctrl_info(struct megasas_instance *instance,
1530 struct megasas_ctrl_info *ctrl_info)
1531{
1532 int ret = 0;
1533 struct megasas_cmd *cmd;
1534 struct megasas_dcmd_frame *dcmd;
1535 struct megasas_ctrl_info *ci;
1536 dma_addr_t ci_h = 0;
1537
1538 cmd = megasas_get_cmd(instance);
1539
1540 if (!cmd) {
1541 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1542 return -ENOMEM;
1543 }
1544
1545 dcmd = &cmd->frame->dcmd;
1546
1547 ci = pci_alloc_consistent(instance->pdev,
1548 sizeof(struct megasas_ctrl_info), &ci_h);
1549
1550 if (!ci) {
1551 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1552 megasas_return_cmd(instance, cmd);
1553 return -ENOMEM;
1554 }
1555
1556 memset(ci, 0, sizeof(*ci));
1557 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1558
1559 dcmd->cmd = MFI_CMD_DCMD;
1560 dcmd->cmd_status = 0xFF;
1561 dcmd->sge_count = 1;
1562 dcmd->flags = MFI_FRAME_DIR_READ;
1563 dcmd->timeout = 0;
1564 dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1565 dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1566 dcmd->sgl.sge32[0].phys_addr = ci_h;
1567 dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1568
1569 if (!megasas_issue_polled(instance, cmd)) {
1570 ret = 0;
1571 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1572 } else {
1573 ret = -1;
1574 }
1575
1576 pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1577 ci, ci_h);
1578
1579 megasas_return_cmd(instance, cmd);
1580 return ret;
1581}
1582
1583/**
1584 * megasas_init_mfi - Initializes the FW
1585 * @instance: Adapter soft state
1586 *
1587 * This is the main function for initializing MFI firmware.
1588 */
1589static int megasas_init_mfi(struct megasas_instance *instance)
1590{
1591 u32 context_sz;
1592 u32 reply_q_sz;
1593 u32 max_sectors_1;
1594 u32 max_sectors_2;
1595 struct megasas_register_set __iomem *reg_set;
1596
1597 struct megasas_cmd *cmd;
1598 struct megasas_ctrl_info *ctrl_info;
1599
1600 struct megasas_init_frame *init_frame;
1601 struct megasas_init_queue_info *initq_info;
1602 dma_addr_t init_frame_h;
1603 dma_addr_t initq_info_h;
1604
1605 /*
1606 * Map the message registers
1607 */
1608 instance->base_addr = pci_resource_start(instance->pdev, 0);
1609
1610 if (pci_request_regions(instance->pdev, "megasas: LSI Logic")) {
1611 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
1612 return -EBUSY;
1613 }
1614
1615 instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
1616
1617 if (!instance->reg_set) {
1618 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
1619 goto fail_ioremap;
1620 }
1621
1622 reg_set = instance->reg_set;
1623
1624 /*
1625 * We expect the FW state to be READY
1626 */
1627 if (megasas_transition_to_ready(instance->reg_set))
1628 goto fail_ready_state;
1629
1630 /*
1631 * Get various operational parameters from status register
1632 */
1633 instance->max_fw_cmds = readl(&reg_set->outbound_msg_0) & 0x00FFFF;
1634 instance->max_num_sge = (readl(&reg_set->outbound_msg_0) & 0xFF0000) >>
1635 0x10;
1636 /*
1637 * Create a pool of commands
1638 */
1639 if (megasas_alloc_cmds(instance))
1640 goto fail_alloc_cmds;
1641
1642 /*
1643 * Allocate memory for reply queue. Length of reply queue should
1644 * be _one_ more than the maximum commands handled by the firmware.
1645 *
1646 * Note: When FW completes commands, it places corresponding contex
1647 * values in this circular reply queue. This circular queue is a fairly
1648 * typical producer-consumer queue. FW is the producer (of completed
1649 * commands) and the driver is the consumer.
1650 */
1651 context_sz = sizeof(u32);
1652 reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
1653
1654 instance->reply_queue = pci_alloc_consistent(instance->pdev,
1655 reply_q_sz,
1656 &instance->reply_queue_h);
1657
1658 if (!instance->reply_queue) {
1659 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
1660 goto fail_reply_queue;
1661 }
1662
1663 /*
1664 * Prepare a init frame. Note the init frame points to queue info
1665 * structure. Each frame has SGL allocated after first 64 bytes. For
1666 * this frame - since we don't need any SGL - we use SGL's space as
1667 * queue info structure
1668 *
1669 * We will not get a NULL command below. We just created the pool.
1670 */
1671 cmd = megasas_get_cmd(instance);
1672
1673 init_frame = (struct megasas_init_frame *)cmd->frame;
1674 initq_info = (struct megasas_init_queue_info *)
1675 ((unsigned long)init_frame + 64);
1676
1677 init_frame_h = cmd->frame_phys_addr;
1678 initq_info_h = init_frame_h + 64;
1679
1680 memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
1681 memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
1682
1683 initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
1684 initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
1685
1686 initq_info->producer_index_phys_addr_lo = instance->producer_h;
1687 initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
1688
1689 init_frame->cmd = MFI_CMD_INIT;
1690 init_frame->cmd_status = 0xFF;
1691 init_frame->queue_info_new_phys_addr_lo = initq_info_h;
1692
1693 init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
1694
1695 /*
1696 * Issue the init frame in polled mode
1697 */
1698 if (megasas_issue_polled(instance, cmd)) {
1699 printk(KERN_DEBUG "megasas: Failed to init firmware\n");
1700 goto fail_fw_init;
1701 }
1702
1703 megasas_return_cmd(instance, cmd);
1704
1705 ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
1706
1707 /*
1708 * Compute the max allowed sectors per IO: The controller info has two
1709 * limits on max sectors. Driver should use the minimum of these two.
1710 *
1711 * 1 << stripe_sz_ops.min = max sectors per strip
1712 *
1713 * Note that older firmwares ( < FW ver 30) didn't report information
1714 * to calculate max_sectors_1. So the number ended up as zero always.
1715 */
1716 if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
1717
1718 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
1719 ctrl_info->max_strips_per_io;
1720 max_sectors_2 = ctrl_info->max_request_size;
1721
1722 instance->max_sectors_per_req = (max_sectors_1 < max_sectors_2)
1723 ? max_sectors_1 : max_sectors_2;
1724 } else
1725 instance->max_sectors_per_req = instance->max_num_sge *
1726 PAGE_SIZE / 512;
1727
1728 kfree(ctrl_info);
1729
1730 return 0;
1731
1732 fail_fw_init:
1733 megasas_return_cmd(instance, cmd);
1734
1735 pci_free_consistent(instance->pdev, reply_q_sz,
1736 instance->reply_queue, instance->reply_queue_h);
1737 fail_reply_queue:
1738 megasas_free_cmds(instance);
1739
1740 fail_alloc_cmds:
1741 fail_ready_state:
1742 iounmap(instance->reg_set);
1743
1744 fail_ioremap:
1745 pci_release_regions(instance->pdev);
1746
1747 return -EINVAL;
1748}
1749
1750/**
1751 * megasas_release_mfi - Reverses the FW initialization
1752 * @intance: Adapter soft state
1753 */
1754static void megasas_release_mfi(struct megasas_instance *instance)
1755{
1756 u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
1757
1758 pci_free_consistent(instance->pdev, reply_q_sz,
1759 instance->reply_queue, instance->reply_queue_h);
1760
1761 megasas_free_cmds(instance);
1762
1763 iounmap(instance->reg_set);
1764
1765 pci_release_regions(instance->pdev);
1766}
1767
1768/**
1769 * megasas_get_seq_num - Gets latest event sequence numbers
1770 * @instance: Adapter soft state
1771 * @eli: FW event log sequence numbers information
1772 *
1773 * FW maintains a log of all events in a non-volatile area. Upper layers would
1774 * usually find out the latest sequence number of the events, the seq number at
1775 * the boot etc. They would "read" all the events below the latest seq number
1776 * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
1777 * number), they would subsribe to AEN (asynchronous event notification) and
1778 * wait for the events to happen.
1779 */
1780static int
1781megasas_get_seq_num(struct megasas_instance *instance,
1782 struct megasas_evt_log_info *eli)
1783{
1784 struct megasas_cmd *cmd;
1785 struct megasas_dcmd_frame *dcmd;
1786 struct megasas_evt_log_info *el_info;
1787 dma_addr_t el_info_h = 0;
1788
1789 cmd = megasas_get_cmd(instance);
1790
1791 if (!cmd) {
1792 return -ENOMEM;
1793 }
1794
1795 dcmd = &cmd->frame->dcmd;
1796 el_info = pci_alloc_consistent(instance->pdev,
1797 sizeof(struct megasas_evt_log_info),
1798 &el_info_h);
1799
1800 if (!el_info) {
1801 megasas_return_cmd(instance, cmd);
1802 return -ENOMEM;
1803 }
1804
1805 memset(el_info, 0, sizeof(*el_info));
1806 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1807
1808 dcmd->cmd = MFI_CMD_DCMD;
1809 dcmd->cmd_status = 0x0;
1810 dcmd->sge_count = 1;
1811 dcmd->flags = MFI_FRAME_DIR_READ;
1812 dcmd->timeout = 0;
1813 dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
1814 dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
1815 dcmd->sgl.sge32[0].phys_addr = el_info_h;
1816 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
1817
1818 megasas_issue_blocked_cmd(instance, cmd);
1819
1820 /*
1821 * Copy the data back into callers buffer
1822 */
1823 memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
1824
1825 pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
1826 el_info, el_info_h);
1827
1828 megasas_return_cmd(instance, cmd);
1829
1830 return 0;
1831}
1832
1833/**
1834 * megasas_register_aen - Registers for asynchronous event notification
1835 * @instance: Adapter soft state
1836 * @seq_num: The starting sequence number
1837 * @class_locale: Class of the event
1838 *
1839 * This function subscribes for AEN for events beyond the @seq_num. It requests
1840 * to be notified if and only if the event is of type @class_locale
1841 */
1842static int
1843megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
1844 u32 class_locale_word)
1845{
1846 int ret_val;
1847 struct megasas_cmd *cmd;
1848 struct megasas_dcmd_frame *dcmd;
1849 union megasas_evt_class_locale curr_aen;
1850 union megasas_evt_class_locale prev_aen;
1851
1852 /*
1853 * If there an AEN pending already (aen_cmd), check if the
1854 * class_locale of that pending AEN is inclusive of the new
1855 * AEN request we currently have. If it is, then we don't have
1856 * to do anything. In other words, whichever events the current
1857 * AEN request is subscribing to, have already been subscribed
1858 * to.
1859 *
1860 * If the old_cmd is _not_ inclusive, then we have to abort
1861 * that command, form a class_locale that is superset of both
1862 * old and current and re-issue to the FW
1863 */
1864
1865 curr_aen.word = class_locale_word;
1866
1867 if (instance->aen_cmd) {
1868
1869 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
1870
1871 /*
1872 * A class whose enum value is smaller is inclusive of all
1873 * higher values. If a PROGRESS (= -1) was previously
1874 * registered, then a new registration requests for higher
1875 * classes need not be sent to FW. They are automatically
1876 * included.
1877 *
1878 * Locale numbers don't have such hierarchy. They are bitmap
1879 * values
1880 */
1881 if ((prev_aen.members.class <= curr_aen.members.class) &&
1882 !((prev_aen.members.locale & curr_aen.members.locale) ^
1883 curr_aen.members.locale)) {
1884 /*
1885 * Previously issued event registration includes
1886 * current request. Nothing to do.
1887 */
1888 return 0;
1889 } else {
1890 curr_aen.members.locale |= prev_aen.members.locale;
1891
1892 if (prev_aen.members.class < curr_aen.members.class)
1893 curr_aen.members.class = prev_aen.members.class;
1894
1895 instance->aen_cmd->abort_aen = 1;
1896 ret_val = megasas_issue_blocked_abort_cmd(instance,
1897 instance->
1898 aen_cmd);
1899
1900 if (ret_val) {
1901 printk(KERN_DEBUG "megasas: Failed to abort "
1902 "previous AEN command\n");
1903 return ret_val;
1904 }
1905 }
1906 }
1907
1908 cmd = megasas_get_cmd(instance);
1909
1910 if (!cmd)
1911 return -ENOMEM;
1912
1913 dcmd = &cmd->frame->dcmd;
1914
1915 memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
1916
1917 /*
1918 * Prepare DCMD for aen registration
1919 */
1920 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1921
1922 dcmd->cmd = MFI_CMD_DCMD;
1923 dcmd->cmd_status = 0x0;
1924 dcmd->sge_count = 1;
1925 dcmd->flags = MFI_FRAME_DIR_READ;
1926 dcmd->timeout = 0;
1927 dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
1928 dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
1929 dcmd->mbox.w[0] = seq_num;
1930 dcmd->mbox.w[1] = curr_aen.word;
1931 dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
1932 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
1933
1934 /*
1935 * Store reference to the cmd used to register for AEN. When an
1936 * application wants us to register for AEN, we have to abort this
1937 * cmd and re-register with a new EVENT LOCALE supplied by that app
1938 */
1939 instance->aen_cmd = cmd;
1940
1941 /*
1942 * Issue the aen registration frame
1943 */
1944 writel(cmd->frame_phys_addr >> 3,
1945 &instance->reg_set->inbound_queue_port);
1946
1947 return 0;
1948}
1949
1950/**
1951 * megasas_start_aen - Subscribes to AEN during driver load time
1952 * @instance: Adapter soft state
1953 */
1954static int megasas_start_aen(struct megasas_instance *instance)
1955{
1956 struct megasas_evt_log_info eli;
1957 union megasas_evt_class_locale class_locale;
1958
1959 /*
1960 * Get the latest sequence number from FW
1961 */
1962 memset(&eli, 0, sizeof(eli));
1963
1964 if (megasas_get_seq_num(instance, &eli))
1965 return -1;
1966
1967 /*
1968 * Register AEN with FW for latest sequence number plus 1
1969 */
1970 class_locale.members.reserved = 0;
1971 class_locale.members.locale = MR_EVT_LOCALE_ALL;
1972 class_locale.members.class = MR_EVT_CLASS_DEBUG;
1973
1974 return megasas_register_aen(instance, eli.newest_seq_num + 1,
1975 class_locale.word);
1976}
1977
1978/**
1979 * megasas_io_attach - Attaches this driver to SCSI mid-layer
1980 * @instance: Adapter soft state
1981 */
1982static int megasas_io_attach(struct megasas_instance *instance)
1983{
1984 struct Scsi_Host *host = instance->host;
1985
1986 /*
1987 * Export parameters required by SCSI mid-layer
1988 */
1989 host->irq = instance->pdev->irq;
1990 host->unique_id = instance->unique_id;
1991 host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
1992 host->this_id = instance->init_id;
1993 host->sg_tablesize = instance->max_num_sge;
1994 host->max_sectors = instance->max_sectors_per_req;
1995 host->cmd_per_lun = 128;
1996 host->max_channel = MEGASAS_MAX_CHANNELS - 1;
1997 host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
1998 host->max_lun = MEGASAS_MAX_LUN;
1999
2000 /*
2001 * Notify the mid-layer about the new controller
2002 */
2003 if (scsi_add_host(host, &instance->pdev->dev)) {
2004 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
2005 return -ENODEV;
2006 }
2007
2008 /*
2009 * Trigger SCSI to scan our drives
2010 */
2011 scsi_scan_host(host);
2012 return 0;
2013}
2014
2015/**
2016 * megasas_probe_one - PCI hotplug entry point
2017 * @pdev: PCI device structure
2018 * @id: PCI ids of supported hotplugged adapter
2019 */
2020static int __devinit
2021megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2022{
2023 int rval;
2024 struct Scsi_Host *host;
2025 struct megasas_instance *instance;
2026
2027 /*
2028 * Announce PCI information
2029 */
2030 printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2031 pdev->vendor, pdev->device, pdev->subsystem_vendor,
2032 pdev->subsystem_device);
2033
2034 printk("bus %d:slot %d:func %d\n",
2035 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2036
2037 /*
2038 * PCI prepping: enable device set bus mastering and dma mask
2039 */
2040 rval = pci_enable_device(pdev);
2041
2042 if (rval) {
2043 return rval;
2044 }
2045
2046 pci_set_master(pdev);
2047
2048 /*
2049 * All our contollers are capable of performing 64-bit DMA
2050 */
2051 if (IS_DMA64) {
2052 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
2053
2054 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2055 goto fail_set_dma_mask;
2056 }
2057 } else {
2058 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2059 goto fail_set_dma_mask;
2060 }
2061
2062 host = scsi_host_alloc(&megasas_template,
2063 sizeof(struct megasas_instance));
2064
2065 if (!host) {
2066 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2067 goto fail_alloc_instance;
2068 }
2069
2070 instance = (struct megasas_instance *)host->hostdata;
2071 memset(instance, 0, sizeof(*instance));
2072
2073 instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2074 &instance->producer_h);
2075 instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2076 &instance->consumer_h);
2077
2078 if (!instance->producer || !instance->consumer) {
2079 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2080 "producer, consumer\n");
2081 goto fail_alloc_dma_buf;
2082 }
2083
2084 *instance->producer = 0;
2085 *instance->consumer = 0;
2086
2087 instance->evt_detail = pci_alloc_consistent(pdev,
2088 sizeof(struct
2089 megasas_evt_detail),
2090 &instance->evt_detail_h);
2091
2092 if (!instance->evt_detail) {
2093 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2094 "event detail structure\n");
2095 goto fail_alloc_dma_buf;
2096 }
2097
2098 /*
2099 * Initialize locks and queues
2100 */
2101 INIT_LIST_HEAD(&instance->cmd_pool);
2102
2103 init_waitqueue_head(&instance->int_cmd_wait_q);
2104 init_waitqueue_head(&instance->abort_cmd_wait_q);
2105
2106 spin_lock_init(&instance->cmd_pool_lock);
2107 spin_lock_init(&instance->instance_lock);
2108
2109 sema_init(&instance->aen_mutex, 1);
2110 sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2111
2112 /*
2113 * Initialize PCI related and misc parameters
2114 */
2115 instance->pdev = pdev;
2116 instance->host = host;
2117 instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2118 instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2119
2120 /*
2121 * Initialize MFI Firmware
2122 */
2123 if (megasas_init_mfi(instance))
2124 goto fail_init_mfi;
2125
2126 /*
2127 * Register IRQ
2128 */
2129 if (request_irq(pdev->irq, megasas_isr, SA_SHIRQ, "megasas", instance)) {
2130 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2131 goto fail_irq;
2132 }
2133
2134 megasas_enable_intr(instance->reg_set);
2135
2136 /*
2137 * Store instance in PCI softstate
2138 */
2139 pci_set_drvdata(pdev, instance);
2140
2141 /*
2142 * Add this controller to megasas_mgmt_info structure so that it
2143 * can be exported to management applications
2144 */
2145 megasas_mgmt_info.count++;
2146 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2147 megasas_mgmt_info.max_index++;
2148
2149 /*
2150 * Initiate AEN (Asynchronous Event Notification)
2151 */
2152 if (megasas_start_aen(instance)) {
2153 printk(KERN_DEBUG "megasas: start aen failed\n");
2154 goto fail_start_aen;
2155 }
2156
2157 /*
2158 * Register with SCSI mid-layer
2159 */
2160 if (megasas_io_attach(instance))
2161 goto fail_io_attach;
2162
2163 return 0;
2164
2165 fail_start_aen:
2166 fail_io_attach:
2167 megasas_mgmt_info.count--;
2168 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2169 megasas_mgmt_info.max_index--;
2170
2171 pci_set_drvdata(pdev, NULL);
2172 megasas_disable_intr(instance->reg_set);
2173 free_irq(instance->pdev->irq, instance);
2174
2175 megasas_release_mfi(instance);
2176
2177 fail_irq:
2178 fail_init_mfi:
2179 fail_alloc_dma_buf:
2180 if (instance->evt_detail)
2181 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2182 instance->evt_detail,
2183 instance->evt_detail_h);
2184
2185 if (instance->producer)
2186 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2187 instance->producer_h);
2188 if (instance->consumer)
2189 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2190 instance->consumer_h);
2191 scsi_host_put(host);
2192
2193 fail_alloc_instance:
2194 fail_set_dma_mask:
2195 pci_disable_device(pdev);
2196
2197 return -ENODEV;
2198}
2199
2200/**
2201 * megasas_flush_cache - Requests FW to flush all its caches
2202 * @instance: Adapter soft state
2203 */
2204static void megasas_flush_cache(struct megasas_instance *instance)
2205{
2206 struct megasas_cmd *cmd;
2207 struct megasas_dcmd_frame *dcmd;
2208
2209 cmd = megasas_get_cmd(instance);
2210
2211 if (!cmd)
2212 return;
2213
2214 dcmd = &cmd->frame->dcmd;
2215
2216 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2217
2218 dcmd->cmd = MFI_CMD_DCMD;
2219 dcmd->cmd_status = 0x0;
2220 dcmd->sge_count = 0;
2221 dcmd->flags = MFI_FRAME_DIR_NONE;
2222 dcmd->timeout = 0;
2223 dcmd->data_xfer_len = 0;
2224 dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2225 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2226
2227 megasas_issue_blocked_cmd(instance, cmd);
2228
2229 megasas_return_cmd(instance, cmd);
2230
2231 return;
2232}
2233
2234/**
2235 * megasas_shutdown_controller - Instructs FW to shutdown the controller
2236 * @instance: Adapter soft state
2237 */
2238static void megasas_shutdown_controller(struct megasas_instance *instance)
2239{
2240 struct megasas_cmd *cmd;
2241 struct megasas_dcmd_frame *dcmd;
2242
2243 cmd = megasas_get_cmd(instance);
2244
2245 if (!cmd)
2246 return;
2247
2248 if (instance->aen_cmd)
2249 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2250
2251 dcmd = &cmd->frame->dcmd;
2252
2253 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2254
2255 dcmd->cmd = MFI_CMD_DCMD;
2256 dcmd->cmd_status = 0x0;
2257 dcmd->sge_count = 0;
2258 dcmd->flags = MFI_FRAME_DIR_NONE;
2259 dcmd->timeout = 0;
2260 dcmd->data_xfer_len = 0;
2261 dcmd->opcode = MR_DCMD_CTRL_SHUTDOWN;
2262
2263 megasas_issue_blocked_cmd(instance, cmd);
2264
2265 megasas_return_cmd(instance, cmd);
2266
2267 return;
2268}
2269
2270/**
2271 * megasas_detach_one - PCI hot"un"plug entry point
2272 * @pdev: PCI device structure
2273 */
2274static void megasas_detach_one(struct pci_dev *pdev)
2275{
2276 int i;
2277 struct Scsi_Host *host;
2278 struct megasas_instance *instance;
2279
2280 instance = pci_get_drvdata(pdev);
2281 host = instance->host;
2282
2283 scsi_remove_host(instance->host);
2284 megasas_flush_cache(instance);
2285 megasas_shutdown_controller(instance);
2286
2287 /*
2288 * Take the instance off the instance array. Note that we will not
2289 * decrement the max_index. We let this array be sparse array
2290 */
2291 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2292 if (megasas_mgmt_info.instance[i] == instance) {
2293 megasas_mgmt_info.count--;
2294 megasas_mgmt_info.instance[i] = NULL;
2295
2296 break;
2297 }
2298 }
2299
2300 pci_set_drvdata(instance->pdev, NULL);
2301
2302 megasas_disable_intr(instance->reg_set);
2303
2304 free_irq(instance->pdev->irq, instance);
2305
2306 megasas_release_mfi(instance);
2307
2308 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2309 instance->evt_detail, instance->evt_detail_h);
2310
2311 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2312 instance->producer_h);
2313
2314 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2315 instance->consumer_h);
2316
2317 scsi_host_put(host);
2318
2319 pci_set_drvdata(pdev, NULL);
2320
2321 pci_disable_device(pdev);
2322
2323 return;
2324}
2325
2326/**
2327 * megasas_shutdown - Shutdown entry point
2328 * @device: Generic device structure
2329 */
2330static void megasas_shutdown(struct pci_dev *pdev)
2331{
2332 struct megasas_instance *instance = pci_get_drvdata(pdev);
2333 megasas_flush_cache(instance);
2334}
2335
2336/**
2337 * megasas_mgmt_open - char node "open" entry point
2338 */
2339static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2340{
2341 /*
2342 * Allow only those users with admin rights
2343 */
2344 if (!capable(CAP_SYS_ADMIN))
2345 return -EACCES;
2346
2347 return 0;
2348}
2349
2350/**
2351 * megasas_mgmt_release - char node "release" entry point
2352 */
2353static int megasas_mgmt_release(struct inode *inode, struct file *filep)
2354{
2355 filep->private_data = NULL;
2356 fasync_helper(-1, filep, 0, &megasas_async_queue);
2357
2358 return 0;
2359}
2360
2361/**
2362 * megasas_mgmt_fasync - Async notifier registration from applications
2363 *
2364 * This function adds the calling process to a driver global queue. When an
2365 * event occurs, SIGIO will be sent to all processes in this queue.
2366 */
2367static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
2368{
2369 int rc;
2370
2371 down(&megasas_async_queue_mutex);
2372
2373 rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
2374
2375 up(&megasas_async_queue_mutex);
2376
2377 if (rc >= 0) {
2378 /* For sanity check when we get ioctl */
2379 filep->private_data = filep;
2380 return 0;
2381 }
2382
2383 printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
2384
2385 return rc;
2386}
2387
2388/**
2389 * megasas_mgmt_fw_ioctl - Issues management ioctls to FW
2390 * @instance: Adapter soft state
2391 * @argp: User's ioctl packet
2392 */
2393static int
2394megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
2395 struct megasas_iocpacket __user * user_ioc,
2396 struct megasas_iocpacket *ioc)
2397{
2398 struct megasas_sge32 *kern_sge32;
2399 struct megasas_cmd *cmd;
2400 void *kbuff_arr[MAX_IOCTL_SGE];
2401 dma_addr_t buf_handle = 0;
2402 int error = 0, i;
2403 void *sense = NULL;
2404 dma_addr_t sense_handle;
2405 u32 *sense_ptr;
2406
2407 memset(kbuff_arr, 0, sizeof(kbuff_arr));
2408
2409 if (ioc->sge_count > MAX_IOCTL_SGE) {
2410 printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n",
2411 ioc->sge_count, MAX_IOCTL_SGE);
2412 return -EINVAL;
2413 }
2414
2415 cmd = megasas_get_cmd(instance);
2416 if (!cmd) {
2417 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
2418 return -ENOMEM;
2419 }
2420
2421 /*
2422 * User's IOCTL packet has 2 frames (maximum). Copy those two
2423 * frames into our cmd's frames. cmd->frame's context will get
2424 * overwritten when we copy from user's frames. So set that value
2425 * alone separately
2426 */
2427 memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
2428 cmd->frame->hdr.context = cmd->index;
2429
2430 /*
2431 * The management interface between applications and the fw uses
2432 * MFI frames. E.g, RAID configuration changes, LD property changes
2433 * etc are accomplishes through different kinds of MFI frames. The
2434 * driver needs to care only about substituting user buffers with
2435 * kernel buffers in SGLs. The location of SGL is embedded in the
2436 * struct iocpacket itself.
2437 */
2438 kern_sge32 = (struct megasas_sge32 *)
2439 ((unsigned long)cmd->frame + ioc->sgl_off);
2440
2441 /*
2442 * For each user buffer, create a mirror buffer and copy in
2443 */
2444 for (i = 0; i < ioc->sge_count; i++) {
2445 kbuff_arr[i] = pci_alloc_consistent(instance->pdev,
2446 ioc->sgl[i].iov_len,
2447 &buf_handle);
2448 if (!kbuff_arr[i]) {
2449 printk(KERN_DEBUG "megasas: Failed to alloc "
2450 "kernel SGL buffer for IOCTL \n");
2451 error = -ENOMEM;
2452 goto out;
2453 }
2454
2455 /*
2456 * We don't change the dma_coherent_mask, so
2457 * pci_alloc_consistent only returns 32bit addresses
2458 */
2459 kern_sge32[i].phys_addr = (u32) buf_handle;
2460 kern_sge32[i].length = ioc->sgl[i].iov_len;
2461
2462 /*
2463 * We created a kernel buffer corresponding to the
2464 * user buffer. Now copy in from the user buffer
2465 */
2466 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
2467 (u32) (ioc->sgl[i].iov_len))) {
2468 error = -EFAULT;
2469 goto out;
2470 }
2471 }
2472
2473 if (ioc->sense_len) {
2474 sense = pci_alloc_consistent(instance->pdev, ioc->sense_len,
2475 &sense_handle);
2476 if (!sense) {
2477 error = -ENOMEM;
2478 goto out;
2479 }
2480
2481 sense_ptr =
2482 (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
2483 *sense_ptr = sense_handle;
2484 }
2485
2486 /*
2487 * Set the sync_cmd flag so that the ISR knows not to complete this
2488 * cmd to the SCSI mid-layer
2489 */
2490 cmd->sync_cmd = 1;
2491 megasas_issue_blocked_cmd(instance, cmd);
2492 cmd->sync_cmd = 0;
2493
2494 /*
2495 * copy out the kernel buffers to user buffers
2496 */
2497 for (i = 0; i < ioc->sge_count; i++) {
2498 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
2499 ioc->sgl[i].iov_len)) {
2500 error = -EFAULT;
2501 goto out;
2502 }
2503 }
2504
2505 /*
2506 * copy out the sense
2507 */
2508 if (ioc->sense_len) {
2509 /*
2510 * sense_ptr points to the location that has the user
2511 * sense buffer address
2512 */
2513 sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
2514 ioc->sense_off);
2515
2516 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
2517 sense, ioc->sense_len)) {
2518 error = -EFAULT;
2519 goto out;
2520 }
2521 }
2522
2523 /*
2524 * copy the status codes returned by the fw
2525 */
2526 if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
2527 &cmd->frame->hdr.cmd_status, sizeof(u8))) {
2528 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
2529 error = -EFAULT;
2530 }
2531
2532 out:
2533 if (sense) {
2534 pci_free_consistent(instance->pdev, ioc->sense_len,
2535 sense, sense_handle);
2536 }
2537
2538 for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
2539 pci_free_consistent(instance->pdev,
2540 kern_sge32[i].length,
2541 kbuff_arr[i], kern_sge32[i].phys_addr);
2542 }
2543
2544 megasas_return_cmd(instance, cmd);
2545 return error;
2546}
2547
2548static struct megasas_instance *megasas_lookup_instance(u16 host_no)
2549{
2550 int i;
2551
2552 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2553
2554 if ((megasas_mgmt_info.instance[i]) &&
2555 (megasas_mgmt_info.instance[i]->host->host_no == host_no))
2556 return megasas_mgmt_info.instance[i];
2557 }
2558
2559 return NULL;
2560}
2561
2562static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
2563{
2564 struct megasas_iocpacket __user *user_ioc =
2565 (struct megasas_iocpacket __user *)arg;
2566 struct megasas_iocpacket *ioc;
2567 struct megasas_instance *instance;
2568 int error;
2569
2570 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
2571 if (!ioc)
2572 return -ENOMEM;
2573
2574 if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
2575 error = -EFAULT;
2576 goto out_kfree_ioc;
2577 }
2578
2579 instance = megasas_lookup_instance(ioc->host_no);
2580 if (!instance) {
2581 error = -ENODEV;
2582 goto out_kfree_ioc;
2583 }
2584
2585 /*
2586 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
2587 */
2588 if (down_interruptible(&instance->ioctl_sem)) {
2589 error = -ERESTARTSYS;
2590 goto out_kfree_ioc;
2591 }
2592 error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
2593 up(&instance->ioctl_sem);
2594
2595 out_kfree_ioc:
2596 kfree(ioc);
2597 return error;
2598}
2599
2600static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
2601{
2602 struct megasas_instance *instance;
2603 struct megasas_aen aen;
2604 int error;
2605
2606 if (file->private_data != file) {
2607 printk(KERN_DEBUG "megasas: fasync_helper was not "
2608 "called first\n");
2609 return -EINVAL;
2610 }
2611
2612 if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
2613 return -EFAULT;
2614
2615 instance = megasas_lookup_instance(aen.host_no);
2616
2617 if (!instance)
2618 return -ENODEV;
2619
2620 down(&instance->aen_mutex);
2621 error = megasas_register_aen(instance, aen.seq_num,
2622 aen.class_locale_word);
2623 up(&instance->aen_mutex);
2624 return error;
2625}
2626
2627/**
2628 * megasas_mgmt_ioctl - char node ioctl entry point
2629 */
2630static long
2631megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2632{
2633 switch (cmd) {
2634 case MEGASAS_IOC_FIRMWARE:
2635 return megasas_mgmt_ioctl_fw(file, arg);
2636
2637 case MEGASAS_IOC_GET_AEN:
2638 return megasas_mgmt_ioctl_aen(file, arg);
2639 }
2640
2641 return -ENOTTY;
2642}
2643
2644#ifdef CONFIG_COMPAT
2645static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
2646{
2647 struct compat_megasas_iocpacket __user *cioc =
2648 (struct compat_megasas_iocpacket __user *)arg;
2649 struct megasas_iocpacket __user *ioc =
2650 compat_alloc_user_space(sizeof(struct megasas_iocpacket));
2651 int i;
2652 int error = 0;
2653
2654 clear_user(ioc, sizeof(*ioc));
2655
2656 if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
2657 copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
2658 copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
2659 copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
2660 copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
2661 copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
2662 return -EFAULT;
2663
2664 for (i = 0; i < MAX_IOCTL_SGE; i++) {
2665 compat_uptr_t ptr;
2666
2667 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
2668 put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
2669 copy_in_user(&ioc->sgl[i].iov_len,
2670 &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
2671 return -EFAULT;
2672 }
2673
2674 error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
2675
2676 if (copy_in_user(&cioc->frame.hdr.cmd_status,
2677 &ioc->frame.hdr.cmd_status, sizeof(u8))) {
2678 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
2679 return -EFAULT;
2680 }
2681 return error;
2682}
2683
2684static long
2685megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
2686 unsigned long arg)
2687{
2688 switch (cmd) {
2689 case MEGASAS_IOC_FIRMWARE:{
2690 return megasas_mgmt_compat_ioctl_fw(file, arg);
2691 }
2692 case MEGASAS_IOC_GET_AEN:
2693 return megasas_mgmt_ioctl_aen(file, arg);
2694 }
2695
2696 return -ENOTTY;
2697}
2698#endif
2699
2700/*
2701 * File operations structure for management interface
2702 */
2703static struct file_operations megasas_mgmt_fops = {
2704 .owner = THIS_MODULE,
2705 .open = megasas_mgmt_open,
2706 .release = megasas_mgmt_release,
2707 .fasync = megasas_mgmt_fasync,
2708 .unlocked_ioctl = megasas_mgmt_ioctl,
2709#ifdef CONFIG_COMPAT
2710 .compat_ioctl = megasas_mgmt_compat_ioctl,
2711#endif
2712};
2713
2714/*
2715 * PCI hotplug support registration structure
2716 */
2717static struct pci_driver megasas_pci_driver = {
2718
2719 .name = "megaraid_sas",
2720 .id_table = megasas_pci_table,
2721 .probe = megasas_probe_one,
2722 .remove = __devexit_p(megasas_detach_one),
2723 .shutdown = megasas_shutdown,
2724};
2725
2726/*
2727 * Sysfs driver attributes
2728 */
2729static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
2730{
2731 return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
2732 MEGASAS_VERSION);
2733}
2734
2735static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
2736
2737static ssize_t
2738megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
2739{
2740 return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
2741 MEGASAS_RELDATE);
2742}
2743
2744static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
2745 NULL);
2746
2747/**
2748 * megasas_init - Driver load entry point
2749 */
2750static int __init megasas_init(void)
2751{
2752 int rval;
2753
2754 /*
2755 * Announce driver version and other information
2756 */
2757 printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
2758 MEGASAS_EXT_VERSION);
2759
2760 memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
2761
2762 /*
2763 * Register character device node
2764 */
2765 rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
2766
2767 if (rval < 0) {
2768 printk(KERN_DEBUG "megasas: failed to open device node\n");
2769 return rval;
2770 }
2771
2772 megasas_mgmt_majorno = rval;
2773
2774 /*
2775 * Register ourselves as PCI hotplug module
2776 */
2777 rval = pci_module_init(&megasas_pci_driver);
2778
2779 if (rval) {
2780 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
2781 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
2782 }
2783
2784 driver_create_file(&megasas_pci_driver.driver, &driver_attr_version);
2785 driver_create_file(&megasas_pci_driver.driver,
2786 &driver_attr_release_date);
2787
2788 return rval;
2789}
2790
2791/**
2792 * megasas_exit - Driver unload entry point
2793 */
2794static void __exit megasas_exit(void)
2795{
2796 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
2797 driver_remove_file(&megasas_pci_driver.driver,
2798 &driver_attr_release_date);
2799
2800 pci_unregister_driver(&megasas_pci_driver);
2801 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
2802}
2803
2804module_init(megasas_init);
2805module_exit(megasas_exit);