Dave Young | 2965faa | 2015-09-09 15:38:55 -0700 | [diff] [blame] | 1 | /* |
| 2 | * kexec.c - kexec system call core code. |
| 3 | * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> |
| 4 | * |
| 5 | * This source code is licensed under the GNU General Public License, |
| 6 | * Version 2. See the file COPYING for more details. |
| 7 | */ |
| 8 | |
| 9 | #define pr_fmt(fmt) "kexec: " fmt |
| 10 | |
| 11 | #include <linux/capability.h> |
| 12 | #include <linux/mm.h> |
| 13 | #include <linux/file.h> |
| 14 | #include <linux/slab.h> |
| 15 | #include <linux/fs.h> |
| 16 | #include <linux/kexec.h> |
| 17 | #include <linux/mutex.h> |
| 18 | #include <linux/list.h> |
| 19 | #include <linux/highmem.h> |
| 20 | #include <linux/syscalls.h> |
| 21 | #include <linux/reboot.h> |
| 22 | #include <linux/ioport.h> |
| 23 | #include <linux/hardirq.h> |
| 24 | #include <linux/elf.h> |
| 25 | #include <linux/elfcore.h> |
| 26 | #include <linux/utsname.h> |
| 27 | #include <linux/numa.h> |
| 28 | #include <linux/suspend.h> |
| 29 | #include <linux/device.h> |
| 30 | #include <linux/freezer.h> |
| 31 | #include <linux/pm.h> |
| 32 | #include <linux/cpu.h> |
| 33 | #include <linux/uaccess.h> |
| 34 | #include <linux/io.h> |
| 35 | #include <linux/console.h> |
| 36 | #include <linux/vmalloc.h> |
| 37 | #include <linux/swap.h> |
| 38 | #include <linux/syscore_ops.h> |
| 39 | #include <linux/compiler.h> |
| 40 | #include <linux/hugetlb.h> |
| 41 | |
| 42 | #include <asm/page.h> |
| 43 | #include <asm/sections.h> |
| 44 | |
| 45 | #include <crypto/hash.h> |
| 46 | #include <crypto/sha.h> |
| 47 | #include "kexec_internal.h" |
| 48 | |
| 49 | DEFINE_MUTEX(kexec_mutex); |
| 50 | |
| 51 | /* Per cpu memory for storing cpu states in case of system crash. */ |
| 52 | note_buf_t __percpu *crash_notes; |
| 53 | |
| 54 | /* vmcoreinfo stuff */ |
| 55 | static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; |
| 56 | u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; |
| 57 | size_t vmcoreinfo_size; |
| 58 | size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); |
| 59 | |
| 60 | /* Flag to indicate we are going to kexec a new kernel */ |
| 61 | bool kexec_in_progress = false; |
| 62 | |
| 63 | |
| 64 | /* Location of the reserved area for the crash kernel */ |
| 65 | struct resource crashk_res = { |
| 66 | .name = "Crash kernel", |
| 67 | .start = 0, |
| 68 | .end = 0, |
| 69 | .flags = IORESOURCE_BUSY | IORESOURCE_MEM |
| 70 | }; |
| 71 | struct resource crashk_low_res = { |
| 72 | .name = "Crash kernel", |
| 73 | .start = 0, |
| 74 | .end = 0, |
| 75 | .flags = IORESOURCE_BUSY | IORESOURCE_MEM |
| 76 | }; |
| 77 | |
| 78 | int kexec_should_crash(struct task_struct *p) |
| 79 | { |
| 80 | /* |
| 81 | * If crash_kexec_post_notifiers is enabled, don't run |
| 82 | * crash_kexec() here yet, which must be run after panic |
| 83 | * notifiers in panic(). |
| 84 | */ |
| 85 | if (crash_kexec_post_notifiers) |
| 86 | return 0; |
| 87 | /* |
| 88 | * There are 4 panic() calls in do_exit() path, each of which |
| 89 | * corresponds to each of these 4 conditions. |
| 90 | */ |
| 91 | if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) |
| 92 | return 1; |
| 93 | return 0; |
| 94 | } |
| 95 | |
| 96 | /* |
| 97 | * When kexec transitions to the new kernel there is a one-to-one |
| 98 | * mapping between physical and virtual addresses. On processors |
| 99 | * where you can disable the MMU this is trivial, and easy. For |
| 100 | * others it is still a simple predictable page table to setup. |
| 101 | * |
| 102 | * In that environment kexec copies the new kernel to its final |
| 103 | * resting place. This means I can only support memory whose |
| 104 | * physical address can fit in an unsigned long. In particular |
| 105 | * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. |
| 106 | * If the assembly stub has more restrictive requirements |
| 107 | * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be |
| 108 | * defined more restrictively in <asm/kexec.h>. |
| 109 | * |
| 110 | * The code for the transition from the current kernel to the |
| 111 | * the new kernel is placed in the control_code_buffer, whose size |
| 112 | * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single |
| 113 | * page of memory is necessary, but some architectures require more. |
| 114 | * Because this memory must be identity mapped in the transition from |
| 115 | * virtual to physical addresses it must live in the range |
| 116 | * 0 - TASK_SIZE, as only the user space mappings are arbitrarily |
| 117 | * modifiable. |
| 118 | * |
| 119 | * The assembly stub in the control code buffer is passed a linked list |
| 120 | * of descriptor pages detailing the source pages of the new kernel, |
| 121 | * and the destination addresses of those source pages. As this data |
| 122 | * structure is not used in the context of the current OS, it must |
| 123 | * be self-contained. |
| 124 | * |
| 125 | * The code has been made to work with highmem pages and will use a |
| 126 | * destination page in its final resting place (if it happens |
| 127 | * to allocate it). The end product of this is that most of the |
| 128 | * physical address space, and most of RAM can be used. |
| 129 | * |
| 130 | * Future directions include: |
| 131 | * - allocating a page table with the control code buffer identity |
| 132 | * mapped, to simplify machine_kexec and make kexec_on_panic more |
| 133 | * reliable. |
| 134 | */ |
| 135 | |
| 136 | /* |
| 137 | * KIMAGE_NO_DEST is an impossible destination address..., for |
| 138 | * allocating pages whose destination address we do not care about. |
| 139 | */ |
| 140 | #define KIMAGE_NO_DEST (-1UL) |
| 141 | |
| 142 | static struct page *kimage_alloc_page(struct kimage *image, |
| 143 | gfp_t gfp_mask, |
| 144 | unsigned long dest); |
| 145 | |
| 146 | int sanity_check_segment_list(struct kimage *image) |
| 147 | { |
| 148 | int result, i; |
| 149 | unsigned long nr_segments = image->nr_segments; |
| 150 | |
| 151 | /* |
| 152 | * Verify we have good destination addresses. The caller is |
| 153 | * responsible for making certain we don't attempt to load |
| 154 | * the new image into invalid or reserved areas of RAM. This |
| 155 | * just verifies it is an address we can use. |
| 156 | * |
| 157 | * Since the kernel does everything in page size chunks ensure |
| 158 | * the destination addresses are page aligned. Too many |
| 159 | * special cases crop of when we don't do this. The most |
| 160 | * insidious is getting overlapping destination addresses |
| 161 | * simply because addresses are changed to page size |
| 162 | * granularity. |
| 163 | */ |
| 164 | result = -EADDRNOTAVAIL; |
| 165 | for (i = 0; i < nr_segments; i++) { |
| 166 | unsigned long mstart, mend; |
| 167 | |
| 168 | mstart = image->segment[i].mem; |
| 169 | mend = mstart + image->segment[i].memsz; |
| 170 | if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) |
| 171 | return result; |
| 172 | if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) |
| 173 | return result; |
| 174 | } |
| 175 | |
| 176 | /* Verify our destination addresses do not overlap. |
| 177 | * If we alloed overlapping destination addresses |
| 178 | * through very weird things can happen with no |
| 179 | * easy explanation as one segment stops on another. |
| 180 | */ |
| 181 | result = -EINVAL; |
| 182 | for (i = 0; i < nr_segments; i++) { |
| 183 | unsigned long mstart, mend; |
| 184 | unsigned long j; |
| 185 | |
| 186 | mstart = image->segment[i].mem; |
| 187 | mend = mstart + image->segment[i].memsz; |
| 188 | for (j = 0; j < i; j++) { |
| 189 | unsigned long pstart, pend; |
| 190 | |
| 191 | pstart = image->segment[j].mem; |
| 192 | pend = pstart + image->segment[j].memsz; |
| 193 | /* Do the segments overlap ? */ |
| 194 | if ((mend > pstart) && (mstart < pend)) |
| 195 | return result; |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | /* Ensure our buffer sizes are strictly less than |
| 200 | * our memory sizes. This should always be the case, |
| 201 | * and it is easier to check up front than to be surprised |
| 202 | * later on. |
| 203 | */ |
| 204 | result = -EINVAL; |
| 205 | for (i = 0; i < nr_segments; i++) { |
| 206 | if (image->segment[i].bufsz > image->segment[i].memsz) |
| 207 | return result; |
| 208 | } |
| 209 | |
| 210 | /* |
| 211 | * Verify we have good destination addresses. Normally |
| 212 | * the caller is responsible for making certain we don't |
| 213 | * attempt to load the new image into invalid or reserved |
| 214 | * areas of RAM. But crash kernels are preloaded into a |
| 215 | * reserved area of ram. We must ensure the addresses |
| 216 | * are in the reserved area otherwise preloading the |
| 217 | * kernel could corrupt things. |
| 218 | */ |
| 219 | |
| 220 | if (image->type == KEXEC_TYPE_CRASH) { |
| 221 | result = -EADDRNOTAVAIL; |
| 222 | for (i = 0; i < nr_segments; i++) { |
| 223 | unsigned long mstart, mend; |
| 224 | |
| 225 | mstart = image->segment[i].mem; |
| 226 | mend = mstart + image->segment[i].memsz - 1; |
| 227 | /* Ensure we are within the crash kernel limits */ |
| 228 | if ((mstart < crashk_res.start) || |
| 229 | (mend > crashk_res.end)) |
| 230 | return result; |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | return 0; |
| 235 | } |
| 236 | |
| 237 | struct kimage *do_kimage_alloc_init(void) |
| 238 | { |
| 239 | struct kimage *image; |
| 240 | |
| 241 | /* Allocate a controlling structure */ |
| 242 | image = kzalloc(sizeof(*image), GFP_KERNEL); |
| 243 | if (!image) |
| 244 | return NULL; |
| 245 | |
| 246 | image->head = 0; |
| 247 | image->entry = &image->head; |
| 248 | image->last_entry = &image->head; |
| 249 | image->control_page = ~0; /* By default this does not apply */ |
| 250 | image->type = KEXEC_TYPE_DEFAULT; |
| 251 | |
| 252 | /* Initialize the list of control pages */ |
| 253 | INIT_LIST_HEAD(&image->control_pages); |
| 254 | |
| 255 | /* Initialize the list of destination pages */ |
| 256 | INIT_LIST_HEAD(&image->dest_pages); |
| 257 | |
| 258 | /* Initialize the list of unusable pages */ |
| 259 | INIT_LIST_HEAD(&image->unusable_pages); |
| 260 | |
| 261 | return image; |
| 262 | } |
| 263 | |
| 264 | int kimage_is_destination_range(struct kimage *image, |
| 265 | unsigned long start, |
| 266 | unsigned long end) |
| 267 | { |
| 268 | unsigned long i; |
| 269 | |
| 270 | for (i = 0; i < image->nr_segments; i++) { |
| 271 | unsigned long mstart, mend; |
| 272 | |
| 273 | mstart = image->segment[i].mem; |
| 274 | mend = mstart + image->segment[i].memsz; |
| 275 | if ((end > mstart) && (start < mend)) |
| 276 | return 1; |
| 277 | } |
| 278 | |
| 279 | return 0; |
| 280 | } |
| 281 | |
| 282 | static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) |
| 283 | { |
| 284 | struct page *pages; |
| 285 | |
| 286 | pages = alloc_pages(gfp_mask, order); |
| 287 | if (pages) { |
| 288 | unsigned int count, i; |
| 289 | |
| 290 | pages->mapping = NULL; |
| 291 | set_page_private(pages, order); |
| 292 | count = 1 << order; |
| 293 | for (i = 0; i < count; i++) |
| 294 | SetPageReserved(pages + i); |
| 295 | } |
| 296 | |
| 297 | return pages; |
| 298 | } |
| 299 | |
| 300 | static void kimage_free_pages(struct page *page) |
| 301 | { |
| 302 | unsigned int order, count, i; |
| 303 | |
| 304 | order = page_private(page); |
| 305 | count = 1 << order; |
| 306 | for (i = 0; i < count; i++) |
| 307 | ClearPageReserved(page + i); |
| 308 | __free_pages(page, order); |
| 309 | } |
| 310 | |
| 311 | void kimage_free_page_list(struct list_head *list) |
| 312 | { |
| 313 | struct list_head *pos, *next; |
| 314 | |
| 315 | list_for_each_safe(pos, next, list) { |
| 316 | struct page *page; |
| 317 | |
| 318 | page = list_entry(pos, struct page, lru); |
| 319 | list_del(&page->lru); |
| 320 | kimage_free_pages(page); |
| 321 | } |
| 322 | } |
| 323 | |
| 324 | static struct page *kimage_alloc_normal_control_pages(struct kimage *image, |
| 325 | unsigned int order) |
| 326 | { |
| 327 | /* Control pages are special, they are the intermediaries |
| 328 | * that are needed while we copy the rest of the pages |
| 329 | * to their final resting place. As such they must |
| 330 | * not conflict with either the destination addresses |
| 331 | * or memory the kernel is already using. |
| 332 | * |
| 333 | * The only case where we really need more than one of |
| 334 | * these are for architectures where we cannot disable |
| 335 | * the MMU and must instead generate an identity mapped |
| 336 | * page table for all of the memory. |
| 337 | * |
| 338 | * At worst this runs in O(N) of the image size. |
| 339 | */ |
| 340 | struct list_head extra_pages; |
| 341 | struct page *pages; |
| 342 | unsigned int count; |
| 343 | |
| 344 | count = 1 << order; |
| 345 | INIT_LIST_HEAD(&extra_pages); |
| 346 | |
| 347 | /* Loop while I can allocate a page and the page allocated |
| 348 | * is a destination page. |
| 349 | */ |
| 350 | do { |
| 351 | unsigned long pfn, epfn, addr, eaddr; |
| 352 | |
| 353 | pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); |
| 354 | if (!pages) |
| 355 | break; |
| 356 | pfn = page_to_pfn(pages); |
| 357 | epfn = pfn + count; |
| 358 | addr = pfn << PAGE_SHIFT; |
| 359 | eaddr = epfn << PAGE_SHIFT; |
| 360 | if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || |
| 361 | kimage_is_destination_range(image, addr, eaddr)) { |
| 362 | list_add(&pages->lru, &extra_pages); |
| 363 | pages = NULL; |
| 364 | } |
| 365 | } while (!pages); |
| 366 | |
| 367 | if (pages) { |
| 368 | /* Remember the allocated page... */ |
| 369 | list_add(&pages->lru, &image->control_pages); |
| 370 | |
| 371 | /* Because the page is already in it's destination |
| 372 | * location we will never allocate another page at |
| 373 | * that address. Therefore kimage_alloc_pages |
| 374 | * will not return it (again) and we don't need |
| 375 | * to give it an entry in image->segment[]. |
| 376 | */ |
| 377 | } |
| 378 | /* Deal with the destination pages I have inadvertently allocated. |
| 379 | * |
| 380 | * Ideally I would convert multi-page allocations into single |
| 381 | * page allocations, and add everything to image->dest_pages. |
| 382 | * |
| 383 | * For now it is simpler to just free the pages. |
| 384 | */ |
| 385 | kimage_free_page_list(&extra_pages); |
| 386 | |
| 387 | return pages; |
| 388 | } |
| 389 | |
| 390 | static struct page *kimage_alloc_crash_control_pages(struct kimage *image, |
| 391 | unsigned int order) |
| 392 | { |
| 393 | /* Control pages are special, they are the intermediaries |
| 394 | * that are needed while we copy the rest of the pages |
| 395 | * to their final resting place. As such they must |
| 396 | * not conflict with either the destination addresses |
| 397 | * or memory the kernel is already using. |
| 398 | * |
| 399 | * Control pages are also the only pags we must allocate |
| 400 | * when loading a crash kernel. All of the other pages |
| 401 | * are specified by the segments and we just memcpy |
| 402 | * into them directly. |
| 403 | * |
| 404 | * The only case where we really need more than one of |
| 405 | * these are for architectures where we cannot disable |
| 406 | * the MMU and must instead generate an identity mapped |
| 407 | * page table for all of the memory. |
| 408 | * |
| 409 | * Given the low demand this implements a very simple |
| 410 | * allocator that finds the first hole of the appropriate |
| 411 | * size in the reserved memory region, and allocates all |
| 412 | * of the memory up to and including the hole. |
| 413 | */ |
| 414 | unsigned long hole_start, hole_end, size; |
| 415 | struct page *pages; |
| 416 | |
| 417 | pages = NULL; |
| 418 | size = (1 << order) << PAGE_SHIFT; |
| 419 | hole_start = (image->control_page + (size - 1)) & ~(size - 1); |
| 420 | hole_end = hole_start + size - 1; |
| 421 | while (hole_end <= crashk_res.end) { |
| 422 | unsigned long i; |
| 423 | |
| 424 | if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) |
| 425 | break; |
| 426 | /* See if I overlap any of the segments */ |
| 427 | for (i = 0; i < image->nr_segments; i++) { |
| 428 | unsigned long mstart, mend; |
| 429 | |
| 430 | mstart = image->segment[i].mem; |
| 431 | mend = mstart + image->segment[i].memsz - 1; |
| 432 | if ((hole_end >= mstart) && (hole_start <= mend)) { |
| 433 | /* Advance the hole to the end of the segment */ |
| 434 | hole_start = (mend + (size - 1)) & ~(size - 1); |
| 435 | hole_end = hole_start + size - 1; |
| 436 | break; |
| 437 | } |
| 438 | } |
| 439 | /* If I don't overlap any segments I have found my hole! */ |
| 440 | if (i == image->nr_segments) { |
| 441 | pages = pfn_to_page(hole_start >> PAGE_SHIFT); |
Minfei Huang | 04e9949 | 2015-09-09 15:38:58 -0700 | [diff] [blame] | 442 | image->control_page = hole_end; |
Dave Young | 2965faa | 2015-09-09 15:38:55 -0700 | [diff] [blame] | 443 | break; |
| 444 | } |
| 445 | } |
Dave Young | 2965faa | 2015-09-09 15:38:55 -0700 | [diff] [blame] | 446 | |
| 447 | return pages; |
| 448 | } |
| 449 | |
| 450 | |
| 451 | struct page *kimage_alloc_control_pages(struct kimage *image, |
| 452 | unsigned int order) |
| 453 | { |
| 454 | struct page *pages = NULL; |
| 455 | |
| 456 | switch (image->type) { |
| 457 | case KEXEC_TYPE_DEFAULT: |
| 458 | pages = kimage_alloc_normal_control_pages(image, order); |
| 459 | break; |
| 460 | case KEXEC_TYPE_CRASH: |
| 461 | pages = kimage_alloc_crash_control_pages(image, order); |
| 462 | break; |
| 463 | } |
| 464 | |
| 465 | return pages; |
| 466 | } |
| 467 | |
| 468 | static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) |
| 469 | { |
| 470 | if (*image->entry != 0) |
| 471 | image->entry++; |
| 472 | |
| 473 | if (image->entry == image->last_entry) { |
| 474 | kimage_entry_t *ind_page; |
| 475 | struct page *page; |
| 476 | |
| 477 | page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); |
| 478 | if (!page) |
| 479 | return -ENOMEM; |
| 480 | |
| 481 | ind_page = page_address(page); |
| 482 | *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; |
| 483 | image->entry = ind_page; |
| 484 | image->last_entry = ind_page + |
| 485 | ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); |
| 486 | } |
| 487 | *image->entry = entry; |
| 488 | image->entry++; |
| 489 | *image->entry = 0; |
| 490 | |
| 491 | return 0; |
| 492 | } |
| 493 | |
| 494 | static int kimage_set_destination(struct kimage *image, |
| 495 | unsigned long destination) |
| 496 | { |
| 497 | int result; |
| 498 | |
| 499 | destination &= PAGE_MASK; |
| 500 | result = kimage_add_entry(image, destination | IND_DESTINATION); |
| 501 | |
| 502 | return result; |
| 503 | } |
| 504 | |
| 505 | |
| 506 | static int kimage_add_page(struct kimage *image, unsigned long page) |
| 507 | { |
| 508 | int result; |
| 509 | |
| 510 | page &= PAGE_MASK; |
| 511 | result = kimage_add_entry(image, page | IND_SOURCE); |
| 512 | |
| 513 | return result; |
| 514 | } |
| 515 | |
| 516 | |
| 517 | static void kimage_free_extra_pages(struct kimage *image) |
| 518 | { |
| 519 | /* Walk through and free any extra destination pages I may have */ |
| 520 | kimage_free_page_list(&image->dest_pages); |
| 521 | |
| 522 | /* Walk through and free any unusable pages I have cached */ |
| 523 | kimage_free_page_list(&image->unusable_pages); |
| 524 | |
| 525 | } |
| 526 | void kimage_terminate(struct kimage *image) |
| 527 | { |
| 528 | if (*image->entry != 0) |
| 529 | image->entry++; |
| 530 | |
| 531 | *image->entry = IND_DONE; |
| 532 | } |
| 533 | |
| 534 | #define for_each_kimage_entry(image, ptr, entry) \ |
| 535 | for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ |
| 536 | ptr = (entry & IND_INDIRECTION) ? \ |
| 537 | phys_to_virt((entry & PAGE_MASK)) : ptr + 1) |
| 538 | |
| 539 | static void kimage_free_entry(kimage_entry_t entry) |
| 540 | { |
| 541 | struct page *page; |
| 542 | |
| 543 | page = pfn_to_page(entry >> PAGE_SHIFT); |
| 544 | kimage_free_pages(page); |
| 545 | } |
| 546 | |
| 547 | void kimage_free(struct kimage *image) |
| 548 | { |
| 549 | kimage_entry_t *ptr, entry; |
| 550 | kimage_entry_t ind = 0; |
| 551 | |
| 552 | if (!image) |
| 553 | return; |
| 554 | |
| 555 | kimage_free_extra_pages(image); |
| 556 | for_each_kimage_entry(image, ptr, entry) { |
| 557 | if (entry & IND_INDIRECTION) { |
| 558 | /* Free the previous indirection page */ |
| 559 | if (ind & IND_INDIRECTION) |
| 560 | kimage_free_entry(ind); |
| 561 | /* Save this indirection page until we are |
| 562 | * done with it. |
| 563 | */ |
| 564 | ind = entry; |
| 565 | } else if (entry & IND_SOURCE) |
| 566 | kimage_free_entry(entry); |
| 567 | } |
| 568 | /* Free the final indirection page */ |
| 569 | if (ind & IND_INDIRECTION) |
| 570 | kimage_free_entry(ind); |
| 571 | |
| 572 | /* Handle any machine specific cleanup */ |
| 573 | machine_kexec_cleanup(image); |
| 574 | |
| 575 | /* Free the kexec control pages... */ |
| 576 | kimage_free_page_list(&image->control_pages); |
| 577 | |
| 578 | /* |
| 579 | * Free up any temporary buffers allocated. This might hit if |
| 580 | * error occurred much later after buffer allocation. |
| 581 | */ |
| 582 | if (image->file_mode) |
| 583 | kimage_file_post_load_cleanup(image); |
| 584 | |
| 585 | kfree(image); |
| 586 | } |
| 587 | |
| 588 | static kimage_entry_t *kimage_dst_used(struct kimage *image, |
| 589 | unsigned long page) |
| 590 | { |
| 591 | kimage_entry_t *ptr, entry; |
| 592 | unsigned long destination = 0; |
| 593 | |
| 594 | for_each_kimage_entry(image, ptr, entry) { |
| 595 | if (entry & IND_DESTINATION) |
| 596 | destination = entry & PAGE_MASK; |
| 597 | else if (entry & IND_SOURCE) { |
| 598 | if (page == destination) |
| 599 | return ptr; |
| 600 | destination += PAGE_SIZE; |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | return NULL; |
| 605 | } |
| 606 | |
| 607 | static struct page *kimage_alloc_page(struct kimage *image, |
| 608 | gfp_t gfp_mask, |
| 609 | unsigned long destination) |
| 610 | { |
| 611 | /* |
| 612 | * Here we implement safeguards to ensure that a source page |
| 613 | * is not copied to its destination page before the data on |
| 614 | * the destination page is no longer useful. |
| 615 | * |
| 616 | * To do this we maintain the invariant that a source page is |
| 617 | * either its own destination page, or it is not a |
| 618 | * destination page at all. |
| 619 | * |
| 620 | * That is slightly stronger than required, but the proof |
| 621 | * that no problems will not occur is trivial, and the |
| 622 | * implementation is simply to verify. |
| 623 | * |
| 624 | * When allocating all pages normally this algorithm will run |
| 625 | * in O(N) time, but in the worst case it will run in O(N^2) |
| 626 | * time. If the runtime is a problem the data structures can |
| 627 | * be fixed. |
| 628 | */ |
| 629 | struct page *page; |
| 630 | unsigned long addr; |
| 631 | |
| 632 | /* |
| 633 | * Walk through the list of destination pages, and see if I |
| 634 | * have a match. |
| 635 | */ |
| 636 | list_for_each_entry(page, &image->dest_pages, lru) { |
| 637 | addr = page_to_pfn(page) << PAGE_SHIFT; |
| 638 | if (addr == destination) { |
| 639 | list_del(&page->lru); |
| 640 | return page; |
| 641 | } |
| 642 | } |
| 643 | page = NULL; |
| 644 | while (1) { |
| 645 | kimage_entry_t *old; |
| 646 | |
| 647 | /* Allocate a page, if we run out of memory give up */ |
| 648 | page = kimage_alloc_pages(gfp_mask, 0); |
| 649 | if (!page) |
| 650 | return NULL; |
| 651 | /* If the page cannot be used file it away */ |
| 652 | if (page_to_pfn(page) > |
| 653 | (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { |
| 654 | list_add(&page->lru, &image->unusable_pages); |
| 655 | continue; |
| 656 | } |
| 657 | addr = page_to_pfn(page) << PAGE_SHIFT; |
| 658 | |
| 659 | /* If it is the destination page we want use it */ |
| 660 | if (addr == destination) |
| 661 | break; |
| 662 | |
| 663 | /* If the page is not a destination page use it */ |
| 664 | if (!kimage_is_destination_range(image, addr, |
| 665 | addr + PAGE_SIZE)) |
| 666 | break; |
| 667 | |
| 668 | /* |
| 669 | * I know that the page is someones destination page. |
| 670 | * See if there is already a source page for this |
| 671 | * destination page. And if so swap the source pages. |
| 672 | */ |
| 673 | old = kimage_dst_used(image, addr); |
| 674 | if (old) { |
| 675 | /* If so move it */ |
| 676 | unsigned long old_addr; |
| 677 | struct page *old_page; |
| 678 | |
| 679 | old_addr = *old & PAGE_MASK; |
| 680 | old_page = pfn_to_page(old_addr >> PAGE_SHIFT); |
| 681 | copy_highpage(page, old_page); |
| 682 | *old = addr | (*old & ~PAGE_MASK); |
| 683 | |
| 684 | /* The old page I have found cannot be a |
| 685 | * destination page, so return it if it's |
| 686 | * gfp_flags honor the ones passed in. |
| 687 | */ |
| 688 | if (!(gfp_mask & __GFP_HIGHMEM) && |
| 689 | PageHighMem(old_page)) { |
| 690 | kimage_free_pages(old_page); |
| 691 | continue; |
| 692 | } |
| 693 | addr = old_addr; |
| 694 | page = old_page; |
| 695 | break; |
| 696 | } |
| 697 | /* Place the page on the destination list, to be used later */ |
| 698 | list_add(&page->lru, &image->dest_pages); |
| 699 | } |
| 700 | |
| 701 | return page; |
| 702 | } |
| 703 | |
| 704 | static int kimage_load_normal_segment(struct kimage *image, |
| 705 | struct kexec_segment *segment) |
| 706 | { |
| 707 | unsigned long maddr; |
| 708 | size_t ubytes, mbytes; |
| 709 | int result; |
| 710 | unsigned char __user *buf = NULL; |
| 711 | unsigned char *kbuf = NULL; |
| 712 | |
| 713 | result = 0; |
| 714 | if (image->file_mode) |
| 715 | kbuf = segment->kbuf; |
| 716 | else |
| 717 | buf = segment->buf; |
| 718 | ubytes = segment->bufsz; |
| 719 | mbytes = segment->memsz; |
| 720 | maddr = segment->mem; |
| 721 | |
| 722 | result = kimage_set_destination(image, maddr); |
| 723 | if (result < 0) |
| 724 | goto out; |
| 725 | |
| 726 | while (mbytes) { |
| 727 | struct page *page; |
| 728 | char *ptr; |
| 729 | size_t uchunk, mchunk; |
| 730 | |
| 731 | page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); |
| 732 | if (!page) { |
| 733 | result = -ENOMEM; |
| 734 | goto out; |
| 735 | } |
| 736 | result = kimage_add_page(image, page_to_pfn(page) |
| 737 | << PAGE_SHIFT); |
| 738 | if (result < 0) |
| 739 | goto out; |
| 740 | |
| 741 | ptr = kmap(page); |
| 742 | /* Start with a clear page */ |
| 743 | clear_page(ptr); |
| 744 | ptr += maddr & ~PAGE_MASK; |
| 745 | mchunk = min_t(size_t, mbytes, |
| 746 | PAGE_SIZE - (maddr & ~PAGE_MASK)); |
| 747 | uchunk = min(ubytes, mchunk); |
| 748 | |
| 749 | /* For file based kexec, source pages are in kernel memory */ |
| 750 | if (image->file_mode) |
| 751 | memcpy(ptr, kbuf, uchunk); |
| 752 | else |
| 753 | result = copy_from_user(ptr, buf, uchunk); |
| 754 | kunmap(page); |
| 755 | if (result) { |
| 756 | result = -EFAULT; |
| 757 | goto out; |
| 758 | } |
| 759 | ubytes -= uchunk; |
| 760 | maddr += mchunk; |
| 761 | if (image->file_mode) |
| 762 | kbuf += mchunk; |
| 763 | else |
| 764 | buf += mchunk; |
| 765 | mbytes -= mchunk; |
| 766 | } |
| 767 | out: |
| 768 | return result; |
| 769 | } |
| 770 | |
| 771 | static int kimage_load_crash_segment(struct kimage *image, |
| 772 | struct kexec_segment *segment) |
| 773 | { |
| 774 | /* For crash dumps kernels we simply copy the data from |
| 775 | * user space to it's destination. |
| 776 | * We do things a page at a time for the sake of kmap. |
| 777 | */ |
| 778 | unsigned long maddr; |
| 779 | size_t ubytes, mbytes; |
| 780 | int result; |
| 781 | unsigned char __user *buf = NULL; |
| 782 | unsigned char *kbuf = NULL; |
| 783 | |
| 784 | result = 0; |
| 785 | if (image->file_mode) |
| 786 | kbuf = segment->kbuf; |
| 787 | else |
| 788 | buf = segment->buf; |
| 789 | ubytes = segment->bufsz; |
| 790 | mbytes = segment->memsz; |
| 791 | maddr = segment->mem; |
| 792 | while (mbytes) { |
| 793 | struct page *page; |
| 794 | char *ptr; |
| 795 | size_t uchunk, mchunk; |
| 796 | |
| 797 | page = pfn_to_page(maddr >> PAGE_SHIFT); |
| 798 | if (!page) { |
| 799 | result = -ENOMEM; |
| 800 | goto out; |
| 801 | } |
| 802 | ptr = kmap(page); |
| 803 | ptr += maddr & ~PAGE_MASK; |
| 804 | mchunk = min_t(size_t, mbytes, |
| 805 | PAGE_SIZE - (maddr & ~PAGE_MASK)); |
| 806 | uchunk = min(ubytes, mchunk); |
| 807 | if (mchunk > uchunk) { |
| 808 | /* Zero the trailing part of the page */ |
| 809 | memset(ptr + uchunk, 0, mchunk - uchunk); |
| 810 | } |
| 811 | |
| 812 | /* For file based kexec, source pages are in kernel memory */ |
| 813 | if (image->file_mode) |
| 814 | memcpy(ptr, kbuf, uchunk); |
| 815 | else |
| 816 | result = copy_from_user(ptr, buf, uchunk); |
| 817 | kexec_flush_icache_page(page); |
| 818 | kunmap(page); |
| 819 | if (result) { |
| 820 | result = -EFAULT; |
| 821 | goto out; |
| 822 | } |
| 823 | ubytes -= uchunk; |
| 824 | maddr += mchunk; |
| 825 | if (image->file_mode) |
| 826 | kbuf += mchunk; |
| 827 | else |
| 828 | buf += mchunk; |
| 829 | mbytes -= mchunk; |
| 830 | } |
| 831 | out: |
| 832 | return result; |
| 833 | } |
| 834 | |
| 835 | int kimage_load_segment(struct kimage *image, |
| 836 | struct kexec_segment *segment) |
| 837 | { |
| 838 | int result = -ENOMEM; |
| 839 | |
| 840 | switch (image->type) { |
| 841 | case KEXEC_TYPE_DEFAULT: |
| 842 | result = kimage_load_normal_segment(image, segment); |
| 843 | break; |
| 844 | case KEXEC_TYPE_CRASH: |
| 845 | result = kimage_load_crash_segment(image, segment); |
| 846 | break; |
| 847 | } |
| 848 | |
| 849 | return result; |
| 850 | } |
| 851 | |
| 852 | struct kimage *kexec_image; |
| 853 | struct kimage *kexec_crash_image; |
| 854 | int kexec_load_disabled; |
| 855 | |
| 856 | void crash_kexec(struct pt_regs *regs) |
| 857 | { |
| 858 | /* Take the kexec_mutex here to prevent sys_kexec_load |
| 859 | * running on one cpu from replacing the crash kernel |
| 860 | * we are using after a panic on a different cpu. |
| 861 | * |
| 862 | * If the crash kernel was not located in a fixed area |
| 863 | * of memory the xchg(&kexec_crash_image) would be |
| 864 | * sufficient. But since I reuse the memory... |
| 865 | */ |
| 866 | if (mutex_trylock(&kexec_mutex)) { |
| 867 | if (kexec_crash_image) { |
| 868 | struct pt_regs fixed_regs; |
| 869 | |
| 870 | crash_setup_regs(&fixed_regs, regs); |
| 871 | crash_save_vmcoreinfo(); |
| 872 | machine_crash_shutdown(&fixed_regs); |
| 873 | machine_kexec(kexec_crash_image); |
| 874 | } |
| 875 | mutex_unlock(&kexec_mutex); |
| 876 | } |
| 877 | } |
| 878 | |
| 879 | size_t crash_get_memory_size(void) |
| 880 | { |
| 881 | size_t size = 0; |
| 882 | |
| 883 | mutex_lock(&kexec_mutex); |
| 884 | if (crashk_res.end != crashk_res.start) |
| 885 | size = resource_size(&crashk_res); |
| 886 | mutex_unlock(&kexec_mutex); |
| 887 | return size; |
| 888 | } |
| 889 | |
| 890 | void __weak crash_free_reserved_phys_range(unsigned long begin, |
| 891 | unsigned long end) |
| 892 | { |
| 893 | unsigned long addr; |
| 894 | |
| 895 | for (addr = begin; addr < end; addr += PAGE_SIZE) |
| 896 | free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT)); |
| 897 | } |
| 898 | |
| 899 | int crash_shrink_memory(unsigned long new_size) |
| 900 | { |
| 901 | int ret = 0; |
| 902 | unsigned long start, end; |
| 903 | unsigned long old_size; |
| 904 | struct resource *ram_res; |
| 905 | |
| 906 | mutex_lock(&kexec_mutex); |
| 907 | |
| 908 | if (kexec_crash_image) { |
| 909 | ret = -ENOENT; |
| 910 | goto unlock; |
| 911 | } |
| 912 | start = crashk_res.start; |
| 913 | end = crashk_res.end; |
| 914 | old_size = (end == 0) ? 0 : end - start + 1; |
| 915 | if (new_size >= old_size) { |
| 916 | ret = (new_size == old_size) ? 0 : -EINVAL; |
| 917 | goto unlock; |
| 918 | } |
| 919 | |
| 920 | ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); |
| 921 | if (!ram_res) { |
| 922 | ret = -ENOMEM; |
| 923 | goto unlock; |
| 924 | } |
| 925 | |
| 926 | start = roundup(start, KEXEC_CRASH_MEM_ALIGN); |
| 927 | end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); |
| 928 | |
| 929 | crash_map_reserved_pages(); |
| 930 | crash_free_reserved_phys_range(end, crashk_res.end); |
| 931 | |
| 932 | if ((start == end) && (crashk_res.parent != NULL)) |
| 933 | release_resource(&crashk_res); |
| 934 | |
| 935 | ram_res->start = end; |
| 936 | ram_res->end = crashk_res.end; |
| 937 | ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM; |
| 938 | ram_res->name = "System RAM"; |
| 939 | |
| 940 | crashk_res.end = end - 1; |
| 941 | |
| 942 | insert_resource(&iomem_resource, ram_res); |
| 943 | crash_unmap_reserved_pages(); |
| 944 | |
| 945 | unlock: |
| 946 | mutex_unlock(&kexec_mutex); |
| 947 | return ret; |
| 948 | } |
| 949 | |
| 950 | static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, |
| 951 | size_t data_len) |
| 952 | { |
| 953 | struct elf_note note; |
| 954 | |
| 955 | note.n_namesz = strlen(name) + 1; |
| 956 | note.n_descsz = data_len; |
| 957 | note.n_type = type; |
| 958 | memcpy(buf, ¬e, sizeof(note)); |
| 959 | buf += (sizeof(note) + 3)/4; |
| 960 | memcpy(buf, name, note.n_namesz); |
| 961 | buf += (note.n_namesz + 3)/4; |
| 962 | memcpy(buf, data, note.n_descsz); |
| 963 | buf += (note.n_descsz + 3)/4; |
| 964 | |
| 965 | return buf; |
| 966 | } |
| 967 | |
| 968 | static void final_note(u32 *buf) |
| 969 | { |
| 970 | struct elf_note note; |
| 971 | |
| 972 | note.n_namesz = 0; |
| 973 | note.n_descsz = 0; |
| 974 | note.n_type = 0; |
| 975 | memcpy(buf, ¬e, sizeof(note)); |
| 976 | } |
| 977 | |
| 978 | void crash_save_cpu(struct pt_regs *regs, int cpu) |
| 979 | { |
| 980 | struct elf_prstatus prstatus; |
| 981 | u32 *buf; |
| 982 | |
| 983 | if ((cpu < 0) || (cpu >= nr_cpu_ids)) |
| 984 | return; |
| 985 | |
| 986 | /* Using ELF notes here is opportunistic. |
| 987 | * I need a well defined structure format |
| 988 | * for the data I pass, and I need tags |
| 989 | * on the data to indicate what information I have |
| 990 | * squirrelled away. ELF notes happen to provide |
| 991 | * all of that, so there is no need to invent something new. |
| 992 | */ |
| 993 | buf = (u32 *)per_cpu_ptr(crash_notes, cpu); |
| 994 | if (!buf) |
| 995 | return; |
| 996 | memset(&prstatus, 0, sizeof(prstatus)); |
| 997 | prstatus.pr_pid = current->pid; |
| 998 | elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); |
| 999 | buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, |
| 1000 | &prstatus, sizeof(prstatus)); |
| 1001 | final_note(buf); |
| 1002 | } |
| 1003 | |
| 1004 | static int __init crash_notes_memory_init(void) |
| 1005 | { |
| 1006 | /* Allocate memory for saving cpu registers. */ |
Baoquan He | bbb78b8 | 2015-09-09 15:39:00 -0700 | [diff] [blame] | 1007 | size_t size, align; |
| 1008 | |
| 1009 | /* |
| 1010 | * crash_notes could be allocated across 2 vmalloc pages when percpu |
| 1011 | * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc |
| 1012 | * pages are also on 2 continuous physical pages. In this case the |
| 1013 | * 2nd part of crash_notes in 2nd page could be lost since only the |
| 1014 | * starting address and size of crash_notes are exported through sysfs. |
| 1015 | * Here round up the size of crash_notes to the nearest power of two |
| 1016 | * and pass it to __alloc_percpu as align value. This can make sure |
| 1017 | * crash_notes is allocated inside one physical page. |
| 1018 | */ |
| 1019 | size = sizeof(note_buf_t); |
| 1020 | align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); |
| 1021 | |
| 1022 | /* |
| 1023 | * Break compile if size is bigger than PAGE_SIZE since crash_notes |
| 1024 | * definitely will be in 2 pages with that. |
| 1025 | */ |
| 1026 | BUILD_BUG_ON(size > PAGE_SIZE); |
| 1027 | |
| 1028 | crash_notes = __alloc_percpu(size, align); |
Dave Young | 2965faa | 2015-09-09 15:38:55 -0700 | [diff] [blame] | 1029 | if (!crash_notes) { |
| 1030 | pr_warn("Kexec: Memory allocation for saving cpu register states failed\n"); |
| 1031 | return -ENOMEM; |
| 1032 | } |
| 1033 | return 0; |
| 1034 | } |
| 1035 | subsys_initcall(crash_notes_memory_init); |
| 1036 | |
| 1037 | |
| 1038 | /* |
| 1039 | * parsing the "crashkernel" commandline |
| 1040 | * |
| 1041 | * this code is intended to be called from architecture specific code |
| 1042 | */ |
| 1043 | |
| 1044 | |
| 1045 | /* |
| 1046 | * This function parses command lines in the format |
| 1047 | * |
| 1048 | * crashkernel=ramsize-range:size[,...][@offset] |
| 1049 | * |
| 1050 | * The function returns 0 on success and -EINVAL on failure. |
| 1051 | */ |
| 1052 | static int __init parse_crashkernel_mem(char *cmdline, |
| 1053 | unsigned long long system_ram, |
| 1054 | unsigned long long *crash_size, |
| 1055 | unsigned long long *crash_base) |
| 1056 | { |
| 1057 | char *cur = cmdline, *tmp; |
| 1058 | |
| 1059 | /* for each entry of the comma-separated list */ |
| 1060 | do { |
| 1061 | unsigned long long start, end = ULLONG_MAX, size; |
| 1062 | |
| 1063 | /* get the start of the range */ |
| 1064 | start = memparse(cur, &tmp); |
| 1065 | if (cur == tmp) { |
| 1066 | pr_warn("crashkernel: Memory value expected\n"); |
| 1067 | return -EINVAL; |
| 1068 | } |
| 1069 | cur = tmp; |
| 1070 | if (*cur != '-') { |
| 1071 | pr_warn("crashkernel: '-' expected\n"); |
| 1072 | return -EINVAL; |
| 1073 | } |
| 1074 | cur++; |
| 1075 | |
| 1076 | /* if no ':' is here, than we read the end */ |
| 1077 | if (*cur != ':') { |
| 1078 | end = memparse(cur, &tmp); |
| 1079 | if (cur == tmp) { |
| 1080 | pr_warn("crashkernel: Memory value expected\n"); |
| 1081 | return -EINVAL; |
| 1082 | } |
| 1083 | cur = tmp; |
| 1084 | if (end <= start) { |
| 1085 | pr_warn("crashkernel: end <= start\n"); |
| 1086 | return -EINVAL; |
| 1087 | } |
| 1088 | } |
| 1089 | |
| 1090 | if (*cur != ':') { |
| 1091 | pr_warn("crashkernel: ':' expected\n"); |
| 1092 | return -EINVAL; |
| 1093 | } |
| 1094 | cur++; |
| 1095 | |
| 1096 | size = memparse(cur, &tmp); |
| 1097 | if (cur == tmp) { |
| 1098 | pr_warn("Memory value expected\n"); |
| 1099 | return -EINVAL; |
| 1100 | } |
| 1101 | cur = tmp; |
| 1102 | if (size >= system_ram) { |
| 1103 | pr_warn("crashkernel: invalid size\n"); |
| 1104 | return -EINVAL; |
| 1105 | } |
| 1106 | |
| 1107 | /* match ? */ |
| 1108 | if (system_ram >= start && system_ram < end) { |
| 1109 | *crash_size = size; |
| 1110 | break; |
| 1111 | } |
| 1112 | } while (*cur++ == ','); |
| 1113 | |
| 1114 | if (*crash_size > 0) { |
| 1115 | while (*cur && *cur != ' ' && *cur != '@') |
| 1116 | cur++; |
| 1117 | if (*cur == '@') { |
| 1118 | cur++; |
| 1119 | *crash_base = memparse(cur, &tmp); |
| 1120 | if (cur == tmp) { |
| 1121 | pr_warn("Memory value expected after '@'\n"); |
| 1122 | return -EINVAL; |
| 1123 | } |
| 1124 | } |
| 1125 | } |
| 1126 | |
| 1127 | return 0; |
| 1128 | } |
| 1129 | |
| 1130 | /* |
| 1131 | * That function parses "simple" (old) crashkernel command lines like |
| 1132 | * |
| 1133 | * crashkernel=size[@offset] |
| 1134 | * |
| 1135 | * It returns 0 on success and -EINVAL on failure. |
| 1136 | */ |
| 1137 | static int __init parse_crashkernel_simple(char *cmdline, |
| 1138 | unsigned long long *crash_size, |
| 1139 | unsigned long long *crash_base) |
| 1140 | { |
| 1141 | char *cur = cmdline; |
| 1142 | |
| 1143 | *crash_size = memparse(cmdline, &cur); |
| 1144 | if (cmdline == cur) { |
| 1145 | pr_warn("crashkernel: memory value expected\n"); |
| 1146 | return -EINVAL; |
| 1147 | } |
| 1148 | |
| 1149 | if (*cur == '@') |
| 1150 | *crash_base = memparse(cur+1, &cur); |
| 1151 | else if (*cur != ' ' && *cur != '\0') { |
| 1152 | pr_warn("crashkernel: unrecognized char\n"); |
| 1153 | return -EINVAL; |
| 1154 | } |
| 1155 | |
| 1156 | return 0; |
| 1157 | } |
| 1158 | |
| 1159 | #define SUFFIX_HIGH 0 |
| 1160 | #define SUFFIX_LOW 1 |
| 1161 | #define SUFFIX_NULL 2 |
| 1162 | static __initdata char *suffix_tbl[] = { |
| 1163 | [SUFFIX_HIGH] = ",high", |
| 1164 | [SUFFIX_LOW] = ",low", |
| 1165 | [SUFFIX_NULL] = NULL, |
| 1166 | }; |
| 1167 | |
| 1168 | /* |
| 1169 | * That function parses "suffix" crashkernel command lines like |
| 1170 | * |
| 1171 | * crashkernel=size,[high|low] |
| 1172 | * |
| 1173 | * It returns 0 on success and -EINVAL on failure. |
| 1174 | */ |
| 1175 | static int __init parse_crashkernel_suffix(char *cmdline, |
| 1176 | unsigned long long *crash_size, |
| 1177 | const char *suffix) |
| 1178 | { |
| 1179 | char *cur = cmdline; |
| 1180 | |
| 1181 | *crash_size = memparse(cmdline, &cur); |
| 1182 | if (cmdline == cur) { |
| 1183 | pr_warn("crashkernel: memory value expected\n"); |
| 1184 | return -EINVAL; |
| 1185 | } |
| 1186 | |
| 1187 | /* check with suffix */ |
| 1188 | if (strncmp(cur, suffix, strlen(suffix))) { |
| 1189 | pr_warn("crashkernel: unrecognized char\n"); |
| 1190 | return -EINVAL; |
| 1191 | } |
| 1192 | cur += strlen(suffix); |
| 1193 | if (*cur != ' ' && *cur != '\0') { |
| 1194 | pr_warn("crashkernel: unrecognized char\n"); |
| 1195 | return -EINVAL; |
| 1196 | } |
| 1197 | |
| 1198 | return 0; |
| 1199 | } |
| 1200 | |
| 1201 | static __init char *get_last_crashkernel(char *cmdline, |
| 1202 | const char *name, |
| 1203 | const char *suffix) |
| 1204 | { |
| 1205 | char *p = cmdline, *ck_cmdline = NULL; |
| 1206 | |
| 1207 | /* find crashkernel and use the last one if there are more */ |
| 1208 | p = strstr(p, name); |
| 1209 | while (p) { |
| 1210 | char *end_p = strchr(p, ' '); |
| 1211 | char *q; |
| 1212 | |
| 1213 | if (!end_p) |
| 1214 | end_p = p + strlen(p); |
| 1215 | |
| 1216 | if (!suffix) { |
| 1217 | int i; |
| 1218 | |
| 1219 | /* skip the one with any known suffix */ |
| 1220 | for (i = 0; suffix_tbl[i]; i++) { |
| 1221 | q = end_p - strlen(suffix_tbl[i]); |
| 1222 | if (!strncmp(q, suffix_tbl[i], |
| 1223 | strlen(suffix_tbl[i]))) |
| 1224 | goto next; |
| 1225 | } |
| 1226 | ck_cmdline = p; |
| 1227 | } else { |
| 1228 | q = end_p - strlen(suffix); |
| 1229 | if (!strncmp(q, suffix, strlen(suffix))) |
| 1230 | ck_cmdline = p; |
| 1231 | } |
| 1232 | next: |
| 1233 | p = strstr(p+1, name); |
| 1234 | } |
| 1235 | |
| 1236 | if (!ck_cmdline) |
| 1237 | return NULL; |
| 1238 | |
| 1239 | return ck_cmdline; |
| 1240 | } |
| 1241 | |
| 1242 | static int __init __parse_crashkernel(char *cmdline, |
| 1243 | unsigned long long system_ram, |
| 1244 | unsigned long long *crash_size, |
| 1245 | unsigned long long *crash_base, |
| 1246 | const char *name, |
| 1247 | const char *suffix) |
| 1248 | { |
| 1249 | char *first_colon, *first_space; |
| 1250 | char *ck_cmdline; |
| 1251 | |
| 1252 | BUG_ON(!crash_size || !crash_base); |
| 1253 | *crash_size = 0; |
| 1254 | *crash_base = 0; |
| 1255 | |
| 1256 | ck_cmdline = get_last_crashkernel(cmdline, name, suffix); |
| 1257 | |
| 1258 | if (!ck_cmdline) |
| 1259 | return -EINVAL; |
| 1260 | |
| 1261 | ck_cmdline += strlen(name); |
| 1262 | |
| 1263 | if (suffix) |
| 1264 | return parse_crashkernel_suffix(ck_cmdline, crash_size, |
| 1265 | suffix); |
| 1266 | /* |
| 1267 | * if the commandline contains a ':', then that's the extended |
| 1268 | * syntax -- if not, it must be the classic syntax |
| 1269 | */ |
| 1270 | first_colon = strchr(ck_cmdline, ':'); |
| 1271 | first_space = strchr(ck_cmdline, ' '); |
| 1272 | if (first_colon && (!first_space || first_colon < first_space)) |
| 1273 | return parse_crashkernel_mem(ck_cmdline, system_ram, |
| 1274 | crash_size, crash_base); |
| 1275 | |
| 1276 | return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base); |
| 1277 | } |
| 1278 | |
| 1279 | /* |
| 1280 | * That function is the entry point for command line parsing and should be |
| 1281 | * called from the arch-specific code. |
| 1282 | */ |
| 1283 | int __init parse_crashkernel(char *cmdline, |
| 1284 | unsigned long long system_ram, |
| 1285 | unsigned long long *crash_size, |
| 1286 | unsigned long long *crash_base) |
| 1287 | { |
| 1288 | return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, |
| 1289 | "crashkernel=", NULL); |
| 1290 | } |
| 1291 | |
| 1292 | int __init parse_crashkernel_high(char *cmdline, |
| 1293 | unsigned long long system_ram, |
| 1294 | unsigned long long *crash_size, |
| 1295 | unsigned long long *crash_base) |
| 1296 | { |
| 1297 | return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, |
| 1298 | "crashkernel=", suffix_tbl[SUFFIX_HIGH]); |
| 1299 | } |
| 1300 | |
| 1301 | int __init parse_crashkernel_low(char *cmdline, |
| 1302 | unsigned long long system_ram, |
| 1303 | unsigned long long *crash_size, |
| 1304 | unsigned long long *crash_base) |
| 1305 | { |
| 1306 | return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, |
| 1307 | "crashkernel=", suffix_tbl[SUFFIX_LOW]); |
| 1308 | } |
| 1309 | |
| 1310 | static void update_vmcoreinfo_note(void) |
| 1311 | { |
| 1312 | u32 *buf = vmcoreinfo_note; |
| 1313 | |
| 1314 | if (!vmcoreinfo_size) |
| 1315 | return; |
| 1316 | buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, |
| 1317 | vmcoreinfo_size); |
| 1318 | final_note(buf); |
| 1319 | } |
| 1320 | |
| 1321 | void crash_save_vmcoreinfo(void) |
| 1322 | { |
| 1323 | vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds()); |
| 1324 | update_vmcoreinfo_note(); |
| 1325 | } |
| 1326 | |
| 1327 | void vmcoreinfo_append_str(const char *fmt, ...) |
| 1328 | { |
| 1329 | va_list args; |
| 1330 | char buf[0x50]; |
| 1331 | size_t r; |
| 1332 | |
| 1333 | va_start(args, fmt); |
| 1334 | r = vscnprintf(buf, sizeof(buf), fmt, args); |
| 1335 | va_end(args); |
| 1336 | |
| 1337 | r = min(r, vmcoreinfo_max_size - vmcoreinfo_size); |
| 1338 | |
| 1339 | memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); |
| 1340 | |
| 1341 | vmcoreinfo_size += r; |
| 1342 | } |
| 1343 | |
| 1344 | /* |
| 1345 | * provide an empty default implementation here -- architecture |
| 1346 | * code may override this |
| 1347 | */ |
| 1348 | void __weak arch_crash_save_vmcoreinfo(void) |
| 1349 | {} |
| 1350 | |
| 1351 | unsigned long __weak paddr_vmcoreinfo_note(void) |
| 1352 | { |
| 1353 | return __pa((unsigned long)(char *)&vmcoreinfo_note); |
| 1354 | } |
| 1355 | |
| 1356 | static int __init crash_save_vmcoreinfo_init(void) |
| 1357 | { |
| 1358 | VMCOREINFO_OSRELEASE(init_uts_ns.name.release); |
| 1359 | VMCOREINFO_PAGESIZE(PAGE_SIZE); |
| 1360 | |
| 1361 | VMCOREINFO_SYMBOL(init_uts_ns); |
| 1362 | VMCOREINFO_SYMBOL(node_online_map); |
| 1363 | #ifdef CONFIG_MMU |
| 1364 | VMCOREINFO_SYMBOL(swapper_pg_dir); |
| 1365 | #endif |
| 1366 | VMCOREINFO_SYMBOL(_stext); |
| 1367 | VMCOREINFO_SYMBOL(vmap_area_list); |
| 1368 | |
| 1369 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
| 1370 | VMCOREINFO_SYMBOL(mem_map); |
| 1371 | VMCOREINFO_SYMBOL(contig_page_data); |
| 1372 | #endif |
| 1373 | #ifdef CONFIG_SPARSEMEM |
| 1374 | VMCOREINFO_SYMBOL(mem_section); |
| 1375 | VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); |
| 1376 | VMCOREINFO_STRUCT_SIZE(mem_section); |
| 1377 | VMCOREINFO_OFFSET(mem_section, section_mem_map); |
| 1378 | #endif |
| 1379 | VMCOREINFO_STRUCT_SIZE(page); |
| 1380 | VMCOREINFO_STRUCT_SIZE(pglist_data); |
| 1381 | VMCOREINFO_STRUCT_SIZE(zone); |
| 1382 | VMCOREINFO_STRUCT_SIZE(free_area); |
| 1383 | VMCOREINFO_STRUCT_SIZE(list_head); |
| 1384 | VMCOREINFO_SIZE(nodemask_t); |
| 1385 | VMCOREINFO_OFFSET(page, flags); |
| 1386 | VMCOREINFO_OFFSET(page, _count); |
| 1387 | VMCOREINFO_OFFSET(page, mapping); |
| 1388 | VMCOREINFO_OFFSET(page, lru); |
| 1389 | VMCOREINFO_OFFSET(page, _mapcount); |
| 1390 | VMCOREINFO_OFFSET(page, private); |
| 1391 | VMCOREINFO_OFFSET(pglist_data, node_zones); |
| 1392 | VMCOREINFO_OFFSET(pglist_data, nr_zones); |
| 1393 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
| 1394 | VMCOREINFO_OFFSET(pglist_data, node_mem_map); |
| 1395 | #endif |
| 1396 | VMCOREINFO_OFFSET(pglist_data, node_start_pfn); |
| 1397 | VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); |
| 1398 | VMCOREINFO_OFFSET(pglist_data, node_id); |
| 1399 | VMCOREINFO_OFFSET(zone, free_area); |
| 1400 | VMCOREINFO_OFFSET(zone, vm_stat); |
| 1401 | VMCOREINFO_OFFSET(zone, spanned_pages); |
| 1402 | VMCOREINFO_OFFSET(free_area, free_list); |
| 1403 | VMCOREINFO_OFFSET(list_head, next); |
| 1404 | VMCOREINFO_OFFSET(list_head, prev); |
| 1405 | VMCOREINFO_OFFSET(vmap_area, va_start); |
| 1406 | VMCOREINFO_OFFSET(vmap_area, list); |
| 1407 | VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); |
| 1408 | log_buf_kexec_setup(); |
| 1409 | VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); |
| 1410 | VMCOREINFO_NUMBER(NR_FREE_PAGES); |
| 1411 | VMCOREINFO_NUMBER(PG_lru); |
| 1412 | VMCOREINFO_NUMBER(PG_private); |
| 1413 | VMCOREINFO_NUMBER(PG_swapcache); |
| 1414 | VMCOREINFO_NUMBER(PG_slab); |
| 1415 | #ifdef CONFIG_MEMORY_FAILURE |
| 1416 | VMCOREINFO_NUMBER(PG_hwpoison); |
| 1417 | #endif |
| 1418 | VMCOREINFO_NUMBER(PG_head_mask); |
| 1419 | VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE); |
Baoquan He | 1303a27 | 2015-09-09 15:39:03 -0700 | [diff] [blame] | 1420 | #ifdef CONFIG_X86 |
| 1421 | VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE); |
| 1422 | #endif |
Dave Young | 2965faa | 2015-09-09 15:38:55 -0700 | [diff] [blame] | 1423 | #ifdef CONFIG_HUGETLBFS |
| 1424 | VMCOREINFO_SYMBOL(free_huge_page); |
| 1425 | #endif |
| 1426 | |
| 1427 | arch_crash_save_vmcoreinfo(); |
| 1428 | update_vmcoreinfo_note(); |
| 1429 | |
| 1430 | return 0; |
| 1431 | } |
| 1432 | |
| 1433 | subsys_initcall(crash_save_vmcoreinfo_init); |
| 1434 | |
| 1435 | /* |
| 1436 | * Move into place and start executing a preloaded standalone |
| 1437 | * executable. If nothing was preloaded return an error. |
| 1438 | */ |
| 1439 | int kernel_kexec(void) |
| 1440 | { |
| 1441 | int error = 0; |
| 1442 | |
| 1443 | if (!mutex_trylock(&kexec_mutex)) |
| 1444 | return -EBUSY; |
| 1445 | if (!kexec_image) { |
| 1446 | error = -EINVAL; |
| 1447 | goto Unlock; |
| 1448 | } |
| 1449 | |
| 1450 | #ifdef CONFIG_KEXEC_JUMP |
| 1451 | if (kexec_image->preserve_context) { |
| 1452 | lock_system_sleep(); |
| 1453 | pm_prepare_console(); |
| 1454 | error = freeze_processes(); |
| 1455 | if (error) { |
| 1456 | error = -EBUSY; |
| 1457 | goto Restore_console; |
| 1458 | } |
| 1459 | suspend_console(); |
| 1460 | error = dpm_suspend_start(PMSG_FREEZE); |
| 1461 | if (error) |
| 1462 | goto Resume_console; |
| 1463 | /* At this point, dpm_suspend_start() has been called, |
| 1464 | * but *not* dpm_suspend_end(). We *must* call |
| 1465 | * dpm_suspend_end() now. Otherwise, drivers for |
| 1466 | * some devices (e.g. interrupt controllers) become |
| 1467 | * desynchronized with the actual state of the |
| 1468 | * hardware at resume time, and evil weirdness ensues. |
| 1469 | */ |
| 1470 | error = dpm_suspend_end(PMSG_FREEZE); |
| 1471 | if (error) |
| 1472 | goto Resume_devices; |
| 1473 | error = disable_nonboot_cpus(); |
| 1474 | if (error) |
| 1475 | goto Enable_cpus; |
| 1476 | local_irq_disable(); |
| 1477 | error = syscore_suspend(); |
| 1478 | if (error) |
| 1479 | goto Enable_irqs; |
| 1480 | } else |
| 1481 | #endif |
| 1482 | { |
| 1483 | kexec_in_progress = true; |
| 1484 | kernel_restart_prepare(NULL); |
| 1485 | migrate_to_reboot_cpu(); |
| 1486 | |
| 1487 | /* |
| 1488 | * migrate_to_reboot_cpu() disables CPU hotplug assuming that |
| 1489 | * no further code needs to use CPU hotplug (which is true in |
| 1490 | * the reboot case). However, the kexec path depends on using |
| 1491 | * CPU hotplug again; so re-enable it here. |
| 1492 | */ |
| 1493 | cpu_hotplug_enable(); |
| 1494 | pr_emerg("Starting new kernel\n"); |
| 1495 | machine_shutdown(); |
| 1496 | } |
| 1497 | |
| 1498 | machine_kexec(kexec_image); |
| 1499 | |
| 1500 | #ifdef CONFIG_KEXEC_JUMP |
| 1501 | if (kexec_image->preserve_context) { |
| 1502 | syscore_resume(); |
| 1503 | Enable_irqs: |
| 1504 | local_irq_enable(); |
| 1505 | Enable_cpus: |
| 1506 | enable_nonboot_cpus(); |
| 1507 | dpm_resume_start(PMSG_RESTORE); |
| 1508 | Resume_devices: |
| 1509 | dpm_resume_end(PMSG_RESTORE); |
| 1510 | Resume_console: |
| 1511 | resume_console(); |
| 1512 | thaw_processes(); |
| 1513 | Restore_console: |
| 1514 | pm_restore_console(); |
| 1515 | unlock_system_sleep(); |
| 1516 | } |
| 1517 | #endif |
| 1518 | |
| 1519 | Unlock: |
| 1520 | mutex_unlock(&kexec_mutex); |
| 1521 | return error; |
| 1522 | } |
| 1523 | |
| 1524 | /* |
| 1525 | * Add and remove page tables for crashkernel memory |
| 1526 | * |
| 1527 | * Provide an empty default implementation here -- architecture |
| 1528 | * code may override this |
| 1529 | */ |
| 1530 | void __weak crash_map_reserved_pages(void) |
| 1531 | {} |
| 1532 | |
| 1533 | void __weak crash_unmap_reserved_pages(void) |
| 1534 | {} |