blob: 61ef013b84457887fdf803c0e70fe75b713ff6fb [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*******************************************************************************
2*
3* (c) 1998 by Computone Corporation
4*
5********************************************************************************
6*
7*
8* PACKAGE: Linux tty Device Driver for IntelliPort family of multiport
9* serial I/O controllers.
10*
11* DESCRIPTION: Low-level interface code for the device driver
12* (This is included source code, not a separate compilation
13* module.)
14*
15*******************************************************************************/
16//---------------------------------------------
17// Function declarations private to this module
18//---------------------------------------------
19// Functions called only indirectly through i2eBordStr entries.
20
21static int iiWriteBuf16(i2eBordStrPtr, unsigned char *, int);
22static int iiWriteBuf8(i2eBordStrPtr, unsigned char *, int);
23static int iiReadBuf16(i2eBordStrPtr, unsigned char *, int);
24static int iiReadBuf8(i2eBordStrPtr, unsigned char *, int);
25
26static unsigned short iiReadWord16(i2eBordStrPtr);
27static unsigned short iiReadWord8(i2eBordStrPtr);
28static void iiWriteWord16(i2eBordStrPtr, unsigned short);
29static void iiWriteWord8(i2eBordStrPtr, unsigned short);
30
31static int iiWaitForTxEmptyII(i2eBordStrPtr, int);
32static int iiWaitForTxEmptyIIEX(i2eBordStrPtr, int);
33static int iiTxMailEmptyII(i2eBordStrPtr);
34static int iiTxMailEmptyIIEX(i2eBordStrPtr);
35static int iiTrySendMailII(i2eBordStrPtr, unsigned char);
36static int iiTrySendMailIIEX(i2eBordStrPtr, unsigned char);
37
38static unsigned short iiGetMailII(i2eBordStrPtr);
39static unsigned short iiGetMailIIEX(i2eBordStrPtr);
40
41static void iiEnableMailIrqII(i2eBordStrPtr);
42static void iiEnableMailIrqIIEX(i2eBordStrPtr);
43static void iiWriteMaskII(i2eBordStrPtr, unsigned char);
44static void iiWriteMaskIIEX(i2eBordStrPtr, unsigned char);
45
Linus Torvalds1da177e2005-04-16 15:20:36 -070046static void ii2Nop(void);
47
48//***************
49//* Static Data *
50//***************
51
52static int ii2Safe; // Safe I/O address for delay routine
53
54static int iiDelayed; // Set when the iiResetDelay function is
55 // called. Cleared when ANY board is reset.
Linus Torvalds1da177e2005-04-16 15:20:36 -070056static rwlock_t Dl_spinlock;
57
58//********
59//* Code *
60//********
61
62//=======================================================
63// Initialization Routines
64//
65// iiSetAddress
66// iiReset
67// iiResetDelay
68// iiInitialize
69//=======================================================
70
71//******************************************************************************
72// Function: iiEllisInit()
73// Parameters: None
74//
75// Returns: Nothing
76//
77// Description:
78//
79// This routine performs any required initialization of the iiEllis subsystem.
80//
81//******************************************************************************
82static void
83iiEllisInit(void)
84{
Linus Torvalds1da177e2005-04-16 15:20:36 -070085 LOCK_INIT(&Dl_spinlock);
86}
87
88//******************************************************************************
89// Function: iiEllisCleanup()
90// Parameters: None
91//
92// Returns: Nothing
93//
94// Description:
95//
96// This routine performs any required cleanup of the iiEllis subsystem.
97//
98//******************************************************************************
99static void
100iiEllisCleanup(void)
101{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700102}
103
104//******************************************************************************
105// Function: iiSetAddress(pB, address, delay)
106// Parameters: pB - pointer to the board structure
107// address - the purported I/O address of the board
108// delay - pointer to the 1-ms delay function to use
109// in this and any future operations to this board
110//
111// Returns: True if everything appears copacetic.
112// False if there is any error: the pB->i2eError field has the error
113//
114// Description:
115//
116// This routine (roughly) checks for address validity, sets the i2eValid OK and
117// sets the state to II_STATE_COLD which means that we haven't even sent a reset
118// yet.
119//
120//******************************************************************************
121static int
122iiSetAddress( i2eBordStrPtr pB, int address, delayFunc_t delay )
123{
124 // Should any failure occur before init is finished...
125 pB->i2eValid = I2E_INCOMPLETE;
126
127 // Cannot check upper limit except extremely: Might be microchannel
128 // Address must be on an 8-byte boundary
129
130 if ((unsigned int)address <= 0x100
131 || (unsigned int)address >= 0xfff8
132 || (address & 0x7)
133 )
134 {
135 COMPLETE(pB,I2EE_BADADDR);
136 }
137
138 // Initialize accelerators
139 pB->i2eBase = address;
140 pB->i2eData = address + FIFO_DATA;
141 pB->i2eStatus = address + FIFO_STATUS;
142 pB->i2ePointer = address + FIFO_PTR;
143 pB->i2eXMail = address + FIFO_MAIL;
144 pB->i2eXMask = address + FIFO_MASK;
145
146 // Initialize i/o address for ii2DelayIO
147 ii2Safe = address + FIFO_NOP;
148
149 // Initialize the delay routine
150 pB->i2eDelay = ((delay != (delayFunc_t)NULL) ? delay : (delayFunc_t)ii2Nop);
151
152 pB->i2eValid = I2E_MAGIC;
153 pB->i2eState = II_STATE_COLD;
154
155 COMPLETE(pB, I2EE_GOOD);
156}
157
158//******************************************************************************
159// Function: iiReset(pB)
160// Parameters: pB - pointer to the board structure
161//
162// Returns: True if everything appears copacetic.
163// False if there is any error: the pB->i2eError field has the error
164//
165// Description:
166//
167// Attempts to reset the board (see also i2hw.h). Normally, we would use this to
168// reset a board immediately after iiSetAddress(), but it is valid to reset a
169// board from any state, say, in order to change or re-load loadware. (Under
170// such circumstances, no reason to re-run iiSetAddress(), which is why it is a
171// separate routine and not included in this routine.
172//
173//******************************************************************************
174static int
175iiReset(i2eBordStrPtr pB)
176{
177 // Magic number should be set, else even the address is suspect
178 if (pB->i2eValid != I2E_MAGIC)
179 {
180 COMPLETE(pB, I2EE_BADMAGIC);
181 }
182
183 OUTB(pB->i2eBase + FIFO_RESET, 0); // Any data will do
184 iiDelay(pB, 50); // Pause between resets
185 OUTB(pB->i2eBase + FIFO_RESET, 0); // Second reset
186
187 // We must wait before even attempting to read anything from the FIFO: the
188 // board's P.O.S.T may actually attempt to read and write its end of the
189 // FIFO in order to check flags, loop back (where supported), etc. On
190 // completion of this testing it would reset the FIFO, and on completion
191 // of all // P.O.S.T., write the message. We must not mistake data which
192 // might have been sent for testing as part of the reset message. To
193 // better utilize time, say, when resetting several boards, we allow the
194 // delay to be performed externally; in this way the caller can reset
195 // several boards, delay a single time, then call the initialization
196 // routine for all.
197
198 pB->i2eState = II_STATE_RESET;
199
200 iiDelayed = 0; // i.e., the delay routine hasn't been called since the most
201 // recent reset.
202
203 // Ensure anything which would have been of use to standard loadware is
204 // blanked out, since board has now forgotten everything!.
205
206 pB->i2eUsingIrq = IRQ_UNDEFINED; // Not set up to use an interrupt yet
207 pB->i2eWaitingForEmptyFifo = 0;
208 pB->i2eOutMailWaiting = 0;
209 pB->i2eChannelPtr = NULL;
210 pB->i2eChannelCnt = 0;
211
212 pB->i2eLeadoffWord[0] = 0;
213 pB->i2eFifoInInts = 0;
214 pB->i2eFifoOutInts = 0;
215 pB->i2eFatalTrap = NULL;
216 pB->i2eFatal = 0;
217
218 COMPLETE(pB, I2EE_GOOD);
219}
220
221//******************************************************************************
222// Function: iiResetDelay(pB)
223// Parameters: pB - pointer to the board structure
224//
225// Returns: True if everything appears copacetic.
226// False if there is any error: the pB->i2eError field has the error
227//
228// Description:
229//
230// Using the delay defined in board structure, waits two seconds (for board to
231// reset).
232//
233//******************************************************************************
234static int
235iiResetDelay(i2eBordStrPtr pB)
236{
237 if (pB->i2eValid != I2E_MAGIC) {
238 COMPLETE(pB, I2EE_BADMAGIC);
239 }
240 if (pB->i2eState != II_STATE_RESET) {
241 COMPLETE(pB, I2EE_BADSTATE);
242 }
243 iiDelay(pB,2000); /* Now we wait for two seconds. */
244 iiDelayed = 1; /* Delay has been called: ok to initialize */
245 COMPLETE(pB, I2EE_GOOD);
246}
247
248//******************************************************************************
249// Function: iiInitialize(pB)
250// Parameters: pB - pointer to the board structure
251//
252// Returns: True if everything appears copacetic.
253// False if there is any error: the pB->i2eError field has the error
254//
255// Description:
256//
257// Attempts to read the Power-on reset message. Initializes any remaining fields
258// in the pB structure.
259//
260// This should be called as the third step of a process beginning with
261// iiReset(), then iiResetDelay(). This routine checks to see that the structure
262// is "valid" and in the reset state, also confirms that the delay routine has
263// been called since the latest reset (to any board! overly strong!).
264//
265//******************************************************************************
266static int
267iiInitialize(i2eBordStrPtr pB)
268{
269 int itemp;
270 unsigned char c;
271 unsigned short utemp;
272 unsigned int ilimit;
273
274 if (pB->i2eValid != I2E_MAGIC)
275 {
276 COMPLETE(pB, I2EE_BADMAGIC);
277 }
278
279 if (pB->i2eState != II_STATE_RESET || !iiDelayed)
280 {
281 COMPLETE(pB, I2EE_BADSTATE);
282 }
283
284 // In case there is a failure short of our completely reading the power-up
285 // message.
286 pB->i2eValid = I2E_INCOMPLETE;
287
288
289 // Now attempt to read the message.
290
291 for (itemp = 0; itemp < sizeof(porStr); itemp++)
292 {
293 // We expect the entire message is ready.
294 if (HAS_NO_INPUT(pB))
295 {
296 pB->i2ePomSize = itemp;
297 COMPLETE(pB, I2EE_PORM_SHORT);
298 }
299
300 pB->i2ePom.c[itemp] = c = BYTE_FROM(pB);
301
302 // We check the magic numbers as soon as they are supposed to be read
303 // (rather than after) to minimize effect of reading something we
304 // already suspect can't be "us".
305 if ( (itemp == POR_1_INDEX && c != POR_MAGIC_1) ||
306 (itemp == POR_2_INDEX && c != POR_MAGIC_2))
307 {
308 pB->i2ePomSize = itemp+1;
309 COMPLETE(pB, I2EE_BADMAGIC);
310 }
311 }
312
313 pB->i2ePomSize = itemp;
314
315 // Ensure that this was all the data...
316 if (HAS_INPUT(pB))
317 COMPLETE(pB, I2EE_PORM_LONG);
318
319 // For now, we'll fail to initialize if P.O.S.T reports bad chip mapper:
320 // Implying we will not be able to download any code either: That's ok: the
321 // condition is pretty explicit.
322 if (pB->i2ePom.e.porDiag1 & POR_BAD_MAPPER)
323 {
324 COMPLETE(pB, I2EE_POSTERR);
325 }
326
327 // Determine anything which must be done differently depending on the family
328 // of boards!
329 switch (pB->i2ePom.e.porID & POR_ID_FAMILY)
330 {
331 case POR_ID_FII: // IntelliPort-II
332
333 pB->i2eFifoStyle = FIFO_II;
334 pB->i2eFifoSize = 512; // 512 bytes, always
335 pB->i2eDataWidth16 = NO;
336
337 pB->i2eMaxIrq = 15; // Because board cannot tell us it is in an 8-bit
338 // slot, we do allow it to be done (documentation!)
339
340 pB->i2eGoodMap[1] =
341 pB->i2eGoodMap[2] =
342 pB->i2eGoodMap[3] =
343 pB->i2eChannelMap[1] =
344 pB->i2eChannelMap[2] =
345 pB->i2eChannelMap[3] = 0;
346
347 switch (pB->i2ePom.e.porID & POR_ID_SIZE)
348 {
349 case POR_ID_II_4:
350 pB->i2eGoodMap[0] =
351 pB->i2eChannelMap[0] = 0x0f; // four-port
352
353 // Since porPorts1 is based on the Hardware ID register, the numbers
354 // should always be consistent for IntelliPort-II. Ditto below...
355 if (pB->i2ePom.e.porPorts1 != 4)
356 {
357 COMPLETE(pB, I2EE_INCONSIST);
358 }
359 break;
360
361 case POR_ID_II_8:
362 case POR_ID_II_8R:
363 pB->i2eGoodMap[0] =
364 pB->i2eChannelMap[0] = 0xff; // Eight port
365 if (pB->i2ePom.e.porPorts1 != 8)
366 {
367 COMPLETE(pB, I2EE_INCONSIST);
368 }
369 break;
370
371 case POR_ID_II_6:
372 pB->i2eGoodMap[0] =
373 pB->i2eChannelMap[0] = 0x3f; // Six Port
374 if (pB->i2ePom.e.porPorts1 != 6)
375 {
376 COMPLETE(pB, I2EE_INCONSIST);
377 }
378 break;
379 }
380
381 // Fix up the "good channel list based on any errors reported.
382 if (pB->i2ePom.e.porDiag1 & POR_BAD_UART1)
383 {
384 pB->i2eGoodMap[0] &= ~0x0f;
385 }
386
387 if (pB->i2ePom.e.porDiag1 & POR_BAD_UART2)
388 {
389 pB->i2eGoodMap[0] &= ~0xf0;
390 }
391
392 break; // POR_ID_FII case
393
394 case POR_ID_FIIEX: // IntelliPort-IIEX
395
396 pB->i2eFifoStyle = FIFO_IIEX;
397
398 itemp = pB->i2ePom.e.porFifoSize;
399
400 // Implicit assumption that fifo would not grow beyond 32k,
401 // nor would ever be less than 256.
402
403 if (itemp < 8 || itemp > 15)
404 {
405 COMPLETE(pB, I2EE_INCONSIST);
406 }
407 pB->i2eFifoSize = (1 << itemp);
408
409 // These are based on what P.O.S.T thinks should be there, based on
410 // box ID registers
411 ilimit = pB->i2ePom.e.porNumBoxes;
412 if (ilimit > ABS_MAX_BOXES)
413 {
414 ilimit = ABS_MAX_BOXES;
415 }
416
417 // For as many boxes as EXIST, gives the type of box.
418 // Added 8/6/93: check for the ISA-4 (asic) which looks like an
419 // expandable but for whom "8 or 16?" is not the right question.
420
421 utemp = pB->i2ePom.e.porFlags;
422 if (utemp & POR_CEX4)
423 {
424 pB->i2eChannelMap[0] = 0x000f;
425 } else {
426 utemp &= POR_BOXES;
427 for (itemp = 0; itemp < ilimit; itemp++)
428 {
429 pB->i2eChannelMap[itemp] =
430 ((utemp & POR_BOX_16) ? 0xffff : 0x00ff);
431 utemp >>= 1;
432 }
433 }
434
435 // These are based on what P.O.S.T actually found.
436
437 utemp = (pB->i2ePom.e.porPorts2 << 8) + pB->i2ePom.e.porPorts1;
438
439 for (itemp = 0; itemp < ilimit; itemp++)
440 {
441 pB->i2eGoodMap[itemp] = 0;
442 if (utemp & 1) pB->i2eGoodMap[itemp] |= 0x000f;
443 if (utemp & 2) pB->i2eGoodMap[itemp] |= 0x00f0;
444 if (utemp & 4) pB->i2eGoodMap[itemp] |= 0x0f00;
445 if (utemp & 8) pB->i2eGoodMap[itemp] |= 0xf000;
446 utemp >>= 4;
447 }
448
449 // Now determine whether we should transfer in 8 or 16-bit mode.
450 switch (pB->i2ePom.e.porBus & (POR_BUS_SLOT16 | POR_BUS_DIP16) )
451 {
452 case POR_BUS_SLOT16 | POR_BUS_DIP16:
453 pB->i2eDataWidth16 = YES;
454 pB->i2eMaxIrq = 15;
455 break;
456
457 case POR_BUS_SLOT16:
458 pB->i2eDataWidth16 = NO;
459 pB->i2eMaxIrq = 15;
460 break;
461
462 case 0:
463 case POR_BUS_DIP16: // In an 8-bit slot, DIP switch don't care.
464 default:
465 pB->i2eDataWidth16 = NO;
466 pB->i2eMaxIrq = 7;
467 break;
468 }
469 break; // POR_ID_FIIEX case
470
471 default: // Unknown type of board
472 COMPLETE(pB, I2EE_BAD_FAMILY);
473 break;
474 } // End the switch based on family
475
476 // Temporarily, claim there is no room in the outbound fifo.
477 // We will maintain this whenever we check for an empty outbound FIFO.
478 pB->i2eFifoRemains = 0;
479
480 // Now, based on the bus type, should we expect to be able to re-configure
481 // interrupts (say, for testing purposes).
482 switch (pB->i2ePom.e.porBus & POR_BUS_TYPE)
483 {
484 case POR_BUS_T_ISA:
485 case POR_BUS_T_UNK: // If the type of bus is undeclared, assume ok.
486 pB->i2eChangeIrq = YES;
487 break;
488 case POR_BUS_T_MCA:
489 case POR_BUS_T_EISA:
490 pB->i2eChangeIrq = NO;
491 break;
492 default:
493 COMPLETE(pB, I2EE_BADBUS);
494 }
495
496 if (pB->i2eDataWidth16 == YES)
497 {
498 pB->i2eWriteBuf = iiWriteBuf16;
499 pB->i2eReadBuf = iiReadBuf16;
500 pB->i2eWriteWord = iiWriteWord16;
501 pB->i2eReadWord = iiReadWord16;
502 } else {
503 pB->i2eWriteBuf = iiWriteBuf8;
504 pB->i2eReadBuf = iiReadBuf8;
505 pB->i2eWriteWord = iiWriteWord8;
506 pB->i2eReadWord = iiReadWord8;
507 }
508
509 switch(pB->i2eFifoStyle)
510 {
511 case FIFO_II:
512 pB->i2eWaitForTxEmpty = iiWaitForTxEmptyII;
513 pB->i2eTxMailEmpty = iiTxMailEmptyII;
514 pB->i2eTrySendMail = iiTrySendMailII;
515 pB->i2eGetMail = iiGetMailII;
516 pB->i2eEnableMailIrq = iiEnableMailIrqII;
517 pB->i2eWriteMask = iiWriteMaskII;
518
519 break;
520
521 case FIFO_IIEX:
522 pB->i2eWaitForTxEmpty = iiWaitForTxEmptyIIEX;
523 pB->i2eTxMailEmpty = iiTxMailEmptyIIEX;
524 pB->i2eTrySendMail = iiTrySendMailIIEX;
525 pB->i2eGetMail = iiGetMailIIEX;
526 pB->i2eEnableMailIrq = iiEnableMailIrqIIEX;
527 pB->i2eWriteMask = iiWriteMaskIIEX;
528
529 break;
530
531 default:
532 COMPLETE(pB, I2EE_INCONSIST);
533 }
534
535 // Initialize state information.
536 pB->i2eState = II_STATE_READY; // Ready to load loadware.
537
538 // Some Final cleanup:
539 // For some boards, the bootstrap firmware may perform some sort of test
540 // resulting in a stray character pending in the incoming mailbox. If one is
541 // there, it should be read and discarded, especially since for the standard
542 // firmware, it's the mailbox that interrupts the host.
543
544 pB->i2eStartMail = iiGetMail(pB);
545
546 // Throw it away and clear the mailbox structure element
547 pB->i2eStartMail = NO_MAIL_HERE;
548
549 // Everything is ok now, return with good status/
550
551 pB->i2eValid = I2E_MAGIC;
552 COMPLETE(pB, I2EE_GOOD);
553}
554
Linus Torvalds1da177e2005-04-16 15:20:36 -0700555//******************************************************************************
556// Function: ii2DelayTimer(mseconds)
557// Parameters: mseconds - number of milliseconds to delay
558//
559// Returns: Nothing
560//
561// Description:
562//
563// This routine delays for approximately mseconds milliseconds and is intended
564// to be called indirectly through i2Delay field in i2eBordStr. It uses the
565// Linux timer_list mechanism.
566//
567// The Linux timers use a unit called "jiffies" which are 10mS in the Intel
568// architecture. This function rounds the delay period up to the next "jiffy".
569// In the Alpha architecture the "jiffy" is 1mS, but this driver is not intended
570// for Alpha platforms at this time.
571//
572//******************************************************************************
573static void
574ii2DelayTimer(unsigned int mseconds)
575{
Jiri Slaby7126dd02007-07-15 23:40:20 -0700576 msleep_interruptible(mseconds);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700577}
578
579#if 0
580//static void ii2DelayIO(unsigned int);
581//******************************************************************************
582// !!! Not Used, this is DOS crap, some of you young folks may be interested in
583// in how things were done in the stone age of caculating machines !!!
584// Function: ii2DelayIO(mseconds)
585// Parameters: mseconds - number of milliseconds to delay
586//
587// Returns: Nothing
588//
589// Description:
590//
591// This routine delays for approximately mseconds milliseconds and is intended
592// to be called indirectly through i2Delay field in i2eBordStr. It is intended
593// for use where a clock-based function is impossible: for example, DOS drivers.
594//
595// This function uses the IN instruction to place bounds on the timing and
596// assumes that ii2Safe has been set. This is because I/O instructions are not
597// subject to caching and will therefore take a certain minimum time. To ensure
598// the delay is at least long enough on fast machines, it is based on some
599// fastest-case calculations. On slower machines this may cause VERY long
600// delays. (3 x fastest case). In the fastest case, everything is cached except
601// the I/O instruction itself.
602//
603// Timing calculations:
604// The fastest bus speed for I/O operations is likely to be 10 MHz. The I/O
605// operation in question is a byte operation to an odd address. For 8-bit
606// operations, the architecture generally enforces two wait states. At 10 MHz, a
607// single cycle time is 100nS. A read operation at two wait states takes 6
608// cycles for a total time of 600nS. Therefore approximately 1666 iterations
609// would be required to generate a single millisecond delay. The worst
610// (reasonable) case would be an 8MHz system with no cacheing. In this case, the
611// I/O instruction would take 125nS x 6 cyles = 750 nS. More importantly, code
612// fetch of other instructions in the loop would take time (zero wait states,
613// however) and would be hard to estimate. This is minimized by using in-line
614// assembler for the in inner loop of IN instructions. This consists of just a
615// few bytes. So we'll guess about four code fetches per loop. Each code fetch
616// should take four cycles, so we have 125nS * 8 = 1000nS. Worst case then is
617// that what should have taken 1 mS takes instead 1666 * (1750) = 2.9 mS.
618//
619// So much for theoretical timings: results using 1666 value on some actual
620// machines:
621// IBM 286 6MHz 3.15 mS
622// Zenith 386 33MHz 2.45 mS
623// (brandX) 386 33MHz 1.90 mS (has cache)
624// (brandY) 486 33MHz 2.35 mS
625// NCR 486 ?? 1.65 mS (microchannel)
626//
627// For most machines, it is probably safe to scale this number back (remember,
628// for robust operation use an actual timed delay if possible), so we are using
629// a value of 1190. This yields 1.17 mS for the fastest machine in our sample,
630// 1.75 mS for typical 386 machines, and 2.25 mS the absolute slowest machine.
631//
632// 1/29/93:
633// The above timings are too slow. Actual cycle times might be faster. ISA cycle
634// times could approach 500 nS, and ...
635// The IBM model 77 being microchannel has no wait states for 8-bit reads and
636// seems to be accessing the I/O at 440 nS per access (from start of one to
637// start of next). This would imply we need 1000/.440 = 2272 iterations to
638// guarantee we are fast enough. In actual testing, we see that 2 * 1190 are in
639// fact enough. For diagnostics, we keep the level at 1190, but developers note
640// this needs tuning.
641//
642// Safe assumption: 2270 i/o reads = 1 millisecond
643//
644//******************************************************************************
645
646
647static int ii2DelValue = 1190; // See timing calculations below
648 // 1666 for fastest theoretical machine
649 // 1190 safe for most fast 386 machines
650 // 1000 for fastest machine tested here
651 // 540 (sic) for AT286/6Mhz
652static void
653ii2DelayIO(unsigned int mseconds)
654{
655 if (!ii2Safe)
656 return; /* Do nothing if this variable uninitialized */
657
658 while(mseconds--) {
659 int i = ii2DelValue;
660 while ( i-- ) {
661 INB ( ii2Safe );
662 }
663 }
664}
665#endif
666
667//******************************************************************************
668// Function: ii2Nop()
669// Parameters: None
670//
671// Returns: Nothing
672//
673// Description:
674//
675// iiInitialize will set i2eDelay to this if the delay parameter is NULL. This
676// saves checking for a NULL pointer at every call.
677//******************************************************************************
678static void
679ii2Nop(void)
680{
681 return; // no mystery here
682}
683
684//=======================================================
685// Routines which are available in 8/16-bit versions, or
686// in different fifo styles. These are ALL called
687// indirectly through the board structure.
688//=======================================================
689
690//******************************************************************************
691// Function: iiWriteBuf16(pB, address, count)
692// Parameters: pB - pointer to board structure
693// address - address of data to write
694// count - number of data bytes to write
695//
696// Returns: True if everything appears copacetic.
697// False if there is any error: the pB->i2eError field has the error
698//
699// Description:
700//
701// Writes 'count' bytes from 'address' to the data fifo specified by the board
702// structure pointer pB. Should count happen to be odd, an extra pad byte is
703// sent (identity unknown...). Uses 16-bit (word) operations. Is called
704// indirectly through pB->i2eWriteBuf.
705//
706//******************************************************************************
707static int
708iiWriteBuf16(i2eBordStrPtr pB, unsigned char *address, int count)
709{
710 // Rudimentary sanity checking here.
711 if (pB->i2eValid != I2E_MAGIC)
712 COMPLETE(pB, I2EE_INVALID);
713
714 OUTSW ( pB->i2eData, address, count);
715
716 COMPLETE(pB, I2EE_GOOD);
717}
718
719//******************************************************************************
720// Function: iiWriteBuf8(pB, address, count)
721// Parameters: pB - pointer to board structure
722// address - address of data to write
723// count - number of data bytes to write
724//
725// Returns: True if everything appears copacetic.
726// False if there is any error: the pB->i2eError field has the error
727//
728// Description:
729//
730// Writes 'count' bytes from 'address' to the data fifo specified by the board
731// structure pointer pB. Should count happen to be odd, an extra pad byte is
732// sent (identity unknown...). This is to be consistent with the 16-bit version.
733// Uses 8-bit (byte) operations. Is called indirectly through pB->i2eWriteBuf.
734//
735//******************************************************************************
736static int
737iiWriteBuf8(i2eBordStrPtr pB, unsigned char *address, int count)
738{
739 /* Rudimentary sanity checking here */
740 if (pB->i2eValid != I2E_MAGIC)
741 COMPLETE(pB, I2EE_INVALID);
742
743 OUTSB ( pB->i2eData, address, count );
744
745 COMPLETE(pB, I2EE_GOOD);
746}
747
748//******************************************************************************
749// Function: iiReadBuf16(pB, address, count)
750// Parameters: pB - pointer to board structure
751// address - address to put data read
752// count - number of data bytes to read
753//
754// Returns: True if everything appears copacetic.
755// False if there is any error: the pB->i2eError field has the error
756//
757// Description:
758//
759// Reads 'count' bytes into 'address' from the data fifo specified by the board
760// structure pointer pB. Should count happen to be odd, an extra pad byte is
761// received (identity unknown...). Uses 16-bit (word) operations. Is called
762// indirectly through pB->i2eReadBuf.
763//
764//******************************************************************************
765static int
766iiReadBuf16(i2eBordStrPtr pB, unsigned char *address, int count)
767{
768 // Rudimentary sanity checking here.
769 if (pB->i2eValid != I2E_MAGIC)
770 COMPLETE(pB, I2EE_INVALID);
771
772 INSW ( pB->i2eData, address, count);
773
774 COMPLETE(pB, I2EE_GOOD);
775}
776
777//******************************************************************************
778// Function: iiReadBuf8(pB, address, count)
779// Parameters: pB - pointer to board structure
780// address - address to put data read
781// count - number of data bytes to read
782//
783// Returns: True if everything appears copacetic.
784// False if there is any error: the pB->i2eError field has the error
785//
786// Description:
787//
788// Reads 'count' bytes into 'address' from the data fifo specified by the board
789// structure pointer pB. Should count happen to be odd, an extra pad byte is
790// received (identity unknown...). This to match the 16-bit behaviour. Uses
791// 8-bit (byte) operations. Is called indirectly through pB->i2eReadBuf.
792//
793//******************************************************************************
794static int
795iiReadBuf8(i2eBordStrPtr pB, unsigned char *address, int count)
796{
797 // Rudimentary sanity checking here.
798 if (pB->i2eValid != I2E_MAGIC)
799 COMPLETE(pB, I2EE_INVALID);
800
801 INSB ( pB->i2eData, address, count);
802
803 COMPLETE(pB, I2EE_GOOD);
804}
805
806//******************************************************************************
807// Function: iiReadWord16(pB)
808// Parameters: pB - pointer to board structure
809//
810// Returns: True if everything appears copacetic.
811// False if there is any error: the pB->i2eError field has the error
812//
813// Description:
814//
815// Returns the word read from the data fifo specified by the board-structure
816// pointer pB. Uses a 16-bit operation. Is called indirectly through
817// pB->i2eReadWord.
818//
819//******************************************************************************
820static unsigned short
821iiReadWord16(i2eBordStrPtr pB)
822{
823 return (unsigned short)( INW(pB->i2eData) );
824}
825
826//******************************************************************************
827// Function: iiReadWord8(pB)
828// Parameters: pB - pointer to board structure
829//
830// Returns: True if everything appears copacetic.
831// False if there is any error: the pB->i2eError field has the error
832//
833// Description:
834//
835// Returns the word read from the data fifo specified by the board-structure
836// pointer pB. Uses two 8-bit operations. Bytes are assumed to be LSB first. Is
837// called indirectly through pB->i2eReadWord.
838//
839//******************************************************************************
840static unsigned short
841iiReadWord8(i2eBordStrPtr pB)
842{
843 unsigned short urs;
844
845 urs = INB ( pB->i2eData );
846
847 return ( ( INB ( pB->i2eData ) << 8 ) | urs );
848}
849
850//******************************************************************************
851// Function: iiWriteWord16(pB, value)
852// Parameters: pB - pointer to board structure
853// value - data to write
854//
855// Returns: True if everything appears copacetic.
856// False if there is any error: the pB->i2eError field has the error
857//
858// Description:
859//
860// Writes the word 'value' to the data fifo specified by the board-structure
861// pointer pB. Uses 16-bit operation. Is called indirectly through
862// pB->i2eWriteWord.
863//
864//******************************************************************************
865static void
866iiWriteWord16(i2eBordStrPtr pB, unsigned short value)
867{
868 WORD_TO(pB, (int)value);
869}
870
871//******************************************************************************
872// Function: iiWriteWord8(pB, value)
873// Parameters: pB - pointer to board structure
874// value - data to write
875//
876// Returns: True if everything appears copacetic.
877// False if there is any error: the pB->i2eError field has the error
878//
879// Description:
880//
881// Writes the word 'value' to the data fifo specified by the board-structure
882// pointer pB. Uses two 8-bit operations (writes LSB first). Is called
883// indirectly through pB->i2eWriteWord.
884//
885//******************************************************************************
886static void
887iiWriteWord8(i2eBordStrPtr pB, unsigned short value)
888{
889 BYTE_TO(pB, (char)value);
890 BYTE_TO(pB, (char)(value >> 8) );
891}
892
893//******************************************************************************
894// Function: iiWaitForTxEmptyII(pB, mSdelay)
895// Parameters: pB - pointer to board structure
896// mSdelay - period to wait before returning
897//
898// Returns: True if the FIFO is empty.
899// False if it not empty in the required time: the pB->i2eError
900// field has the error.
901//
902// Description:
903//
904// Waits up to "mSdelay" milliseconds for the outgoing FIFO to become empty; if
905// not empty by the required time, returns false and error in pB->i2eError,
906// otherwise returns true.
907//
908// mSdelay == 0 is taken to mean must be empty on the first test.
909//
910// This version operates on IntelliPort-II - style FIFO's
911//
912// Note this routine is organized so that if status is ok there is no delay at
913// all called either before or after the test. Is called indirectly through
914// pB->i2eWaitForTxEmpty.
915//
916//******************************************************************************
917static int
918iiWaitForTxEmptyII(i2eBordStrPtr pB, int mSdelay)
919{
920 unsigned long flags;
921 int itemp;
922
923 for (;;)
924 {
925 // This routine hinges on being able to see the "other" status register
926 // (as seen by the local processor). His incoming fifo is our outgoing
927 // FIFO.
928 //
929 // By the nature of this routine, you would be using this as part of a
930 // larger atomic context: i.e., you would use this routine to ensure the
931 // fifo empty, then act on this information. Between these two halves,
932 // you will generally not want to service interrupts or in any way
933 // disrupt the assumptions implicit in the larger context.
934 //
935 // Even worse, however, this routine "shifts" the status register to
936 // point to the local status register which is not the usual situation.
937 // Therefore for extra safety, we force the critical section to be
938 // completely atomic, and pick up after ourselves before allowing any
939 // interrupts of any kind.
940
941
942 WRITE_LOCK_IRQSAVE(&Dl_spinlock,flags)
943 OUTB(pB->i2ePointer, SEL_COMMAND);
944 OUTB(pB->i2ePointer, SEL_CMD_SH);
945
946 itemp = INB(pB->i2eStatus);
947
948 OUTB(pB->i2ePointer, SEL_COMMAND);
949 OUTB(pB->i2ePointer, SEL_CMD_UNSH);
950
951 if (itemp & ST_IN_EMPTY)
952 {
953 UPDATE_FIFO_ROOM(pB);
954 WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags)
955 COMPLETE(pB, I2EE_GOOD);
956 }
957
958 WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags)
959
960 if (mSdelay-- == 0)
961 break;
962
963 iiDelay(pB, 1); /* 1 mS granularity on checking condition */
964 }
965 COMPLETE(pB, I2EE_TXE_TIME);
966}
967
968//******************************************************************************
969// Function: iiWaitForTxEmptyIIEX(pB, mSdelay)
970// Parameters: pB - pointer to board structure
971// mSdelay - period to wait before returning
972//
973// Returns: True if the FIFO is empty.
974// False if it not empty in the required time: the pB->i2eError
975// field has the error.
976//
977// Description:
978//
979// Waits up to "mSdelay" milliseconds for the outgoing FIFO to become empty; if
980// not empty by the required time, returns false and error in pB->i2eError,
981// otherwise returns true.
982//
983// mSdelay == 0 is taken to mean must be empty on the first test.
984//
985// This version operates on IntelliPort-IIEX - style FIFO's
986//
987// Note this routine is organized so that if status is ok there is no delay at
988// all called either before or after the test. Is called indirectly through
989// pB->i2eWaitForTxEmpty.
990//
991//******************************************************************************
992static int
993iiWaitForTxEmptyIIEX(i2eBordStrPtr pB, int mSdelay)
994{
995 unsigned long flags;
996
997 for (;;)
998 {
999 // By the nature of this routine, you would be using this as part of a
1000 // larger atomic context: i.e., you would use this routine to ensure the
1001 // fifo empty, then act on this information. Between these two halves,
1002 // you will generally not want to service interrupts or in any way
1003 // disrupt the assumptions implicit in the larger context.
1004
1005 WRITE_LOCK_IRQSAVE(&Dl_spinlock,flags)
1006
1007 if (INB(pB->i2eStatus) & STE_OUT_MT) {
1008 UPDATE_FIFO_ROOM(pB);
1009 WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags)
1010 COMPLETE(pB, I2EE_GOOD);
1011 }
1012 WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags)
1013
1014 if (mSdelay-- == 0)
1015 break;
1016
1017 iiDelay(pB, 1); // 1 mS granularity on checking condition
1018 }
1019 COMPLETE(pB, I2EE_TXE_TIME);
1020}
1021
1022//******************************************************************************
1023// Function: iiTxMailEmptyII(pB)
1024// Parameters: pB - pointer to board structure
1025//
1026// Returns: True if the transmit mailbox is empty.
1027// False if it not empty.
1028//
1029// Description:
1030//
1031// Returns true or false according to whether the transmit mailbox is empty (and
1032// therefore able to accept more mail)
1033//
1034// This version operates on IntelliPort-II - style FIFO's
1035//
1036//******************************************************************************
1037static int
1038iiTxMailEmptyII(i2eBordStrPtr pB)
1039{
1040 int port = pB->i2ePointer;
1041 OUTB ( port, SEL_OUTMAIL );
1042 return ( INB(port) == 0 );
1043}
1044
1045//******************************************************************************
1046// Function: iiTxMailEmptyIIEX(pB)
1047// Parameters: pB - pointer to board structure
1048//
1049// Returns: True if the transmit mailbox is empty.
1050// False if it not empty.
1051//
1052// Description:
1053//
1054// Returns true or false according to whether the transmit mailbox is empty (and
1055// therefore able to accept more mail)
1056//
1057// This version operates on IntelliPort-IIEX - style FIFO's
1058//
1059//******************************************************************************
1060static int
1061iiTxMailEmptyIIEX(i2eBordStrPtr pB)
1062{
1063 return !(INB(pB->i2eStatus) & STE_OUT_MAIL);
1064}
1065
1066//******************************************************************************
1067// Function: iiTrySendMailII(pB,mail)
1068// Parameters: pB - pointer to board structure
1069// mail - value to write to mailbox
1070//
1071// Returns: True if the transmit mailbox is empty, and mail is sent.
1072// False if it not empty.
1073//
1074// Description:
1075//
1076// If outgoing mailbox is empty, sends mail and returns true. If outgoing
1077// mailbox is not empty, returns false.
1078//
1079// This version operates on IntelliPort-II - style FIFO's
1080//
1081//******************************************************************************
1082static int
1083iiTrySendMailII(i2eBordStrPtr pB, unsigned char mail)
1084{
1085 int port = pB->i2ePointer;
1086
1087 OUTB(port, SEL_OUTMAIL);
1088 if (INB(port) == 0) {
1089 OUTB(port, SEL_OUTMAIL);
1090 OUTB(port, mail);
1091 return 1;
1092 }
1093 return 0;
1094}
1095
1096//******************************************************************************
1097// Function: iiTrySendMailIIEX(pB,mail)
1098// Parameters: pB - pointer to board structure
1099// mail - value to write to mailbox
1100//
1101// Returns: True if the transmit mailbox is empty, and mail is sent.
1102// False if it not empty.
1103//
1104// Description:
1105//
1106// If outgoing mailbox is empty, sends mail and returns true. If outgoing
1107// mailbox is not empty, returns false.
1108//
1109// This version operates on IntelliPort-IIEX - style FIFO's
1110//
1111//******************************************************************************
1112static int
1113iiTrySendMailIIEX(i2eBordStrPtr pB, unsigned char mail)
1114{
1115 if(INB(pB->i2eStatus) & STE_OUT_MAIL) {
1116 return 0;
1117 }
1118 OUTB(pB->i2eXMail, mail);
1119 return 1;
1120}
1121
1122//******************************************************************************
1123// Function: iiGetMailII(pB,mail)
1124// Parameters: pB - pointer to board structure
1125//
1126// Returns: Mailbox data or NO_MAIL_HERE.
1127//
1128// Description:
1129//
1130// If no mail available, returns NO_MAIL_HERE otherwise returns the data from
1131// the mailbox, which is guaranteed != NO_MAIL_HERE.
1132//
1133// This version operates on IntelliPort-II - style FIFO's
1134//
1135//******************************************************************************
1136static unsigned short
1137iiGetMailII(i2eBordStrPtr pB)
1138{
1139 if (HAS_MAIL(pB)) {
1140 OUTB(pB->i2ePointer, SEL_INMAIL);
1141 return INB(pB->i2ePointer);
1142 } else {
1143 return NO_MAIL_HERE;
1144 }
1145}
1146
1147//******************************************************************************
1148// Function: iiGetMailIIEX(pB,mail)
1149// Parameters: pB - pointer to board structure
1150//
1151// Returns: Mailbox data or NO_MAIL_HERE.
1152//
1153// Description:
1154//
1155// If no mail available, returns NO_MAIL_HERE otherwise returns the data from
1156// the mailbox, which is guaranteed != NO_MAIL_HERE.
1157//
1158// This version operates on IntelliPort-IIEX - style FIFO's
1159//
1160//******************************************************************************
1161static unsigned short
1162iiGetMailIIEX(i2eBordStrPtr pB)
1163{
1164 if (HAS_MAIL(pB)) {
1165 return INB(pB->i2eXMail);
1166 } else {
1167 return NO_MAIL_HERE;
1168 }
1169}
1170
1171//******************************************************************************
1172// Function: iiEnableMailIrqII(pB)
1173// Parameters: pB - pointer to board structure
1174//
1175// Returns: Nothing
1176//
1177// Description:
1178//
1179// Enables board to interrupt host (only) by writing to host's in-bound mailbox.
1180//
1181// This version operates on IntelliPort-II - style FIFO's
1182//
1183//******************************************************************************
1184static void
1185iiEnableMailIrqII(i2eBordStrPtr pB)
1186{
1187 OUTB(pB->i2ePointer, SEL_MASK);
1188 OUTB(pB->i2ePointer, ST_IN_MAIL);
1189}
1190
1191//******************************************************************************
1192// Function: iiEnableMailIrqIIEX(pB)
1193// Parameters: pB - pointer to board structure
1194//
1195// Returns: Nothing
1196//
1197// Description:
1198//
1199// Enables board to interrupt host (only) by writing to host's in-bound mailbox.
1200//
1201// This version operates on IntelliPort-IIEX - style FIFO's
1202//
1203//******************************************************************************
1204static void
1205iiEnableMailIrqIIEX(i2eBordStrPtr pB)
1206{
1207 OUTB(pB->i2eXMask, MX_IN_MAIL);
1208}
1209
1210//******************************************************************************
1211// Function: iiWriteMaskII(pB)
1212// Parameters: pB - pointer to board structure
1213//
1214// Returns: Nothing
1215//
1216// Description:
1217//
1218// Writes arbitrary value to the mask register.
1219//
1220// This version operates on IntelliPort-II - style FIFO's
1221//
1222//******************************************************************************
1223static void
1224iiWriteMaskII(i2eBordStrPtr pB, unsigned char value)
1225{
1226 OUTB(pB->i2ePointer, SEL_MASK);
1227 OUTB(pB->i2ePointer, value);
1228}
1229
1230//******************************************************************************
1231// Function: iiWriteMaskIIEX(pB)
1232// Parameters: pB - pointer to board structure
1233//
1234// Returns: Nothing
1235//
1236// Description:
1237//
1238// Writes arbitrary value to the mask register.
1239//
1240// This version operates on IntelliPort-IIEX - style FIFO's
1241//
1242//******************************************************************************
1243static void
1244iiWriteMaskIIEX(i2eBordStrPtr pB, unsigned char value)
1245{
1246 OUTB(pB->i2eXMask, value);
1247}
1248
1249//******************************************************************************
1250// Function: iiDownloadBlock(pB, pSource, isStandard)
1251// Parameters: pB - pointer to board structure
1252// pSource - loadware block to download
1253// isStandard - True if "standard" loadware, else false.
1254//
1255// Returns: Success or Failure
1256//
1257// Description:
1258//
1259// Downloads a single block (at pSource)to the board referenced by pB. Caller
1260// sets isStandard to true/false according to whether the "standard" loadware is
1261// what's being loaded. The normal process, then, is to perform an iiInitialize
1262// to the board, then perform some number of iiDownloadBlocks using the returned
1263// state to determine when download is complete.
1264//
1265// Possible return values: (see I2ELLIS.H)
1266// II_DOWN_BADVALID
1267// II_DOWN_BADFILE
1268// II_DOWN_CONTINUING
1269// II_DOWN_GOOD
1270// II_DOWN_BAD
1271// II_DOWN_BADSTATE
1272// II_DOWN_TIMEOUT
1273//
1274// Uses the i2eState and i2eToLoad fields (initialized at iiInitialize) to
1275// determine whether this is the first block, whether to check for magic
1276// numbers, how many blocks there are to go...
1277//
1278//******************************************************************************
1279static int
1280iiDownloadBlock ( i2eBordStrPtr pB, loadHdrStrPtr pSource, int isStandard)
1281{
1282 int itemp;
1283 int loadedFirst;
1284
1285 if (pB->i2eValid != I2E_MAGIC) return II_DOWN_BADVALID;
1286
1287 switch(pB->i2eState)
1288 {
1289 case II_STATE_READY:
1290
1291 // Loading the first block after reset. Must check the magic number of the
1292 // loadfile, store the number of blocks we expect to load.
1293 if (pSource->e.loadMagic != MAGIC_LOADFILE)
1294 {
1295 return II_DOWN_BADFILE;
1296 }
1297
1298 // Next we store the total number of blocks to load, including this one.
1299 pB->i2eToLoad = 1 + pSource->e.loadBlocksMore;
1300
1301 // Set the state, store the version numbers. ('Cause this may have come
1302 // from a file - we might want to report these versions and revisions in
1303 // case of an error!
1304 pB->i2eState = II_STATE_LOADING;
1305 pB->i2eLVersion = pSource->e.loadVersion;
1306 pB->i2eLRevision = pSource->e.loadRevision;
1307 pB->i2eLSub = pSource->e.loadSubRevision;
1308
1309 // The time and date of compilation is also available but don't bother
1310 // storing it for normal purposes.
1311 loadedFirst = 1;
1312 break;
1313
1314 case II_STATE_LOADING:
1315 loadedFirst = 0;
1316 break;
1317
1318 default:
1319 return II_DOWN_BADSTATE;
1320 }
1321
1322 // Now we must be in the II_STATE_LOADING state, and we assume i2eToLoad
1323 // must be positive still, because otherwise we would have cleaned up last
1324 // time and set the state to II_STATE_LOADED.
1325 if (!iiWaitForTxEmpty(pB, MAX_DLOAD_READ_TIME)) {
1326 return II_DOWN_TIMEOUT;
1327 }
1328
1329 if (!iiWriteBuf(pB, pSource->c, LOADWARE_BLOCK_SIZE)) {
1330 return II_DOWN_BADVALID;
1331 }
1332
1333 // If we just loaded the first block, wait for the fifo to empty an extra
1334 // long time to allow for any special startup code in the firmware, like
1335 // sending status messages to the LCD's.
1336
1337 if (loadedFirst) {
1338 if (!iiWaitForTxEmpty(pB, MAX_DLOAD_START_TIME)) {
1339 return II_DOWN_TIMEOUT;
1340 }
1341 }
1342
1343 // Determine whether this was our last block!
1344 if (--(pB->i2eToLoad)) {
1345 return II_DOWN_CONTINUING; // more to come...
1346 }
1347
1348 // It WAS our last block: Clean up operations...
1349 // ...Wait for last buffer to drain from the board...
1350 if (!iiWaitForTxEmpty(pB, MAX_DLOAD_READ_TIME)) {
1351 return II_DOWN_TIMEOUT;
1352 }
1353 // If there were only a single block written, this would come back
1354 // immediately and be harmless, though not strictly necessary.
1355 itemp = MAX_DLOAD_ACK_TIME/10;
1356 while (--itemp) {
1357 if (HAS_INPUT(pB)) {
1358 switch(BYTE_FROM(pB))
1359 {
1360 case LOADWARE_OK:
1361 pB->i2eState =
1362 isStandard ? II_STATE_STDLOADED :II_STATE_LOADED;
1363
1364 // Some revisions of the bootstrap firmware (e.g. ISA-8 1.0.2)
1365 // will, // if there is a debug port attached, require some
1366 // time to send information to the debug port now. It will do
1367 // this before // executing any of the code we just downloaded.
1368 // It may take up to 700 milliseconds.
1369 if (pB->i2ePom.e.porDiag2 & POR_DEBUG_PORT) {
1370 iiDelay(pB, 700);
1371 }
1372
1373 return II_DOWN_GOOD;
1374
1375 case LOADWARE_BAD:
1376 default:
1377 return II_DOWN_BAD;
1378 }
1379 }
1380
1381 iiDelay(pB, 10); // 10 mS granularity on checking condition
1382 }
1383
1384 // Drop-through --> timed out waiting for firmware confirmation
1385
1386 pB->i2eState = II_STATE_BADLOAD;
1387 return II_DOWN_TIMEOUT;
1388}
1389
1390//******************************************************************************
1391// Function: iiDownloadAll(pB, pSource, isStandard, size)
1392// Parameters: pB - pointer to board structure
1393// pSource - loadware block to download
1394// isStandard - True if "standard" loadware, else false.
1395// size - size of data to download (in bytes)
1396//
1397// Returns: Success or Failure
1398//
1399// Description:
1400//
1401// Given a pointer to a board structure, a pointer to the beginning of some
1402// loadware, whether it is considered the "standard loadware", and the size of
1403// the array in bytes loads the entire array to the board as loadware.
1404//
1405// Assumes the board has been freshly reset and the power-up reset message read.
1406// (i.e., in II_STATE_READY). Complains if state is bad, or if there seems to be
1407// too much or too little data to load, or if iiDownloadBlock complains.
1408//******************************************************************************
1409static int
1410iiDownloadAll(i2eBordStrPtr pB, loadHdrStrPtr pSource, int isStandard, int size)
1411{
1412 int status;
1413
1414 // We know (from context) board should be ready for the first block of
1415 // download. Complain if not.
1416 if (pB->i2eState != II_STATE_READY) return II_DOWN_BADSTATE;
1417
1418 while (size > 0) {
1419 size -= LOADWARE_BLOCK_SIZE; // How much data should there be left to
1420 // load after the following operation ?
1421
1422 // Note we just bump pSource by "one", because its size is actually that
1423 // of an entire block, same as LOADWARE_BLOCK_SIZE.
1424 status = iiDownloadBlock(pB, pSource++, isStandard);
1425
1426 switch(status)
1427 {
1428 case II_DOWN_GOOD:
1429 return ( (size > 0) ? II_DOWN_OVER : II_DOWN_GOOD);
1430
1431 case II_DOWN_CONTINUING:
1432 break;
1433
1434 default:
1435 return status;
1436 }
1437 }
1438
1439 // We shouldn't drop out: it means "while" caught us with nothing left to
1440 // download, yet the previous DownloadBlock did not return complete. Ergo,
1441 // not enough data to match the size byte in the header.
1442 return II_DOWN_UNDER;
1443}