Frederic Weisbecker | 73fbec6 | 2012-06-16 15:57:37 +0200 | [diff] [blame] | 1 | #include <linux/export.h> |
| 2 | #include <linux/sched.h> |
| 3 | #include <linux/tsacct_kern.h> |
| 4 | #include <linux/kernel_stat.h> |
| 5 | #include <linux/static_key.h> |
| 6 | #include "sched.h" |
| 7 | |
| 8 | |
| 9 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
| 10 | |
| 11 | /* |
| 12 | * There are no locks covering percpu hardirq/softirq time. |
Frederic Weisbecker | bf9fae9 | 2012-09-08 15:23:11 +0200 | [diff] [blame^] | 13 | * They are only modified in vtime_account, on corresponding CPU |
Frederic Weisbecker | 73fbec6 | 2012-06-16 15:57:37 +0200 | [diff] [blame] | 14 | * with interrupts disabled. So, writes are safe. |
| 15 | * They are read and saved off onto struct rq in update_rq_clock(). |
| 16 | * This may result in other CPU reading this CPU's irq time and can |
Frederic Weisbecker | bf9fae9 | 2012-09-08 15:23:11 +0200 | [diff] [blame^] | 17 | * race with irq/vtime_account on this CPU. We would either get old |
Frederic Weisbecker | 73fbec6 | 2012-06-16 15:57:37 +0200 | [diff] [blame] | 18 | * or new value with a side effect of accounting a slice of irq time to wrong |
| 19 | * task when irq is in progress while we read rq->clock. That is a worthy |
| 20 | * compromise in place of having locks on each irq in account_system_time. |
| 21 | */ |
| 22 | DEFINE_PER_CPU(u64, cpu_hardirq_time); |
| 23 | DEFINE_PER_CPU(u64, cpu_softirq_time); |
| 24 | |
| 25 | static DEFINE_PER_CPU(u64, irq_start_time); |
| 26 | static int sched_clock_irqtime; |
| 27 | |
| 28 | void enable_sched_clock_irqtime(void) |
| 29 | { |
| 30 | sched_clock_irqtime = 1; |
| 31 | } |
| 32 | |
| 33 | void disable_sched_clock_irqtime(void) |
| 34 | { |
| 35 | sched_clock_irqtime = 0; |
| 36 | } |
| 37 | |
| 38 | #ifndef CONFIG_64BIT |
| 39 | DEFINE_PER_CPU(seqcount_t, irq_time_seq); |
| 40 | #endif /* CONFIG_64BIT */ |
| 41 | |
| 42 | /* |
| 43 | * Called before incrementing preempt_count on {soft,}irq_enter |
| 44 | * and before decrementing preempt_count on {soft,}irq_exit. |
| 45 | */ |
Frederic Weisbecker | bf9fae9 | 2012-09-08 15:23:11 +0200 | [diff] [blame^] | 46 | void vtime_account(struct task_struct *curr) |
Frederic Weisbecker | 73fbec6 | 2012-06-16 15:57:37 +0200 | [diff] [blame] | 47 | { |
| 48 | unsigned long flags; |
| 49 | s64 delta; |
| 50 | int cpu; |
| 51 | |
| 52 | if (!sched_clock_irqtime) |
| 53 | return; |
| 54 | |
| 55 | local_irq_save(flags); |
| 56 | |
| 57 | cpu = smp_processor_id(); |
| 58 | delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); |
| 59 | __this_cpu_add(irq_start_time, delta); |
| 60 | |
| 61 | irq_time_write_begin(); |
| 62 | /* |
| 63 | * We do not account for softirq time from ksoftirqd here. |
| 64 | * We want to continue accounting softirq time to ksoftirqd thread |
| 65 | * in that case, so as not to confuse scheduler with a special task |
| 66 | * that do not consume any time, but still wants to run. |
| 67 | */ |
| 68 | if (hardirq_count()) |
| 69 | __this_cpu_add(cpu_hardirq_time, delta); |
| 70 | else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) |
| 71 | __this_cpu_add(cpu_softirq_time, delta); |
| 72 | |
| 73 | irq_time_write_end(); |
| 74 | local_irq_restore(flags); |
| 75 | } |
Frederic Weisbecker | bf9fae9 | 2012-09-08 15:23:11 +0200 | [diff] [blame^] | 76 | EXPORT_SYMBOL_GPL(vtime_account); |
Frederic Weisbecker | 73fbec6 | 2012-06-16 15:57:37 +0200 | [diff] [blame] | 77 | |
| 78 | static int irqtime_account_hi_update(void) |
| 79 | { |
| 80 | u64 *cpustat = kcpustat_this_cpu->cpustat; |
| 81 | unsigned long flags; |
| 82 | u64 latest_ns; |
| 83 | int ret = 0; |
| 84 | |
| 85 | local_irq_save(flags); |
| 86 | latest_ns = this_cpu_read(cpu_hardirq_time); |
| 87 | if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ]) |
| 88 | ret = 1; |
| 89 | local_irq_restore(flags); |
| 90 | return ret; |
| 91 | } |
| 92 | |
| 93 | static int irqtime_account_si_update(void) |
| 94 | { |
| 95 | u64 *cpustat = kcpustat_this_cpu->cpustat; |
| 96 | unsigned long flags; |
| 97 | u64 latest_ns; |
| 98 | int ret = 0; |
| 99 | |
| 100 | local_irq_save(flags); |
| 101 | latest_ns = this_cpu_read(cpu_softirq_time); |
| 102 | if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ]) |
| 103 | ret = 1; |
| 104 | local_irq_restore(flags); |
| 105 | return ret; |
| 106 | } |
| 107 | |
| 108 | #else /* CONFIG_IRQ_TIME_ACCOUNTING */ |
| 109 | |
| 110 | #define sched_clock_irqtime (0) |
| 111 | |
| 112 | #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ |
| 113 | |
| 114 | static inline void task_group_account_field(struct task_struct *p, int index, |
| 115 | u64 tmp) |
| 116 | { |
| 117 | #ifdef CONFIG_CGROUP_CPUACCT |
| 118 | struct kernel_cpustat *kcpustat; |
| 119 | struct cpuacct *ca; |
| 120 | #endif |
| 121 | /* |
| 122 | * Since all updates are sure to touch the root cgroup, we |
| 123 | * get ourselves ahead and touch it first. If the root cgroup |
| 124 | * is the only cgroup, then nothing else should be necessary. |
| 125 | * |
| 126 | */ |
| 127 | __get_cpu_var(kernel_cpustat).cpustat[index] += tmp; |
| 128 | |
| 129 | #ifdef CONFIG_CGROUP_CPUACCT |
| 130 | if (unlikely(!cpuacct_subsys.active)) |
| 131 | return; |
| 132 | |
| 133 | rcu_read_lock(); |
| 134 | ca = task_ca(p); |
| 135 | while (ca && (ca != &root_cpuacct)) { |
| 136 | kcpustat = this_cpu_ptr(ca->cpustat); |
| 137 | kcpustat->cpustat[index] += tmp; |
| 138 | ca = parent_ca(ca); |
| 139 | } |
| 140 | rcu_read_unlock(); |
| 141 | #endif |
| 142 | } |
| 143 | |
| 144 | /* |
| 145 | * Account user cpu time to a process. |
| 146 | * @p: the process that the cpu time gets accounted to |
| 147 | * @cputime: the cpu time spent in user space since the last update |
| 148 | * @cputime_scaled: cputime scaled by cpu frequency |
| 149 | */ |
| 150 | void account_user_time(struct task_struct *p, cputime_t cputime, |
| 151 | cputime_t cputime_scaled) |
| 152 | { |
| 153 | int index; |
| 154 | |
| 155 | /* Add user time to process. */ |
| 156 | p->utime += cputime; |
| 157 | p->utimescaled += cputime_scaled; |
| 158 | account_group_user_time(p, cputime); |
| 159 | |
| 160 | index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; |
| 161 | |
| 162 | /* Add user time to cpustat. */ |
| 163 | task_group_account_field(p, index, (__force u64) cputime); |
| 164 | |
| 165 | /* Account for user time used */ |
| 166 | acct_update_integrals(p); |
| 167 | } |
| 168 | |
| 169 | /* |
| 170 | * Account guest cpu time to a process. |
| 171 | * @p: the process that the cpu time gets accounted to |
| 172 | * @cputime: the cpu time spent in virtual machine since the last update |
| 173 | * @cputime_scaled: cputime scaled by cpu frequency |
| 174 | */ |
| 175 | static void account_guest_time(struct task_struct *p, cputime_t cputime, |
| 176 | cputime_t cputime_scaled) |
| 177 | { |
| 178 | u64 *cpustat = kcpustat_this_cpu->cpustat; |
| 179 | |
| 180 | /* Add guest time to process. */ |
| 181 | p->utime += cputime; |
| 182 | p->utimescaled += cputime_scaled; |
| 183 | account_group_user_time(p, cputime); |
| 184 | p->gtime += cputime; |
| 185 | |
| 186 | /* Add guest time to cpustat. */ |
| 187 | if (TASK_NICE(p) > 0) { |
| 188 | cpustat[CPUTIME_NICE] += (__force u64) cputime; |
| 189 | cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; |
| 190 | } else { |
| 191 | cpustat[CPUTIME_USER] += (__force u64) cputime; |
| 192 | cpustat[CPUTIME_GUEST] += (__force u64) cputime; |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | /* |
| 197 | * Account system cpu time to a process and desired cpustat field |
| 198 | * @p: the process that the cpu time gets accounted to |
| 199 | * @cputime: the cpu time spent in kernel space since the last update |
| 200 | * @cputime_scaled: cputime scaled by cpu frequency |
| 201 | * @target_cputime64: pointer to cpustat field that has to be updated |
| 202 | */ |
| 203 | static inline |
| 204 | void __account_system_time(struct task_struct *p, cputime_t cputime, |
| 205 | cputime_t cputime_scaled, int index) |
| 206 | { |
| 207 | /* Add system time to process. */ |
| 208 | p->stime += cputime; |
| 209 | p->stimescaled += cputime_scaled; |
| 210 | account_group_system_time(p, cputime); |
| 211 | |
| 212 | /* Add system time to cpustat. */ |
| 213 | task_group_account_field(p, index, (__force u64) cputime); |
| 214 | |
| 215 | /* Account for system time used */ |
| 216 | acct_update_integrals(p); |
| 217 | } |
| 218 | |
| 219 | /* |
| 220 | * Account system cpu time to a process. |
| 221 | * @p: the process that the cpu time gets accounted to |
| 222 | * @hardirq_offset: the offset to subtract from hardirq_count() |
| 223 | * @cputime: the cpu time spent in kernel space since the last update |
| 224 | * @cputime_scaled: cputime scaled by cpu frequency |
| 225 | */ |
| 226 | void account_system_time(struct task_struct *p, int hardirq_offset, |
| 227 | cputime_t cputime, cputime_t cputime_scaled) |
| 228 | { |
| 229 | int index; |
| 230 | |
| 231 | if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { |
| 232 | account_guest_time(p, cputime, cputime_scaled); |
| 233 | return; |
| 234 | } |
| 235 | |
| 236 | if (hardirq_count() - hardirq_offset) |
| 237 | index = CPUTIME_IRQ; |
| 238 | else if (in_serving_softirq()) |
| 239 | index = CPUTIME_SOFTIRQ; |
| 240 | else |
| 241 | index = CPUTIME_SYSTEM; |
| 242 | |
| 243 | __account_system_time(p, cputime, cputime_scaled, index); |
| 244 | } |
| 245 | |
| 246 | /* |
| 247 | * Account for involuntary wait time. |
| 248 | * @cputime: the cpu time spent in involuntary wait |
| 249 | */ |
| 250 | void account_steal_time(cputime_t cputime) |
| 251 | { |
| 252 | u64 *cpustat = kcpustat_this_cpu->cpustat; |
| 253 | |
| 254 | cpustat[CPUTIME_STEAL] += (__force u64) cputime; |
| 255 | } |
| 256 | |
| 257 | /* |
| 258 | * Account for idle time. |
| 259 | * @cputime: the cpu time spent in idle wait |
| 260 | */ |
| 261 | void account_idle_time(cputime_t cputime) |
| 262 | { |
| 263 | u64 *cpustat = kcpustat_this_cpu->cpustat; |
| 264 | struct rq *rq = this_rq(); |
| 265 | |
| 266 | if (atomic_read(&rq->nr_iowait) > 0) |
| 267 | cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; |
| 268 | else |
| 269 | cpustat[CPUTIME_IDLE] += (__force u64) cputime; |
| 270 | } |
| 271 | |
| 272 | static __always_inline bool steal_account_process_tick(void) |
| 273 | { |
| 274 | #ifdef CONFIG_PARAVIRT |
| 275 | if (static_key_false(¶virt_steal_enabled)) { |
| 276 | u64 steal, st = 0; |
| 277 | |
| 278 | steal = paravirt_steal_clock(smp_processor_id()); |
| 279 | steal -= this_rq()->prev_steal_time; |
| 280 | |
| 281 | st = steal_ticks(steal); |
| 282 | this_rq()->prev_steal_time += st * TICK_NSEC; |
| 283 | |
| 284 | account_steal_time(st); |
| 285 | return st; |
| 286 | } |
| 287 | #endif |
| 288 | return false; |
| 289 | } |
| 290 | |
| 291 | #ifndef CONFIG_VIRT_CPU_ACCOUNTING |
| 292 | |
| 293 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
| 294 | /* |
| 295 | * Account a tick to a process and cpustat |
| 296 | * @p: the process that the cpu time gets accounted to |
| 297 | * @user_tick: is the tick from userspace |
| 298 | * @rq: the pointer to rq |
| 299 | * |
| 300 | * Tick demultiplexing follows the order |
| 301 | * - pending hardirq update |
| 302 | * - pending softirq update |
| 303 | * - user_time |
| 304 | * - idle_time |
| 305 | * - system time |
| 306 | * - check for guest_time |
| 307 | * - else account as system_time |
| 308 | * |
| 309 | * Check for hardirq is done both for system and user time as there is |
| 310 | * no timer going off while we are on hardirq and hence we may never get an |
| 311 | * opportunity to update it solely in system time. |
| 312 | * p->stime and friends are only updated on system time and not on irq |
| 313 | * softirq as those do not count in task exec_runtime any more. |
| 314 | */ |
| 315 | static void irqtime_account_process_tick(struct task_struct *p, int user_tick, |
| 316 | struct rq *rq) |
| 317 | { |
| 318 | cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); |
| 319 | u64 *cpustat = kcpustat_this_cpu->cpustat; |
| 320 | |
| 321 | if (steal_account_process_tick()) |
| 322 | return; |
| 323 | |
| 324 | if (irqtime_account_hi_update()) { |
| 325 | cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy; |
| 326 | } else if (irqtime_account_si_update()) { |
| 327 | cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy; |
| 328 | } else if (this_cpu_ksoftirqd() == p) { |
| 329 | /* |
| 330 | * ksoftirqd time do not get accounted in cpu_softirq_time. |
| 331 | * So, we have to handle it separately here. |
| 332 | * Also, p->stime needs to be updated for ksoftirqd. |
| 333 | */ |
| 334 | __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, |
| 335 | CPUTIME_SOFTIRQ); |
| 336 | } else if (user_tick) { |
| 337 | account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); |
| 338 | } else if (p == rq->idle) { |
| 339 | account_idle_time(cputime_one_jiffy); |
| 340 | } else if (p->flags & PF_VCPU) { /* System time or guest time */ |
| 341 | account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); |
| 342 | } else { |
| 343 | __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, |
| 344 | CPUTIME_SYSTEM); |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | static void irqtime_account_idle_ticks(int ticks) |
| 349 | { |
| 350 | int i; |
| 351 | struct rq *rq = this_rq(); |
| 352 | |
| 353 | for (i = 0; i < ticks; i++) |
| 354 | irqtime_account_process_tick(current, 0, rq); |
| 355 | } |
| 356 | #else /* CONFIG_IRQ_TIME_ACCOUNTING */ |
| 357 | static void irqtime_account_idle_ticks(int ticks) {} |
| 358 | static void irqtime_account_process_tick(struct task_struct *p, int user_tick, |
| 359 | struct rq *rq) {} |
| 360 | #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ |
| 361 | |
| 362 | /* |
| 363 | * Account a single tick of cpu time. |
| 364 | * @p: the process that the cpu time gets accounted to |
| 365 | * @user_tick: indicates if the tick is a user or a system tick |
| 366 | */ |
| 367 | void account_process_tick(struct task_struct *p, int user_tick) |
| 368 | { |
| 369 | cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); |
| 370 | struct rq *rq = this_rq(); |
| 371 | |
| 372 | if (sched_clock_irqtime) { |
| 373 | irqtime_account_process_tick(p, user_tick, rq); |
| 374 | return; |
| 375 | } |
| 376 | |
| 377 | if (steal_account_process_tick()) |
| 378 | return; |
| 379 | |
| 380 | if (user_tick) |
| 381 | account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); |
| 382 | else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) |
| 383 | account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, |
| 384 | one_jiffy_scaled); |
| 385 | else |
| 386 | account_idle_time(cputime_one_jiffy); |
| 387 | } |
| 388 | |
| 389 | /* |
| 390 | * Account multiple ticks of steal time. |
| 391 | * @p: the process from which the cpu time has been stolen |
| 392 | * @ticks: number of stolen ticks |
| 393 | */ |
| 394 | void account_steal_ticks(unsigned long ticks) |
| 395 | { |
| 396 | account_steal_time(jiffies_to_cputime(ticks)); |
| 397 | } |
| 398 | |
| 399 | /* |
| 400 | * Account multiple ticks of idle time. |
| 401 | * @ticks: number of stolen ticks |
| 402 | */ |
| 403 | void account_idle_ticks(unsigned long ticks) |
| 404 | { |
| 405 | |
| 406 | if (sched_clock_irqtime) { |
| 407 | irqtime_account_idle_ticks(ticks); |
| 408 | return; |
| 409 | } |
| 410 | |
| 411 | account_idle_time(jiffies_to_cputime(ticks)); |
| 412 | } |
| 413 | |
| 414 | #endif |
| 415 | |
| 416 | /* |
| 417 | * Use precise platform statistics if available: |
| 418 | */ |
| 419 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING |
| 420 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
| 421 | { |
| 422 | *ut = p->utime; |
| 423 | *st = p->stime; |
| 424 | } |
| 425 | |
| 426 | void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
| 427 | { |
| 428 | struct task_cputime cputime; |
| 429 | |
| 430 | thread_group_cputime(p, &cputime); |
| 431 | |
| 432 | *ut = cputime.utime; |
| 433 | *st = cputime.stime; |
| 434 | } |
| 435 | #else |
| 436 | |
| 437 | #ifndef nsecs_to_cputime |
| 438 | # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) |
| 439 | #endif |
| 440 | |
| 441 | static cputime_t scale_utime(cputime_t utime, cputime_t rtime, cputime_t total) |
| 442 | { |
| 443 | u64 temp = (__force u64) rtime; |
| 444 | |
| 445 | temp *= (__force u64) utime; |
| 446 | |
| 447 | if (sizeof(cputime_t) == 4) |
| 448 | temp = div_u64(temp, (__force u32) total); |
| 449 | else |
| 450 | temp = div64_u64(temp, (__force u64) total); |
| 451 | |
| 452 | return (__force cputime_t) temp; |
| 453 | } |
| 454 | |
| 455 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
| 456 | { |
| 457 | cputime_t rtime, utime = p->utime, total = utime + p->stime; |
| 458 | |
| 459 | /* |
| 460 | * Use CFS's precise accounting: |
| 461 | */ |
| 462 | rtime = nsecs_to_cputime(p->se.sum_exec_runtime); |
| 463 | |
| 464 | if (total) |
| 465 | utime = scale_utime(utime, rtime, total); |
| 466 | else |
| 467 | utime = rtime; |
| 468 | |
| 469 | /* |
| 470 | * Compare with previous values, to keep monotonicity: |
| 471 | */ |
| 472 | p->prev_utime = max(p->prev_utime, utime); |
| 473 | p->prev_stime = max(p->prev_stime, rtime - p->prev_utime); |
| 474 | |
| 475 | *ut = p->prev_utime; |
| 476 | *st = p->prev_stime; |
| 477 | } |
| 478 | |
| 479 | /* |
| 480 | * Must be called with siglock held. |
| 481 | */ |
| 482 | void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
| 483 | { |
| 484 | struct signal_struct *sig = p->signal; |
| 485 | struct task_cputime cputime; |
| 486 | cputime_t rtime, utime, total; |
| 487 | |
| 488 | thread_group_cputime(p, &cputime); |
| 489 | |
| 490 | total = cputime.utime + cputime.stime; |
| 491 | rtime = nsecs_to_cputime(cputime.sum_exec_runtime); |
| 492 | |
| 493 | if (total) |
| 494 | utime = scale_utime(cputime.utime, rtime, total); |
| 495 | else |
| 496 | utime = rtime; |
| 497 | |
| 498 | sig->prev_utime = max(sig->prev_utime, utime); |
| 499 | sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime); |
| 500 | |
| 501 | *ut = sig->prev_utime; |
| 502 | *st = sig->prev_stime; |
| 503 | } |
| 504 | #endif |