Eric Biggers | c1144c9 | 2019-08-04 19:35:47 -0700 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Implementation of HKDF ("HMAC-based Extract-and-Expand Key Derivation |
| 4 | * Function"), aka RFC 5869. See also the original paper (Krawczyk 2010): |
| 5 | * "Cryptographic Extraction and Key Derivation: The HKDF Scheme". |
| 6 | * |
| 7 | * This is used to derive keys from the fscrypt master keys. |
| 8 | * |
| 9 | * Copyright 2019 Google LLC |
| 10 | */ |
| 11 | |
| 12 | #include <crypto/hash.h> |
Eric Biggers | a24d22b | 2020-11-12 21:20:21 -0800 | [diff] [blame] | 13 | #include <crypto/sha2.h> |
Eric Biggers | c1144c9 | 2019-08-04 19:35:47 -0700 | [diff] [blame] | 14 | |
| 15 | #include "fscrypt_private.h" |
| 16 | |
| 17 | /* |
| 18 | * HKDF supports any unkeyed cryptographic hash algorithm, but fscrypt uses |
Eric Biggers | 7f595d6 | 2021-09-20 20:03:03 -0700 | [diff] [blame] | 19 | * SHA-512 because it is well-established, secure, and reasonably efficient. |
| 20 | * |
| 21 | * HKDF-SHA256 was also considered, as its 256-bit security strength would be |
| 22 | * sufficient here. A 512-bit security strength is "nice to have", though. |
| 23 | * Also, on 64-bit CPUs, SHA-512 is usually just as fast as SHA-256. In the |
| 24 | * common case of deriving an AES-256-XTS key (512 bits), that can result in |
| 25 | * HKDF-SHA512 being much faster than HKDF-SHA256, as the longer digest size of |
| 26 | * SHA-512 causes HKDF-Expand to only need to do one iteration rather than two. |
Eric Biggers | c1144c9 | 2019-08-04 19:35:47 -0700 | [diff] [blame] | 27 | */ |
| 28 | #define HKDF_HMAC_ALG "hmac(sha512)" |
| 29 | #define HKDF_HASHLEN SHA512_DIGEST_SIZE |
| 30 | |
| 31 | /* |
| 32 | * HKDF consists of two steps: |
| 33 | * |
| 34 | * 1. HKDF-Extract: extract a pseudorandom key of length HKDF_HASHLEN bytes from |
| 35 | * the input keying material and optional salt. |
| 36 | * 2. HKDF-Expand: expand the pseudorandom key into output keying material of |
| 37 | * any length, parameterized by an application-specific info string. |
| 38 | * |
| 39 | * HKDF-Extract can be skipped if the input is already a pseudorandom key of |
| 40 | * length HKDF_HASHLEN bytes. However, cipher modes other than AES-256-XTS take |
| 41 | * shorter keys, and we don't want to force users of those modes to provide |
| 42 | * unnecessarily long master keys. Thus fscrypt still does HKDF-Extract. No |
| 43 | * salt is used, since fscrypt master keys should already be pseudorandom and |
| 44 | * there's no way to persist a random salt per master key from kernel mode. |
| 45 | */ |
| 46 | |
| 47 | /* HKDF-Extract (RFC 5869 section 2.2), unsalted */ |
| 48 | static int hkdf_extract(struct crypto_shash *hmac_tfm, const u8 *ikm, |
| 49 | unsigned int ikmlen, u8 prk[HKDF_HASHLEN]) |
| 50 | { |
| 51 | static const u8 default_salt[HKDF_HASHLEN]; |
Eric Biggers | c1144c9 | 2019-08-04 19:35:47 -0700 | [diff] [blame] | 52 | int err; |
| 53 | |
| 54 | err = crypto_shash_setkey(hmac_tfm, default_salt, HKDF_HASHLEN); |
| 55 | if (err) |
| 56 | return err; |
| 57 | |
Eric Biggers | 3e185a5 | 2020-05-01 22:31:15 -0700 | [diff] [blame] | 58 | return crypto_shash_tfm_digest(hmac_tfm, ikm, ikmlen, prk); |
Eric Biggers | c1144c9 | 2019-08-04 19:35:47 -0700 | [diff] [blame] | 59 | } |
| 60 | |
| 61 | /* |
| 62 | * Compute HKDF-Extract using the given master key as the input keying material, |
| 63 | * and prepare an HMAC transform object keyed by the resulting pseudorandom key. |
| 64 | * |
| 65 | * Afterwards, the keyed HMAC transform object can be used for HKDF-Expand many |
| 66 | * times without having to recompute HKDF-Extract each time. |
| 67 | */ |
| 68 | int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key, |
| 69 | unsigned int master_key_size) |
| 70 | { |
| 71 | struct crypto_shash *hmac_tfm; |
| 72 | u8 prk[HKDF_HASHLEN]; |
| 73 | int err; |
| 74 | |
| 75 | hmac_tfm = crypto_alloc_shash(HKDF_HMAC_ALG, 0, 0); |
| 76 | if (IS_ERR(hmac_tfm)) { |
| 77 | fscrypt_err(NULL, "Error allocating " HKDF_HMAC_ALG ": %ld", |
| 78 | PTR_ERR(hmac_tfm)); |
| 79 | return PTR_ERR(hmac_tfm); |
| 80 | } |
| 81 | |
| 82 | if (WARN_ON(crypto_shash_digestsize(hmac_tfm) != sizeof(prk))) { |
| 83 | err = -EINVAL; |
| 84 | goto err_free_tfm; |
| 85 | } |
| 86 | |
| 87 | err = hkdf_extract(hmac_tfm, master_key, master_key_size, prk); |
| 88 | if (err) |
| 89 | goto err_free_tfm; |
| 90 | |
| 91 | err = crypto_shash_setkey(hmac_tfm, prk, sizeof(prk)); |
| 92 | if (err) |
| 93 | goto err_free_tfm; |
| 94 | |
| 95 | hkdf->hmac_tfm = hmac_tfm; |
| 96 | goto out; |
| 97 | |
| 98 | err_free_tfm: |
| 99 | crypto_free_shash(hmac_tfm); |
| 100 | out: |
| 101 | memzero_explicit(prk, sizeof(prk)); |
| 102 | return err; |
| 103 | } |
| 104 | |
| 105 | /* |
| 106 | * HKDF-Expand (RFC 5869 section 2.3). This expands the pseudorandom key, which |
| 107 | * was already keyed into 'hkdf->hmac_tfm' by fscrypt_init_hkdf(), into 'okmlen' |
| 108 | * bytes of output keying material parameterized by the application-specific |
| 109 | * 'info' of length 'infolen' bytes, prefixed by "fscrypt\0" and the 'context' |
| 110 | * byte. This is thread-safe and may be called by multiple threads in parallel. |
| 111 | * |
| 112 | * ('context' isn't part of the HKDF specification; it's just a prefix fscrypt |
| 113 | * adds to its application-specific info strings to guarantee that it doesn't |
| 114 | * accidentally repeat an info string when using HKDF for different purposes.) |
| 115 | */ |
Eric Biggers | 2a5831b | 2019-12-09 12:40:54 -0800 | [diff] [blame] | 116 | int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context, |
Eric Biggers | c1144c9 | 2019-08-04 19:35:47 -0700 | [diff] [blame] | 117 | const u8 *info, unsigned int infolen, |
| 118 | u8 *okm, unsigned int okmlen) |
| 119 | { |
| 120 | SHASH_DESC_ON_STACK(desc, hkdf->hmac_tfm); |
| 121 | u8 prefix[9]; |
| 122 | unsigned int i; |
| 123 | int err; |
| 124 | const u8 *prev = NULL; |
| 125 | u8 counter = 1; |
| 126 | u8 tmp[HKDF_HASHLEN]; |
| 127 | |
| 128 | if (WARN_ON(okmlen > 255 * HKDF_HASHLEN)) |
| 129 | return -EINVAL; |
| 130 | |
| 131 | desc->tfm = hkdf->hmac_tfm; |
| 132 | |
| 133 | memcpy(prefix, "fscrypt\0", 8); |
| 134 | prefix[8] = context; |
| 135 | |
| 136 | for (i = 0; i < okmlen; i += HKDF_HASHLEN) { |
| 137 | |
| 138 | err = crypto_shash_init(desc); |
| 139 | if (err) |
| 140 | goto out; |
| 141 | |
| 142 | if (prev) { |
| 143 | err = crypto_shash_update(desc, prev, HKDF_HASHLEN); |
| 144 | if (err) |
| 145 | goto out; |
| 146 | } |
| 147 | |
| 148 | err = crypto_shash_update(desc, prefix, sizeof(prefix)); |
| 149 | if (err) |
| 150 | goto out; |
| 151 | |
| 152 | err = crypto_shash_update(desc, info, infolen); |
| 153 | if (err) |
| 154 | goto out; |
| 155 | |
| 156 | BUILD_BUG_ON(sizeof(counter) != 1); |
| 157 | if (okmlen - i < HKDF_HASHLEN) { |
| 158 | err = crypto_shash_finup(desc, &counter, 1, tmp); |
| 159 | if (err) |
| 160 | goto out; |
| 161 | memcpy(&okm[i], tmp, okmlen - i); |
| 162 | memzero_explicit(tmp, sizeof(tmp)); |
| 163 | } else { |
| 164 | err = crypto_shash_finup(desc, &counter, 1, &okm[i]); |
| 165 | if (err) |
| 166 | goto out; |
| 167 | } |
| 168 | counter++; |
| 169 | prev = &okm[i]; |
| 170 | } |
| 171 | err = 0; |
| 172 | out: |
| 173 | if (unlikely(err)) |
| 174 | memzero_explicit(okm, okmlen); /* so caller doesn't need to */ |
| 175 | shash_desc_zero(desc); |
| 176 | return err; |
| 177 | } |
| 178 | |
| 179 | void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf) |
| 180 | { |
| 181 | crypto_free_shash(hkdf->hmac_tfm); |
| 182 | } |