blob: 5a6137fe172df6eb5633ee38b7b3be2c01a84305 [file] [log] [blame]
Keiji Hayashibara5ba155a2018-08-01 16:29:12 +09001// SPDX-License-Identifier: GPL-2.0
2// spi-uniphier.c - Socionext UniPhier SPI controller driver
3// Copyright 2012 Panasonic Corporation
4// Copyright 2016-2018 Socionext Inc.
5
6#include <linux/kernel.h>
7#include <linux/bitfield.h>
8#include <linux/bitops.h>
9#include <linux/clk.h>
10#include <linux/interrupt.h>
11#include <linux/io.h>
12#include <linux/module.h>
Keiji Hayashibara5ba155a2018-08-01 16:29:12 +090013#include <linux/platform_device.h>
14#include <linux/spi/spi.h>
15
16#include <asm/unaligned.h>
17
18#define SSI_TIMEOUT_MS 2000
19#define SSI_MAX_CLK_DIVIDER 254
20#define SSI_MIN_CLK_DIVIDER 4
21
22struct uniphier_spi_priv {
23 void __iomem *base;
24 struct clk *clk;
25 struct spi_master *master;
26 struct completion xfer_done;
27
28 int error;
29 unsigned int tx_bytes;
30 unsigned int rx_bytes;
31 const u8 *tx_buf;
32 u8 *rx_buf;
33
34 bool is_save_param;
35 u8 bits_per_word;
36 u16 mode;
37 u32 speed_hz;
38};
39
40#define SSI_CTL 0x00
41#define SSI_CTL_EN BIT(0)
42
43#define SSI_CKS 0x04
44#define SSI_CKS_CKRAT_MASK GENMASK(7, 0)
45#define SSI_CKS_CKPHS BIT(14)
46#define SSI_CKS_CKINIT BIT(13)
47#define SSI_CKS_CKDLY BIT(12)
48
49#define SSI_TXWDS 0x08
50#define SSI_TXWDS_WDLEN_MASK GENMASK(13, 8)
51#define SSI_TXWDS_TDTF_MASK GENMASK(7, 6)
52#define SSI_TXWDS_DTLEN_MASK GENMASK(5, 0)
53
54#define SSI_RXWDS 0x0c
55#define SSI_RXWDS_DTLEN_MASK GENMASK(5, 0)
56
57#define SSI_FPS 0x10
58#define SSI_FPS_FSPOL BIT(15)
59#define SSI_FPS_FSTRT BIT(14)
60
61#define SSI_SR 0x14
62#define SSI_SR_RNE BIT(0)
63
64#define SSI_IE 0x18
65#define SSI_IE_RCIE BIT(3)
66#define SSI_IE_RORIE BIT(0)
67
68#define SSI_IS 0x1c
69#define SSI_IS_RXRS BIT(9)
70#define SSI_IS_RCID BIT(3)
71#define SSI_IS_RORID BIT(0)
72
73#define SSI_IC 0x1c
74#define SSI_IC_TCIC BIT(4)
75#define SSI_IC_RCIC BIT(3)
76#define SSI_IC_RORIC BIT(0)
77
78#define SSI_FC 0x20
79#define SSI_FC_TXFFL BIT(12)
80#define SSI_FC_TXFTH_MASK GENMASK(11, 8)
81#define SSI_FC_RXFFL BIT(4)
82#define SSI_FC_RXFTH_MASK GENMASK(3, 0)
83
84#define SSI_TXDR 0x24
85#define SSI_RXDR 0x24
86
87#define SSI_FIFO_DEPTH 8U
88
89static inline unsigned int bytes_per_word(unsigned int bits)
90{
91 return bits <= 8 ? 1 : (bits <= 16 ? 2 : 4);
92}
93
94static inline void uniphier_spi_irq_enable(struct spi_device *spi, u32 mask)
95{
96 struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
97 u32 val;
98
99 val = readl(priv->base + SSI_IE);
100 val |= mask;
101 writel(val, priv->base + SSI_IE);
102}
103
104static inline void uniphier_spi_irq_disable(struct spi_device *spi, u32 mask)
105{
106 struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
107 u32 val;
108
109 val = readl(priv->base + SSI_IE);
110 val &= ~mask;
111 writel(val, priv->base + SSI_IE);
112}
113
114static void uniphier_spi_set_mode(struct spi_device *spi)
115{
116 struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
117 u32 val1, val2;
118
119 /*
120 * clock setting
121 * CKPHS capture timing. 0:rising edge, 1:falling edge
122 * CKINIT clock initial level. 0:low, 1:high
123 * CKDLY clock delay. 0:no delay, 1:delay depending on FSTRT
124 * (FSTRT=0: 1 clock, FSTRT=1: 0.5 clock)
125 *
126 * frame setting
127 * FSPOL frame signal porarity. 0: low, 1: high
128 * FSTRT start frame timing
129 * 0: rising edge of clock, 1: falling edge of clock
130 */
131 switch (spi->mode & (SPI_CPOL | SPI_CPHA)) {
132 case SPI_MODE_0:
133 /* CKPHS=1, CKINIT=0, CKDLY=1, FSTRT=0 */
134 val1 = SSI_CKS_CKPHS | SSI_CKS_CKDLY;
135 val2 = 0;
136 break;
137 case SPI_MODE_1:
138 /* CKPHS=0, CKINIT=0, CKDLY=0, FSTRT=1 */
139 val1 = 0;
140 val2 = SSI_FPS_FSTRT;
141 break;
142 case SPI_MODE_2:
143 /* CKPHS=0, CKINIT=1, CKDLY=1, FSTRT=1 */
144 val1 = SSI_CKS_CKINIT | SSI_CKS_CKDLY;
145 val2 = SSI_FPS_FSTRT;
146 break;
147 case SPI_MODE_3:
148 /* CKPHS=1, CKINIT=1, CKDLY=0, FSTRT=0 */
149 val1 = SSI_CKS_CKPHS | SSI_CKS_CKINIT;
150 val2 = 0;
151 break;
152 }
153
154 if (!(spi->mode & SPI_CS_HIGH))
155 val2 |= SSI_FPS_FSPOL;
156
157 writel(val1, priv->base + SSI_CKS);
158 writel(val2, priv->base + SSI_FPS);
159
160 val1 = 0;
161 if (spi->mode & SPI_LSB_FIRST)
162 val1 |= FIELD_PREP(SSI_TXWDS_TDTF_MASK, 1);
163 writel(val1, priv->base + SSI_TXWDS);
164 writel(val1, priv->base + SSI_RXWDS);
165}
166
167static void uniphier_spi_set_transfer_size(struct spi_device *spi, int size)
168{
169 struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
170 u32 val;
171
172 val = readl(priv->base + SSI_TXWDS);
173 val &= ~(SSI_TXWDS_WDLEN_MASK | SSI_TXWDS_DTLEN_MASK);
174 val |= FIELD_PREP(SSI_TXWDS_WDLEN_MASK, size);
175 val |= FIELD_PREP(SSI_TXWDS_DTLEN_MASK, size);
176 writel(val, priv->base + SSI_TXWDS);
177
178 val = readl(priv->base + SSI_RXWDS);
179 val &= ~SSI_RXWDS_DTLEN_MASK;
180 val |= FIELD_PREP(SSI_RXWDS_DTLEN_MASK, size);
181 writel(val, priv->base + SSI_RXWDS);
182}
183
184static void uniphier_spi_set_baudrate(struct spi_device *spi,
185 unsigned int speed)
186{
187 struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
188 u32 val, ckdiv;
189
190 /*
191 * the supported rates are even numbers from 4 to 254. (4,6,8...254)
192 * round up as we look for equal or less speed
193 */
194 ckdiv = DIV_ROUND_UP(clk_get_rate(priv->clk), speed);
195 ckdiv = round_up(ckdiv, 2);
196
197 val = readl(priv->base + SSI_CKS);
198 val &= ~SSI_CKS_CKRAT_MASK;
199 val |= ckdiv & SSI_CKS_CKRAT_MASK;
200 writel(val, priv->base + SSI_CKS);
201}
202
203static void uniphier_spi_setup_transfer(struct spi_device *spi,
204 struct spi_transfer *t)
205{
206 struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
207 u32 val;
208
209 priv->error = 0;
210 priv->tx_buf = t->tx_buf;
211 priv->rx_buf = t->rx_buf;
212 priv->tx_bytes = priv->rx_bytes = t->len;
213
214 if (!priv->is_save_param || priv->mode != spi->mode) {
215 uniphier_spi_set_mode(spi);
216 priv->mode = spi->mode;
217 }
218
219 if (!priv->is_save_param || priv->bits_per_word != t->bits_per_word) {
220 uniphier_spi_set_transfer_size(spi, t->bits_per_word);
221 priv->bits_per_word = t->bits_per_word;
222 }
223
224 if (!priv->is_save_param || priv->speed_hz != t->speed_hz) {
225 uniphier_spi_set_baudrate(spi, t->speed_hz);
226 priv->speed_hz = t->speed_hz;
227 }
228
229 if (!priv->is_save_param)
230 priv->is_save_param = true;
231
232 /* reset FIFOs */
233 val = SSI_FC_TXFFL | SSI_FC_RXFFL;
234 writel(val, priv->base + SSI_FC);
235}
236
237static void uniphier_spi_send(struct uniphier_spi_priv *priv)
238{
239 int wsize;
240 u32 val = 0;
241
242 wsize = min(bytes_per_word(priv->bits_per_word), priv->tx_bytes);
243 priv->tx_bytes -= wsize;
244
245 if (priv->tx_buf) {
246 switch (wsize) {
247 case 1:
248 val = *priv->tx_buf;
249 break;
250 case 2:
251 val = get_unaligned_le16(priv->tx_buf);
252 break;
253 case 4:
254 val = get_unaligned_le32(priv->tx_buf);
255 break;
256 }
257
258 priv->tx_buf += wsize;
259 }
260
261 writel(val, priv->base + SSI_TXDR);
262}
263
264static void uniphier_spi_recv(struct uniphier_spi_priv *priv)
265{
266 int rsize;
267 u32 val;
268
269 rsize = min(bytes_per_word(priv->bits_per_word), priv->rx_bytes);
270 priv->rx_bytes -= rsize;
271
272 val = readl(priv->base + SSI_RXDR);
273
274 if (priv->rx_buf) {
275 switch (rsize) {
276 case 1:
277 *priv->rx_buf = val;
278 break;
279 case 2:
280 put_unaligned_le16(val, priv->rx_buf);
281 break;
282 case 4:
283 put_unaligned_le32(val, priv->rx_buf);
284 break;
285 }
286
287 priv->rx_buf += rsize;
288 }
289}
290
291static void uniphier_spi_fill_tx_fifo(struct uniphier_spi_priv *priv)
292{
293 unsigned int tx_count;
294 u32 val;
295
296 tx_count = DIV_ROUND_UP(priv->tx_bytes,
297 bytes_per_word(priv->bits_per_word));
298 tx_count = min(tx_count, SSI_FIFO_DEPTH);
299
300 /* set fifo threshold */
301 val = readl(priv->base + SSI_FC);
302 val &= ~(SSI_FC_TXFTH_MASK | SSI_FC_RXFTH_MASK);
303 val |= FIELD_PREP(SSI_FC_TXFTH_MASK, tx_count);
304 val |= FIELD_PREP(SSI_FC_RXFTH_MASK, tx_count);
305 writel(val, priv->base + SSI_FC);
306
307 while (tx_count--)
308 uniphier_spi_send(priv);
309}
310
311static void uniphier_spi_set_cs(struct spi_device *spi, bool enable)
312{
313 struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
314 u32 val;
315
316 val = readl(priv->base + SSI_FPS);
317
318 if (enable)
319 val |= SSI_FPS_FSPOL;
320 else
321 val &= ~SSI_FPS_FSPOL;
322
323 writel(val, priv->base + SSI_FPS);
324}
325
326static int uniphier_spi_transfer_one(struct spi_master *master,
327 struct spi_device *spi,
328 struct spi_transfer *t)
329{
330 struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
331 int status;
332
333 uniphier_spi_setup_transfer(spi, t);
334
335 reinit_completion(&priv->xfer_done);
336
337 uniphier_spi_fill_tx_fifo(priv);
338
339 uniphier_spi_irq_enable(spi, SSI_IE_RCIE | SSI_IE_RORIE);
340
341 status = wait_for_completion_timeout(&priv->xfer_done,
342 msecs_to_jiffies(SSI_TIMEOUT_MS));
343
344 uniphier_spi_irq_disable(spi, SSI_IE_RCIE | SSI_IE_RORIE);
345
346 if (status < 0)
347 return status;
348
349 return priv->error;
350}
351
352static int uniphier_spi_prepare_transfer_hardware(struct spi_master *master)
353{
354 struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
355
356 writel(SSI_CTL_EN, priv->base + SSI_CTL);
357
358 return 0;
359}
360
361static int uniphier_spi_unprepare_transfer_hardware(struct spi_master *master)
362{
363 struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
364
365 writel(0, priv->base + SSI_CTL);
366
367 return 0;
368}
369
370static irqreturn_t uniphier_spi_handler(int irq, void *dev_id)
371{
372 struct uniphier_spi_priv *priv = dev_id;
373 u32 val, stat;
374
375 stat = readl(priv->base + SSI_IS);
376 val = SSI_IC_TCIC | SSI_IC_RCIC | SSI_IC_RORIC;
377 writel(val, priv->base + SSI_IC);
378
379 /* rx fifo overrun */
380 if (stat & SSI_IS_RORID) {
381 priv->error = -EIO;
382 goto done;
383 }
384
385 /* rx complete */
386 if ((stat & SSI_IS_RCID) && (stat & SSI_IS_RXRS)) {
387 while ((readl(priv->base + SSI_SR) & SSI_SR_RNE) &&
388 (priv->rx_bytes - priv->tx_bytes) > 0)
389 uniphier_spi_recv(priv);
390
391 if ((readl(priv->base + SSI_SR) & SSI_SR_RNE) ||
392 (priv->rx_bytes != priv->tx_bytes)) {
393 priv->error = -EIO;
394 goto done;
395 } else if (priv->rx_bytes == 0)
396 goto done;
397
398 /* next tx transfer */
399 uniphier_spi_fill_tx_fifo(priv);
400
401 return IRQ_HANDLED;
402 }
403
404 return IRQ_NONE;
405
406done:
407 complete(&priv->xfer_done);
408 return IRQ_HANDLED;
409}
410
411static int uniphier_spi_probe(struct platform_device *pdev)
412{
413 struct uniphier_spi_priv *priv;
414 struct spi_master *master;
415 struct resource *res;
416 unsigned long clk_rate;
417 int irq;
418 int ret;
419
420 master = spi_alloc_master(&pdev->dev, sizeof(*priv));
421 if (!master)
422 return -ENOMEM;
423
424 platform_set_drvdata(pdev, master);
425
426 priv = spi_master_get_devdata(master);
427 priv->master = master;
428 priv->is_save_param = false;
429
430 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
431 priv->base = devm_ioremap_resource(&pdev->dev, res);
432 if (IS_ERR(priv->base)) {
433 ret = PTR_ERR(priv->base);
434 goto out_master_put;
435 }
436
437 priv->clk = devm_clk_get(&pdev->dev, NULL);
438 if (IS_ERR(priv->clk)) {
439 dev_err(&pdev->dev, "failed to get clock\n");
440 ret = PTR_ERR(priv->clk);
441 goto out_master_put;
442 }
443
444 ret = clk_prepare_enable(priv->clk);
445 if (ret)
446 goto out_master_put;
447
448 irq = platform_get_irq(pdev, 0);
449 if (irq < 0) {
450 dev_err(&pdev->dev, "failed to get IRQ\n");
451 ret = irq;
452 goto out_disable_clk;
453 }
454
455 ret = devm_request_irq(&pdev->dev, irq, uniphier_spi_handler,
456 0, "uniphier-spi", priv);
457 if (ret) {
458 dev_err(&pdev->dev, "failed to request IRQ\n");
459 goto out_disable_clk;
460 }
461
462 init_completion(&priv->xfer_done);
463
464 clk_rate = clk_get_rate(priv->clk);
465
466 master->max_speed_hz = DIV_ROUND_UP(clk_rate, SSI_MIN_CLK_DIVIDER);
467 master->min_speed_hz = DIV_ROUND_UP(clk_rate, SSI_MAX_CLK_DIVIDER);
468 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
469 master->dev.of_node = pdev->dev.of_node;
470 master->bus_num = pdev->id;
471 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
472
473 master->set_cs = uniphier_spi_set_cs;
474 master->transfer_one = uniphier_spi_transfer_one;
475 master->prepare_transfer_hardware
476 = uniphier_spi_prepare_transfer_hardware;
477 master->unprepare_transfer_hardware
478 = uniphier_spi_unprepare_transfer_hardware;
479 master->num_chipselect = 1;
480
481 ret = devm_spi_register_master(&pdev->dev, master);
482 if (ret)
483 goto out_disable_clk;
484
485 return 0;
486
487out_disable_clk:
488 clk_disable_unprepare(priv->clk);
489
490out_master_put:
491 spi_master_put(master);
492 return ret;
493}
494
495static int uniphier_spi_remove(struct platform_device *pdev)
496{
497 struct uniphier_spi_priv *priv = platform_get_drvdata(pdev);
498
499 clk_disable_unprepare(priv->clk);
500
501 return 0;
502}
503
504static const struct of_device_id uniphier_spi_match[] = {
505 { .compatible = "socionext,uniphier-scssi" },
506 { /* sentinel */ }
507};
508MODULE_DEVICE_TABLE(of, uniphier_spi_match);
509
510static struct platform_driver uniphier_spi_driver = {
511 .probe = uniphier_spi_probe,
512 .remove = uniphier_spi_remove,
513 .driver = {
514 .name = "uniphier-spi",
515 .of_match_table = uniphier_spi_match,
516 },
517};
518module_platform_driver(uniphier_spi_driver);
519
520MODULE_AUTHOR("Kunihiko Hayashi <hayashi.kunihiko@socionext.com>");
521MODULE_AUTHOR("Keiji Hayashibara <hayashibara.keiji@socionext.com>");
522MODULE_DESCRIPTION("Socionext UniPhier SPI controller driver");
523MODULE_LICENSE("GPL v2");