blob: 630e01b5c19b9543d1f9afb8af4216dfad4b40c3 [file] [log] [blame]
Wyon Bib7535a32019-10-24 00:38:51 +02001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2018 Rockchip Electronics Co. Ltd.
4 *
5 * Author: Wyon Bi <bivvy.bi@rock-chips.com>
6 */
7
Liu Ying9a8406b2022-01-24 10:40:07 +08008#include <linux/bits.h>
Wyon Bib7535a32019-10-24 00:38:51 +02009#include <linux/kernel.h>
10#include <linux/clk.h>
11#include <linux/iopoll.h>
12#include <linux/clk-provider.h>
13#include <linux/delay.h>
14#include <linux/init.h>
Andy Shevchenkoa4605132021-04-06 13:22:51 +030015#include <linux/mfd/syscon.h>
Wyon Bib7535a32019-10-24 00:38:51 +020016#include <linux/module.h>
17#include <linux/of_device.h>
18#include <linux/platform_device.h>
Andy Shevchenkoa4605132021-04-06 13:22:51 +030019#include <linux/pm_runtime.h>
Wyon Bib7535a32019-10-24 00:38:51 +020020#include <linux/reset.h>
Andy Shevchenkoa4605132021-04-06 13:22:51 +030021#include <linux/time64.h>
22
Wyon Bib7535a32019-10-24 00:38:51 +020023#include <linux/phy/phy.h>
Heiko Stuebnerf0684c12019-11-08 01:06:40 +010024#include <linux/phy/phy-mipi-dphy.h>
Wyon Bib7535a32019-10-24 00:38:51 +020025
26#define UPDATE(x, h, l) (((x) << (l)) & GENMASK((h), (l)))
27
28/*
29 * The offset address[7:0] is distributed two parts, one from the bit7 to bit5
30 * is the first address, the other from the bit4 to bit0 is the second address.
31 * when you configure the registers, you must set both of them. The Clock Lane
32 * and Data Lane use the same registers with the same second address, but the
33 * first address is different.
34 */
35#define FIRST_ADDRESS(x) (((x) & 0x7) << 5)
36#define SECOND_ADDRESS(x) (((x) & 0x1f) << 0)
37#define PHY_REG(first, second) (FIRST_ADDRESS(first) | \
38 SECOND_ADDRESS(second))
39
40/* Analog Register Part: reg00 */
41#define BANDGAP_POWER_MASK BIT(7)
42#define BANDGAP_POWER_DOWN BIT(7)
43#define BANDGAP_POWER_ON 0
44#define LANE_EN_MASK GENMASK(6, 2)
45#define LANE_EN_CK BIT(6)
46#define LANE_EN_3 BIT(5)
47#define LANE_EN_2 BIT(4)
48#define LANE_EN_1 BIT(3)
49#define LANE_EN_0 BIT(2)
50#define POWER_WORK_MASK GENMASK(1, 0)
51#define POWER_WORK_ENABLE UPDATE(1, 1, 0)
52#define POWER_WORK_DISABLE UPDATE(2, 1, 0)
53/* Analog Register Part: reg01 */
54#define REG_SYNCRST_MASK BIT(2)
55#define REG_SYNCRST_RESET BIT(2)
56#define REG_SYNCRST_NORMAL 0
57#define REG_LDOPD_MASK BIT(1)
58#define REG_LDOPD_POWER_DOWN BIT(1)
59#define REG_LDOPD_POWER_ON 0
60#define REG_PLLPD_MASK BIT(0)
61#define REG_PLLPD_POWER_DOWN BIT(0)
62#define REG_PLLPD_POWER_ON 0
63/* Analog Register Part: reg03 */
64#define REG_FBDIV_HI_MASK BIT(5)
65#define REG_FBDIV_HI(x) UPDATE((x >> 8), 5, 5)
66#define REG_PREDIV_MASK GENMASK(4, 0)
67#define REG_PREDIV(x) UPDATE(x, 4, 0)
68/* Analog Register Part: reg04 */
69#define REG_FBDIV_LO_MASK GENMASK(7, 0)
70#define REG_FBDIV_LO(x) UPDATE(x, 7, 0)
71/* Analog Register Part: reg05 */
72#define SAMPLE_CLOCK_PHASE_MASK GENMASK(6, 4)
73#define SAMPLE_CLOCK_PHASE(x) UPDATE(x, 6, 4)
74#define CLOCK_LANE_SKEW_PHASE_MASK GENMASK(2, 0)
75#define CLOCK_LANE_SKEW_PHASE(x) UPDATE(x, 2, 0)
76/* Analog Register Part: reg06 */
77#define DATA_LANE_3_SKEW_PHASE_MASK GENMASK(6, 4)
78#define DATA_LANE_3_SKEW_PHASE(x) UPDATE(x, 6, 4)
79#define DATA_LANE_2_SKEW_PHASE_MASK GENMASK(2, 0)
80#define DATA_LANE_2_SKEW_PHASE(x) UPDATE(x, 2, 0)
81/* Analog Register Part: reg07 */
82#define DATA_LANE_1_SKEW_PHASE_MASK GENMASK(6, 4)
83#define DATA_LANE_1_SKEW_PHASE(x) UPDATE(x, 6, 4)
84#define DATA_LANE_0_SKEW_PHASE_MASK GENMASK(2, 0)
85#define DATA_LANE_0_SKEW_PHASE(x) UPDATE(x, 2, 0)
86/* Analog Register Part: reg08 */
87#define SAMPLE_CLOCK_DIRECTION_MASK BIT(4)
88#define SAMPLE_CLOCK_DIRECTION_REVERSE BIT(4)
89#define SAMPLE_CLOCK_DIRECTION_FORWARD 0
90/* Digital Register Part: reg00 */
91#define REG_DIG_RSTN_MASK BIT(0)
92#define REG_DIG_RSTN_NORMAL BIT(0)
93#define REG_DIG_RSTN_RESET 0
94/* Digital Register Part: reg01 */
95#define INVERT_TXCLKESC_MASK BIT(1)
96#define INVERT_TXCLKESC_ENABLE BIT(1)
97#define INVERT_TXCLKESC_DISABLE 0
98#define INVERT_TXBYTECLKHS_MASK BIT(0)
99#define INVERT_TXBYTECLKHS_ENABLE BIT(0)
100#define INVERT_TXBYTECLKHS_DISABLE 0
101/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
102#define T_LPX_CNT_MASK GENMASK(5, 0)
103#define T_LPX_CNT(x) UPDATE(x, 5, 0)
104/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
105#define T_HS_PREPARE_CNT_MASK GENMASK(6, 0)
106#define T_HS_PREPARE_CNT(x) UPDATE(x, 6, 0)
107/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
108#define T_HS_ZERO_CNT_MASK GENMASK(5, 0)
109#define T_HS_ZERO_CNT(x) UPDATE(x, 5, 0)
110/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
111#define T_HS_TRAIL_CNT_MASK GENMASK(6, 0)
112#define T_HS_TRAIL_CNT(x) UPDATE(x, 6, 0)
113/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
114#define T_HS_EXIT_CNT_MASK GENMASK(4, 0)
115#define T_HS_EXIT_CNT(x) UPDATE(x, 4, 0)
116/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
117#define T_CLK_POST_CNT_MASK GENMASK(3, 0)
118#define T_CLK_POST_CNT(x) UPDATE(x, 3, 0)
119/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
120#define LPDT_TX_PPI_SYNC_MASK BIT(2)
121#define LPDT_TX_PPI_SYNC_ENABLE BIT(2)
122#define LPDT_TX_PPI_SYNC_DISABLE 0
123#define T_WAKEUP_CNT_HI_MASK GENMASK(1, 0)
124#define T_WAKEUP_CNT_HI(x) UPDATE(x, 1, 0)
125/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
126#define T_WAKEUP_CNT_LO_MASK GENMASK(7, 0)
127#define T_WAKEUP_CNT_LO(x) UPDATE(x, 7, 0)
128/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
129#define T_CLK_PRE_CNT_MASK GENMASK(3, 0)
130#define T_CLK_PRE_CNT(x) UPDATE(x, 3, 0)
131/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
132#define T_TA_GO_CNT_MASK GENMASK(5, 0)
133#define T_TA_GO_CNT(x) UPDATE(x, 5, 0)
134/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
135#define T_TA_SURE_CNT_MASK GENMASK(5, 0)
136#define T_TA_SURE_CNT(x) UPDATE(x, 5, 0)
137/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
138#define T_TA_WAIT_CNT_MASK GENMASK(5, 0)
139#define T_TA_WAIT_CNT(x) UPDATE(x, 5, 0)
140/* LVDS Register Part: reg00 */
141#define LVDS_DIGITAL_INTERNAL_RESET_MASK BIT(2)
142#define LVDS_DIGITAL_INTERNAL_RESET_DISABLE BIT(2)
143#define LVDS_DIGITAL_INTERNAL_RESET_ENABLE 0
144/* LVDS Register Part: reg01 */
145#define LVDS_DIGITAL_INTERNAL_ENABLE_MASK BIT(7)
146#define LVDS_DIGITAL_INTERNAL_ENABLE BIT(7)
147#define LVDS_DIGITAL_INTERNAL_DISABLE 0
148/* LVDS Register Part: reg03 */
149#define MODE_ENABLE_MASK GENMASK(2, 0)
150#define TTL_MODE_ENABLE BIT(2)
151#define LVDS_MODE_ENABLE BIT(1)
152#define MIPI_MODE_ENABLE BIT(0)
153/* LVDS Register Part: reg0b */
154#define LVDS_LANE_EN_MASK GENMASK(7, 3)
155#define LVDS_DATA_LANE0_EN BIT(7)
156#define LVDS_DATA_LANE1_EN BIT(6)
157#define LVDS_DATA_LANE2_EN BIT(5)
158#define LVDS_DATA_LANE3_EN BIT(4)
159#define LVDS_CLK_LANE_EN BIT(3)
160#define LVDS_PLL_POWER_MASK BIT(2)
161#define LVDS_PLL_POWER_OFF BIT(2)
162#define LVDS_PLL_POWER_ON 0
163#define LVDS_BANDGAP_POWER_MASK BIT(0)
164#define LVDS_BANDGAP_POWER_DOWN BIT(0)
165#define LVDS_BANDGAP_POWER_ON 0
166
167#define DSI_PHY_RSTZ 0xa0
168#define PHY_ENABLECLK BIT(2)
169#define DSI_PHY_STATUS 0xb0
170#define PHY_LOCK BIT(0)
171
Wyon Bib7535a32019-10-24 00:38:51 +0200172struct inno_dsidphy {
173 struct device *dev;
174 struct clk *ref_clk;
175 struct clk *pclk_phy;
176 struct clk *pclk_host;
177 void __iomem *phy_base;
178 void __iomem *host_base;
179 struct reset_control *rst;
180 enum phy_mode mode;
Heiko Stuebnerf0684c12019-11-08 01:06:40 +0100181 struct phy_configure_opts_mipi_dphy dphy_cfg;
Wyon Bib7535a32019-10-24 00:38:51 +0200182
Heiko Stuebnerf0684c12019-11-08 01:06:40 +0100183 struct clk *pll_clk;
Wyon Bib7535a32019-10-24 00:38:51 +0200184 struct {
185 struct clk_hw hw;
186 u8 prediv;
187 u16 fbdiv;
188 unsigned long rate;
189 } pll;
190};
191
192enum {
193 REGISTER_PART_ANALOG,
194 REGISTER_PART_DIGITAL,
195 REGISTER_PART_CLOCK_LANE,
196 REGISTER_PART_DATA0_LANE,
197 REGISTER_PART_DATA1_LANE,
198 REGISTER_PART_DATA2_LANE,
199 REGISTER_PART_DATA3_LANE,
200 REGISTER_PART_LVDS,
201};
202
203static inline struct inno_dsidphy *hw_to_inno(struct clk_hw *hw)
204{
205 return container_of(hw, struct inno_dsidphy, pll.hw);
206}
207
208static void phy_update_bits(struct inno_dsidphy *inno,
209 u8 first, u8 second, u8 mask, u8 val)
210{
211 u32 reg = PHY_REG(first, second) << 2;
212 unsigned int tmp, orig;
213
214 orig = readl(inno->phy_base + reg);
215 tmp = orig & ~mask;
216 tmp |= val & mask;
217 writel(tmp, inno->phy_base + reg);
218}
219
Heiko Stuebnerf0684c12019-11-08 01:06:40 +0100220static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy *inno,
221 unsigned long rate)
Wyon Bib7535a32019-10-24 00:38:51 +0200222{
Heiko Stuebnerf0684c12019-11-08 01:06:40 +0100223 unsigned long prate = clk_get_rate(inno->ref_clk);
224 unsigned long best_freq = 0;
225 unsigned long fref, fout;
226 u8 min_prediv, max_prediv;
227 u8 _prediv, best_prediv = 1;
228 u16 _fbdiv, best_fbdiv = 1;
229 u32 min_delta = UINT_MAX;
230
231 /*
232 * The PLL output frequency can be calculated using a simple formula:
233 * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
234 * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
235 */
236 fref = prate / 2;
237 if (rate > 1000000000UL)
238 fout = 1000000000UL;
239 else
240 fout = rate;
241
242 /* 5Mhz < Fref / prediv < 40MHz */
243 min_prediv = DIV_ROUND_UP(fref, 40000000);
244 max_prediv = fref / 5000000;
245
246 for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
247 u64 tmp;
248 u32 delta;
249
250 tmp = (u64)fout * _prediv;
251 do_div(tmp, fref);
252 _fbdiv = tmp;
253
254 /*
255 * The possible settings of feedback divider are
256 * 12, 13, 14, 16, ~ 511
257 */
258 if (_fbdiv == 15)
259 continue;
260
261 if (_fbdiv < 12 || _fbdiv > 511)
262 continue;
263
264 tmp = (u64)_fbdiv * fref;
265 do_div(tmp, _prediv);
266
267 delta = abs(fout - tmp);
268 if (!delta) {
269 best_prediv = _prediv;
270 best_fbdiv = _fbdiv;
271 best_freq = tmp;
272 break;
273 } else if (delta < min_delta) {
274 best_prediv = _prediv;
275 best_fbdiv = _fbdiv;
276 best_freq = tmp;
277 min_delta = delta;
278 }
279 }
280
281 if (best_freq) {
282 inno->pll.prediv = best_prediv;
283 inno->pll.fbdiv = best_fbdiv;
284 inno->pll.rate = best_freq;
285 }
286
287 return best_freq;
Wyon Bib7535a32019-10-24 00:38:51 +0200288}
289
290static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno)
291{
Heiko Stuebnerf0684c12019-11-08 01:06:40 +0100292 struct phy_configure_opts_mipi_dphy *cfg = &inno->dphy_cfg;
Wyon Bib7535a32019-10-24 00:38:51 +0200293 const struct {
294 unsigned long rate;
295 u8 hs_prepare;
296 u8 clk_lane_hs_zero;
297 u8 data_lane_hs_zero;
298 u8 hs_trail;
299 } timings[] = {
300 { 110000000, 0x20, 0x16, 0x02, 0x22},
301 { 150000000, 0x06, 0x16, 0x03, 0x45},
302 { 200000000, 0x18, 0x17, 0x04, 0x0b},
303 { 250000000, 0x05, 0x17, 0x05, 0x16},
304 { 300000000, 0x51, 0x18, 0x06, 0x2c},
305 { 400000000, 0x64, 0x19, 0x07, 0x33},
306 { 500000000, 0x20, 0x1b, 0x07, 0x4e},
307 { 600000000, 0x6a, 0x1d, 0x08, 0x3a},
308 { 700000000, 0x3e, 0x1e, 0x08, 0x6a},
309 { 800000000, 0x21, 0x1f, 0x09, 0x29},
310 {1000000000, 0x09, 0x20, 0x09, 0x27},
311 };
Heiko Stuebnerf0684c12019-11-08 01:06:40 +0100312 u32 t_txbyteclkhs, t_txclkesc;
Wyon Bib7535a32019-10-24 00:38:51 +0200313 u32 txbyteclkhs, txclkesc, esc_clk_div;
314 u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
315 u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero;
316 unsigned int i;
317
Heiko Stuebnerf0684c12019-11-08 01:06:40 +0100318 inno_dsidphy_pll_calc_rate(inno, cfg->hs_clk_rate);
319
Wyon Bib7535a32019-10-24 00:38:51 +0200320 /* Select MIPI mode */
321 phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
322 MODE_ENABLE_MASK, MIPI_MODE_ENABLE);
323 /* Configure PLL */
324 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
325 REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
326 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
327 REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv));
328 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
329 REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
330 /* Enable PLL and LDO */
331 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
332 REG_LDOPD_MASK | REG_PLLPD_MASK,
333 REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
334 /* Reset analog */
335 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
336 REG_SYNCRST_MASK, REG_SYNCRST_RESET);
337 udelay(1);
338 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
339 REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
340 /* Reset digital */
341 phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
342 REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
343 udelay(1);
344 phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
345 REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
346
347 txbyteclkhs = inno->pll.rate / 8;
348 t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs);
349
350 esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000);
351 txclkesc = txbyteclkhs / esc_clk_div;
352 t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc);
353
Wyon Bib7535a32019-10-24 00:38:51 +0200354 /*
355 * The value of counter for HS Ths-exit
356 * Ths-exit = Tpin_txbyteclkhs * value
357 */
Heiko Stuebnerf0684c12019-11-08 01:06:40 +0100358 hs_exit = DIV_ROUND_UP(cfg->hs_exit, t_txbyteclkhs);
Wyon Bib7535a32019-10-24 00:38:51 +0200359 /*
360 * The value of counter for HS Tclk-post
361 * Tclk-post = Tpin_txbyteclkhs * value
362 */
Heiko Stuebnerf0684c12019-11-08 01:06:40 +0100363 clk_post = DIV_ROUND_UP(cfg->clk_post, t_txbyteclkhs);
Wyon Bib7535a32019-10-24 00:38:51 +0200364 /*
365 * The value of counter for HS Tclk-pre
366 * Tclk-pre = Tpin_txbyteclkhs * value
367 */
Liu Ying9a8406b2022-01-24 10:40:07 +0800368 clk_pre = DIV_ROUND_UP(cfg->clk_pre, BITS_PER_BYTE);
Wyon Bib7535a32019-10-24 00:38:51 +0200369
370 /*
371 * The value of counter for HS Tlpx Time
372 * Tlpx = Tpin_txbyteclkhs * (2 + value)
373 */
Heiko Stuebnerf0684c12019-11-08 01:06:40 +0100374 lpx = DIV_ROUND_UP(cfg->lpx, t_txbyteclkhs);
Wyon Bib7535a32019-10-24 00:38:51 +0200375 if (lpx >= 2)
376 lpx -= 2;
377
378 /*
379 * The value of counter for HS Tta-go
380 * Tta-go for turnaround
381 * Tta-go = Ttxclkesc * value
382 */
Heiko Stuebnerf0684c12019-11-08 01:06:40 +0100383 ta_go = DIV_ROUND_UP(cfg->ta_go, t_txclkesc);
Wyon Bib7535a32019-10-24 00:38:51 +0200384 /*
385 * The value of counter for HS Tta-sure
386 * Tta-sure for turnaround
387 * Tta-sure = Ttxclkesc * value
388 */
Heiko Stuebnerf0684c12019-11-08 01:06:40 +0100389 ta_sure = DIV_ROUND_UP(cfg->ta_sure, t_txclkesc);
Wyon Bib7535a32019-10-24 00:38:51 +0200390 /*
391 * The value of counter for HS Tta-wait
392 * Tta-wait for turnaround
393 * Tta-wait = Ttxclkesc * value
394 */
Heiko Stuebnerf0684c12019-11-08 01:06:40 +0100395 ta_wait = DIV_ROUND_UP(cfg->ta_get, t_txclkesc);
Wyon Bib7535a32019-10-24 00:38:51 +0200396
397 for (i = 0; i < ARRAY_SIZE(timings); i++)
398 if (inno->pll.rate <= timings[i].rate)
399 break;
400
401 if (i == ARRAY_SIZE(timings))
402 --i;
403
404 hs_prepare = timings[i].hs_prepare;
405 hs_trail = timings[i].hs_trail;
406 clk_lane_hs_zero = timings[i].clk_lane_hs_zero;
407 data_lane_hs_zero = timings[i].data_lane_hs_zero;
408 wakeup = 0x3ff;
409
410 for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
411 if (i == REGISTER_PART_CLOCK_LANE)
412 hs_zero = clk_lane_hs_zero;
413 else
414 hs_zero = data_lane_hs_zero;
415
416 phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
417 T_LPX_CNT(lpx));
418 phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
419 T_HS_PREPARE_CNT(hs_prepare));
420 phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_MASK,
421 T_HS_ZERO_CNT(hs_zero));
422 phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
423 T_HS_TRAIL_CNT(hs_trail));
424 phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_MASK,
425 T_HS_EXIT_CNT(hs_exit));
426 phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_MASK,
427 T_CLK_POST_CNT(clk_post));
428 phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
429 T_CLK_PRE_CNT(clk_pre));
430 phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
431 T_WAKEUP_CNT_HI(wakeup >> 8));
432 phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
433 T_WAKEUP_CNT_LO(wakeup));
434 phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
435 T_TA_GO_CNT(ta_go));
436 phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
437 T_TA_SURE_CNT(ta_sure));
438 phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
439 T_TA_WAIT_CNT(ta_wait));
440 }
441
442 /* Enable all lanes on analog part */
443 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
444 LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 |
445 LANE_EN_1 | LANE_EN_0);
446}
447
448static void inno_dsidphy_lvds_mode_enable(struct inno_dsidphy *inno)
449{
450 u8 prediv = 2;
451 u16 fbdiv = 28;
452
453 /* Sample clock reverse direction */
454 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
455 SAMPLE_CLOCK_DIRECTION_MASK,
456 SAMPLE_CLOCK_DIRECTION_REVERSE);
457
458 /* Select LVDS mode */
459 phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
460 MODE_ENABLE_MASK, LVDS_MODE_ENABLE);
461 /* Configure PLL */
462 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
463 REG_PREDIV_MASK, REG_PREDIV(prediv));
464 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
465 REG_FBDIV_HI_MASK, REG_FBDIV_HI(fbdiv));
466 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
467 REG_FBDIV_LO_MASK, REG_FBDIV_LO(fbdiv));
468 phy_update_bits(inno, REGISTER_PART_LVDS, 0x08, 0xff, 0xfc);
469 /* Enable PLL and Bandgap */
470 phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
471 LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
472 LVDS_PLL_POWER_ON | LVDS_BANDGAP_POWER_ON);
473
474 msleep(20);
475
476 /* Reset LVDS digital logic */
477 phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
478 LVDS_DIGITAL_INTERNAL_RESET_MASK,
479 LVDS_DIGITAL_INTERNAL_RESET_ENABLE);
480 udelay(1);
481 phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
482 LVDS_DIGITAL_INTERNAL_RESET_MASK,
483 LVDS_DIGITAL_INTERNAL_RESET_DISABLE);
484 /* Enable LVDS digital logic */
485 phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
486 LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
487 LVDS_DIGITAL_INTERNAL_ENABLE);
488 /* Enable LVDS analog driver */
489 phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
490 LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN |
491 LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN |
492 LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN);
493}
494
495static int inno_dsidphy_power_on(struct phy *phy)
496{
497 struct inno_dsidphy *inno = phy_get_drvdata(phy);
498
499 clk_prepare_enable(inno->pclk_phy);
Heiko Stuebnerf0684c12019-11-08 01:06:40 +0100500 clk_prepare_enable(inno->ref_clk);
Wyon Bib7535a32019-10-24 00:38:51 +0200501 pm_runtime_get_sync(inno->dev);
502
503 /* Bandgap power on */
504 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
505 BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
506 /* Enable power work */
507 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
508 POWER_WORK_MASK, POWER_WORK_ENABLE);
509
510 switch (inno->mode) {
511 case PHY_MODE_MIPI_DPHY:
512 inno_dsidphy_mipi_mode_enable(inno);
513 break;
514 case PHY_MODE_LVDS:
515 inno_dsidphy_lvds_mode_enable(inno);
516 break;
517 default:
518 return -EINVAL;
519 }
520
521 return 0;
522}
523
524static int inno_dsidphy_power_off(struct phy *phy)
525{
526 struct inno_dsidphy *inno = phy_get_drvdata(phy);
527
528 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
529 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
530 REG_LDOPD_MASK | REG_PLLPD_MASK,
531 REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
532 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
533 POWER_WORK_MASK, POWER_WORK_DISABLE);
534 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
535 BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
536
537 phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0);
538 phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
539 LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
540 LVDS_DIGITAL_INTERNAL_DISABLE);
541 phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
542 LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
543 LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN);
544
545 pm_runtime_put(inno->dev);
Heiko Stuebnerf0684c12019-11-08 01:06:40 +0100546 clk_disable_unprepare(inno->ref_clk);
Wyon Bib7535a32019-10-24 00:38:51 +0200547 clk_disable_unprepare(inno->pclk_phy);
548
549 return 0;
550}
551
552static int inno_dsidphy_set_mode(struct phy *phy, enum phy_mode mode,
553 int submode)
554{
555 struct inno_dsidphy *inno = phy_get_drvdata(phy);
556
557 switch (mode) {
558 case PHY_MODE_MIPI_DPHY:
559 case PHY_MODE_LVDS:
560 inno->mode = mode;
561 break;
562 default:
563 return -EINVAL;
564 }
565
566 return 0;
567}
568
Heiko Stuebnerf0684c12019-11-08 01:06:40 +0100569static int inno_dsidphy_configure(struct phy *phy,
570 union phy_configure_opts *opts)
571{
572 struct inno_dsidphy *inno = phy_get_drvdata(phy);
573 int ret;
574
575 if (inno->mode != PHY_MODE_MIPI_DPHY)
576 return -EINVAL;
577
578 ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy);
579 if (ret)
580 return ret;
581
582 memcpy(&inno->dphy_cfg, &opts->mipi_dphy, sizeof(inno->dphy_cfg));
583
584 return 0;
585}
586
Wyon Bib7535a32019-10-24 00:38:51 +0200587static const struct phy_ops inno_dsidphy_ops = {
Heiko Stuebnerf0684c12019-11-08 01:06:40 +0100588 .configure = inno_dsidphy_configure,
Wyon Bib7535a32019-10-24 00:38:51 +0200589 .set_mode = inno_dsidphy_set_mode,
590 .power_on = inno_dsidphy_power_on,
591 .power_off = inno_dsidphy_power_off,
592 .owner = THIS_MODULE,
593};
594
Wyon Bib7535a32019-10-24 00:38:51 +0200595static int inno_dsidphy_probe(struct platform_device *pdev)
596{
597 struct device *dev = &pdev->dev;
598 struct inno_dsidphy *inno;
599 struct phy_provider *phy_provider;
600 struct phy *phy;
601 int ret;
602
603 inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL);
604 if (!inno)
605 return -ENOMEM;
606
607 inno->dev = dev;
608 platform_set_drvdata(pdev, inno);
609
610 inno->phy_base = devm_platform_ioremap_resource(pdev, 0);
Tiezhu Yangfdc355a2020-05-25 21:08:57 +0800611 if (IS_ERR(inno->phy_base))
612 return PTR_ERR(inno->phy_base);
Wyon Bib7535a32019-10-24 00:38:51 +0200613
614 inno->ref_clk = devm_clk_get(dev, "ref");
615 if (IS_ERR(inno->ref_clk)) {
616 ret = PTR_ERR(inno->ref_clk);
617 dev_err(dev, "failed to get ref clock: %d\n", ret);
618 return ret;
619 }
620
621 inno->pclk_phy = devm_clk_get(dev, "pclk");
622 if (IS_ERR(inno->pclk_phy)) {
623 ret = PTR_ERR(inno->pclk_phy);
624 dev_err(dev, "failed to get phy pclk: %d\n", ret);
625 return ret;
626 }
627
628 inno->rst = devm_reset_control_get(dev, "apb");
629 if (IS_ERR(inno->rst)) {
630 ret = PTR_ERR(inno->rst);
631 dev_err(dev, "failed to get system reset control: %d\n", ret);
632 return ret;
633 }
634
635 phy = devm_phy_create(dev, NULL, &inno_dsidphy_ops);
636 if (IS_ERR(phy)) {
637 ret = PTR_ERR(phy);
638 dev_err(dev, "failed to create phy: %d\n", ret);
639 return ret;
640 }
641
642 phy_set_drvdata(phy, inno);
643
644 phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
645 if (IS_ERR(phy_provider)) {
646 ret = PTR_ERR(phy_provider);
647 dev_err(dev, "failed to register phy provider: %d\n", ret);
648 return ret;
649 }
650
Wyon Bib7535a32019-10-24 00:38:51 +0200651 pm_runtime_enable(dev);
652
653 return 0;
654}
655
656static int inno_dsidphy_remove(struct platform_device *pdev)
657{
658 struct inno_dsidphy *inno = platform_get_drvdata(pdev);
659
660 pm_runtime_disable(inno->dev);
661
662 return 0;
663}
664
665static const struct of_device_id inno_dsidphy_of_match[] = {
666 { .compatible = "rockchip,px30-dsi-dphy", },
667 { .compatible = "rockchip,rk3128-dsi-dphy", },
668 { .compatible = "rockchip,rk3368-dsi-dphy", },
669 {}
670};
671MODULE_DEVICE_TABLE(of, inno_dsidphy_of_match);
672
673static struct platform_driver inno_dsidphy_driver = {
674 .driver = {
675 .name = "inno-dsidphy",
676 .of_match_table = of_match_ptr(inno_dsidphy_of_match),
677 },
678 .probe = inno_dsidphy_probe,
679 .remove = inno_dsidphy_remove,
680};
681module_platform_driver(inno_dsidphy_driver);
682
683MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>");
684MODULE_DESCRIPTION("Innosilicon MIPI/LVDS/TTL Video Combo PHY driver");
685MODULE_LICENSE("GPL v2");