blob: 1e521db3ef56b35c6c487ed7b288b8885fc4c77b [file] [log] [blame]
Josef Bacik2e405ad2019-06-20 15:37:45 -04001// SPDX-License-Identifier: GPL-2.0
2
David Sterba784352f2019-08-21 18:54:28 +02003#include "misc.h"
Josef Bacik2e405ad2019-06-20 15:37:45 -04004#include "ctree.h"
5#include "block-group.h"
Josef Bacik3eeb3222019-06-20 15:37:47 -04006#include "space-info.h"
Josef Bacik9f212462019-08-06 16:43:19 +02007#include "disk-io.h"
8#include "free-space-cache.h"
9#include "free-space-tree.h"
Josef Bacike3e05202019-06-20 15:37:55 -040010#include "disk-io.h"
11#include "volumes.h"
12#include "transaction.h"
13#include "ref-verify.h"
Josef Bacik4358d9632019-06-20 15:37:57 -040014#include "sysfs.h"
15#include "tree-log.h"
Josef Bacik77745c02019-06-20 15:38:00 -040016#include "delalloc-space.h"
Josef Bacik2e405ad2019-06-20 15:37:45 -040017
Josef Bacik878d7b62019-06-20 15:38:05 -040018/*
19 * Return target flags in extended format or 0 if restripe for this chunk_type
20 * is not in progress
21 *
22 * Should be called with balance_lock held
23 */
Josef Bacike11c0402019-06-20 15:38:07 -040024static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
Josef Bacik878d7b62019-06-20 15:38:05 -040025{
26 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
27 u64 target = 0;
28
29 if (!bctl)
30 return 0;
31
32 if (flags & BTRFS_BLOCK_GROUP_DATA &&
33 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
34 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
35 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
36 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
37 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
38 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
39 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
40 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
41 }
42
43 return target;
44}
45
46/*
47 * @flags: available profiles in extended format (see ctree.h)
48 *
49 * Return reduced profile in chunk format. If profile changing is in progress
50 * (either running or paused) picks the target profile (if it's already
51 * available), otherwise falls back to plain reducing.
52 */
53static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
54{
55 u64 num_devices = fs_info->fs_devices->rw_devices;
56 u64 target;
57 u64 raid_type;
58 u64 allowed = 0;
59
60 /*
61 * See if restripe for this chunk_type is in progress, if so try to
62 * reduce to the target profile
63 */
64 spin_lock(&fs_info->balance_lock);
Josef Bacike11c0402019-06-20 15:38:07 -040065 target = get_restripe_target(fs_info, flags);
Josef Bacik878d7b62019-06-20 15:38:05 -040066 if (target) {
67 /* Pick target profile only if it's already available */
68 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
69 spin_unlock(&fs_info->balance_lock);
70 return extended_to_chunk(target);
71 }
72 }
73 spin_unlock(&fs_info->balance_lock);
74
75 /* First, mask out the RAID levels which aren't possible */
76 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
77 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
78 allowed |= btrfs_raid_array[raid_type].bg_flag;
79 }
80 allowed &= flags;
81
82 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
83 allowed = BTRFS_BLOCK_GROUP_RAID6;
84 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
85 allowed = BTRFS_BLOCK_GROUP_RAID5;
86 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
87 allowed = BTRFS_BLOCK_GROUP_RAID10;
88 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
89 allowed = BTRFS_BLOCK_GROUP_RAID1;
90 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
91 allowed = BTRFS_BLOCK_GROUP_RAID0;
92
93 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
94
95 return extended_to_chunk(flags | allowed);
96}
97
98static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
99{
100 unsigned seq;
101 u64 flags;
102
103 do {
104 flags = orig_flags;
105 seq = read_seqbegin(&fs_info->profiles_lock);
106
107 if (flags & BTRFS_BLOCK_GROUP_DATA)
108 flags |= fs_info->avail_data_alloc_bits;
109 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
110 flags |= fs_info->avail_system_alloc_bits;
111 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
112 flags |= fs_info->avail_metadata_alloc_bits;
113 } while (read_seqretry(&fs_info->profiles_lock, seq));
114
115 return btrfs_reduce_alloc_profile(fs_info, flags);
116}
117
118u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
119{
120 return get_alloc_profile(fs_info, orig_flags);
121}
122
Josef Bacik3cad1282019-06-20 15:37:46 -0400123void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
124{
125 atomic_inc(&cache->count);
126}
127
128void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
129{
130 if (atomic_dec_and_test(&cache->count)) {
131 WARN_ON(cache->pinned > 0);
132 WARN_ON(cache->reserved > 0);
133
134 /*
135 * If not empty, someone is still holding mutex of
136 * full_stripe_lock, which can only be released by caller.
137 * And it will definitely cause use-after-free when caller
138 * tries to release full stripe lock.
139 *
140 * No better way to resolve, but only to warn.
141 */
142 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
143 kfree(cache->free_space_ctl);
144 kfree(cache);
145 }
146}
147
Josef Bacik2e405ad2019-06-20 15:37:45 -0400148/*
Josef Bacik4358d9632019-06-20 15:37:57 -0400149 * This adds the block group to the fs_info rb tree for the block group cache
150 */
151static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
152 struct btrfs_block_group_cache *block_group)
153{
154 struct rb_node **p;
155 struct rb_node *parent = NULL;
156 struct btrfs_block_group_cache *cache;
157
158 spin_lock(&info->block_group_cache_lock);
159 p = &info->block_group_cache_tree.rb_node;
160
161 while (*p) {
162 parent = *p;
163 cache = rb_entry(parent, struct btrfs_block_group_cache,
164 cache_node);
David Sterbab3470b52019-10-23 18:48:22 +0200165 if (block_group->start < cache->start) {
Josef Bacik4358d9632019-06-20 15:37:57 -0400166 p = &(*p)->rb_left;
David Sterbab3470b52019-10-23 18:48:22 +0200167 } else if (block_group->start > cache->start) {
Josef Bacik4358d9632019-06-20 15:37:57 -0400168 p = &(*p)->rb_right;
169 } else {
170 spin_unlock(&info->block_group_cache_lock);
171 return -EEXIST;
172 }
173 }
174
175 rb_link_node(&block_group->cache_node, parent, p);
176 rb_insert_color(&block_group->cache_node,
177 &info->block_group_cache_tree);
178
David Sterbab3470b52019-10-23 18:48:22 +0200179 if (info->first_logical_byte > block_group->start)
180 info->first_logical_byte = block_group->start;
Josef Bacik4358d9632019-06-20 15:37:57 -0400181
182 spin_unlock(&info->block_group_cache_lock);
183
184 return 0;
185}
186
187/*
Josef Bacik2e405ad2019-06-20 15:37:45 -0400188 * This will return the block group at or after bytenr if contains is 0, else
189 * it will return the block group that contains the bytenr
190 */
191static struct btrfs_block_group_cache *block_group_cache_tree_search(
192 struct btrfs_fs_info *info, u64 bytenr, int contains)
193{
194 struct btrfs_block_group_cache *cache, *ret = NULL;
195 struct rb_node *n;
196 u64 end, start;
197
198 spin_lock(&info->block_group_cache_lock);
199 n = info->block_group_cache_tree.rb_node;
200
201 while (n) {
202 cache = rb_entry(n, struct btrfs_block_group_cache,
203 cache_node);
David Sterbab3470b52019-10-23 18:48:22 +0200204 end = cache->start + cache->length - 1;
205 start = cache->start;
Josef Bacik2e405ad2019-06-20 15:37:45 -0400206
207 if (bytenr < start) {
David Sterbab3470b52019-10-23 18:48:22 +0200208 if (!contains && (!ret || start < ret->start))
Josef Bacik2e405ad2019-06-20 15:37:45 -0400209 ret = cache;
210 n = n->rb_left;
211 } else if (bytenr > start) {
212 if (contains && bytenr <= end) {
213 ret = cache;
214 break;
215 }
216 n = n->rb_right;
217 } else {
218 ret = cache;
219 break;
220 }
221 }
222 if (ret) {
223 btrfs_get_block_group(ret);
David Sterbab3470b52019-10-23 18:48:22 +0200224 if (bytenr == 0 && info->first_logical_byte > ret->start)
225 info->first_logical_byte = ret->start;
Josef Bacik2e405ad2019-06-20 15:37:45 -0400226 }
227 spin_unlock(&info->block_group_cache_lock);
228
229 return ret;
230}
231
232/*
233 * Return the block group that starts at or after bytenr
234 */
235struct btrfs_block_group_cache *btrfs_lookup_first_block_group(
236 struct btrfs_fs_info *info, u64 bytenr)
237{
238 return block_group_cache_tree_search(info, bytenr, 0);
239}
240
241/*
242 * Return the block group that contains the given bytenr
243 */
244struct btrfs_block_group_cache *btrfs_lookup_block_group(
245 struct btrfs_fs_info *info, u64 bytenr)
246{
247 return block_group_cache_tree_search(info, bytenr, 1);
248}
249
250struct btrfs_block_group_cache *btrfs_next_block_group(
251 struct btrfs_block_group_cache *cache)
252{
253 struct btrfs_fs_info *fs_info = cache->fs_info;
254 struct rb_node *node;
255
256 spin_lock(&fs_info->block_group_cache_lock);
257
258 /* If our block group was removed, we need a full search. */
259 if (RB_EMPTY_NODE(&cache->cache_node)) {
David Sterbab3470b52019-10-23 18:48:22 +0200260 const u64 next_bytenr = cache->start + cache->length;
Josef Bacik2e405ad2019-06-20 15:37:45 -0400261
262 spin_unlock(&fs_info->block_group_cache_lock);
263 btrfs_put_block_group(cache);
264 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
265 }
266 node = rb_next(&cache->cache_node);
267 btrfs_put_block_group(cache);
268 if (node) {
269 cache = rb_entry(node, struct btrfs_block_group_cache,
270 cache_node);
271 btrfs_get_block_group(cache);
272 } else
273 cache = NULL;
274 spin_unlock(&fs_info->block_group_cache_lock);
275 return cache;
276}
Josef Bacik3eeb3222019-06-20 15:37:47 -0400277
278bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
279{
280 struct btrfs_block_group_cache *bg;
281 bool ret = true;
282
283 bg = btrfs_lookup_block_group(fs_info, bytenr);
284 if (!bg)
285 return false;
286
287 spin_lock(&bg->lock);
288 if (bg->ro)
289 ret = false;
290 else
291 atomic_inc(&bg->nocow_writers);
292 spin_unlock(&bg->lock);
293
294 /* No put on block group, done by btrfs_dec_nocow_writers */
295 if (!ret)
296 btrfs_put_block_group(bg);
297
298 return ret;
299}
300
301void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
302{
303 struct btrfs_block_group_cache *bg;
304
305 bg = btrfs_lookup_block_group(fs_info, bytenr);
306 ASSERT(bg);
307 if (atomic_dec_and_test(&bg->nocow_writers))
308 wake_up_var(&bg->nocow_writers);
309 /*
310 * Once for our lookup and once for the lookup done by a previous call
311 * to btrfs_inc_nocow_writers()
312 */
313 btrfs_put_block_group(bg);
314 btrfs_put_block_group(bg);
315}
316
317void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
318{
319 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
320}
321
322void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
323 const u64 start)
324{
325 struct btrfs_block_group_cache *bg;
326
327 bg = btrfs_lookup_block_group(fs_info, start);
328 ASSERT(bg);
329 if (atomic_dec_and_test(&bg->reservations))
330 wake_up_var(&bg->reservations);
331 btrfs_put_block_group(bg);
332}
333
334void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
335{
336 struct btrfs_space_info *space_info = bg->space_info;
337
338 ASSERT(bg->ro);
339
340 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
341 return;
342
343 /*
344 * Our block group is read only but before we set it to read only,
345 * some task might have had allocated an extent from it already, but it
346 * has not yet created a respective ordered extent (and added it to a
347 * root's list of ordered extents).
348 * Therefore wait for any task currently allocating extents, since the
349 * block group's reservations counter is incremented while a read lock
350 * on the groups' semaphore is held and decremented after releasing
351 * the read access on that semaphore and creating the ordered extent.
352 */
353 down_write(&space_info->groups_sem);
354 up_write(&space_info->groups_sem);
355
356 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
357}
Josef Bacik9f212462019-08-06 16:43:19 +0200358
359struct btrfs_caching_control *btrfs_get_caching_control(
360 struct btrfs_block_group_cache *cache)
361{
362 struct btrfs_caching_control *ctl;
363
364 spin_lock(&cache->lock);
365 if (!cache->caching_ctl) {
366 spin_unlock(&cache->lock);
367 return NULL;
368 }
369
370 ctl = cache->caching_ctl;
371 refcount_inc(&ctl->count);
372 spin_unlock(&cache->lock);
373 return ctl;
374}
375
376void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
377{
378 if (refcount_dec_and_test(&ctl->count))
379 kfree(ctl);
380}
381
382/*
383 * When we wait for progress in the block group caching, its because our
384 * allocation attempt failed at least once. So, we must sleep and let some
385 * progress happen before we try again.
386 *
387 * This function will sleep at least once waiting for new free space to show
388 * up, and then it will check the block group free space numbers for our min
389 * num_bytes. Another option is to have it go ahead and look in the rbtree for
390 * a free extent of a given size, but this is a good start.
391 *
392 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
393 * any of the information in this block group.
394 */
395void btrfs_wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
396 u64 num_bytes)
397{
398 struct btrfs_caching_control *caching_ctl;
399
400 caching_ctl = btrfs_get_caching_control(cache);
401 if (!caching_ctl)
402 return;
403
404 wait_event(caching_ctl->wait, btrfs_block_group_cache_done(cache) ||
405 (cache->free_space_ctl->free_space >= num_bytes));
406
407 btrfs_put_caching_control(caching_ctl);
408}
409
410int btrfs_wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
411{
412 struct btrfs_caching_control *caching_ctl;
413 int ret = 0;
414
415 caching_ctl = btrfs_get_caching_control(cache);
416 if (!caching_ctl)
417 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
418
419 wait_event(caching_ctl->wait, btrfs_block_group_cache_done(cache));
420 if (cache->cached == BTRFS_CACHE_ERROR)
421 ret = -EIO;
422 btrfs_put_caching_control(caching_ctl);
423 return ret;
424}
425
426#ifdef CONFIG_BTRFS_DEBUG
Josef Bacike11c0402019-06-20 15:38:07 -0400427static void fragment_free_space(struct btrfs_block_group_cache *block_group)
Josef Bacik9f212462019-08-06 16:43:19 +0200428{
429 struct btrfs_fs_info *fs_info = block_group->fs_info;
David Sterbab3470b52019-10-23 18:48:22 +0200430 u64 start = block_group->start;
431 u64 len = block_group->length;
Josef Bacik9f212462019-08-06 16:43:19 +0200432 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
433 fs_info->nodesize : fs_info->sectorsize;
434 u64 step = chunk << 1;
435
436 while (len > chunk) {
437 btrfs_remove_free_space(block_group, start, chunk);
438 start += step;
439 if (len < step)
440 len = 0;
441 else
442 len -= step;
443 }
444}
445#endif
446
447/*
448 * This is only called by btrfs_cache_block_group, since we could have freed
449 * extents we need to check the pinned_extents for any extents that can't be
450 * used yet since their free space will be released as soon as the transaction
451 * commits.
452 */
453u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
454 u64 start, u64 end)
455{
456 struct btrfs_fs_info *info = block_group->fs_info;
457 u64 extent_start, extent_end, size, total_added = 0;
458 int ret;
459
460 while (start < end) {
461 ret = find_first_extent_bit(info->pinned_extents, start,
462 &extent_start, &extent_end,
463 EXTENT_DIRTY | EXTENT_UPTODATE,
464 NULL);
465 if (ret)
466 break;
467
468 if (extent_start <= start) {
469 start = extent_end + 1;
470 } else if (extent_start > start && extent_start < end) {
471 size = extent_start - start;
472 total_added += size;
473 ret = btrfs_add_free_space(block_group, start,
474 size);
475 BUG_ON(ret); /* -ENOMEM or logic error */
476 start = extent_end + 1;
477 } else {
478 break;
479 }
480 }
481
482 if (start < end) {
483 size = end - start;
484 total_added += size;
485 ret = btrfs_add_free_space(block_group, start, size);
486 BUG_ON(ret); /* -ENOMEM or logic error */
487 }
488
489 return total_added;
490}
491
492static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
493{
494 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
495 struct btrfs_fs_info *fs_info = block_group->fs_info;
496 struct btrfs_root *extent_root = fs_info->extent_root;
497 struct btrfs_path *path;
498 struct extent_buffer *leaf;
499 struct btrfs_key key;
500 u64 total_found = 0;
501 u64 last = 0;
502 u32 nritems;
503 int ret;
504 bool wakeup = true;
505
506 path = btrfs_alloc_path();
507 if (!path)
508 return -ENOMEM;
509
David Sterbab3470b52019-10-23 18:48:22 +0200510 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
Josef Bacik9f212462019-08-06 16:43:19 +0200511
512#ifdef CONFIG_BTRFS_DEBUG
513 /*
514 * If we're fragmenting we don't want to make anybody think we can
515 * allocate from this block group until we've had a chance to fragment
516 * the free space.
517 */
518 if (btrfs_should_fragment_free_space(block_group))
519 wakeup = false;
520#endif
521 /*
522 * We don't want to deadlock with somebody trying to allocate a new
523 * extent for the extent root while also trying to search the extent
524 * root to add free space. So we skip locking and search the commit
525 * root, since its read-only
526 */
527 path->skip_locking = 1;
528 path->search_commit_root = 1;
529 path->reada = READA_FORWARD;
530
531 key.objectid = last;
532 key.offset = 0;
533 key.type = BTRFS_EXTENT_ITEM_KEY;
534
535next:
536 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
537 if (ret < 0)
538 goto out;
539
540 leaf = path->nodes[0];
541 nritems = btrfs_header_nritems(leaf);
542
543 while (1) {
544 if (btrfs_fs_closing(fs_info) > 1) {
545 last = (u64)-1;
546 break;
547 }
548
549 if (path->slots[0] < nritems) {
550 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
551 } else {
552 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
553 if (ret)
554 break;
555
556 if (need_resched() ||
557 rwsem_is_contended(&fs_info->commit_root_sem)) {
558 if (wakeup)
559 caching_ctl->progress = last;
560 btrfs_release_path(path);
561 up_read(&fs_info->commit_root_sem);
562 mutex_unlock(&caching_ctl->mutex);
563 cond_resched();
564 mutex_lock(&caching_ctl->mutex);
565 down_read(&fs_info->commit_root_sem);
566 goto next;
567 }
568
569 ret = btrfs_next_leaf(extent_root, path);
570 if (ret < 0)
571 goto out;
572 if (ret)
573 break;
574 leaf = path->nodes[0];
575 nritems = btrfs_header_nritems(leaf);
576 continue;
577 }
578
579 if (key.objectid < last) {
580 key.objectid = last;
581 key.offset = 0;
582 key.type = BTRFS_EXTENT_ITEM_KEY;
583
584 if (wakeup)
585 caching_ctl->progress = last;
586 btrfs_release_path(path);
587 goto next;
588 }
589
David Sterbab3470b52019-10-23 18:48:22 +0200590 if (key.objectid < block_group->start) {
Josef Bacik9f212462019-08-06 16:43:19 +0200591 path->slots[0]++;
592 continue;
593 }
594
David Sterbab3470b52019-10-23 18:48:22 +0200595 if (key.objectid >= block_group->start + block_group->length)
Josef Bacik9f212462019-08-06 16:43:19 +0200596 break;
597
598 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
599 key.type == BTRFS_METADATA_ITEM_KEY) {
600 total_found += add_new_free_space(block_group, last,
601 key.objectid);
602 if (key.type == BTRFS_METADATA_ITEM_KEY)
603 last = key.objectid +
604 fs_info->nodesize;
605 else
606 last = key.objectid + key.offset;
607
608 if (total_found > CACHING_CTL_WAKE_UP) {
609 total_found = 0;
610 if (wakeup)
611 wake_up(&caching_ctl->wait);
612 }
613 }
614 path->slots[0]++;
615 }
616 ret = 0;
617
618 total_found += add_new_free_space(block_group, last,
David Sterbab3470b52019-10-23 18:48:22 +0200619 block_group->start + block_group->length);
Josef Bacik9f212462019-08-06 16:43:19 +0200620 caching_ctl->progress = (u64)-1;
621
622out:
623 btrfs_free_path(path);
624 return ret;
625}
626
627static noinline void caching_thread(struct btrfs_work *work)
628{
629 struct btrfs_block_group_cache *block_group;
630 struct btrfs_fs_info *fs_info;
631 struct btrfs_caching_control *caching_ctl;
632 int ret;
633
634 caching_ctl = container_of(work, struct btrfs_caching_control, work);
635 block_group = caching_ctl->block_group;
636 fs_info = block_group->fs_info;
637
638 mutex_lock(&caching_ctl->mutex);
639 down_read(&fs_info->commit_root_sem);
640
641 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
642 ret = load_free_space_tree(caching_ctl);
643 else
644 ret = load_extent_tree_free(caching_ctl);
645
646 spin_lock(&block_group->lock);
647 block_group->caching_ctl = NULL;
648 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
649 spin_unlock(&block_group->lock);
650
651#ifdef CONFIG_BTRFS_DEBUG
652 if (btrfs_should_fragment_free_space(block_group)) {
653 u64 bytes_used;
654
655 spin_lock(&block_group->space_info->lock);
656 spin_lock(&block_group->lock);
David Sterbab3470b52019-10-23 18:48:22 +0200657 bytes_used = block_group->length - block_group->used;
Josef Bacik9f212462019-08-06 16:43:19 +0200658 block_group->space_info->bytes_used += bytes_used >> 1;
659 spin_unlock(&block_group->lock);
660 spin_unlock(&block_group->space_info->lock);
Josef Bacike11c0402019-06-20 15:38:07 -0400661 fragment_free_space(block_group);
Josef Bacik9f212462019-08-06 16:43:19 +0200662 }
663#endif
664
665 caching_ctl->progress = (u64)-1;
666
667 up_read(&fs_info->commit_root_sem);
668 btrfs_free_excluded_extents(block_group);
669 mutex_unlock(&caching_ctl->mutex);
670
671 wake_up(&caching_ctl->wait);
672
673 btrfs_put_caching_control(caching_ctl);
674 btrfs_put_block_group(block_group);
675}
676
677int btrfs_cache_block_group(struct btrfs_block_group_cache *cache,
678 int load_cache_only)
679{
680 DEFINE_WAIT(wait);
681 struct btrfs_fs_info *fs_info = cache->fs_info;
682 struct btrfs_caching_control *caching_ctl;
683 int ret = 0;
684
685 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
686 if (!caching_ctl)
687 return -ENOMEM;
688
689 INIT_LIST_HEAD(&caching_ctl->list);
690 mutex_init(&caching_ctl->mutex);
691 init_waitqueue_head(&caching_ctl->wait);
692 caching_ctl->block_group = cache;
David Sterbab3470b52019-10-23 18:48:22 +0200693 caching_ctl->progress = cache->start;
Josef Bacik9f212462019-08-06 16:43:19 +0200694 refcount_set(&caching_ctl->count, 1);
Omar Sandovala0cac0e2019-09-16 11:30:57 -0700695 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
Josef Bacik9f212462019-08-06 16:43:19 +0200696
697 spin_lock(&cache->lock);
698 /*
699 * This should be a rare occasion, but this could happen I think in the
700 * case where one thread starts to load the space cache info, and then
701 * some other thread starts a transaction commit which tries to do an
702 * allocation while the other thread is still loading the space cache
703 * info. The previous loop should have kept us from choosing this block
704 * group, but if we've moved to the state where we will wait on caching
705 * block groups we need to first check if we're doing a fast load here,
706 * so we can wait for it to finish, otherwise we could end up allocating
707 * from a block group who's cache gets evicted for one reason or
708 * another.
709 */
710 while (cache->cached == BTRFS_CACHE_FAST) {
711 struct btrfs_caching_control *ctl;
712
713 ctl = cache->caching_ctl;
714 refcount_inc(&ctl->count);
715 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
716 spin_unlock(&cache->lock);
717
718 schedule();
719
720 finish_wait(&ctl->wait, &wait);
721 btrfs_put_caching_control(ctl);
722 spin_lock(&cache->lock);
723 }
724
725 if (cache->cached != BTRFS_CACHE_NO) {
726 spin_unlock(&cache->lock);
727 kfree(caching_ctl);
728 return 0;
729 }
730 WARN_ON(cache->caching_ctl);
731 cache->caching_ctl = caching_ctl;
732 cache->cached = BTRFS_CACHE_FAST;
733 spin_unlock(&cache->lock);
734
735 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
736 mutex_lock(&caching_ctl->mutex);
737 ret = load_free_space_cache(cache);
738
739 spin_lock(&cache->lock);
740 if (ret == 1) {
741 cache->caching_ctl = NULL;
742 cache->cached = BTRFS_CACHE_FINISHED;
743 cache->last_byte_to_unpin = (u64)-1;
744 caching_ctl->progress = (u64)-1;
745 } else {
746 if (load_cache_only) {
747 cache->caching_ctl = NULL;
748 cache->cached = BTRFS_CACHE_NO;
749 } else {
750 cache->cached = BTRFS_CACHE_STARTED;
751 cache->has_caching_ctl = 1;
752 }
753 }
754 spin_unlock(&cache->lock);
755#ifdef CONFIG_BTRFS_DEBUG
756 if (ret == 1 &&
757 btrfs_should_fragment_free_space(cache)) {
758 u64 bytes_used;
759
760 spin_lock(&cache->space_info->lock);
761 spin_lock(&cache->lock);
David Sterbab3470b52019-10-23 18:48:22 +0200762 bytes_used = cache->length - cache->used;
Josef Bacik9f212462019-08-06 16:43:19 +0200763 cache->space_info->bytes_used += bytes_used >> 1;
764 spin_unlock(&cache->lock);
765 spin_unlock(&cache->space_info->lock);
Josef Bacike11c0402019-06-20 15:38:07 -0400766 fragment_free_space(cache);
Josef Bacik9f212462019-08-06 16:43:19 +0200767 }
768#endif
769 mutex_unlock(&caching_ctl->mutex);
770
771 wake_up(&caching_ctl->wait);
772 if (ret == 1) {
773 btrfs_put_caching_control(caching_ctl);
774 btrfs_free_excluded_extents(cache);
775 return 0;
776 }
777 } else {
778 /*
779 * We're either using the free space tree or no caching at all.
780 * Set cached to the appropriate value and wakeup any waiters.
781 */
782 spin_lock(&cache->lock);
783 if (load_cache_only) {
784 cache->caching_ctl = NULL;
785 cache->cached = BTRFS_CACHE_NO;
786 } else {
787 cache->cached = BTRFS_CACHE_STARTED;
788 cache->has_caching_ctl = 1;
789 }
790 spin_unlock(&cache->lock);
791 wake_up(&caching_ctl->wait);
792 }
793
794 if (load_cache_only) {
795 btrfs_put_caching_control(caching_ctl);
796 return 0;
797 }
798
799 down_write(&fs_info->commit_root_sem);
800 refcount_inc(&caching_ctl->count);
801 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
802 up_write(&fs_info->commit_root_sem);
803
804 btrfs_get_block_group(cache);
805
806 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
807
808 return ret;
809}
Josef Bacike3e05202019-06-20 15:37:55 -0400810
811static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
812{
813 u64 extra_flags = chunk_to_extended(flags) &
814 BTRFS_EXTENDED_PROFILE_MASK;
815
816 write_seqlock(&fs_info->profiles_lock);
817 if (flags & BTRFS_BLOCK_GROUP_DATA)
818 fs_info->avail_data_alloc_bits &= ~extra_flags;
819 if (flags & BTRFS_BLOCK_GROUP_METADATA)
820 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
821 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
822 fs_info->avail_system_alloc_bits &= ~extra_flags;
823 write_sequnlock(&fs_info->profiles_lock);
824}
825
826/*
827 * Clear incompat bits for the following feature(s):
828 *
829 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
830 * in the whole filesystem
831 */
832static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
833{
834 if (flags & BTRFS_BLOCK_GROUP_RAID56_MASK) {
835 struct list_head *head = &fs_info->space_info;
836 struct btrfs_space_info *sinfo;
837
838 list_for_each_entry_rcu(sinfo, head, list) {
839 bool found = false;
840
841 down_read(&sinfo->groups_sem);
842 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
843 found = true;
844 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
845 found = true;
846 up_read(&sinfo->groups_sem);
847
848 if (found)
849 return;
850 }
851 btrfs_clear_fs_incompat(fs_info, RAID56);
852 }
853}
854
855int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
856 u64 group_start, struct extent_map *em)
857{
858 struct btrfs_fs_info *fs_info = trans->fs_info;
859 struct btrfs_root *root = fs_info->extent_root;
860 struct btrfs_path *path;
861 struct btrfs_block_group_cache *block_group;
862 struct btrfs_free_cluster *cluster;
863 struct btrfs_root *tree_root = fs_info->tree_root;
864 struct btrfs_key key;
865 struct inode *inode;
866 struct kobject *kobj = NULL;
867 int ret;
868 int index;
869 int factor;
870 struct btrfs_caching_control *caching_ctl = NULL;
871 bool remove_em;
872 bool remove_rsv = false;
873
874 block_group = btrfs_lookup_block_group(fs_info, group_start);
875 BUG_ON(!block_group);
876 BUG_ON(!block_group->ro);
877
878 trace_btrfs_remove_block_group(block_group);
879 /*
880 * Free the reserved super bytes from this block group before
881 * remove it.
882 */
883 btrfs_free_excluded_extents(block_group);
David Sterbab3470b52019-10-23 18:48:22 +0200884 btrfs_free_ref_tree_range(fs_info, block_group->start,
885 block_group->length);
Josef Bacike3e05202019-06-20 15:37:55 -0400886
Josef Bacike3e05202019-06-20 15:37:55 -0400887 index = btrfs_bg_flags_to_raid_index(block_group->flags);
888 factor = btrfs_bg_type_to_factor(block_group->flags);
889
890 /* make sure this block group isn't part of an allocation cluster */
891 cluster = &fs_info->data_alloc_cluster;
892 spin_lock(&cluster->refill_lock);
893 btrfs_return_cluster_to_free_space(block_group, cluster);
894 spin_unlock(&cluster->refill_lock);
895
896 /*
897 * make sure this block group isn't part of a metadata
898 * allocation cluster
899 */
900 cluster = &fs_info->meta_alloc_cluster;
901 spin_lock(&cluster->refill_lock);
902 btrfs_return_cluster_to_free_space(block_group, cluster);
903 spin_unlock(&cluster->refill_lock);
904
905 path = btrfs_alloc_path();
906 if (!path) {
907 ret = -ENOMEM;
908 goto out;
909 }
910
911 /*
912 * get the inode first so any iput calls done for the io_list
913 * aren't the final iput (no unlinks allowed now)
914 */
915 inode = lookup_free_space_inode(block_group, path);
916
917 mutex_lock(&trans->transaction->cache_write_mutex);
918 /*
919 * Make sure our free space cache IO is done before removing the
920 * free space inode
921 */
922 spin_lock(&trans->transaction->dirty_bgs_lock);
923 if (!list_empty(&block_group->io_list)) {
924 list_del_init(&block_group->io_list);
925
926 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
927
928 spin_unlock(&trans->transaction->dirty_bgs_lock);
929 btrfs_wait_cache_io(trans, block_group, path);
930 btrfs_put_block_group(block_group);
931 spin_lock(&trans->transaction->dirty_bgs_lock);
932 }
933
934 if (!list_empty(&block_group->dirty_list)) {
935 list_del_init(&block_group->dirty_list);
936 remove_rsv = true;
937 btrfs_put_block_group(block_group);
938 }
939 spin_unlock(&trans->transaction->dirty_bgs_lock);
940 mutex_unlock(&trans->transaction->cache_write_mutex);
941
942 if (!IS_ERR(inode)) {
943 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
944 if (ret) {
945 btrfs_add_delayed_iput(inode);
946 goto out;
947 }
948 clear_nlink(inode);
949 /* One for the block groups ref */
950 spin_lock(&block_group->lock);
951 if (block_group->iref) {
952 block_group->iref = 0;
953 block_group->inode = NULL;
954 spin_unlock(&block_group->lock);
955 iput(inode);
956 } else {
957 spin_unlock(&block_group->lock);
958 }
959 /* One for our lookup ref */
960 btrfs_add_delayed_iput(inode);
961 }
962
963 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
Josef Bacike3e05202019-06-20 15:37:55 -0400964 key.type = 0;
David Sterbab3470b52019-10-23 18:48:22 +0200965 key.offset = block_group->start;
Josef Bacike3e05202019-06-20 15:37:55 -0400966
967 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
968 if (ret < 0)
969 goto out;
970 if (ret > 0)
971 btrfs_release_path(path);
972 if (ret == 0) {
973 ret = btrfs_del_item(trans, tree_root, path);
974 if (ret)
975 goto out;
976 btrfs_release_path(path);
977 }
978
979 spin_lock(&fs_info->block_group_cache_lock);
980 rb_erase(&block_group->cache_node,
981 &fs_info->block_group_cache_tree);
982 RB_CLEAR_NODE(&block_group->cache_node);
983
David Sterbab3470b52019-10-23 18:48:22 +0200984 if (fs_info->first_logical_byte == block_group->start)
Josef Bacike3e05202019-06-20 15:37:55 -0400985 fs_info->first_logical_byte = (u64)-1;
986 spin_unlock(&fs_info->block_group_cache_lock);
987
988 down_write(&block_group->space_info->groups_sem);
989 /*
990 * we must use list_del_init so people can check to see if they
991 * are still on the list after taking the semaphore
992 */
993 list_del_init(&block_group->list);
994 if (list_empty(&block_group->space_info->block_groups[index])) {
995 kobj = block_group->space_info->block_group_kobjs[index];
996 block_group->space_info->block_group_kobjs[index] = NULL;
997 clear_avail_alloc_bits(fs_info, block_group->flags);
998 }
999 up_write(&block_group->space_info->groups_sem);
1000 clear_incompat_bg_bits(fs_info, block_group->flags);
1001 if (kobj) {
1002 kobject_del(kobj);
1003 kobject_put(kobj);
1004 }
1005
1006 if (block_group->has_caching_ctl)
1007 caching_ctl = btrfs_get_caching_control(block_group);
1008 if (block_group->cached == BTRFS_CACHE_STARTED)
1009 btrfs_wait_block_group_cache_done(block_group);
1010 if (block_group->has_caching_ctl) {
1011 down_write(&fs_info->commit_root_sem);
1012 if (!caching_ctl) {
1013 struct btrfs_caching_control *ctl;
1014
1015 list_for_each_entry(ctl,
1016 &fs_info->caching_block_groups, list)
1017 if (ctl->block_group == block_group) {
1018 caching_ctl = ctl;
1019 refcount_inc(&caching_ctl->count);
1020 break;
1021 }
1022 }
1023 if (caching_ctl)
1024 list_del_init(&caching_ctl->list);
1025 up_write(&fs_info->commit_root_sem);
1026 if (caching_ctl) {
1027 /* Once for the caching bgs list and once for us. */
1028 btrfs_put_caching_control(caching_ctl);
1029 btrfs_put_caching_control(caching_ctl);
1030 }
1031 }
1032
1033 spin_lock(&trans->transaction->dirty_bgs_lock);
1034 WARN_ON(!list_empty(&block_group->dirty_list));
1035 WARN_ON(!list_empty(&block_group->io_list));
1036 spin_unlock(&trans->transaction->dirty_bgs_lock);
1037
1038 btrfs_remove_free_space_cache(block_group);
1039
1040 spin_lock(&block_group->space_info->lock);
1041 list_del_init(&block_group->ro_list);
1042
1043 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1044 WARN_ON(block_group->space_info->total_bytes
David Sterbab3470b52019-10-23 18:48:22 +02001045 < block_group->length);
Josef Bacike3e05202019-06-20 15:37:55 -04001046 WARN_ON(block_group->space_info->bytes_readonly
David Sterbab3470b52019-10-23 18:48:22 +02001047 < block_group->length);
Josef Bacike3e05202019-06-20 15:37:55 -04001048 WARN_ON(block_group->space_info->disk_total
David Sterbab3470b52019-10-23 18:48:22 +02001049 < block_group->length * factor);
Josef Bacike3e05202019-06-20 15:37:55 -04001050 }
David Sterbab3470b52019-10-23 18:48:22 +02001051 block_group->space_info->total_bytes -= block_group->length;
1052 block_group->space_info->bytes_readonly -= block_group->length;
1053 block_group->space_info->disk_total -= block_group->length * factor;
Josef Bacike3e05202019-06-20 15:37:55 -04001054
1055 spin_unlock(&block_group->space_info->lock);
1056
David Sterbab3470b52019-10-23 18:48:22 +02001057 key.objectid = block_group->start;
1058 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1059 key.offset = block_group->length;
Josef Bacike3e05202019-06-20 15:37:55 -04001060
1061 mutex_lock(&fs_info->chunk_mutex);
1062 spin_lock(&block_group->lock);
1063 block_group->removed = 1;
1064 /*
1065 * At this point trimming can't start on this block group, because we
1066 * removed the block group from the tree fs_info->block_group_cache_tree
1067 * so no one can't find it anymore and even if someone already got this
1068 * block group before we removed it from the rbtree, they have already
1069 * incremented block_group->trimming - if they didn't, they won't find
1070 * any free space entries because we already removed them all when we
1071 * called btrfs_remove_free_space_cache().
1072 *
1073 * And we must not remove the extent map from the fs_info->mapping_tree
1074 * to prevent the same logical address range and physical device space
1075 * ranges from being reused for a new block group. This is because our
1076 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1077 * completely transactionless, so while it is trimming a range the
1078 * currently running transaction might finish and a new one start,
1079 * allowing for new block groups to be created that can reuse the same
1080 * physical device locations unless we take this special care.
1081 *
1082 * There may also be an implicit trim operation if the file system
1083 * is mounted with -odiscard. The same protections must remain
1084 * in place until the extents have been discarded completely when
1085 * the transaction commit has completed.
1086 */
1087 remove_em = (atomic_read(&block_group->trimming) == 0);
1088 spin_unlock(&block_group->lock);
1089
1090 mutex_unlock(&fs_info->chunk_mutex);
1091
1092 ret = remove_block_group_free_space(trans, block_group);
1093 if (ret)
1094 goto out;
1095
1096 btrfs_put_block_group(block_group);
1097 btrfs_put_block_group(block_group);
1098
1099 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1100 if (ret > 0)
1101 ret = -EIO;
1102 if (ret < 0)
1103 goto out;
1104
1105 ret = btrfs_del_item(trans, root, path);
1106 if (ret)
1107 goto out;
1108
1109 if (remove_em) {
1110 struct extent_map_tree *em_tree;
1111
1112 em_tree = &fs_info->mapping_tree;
1113 write_lock(&em_tree->lock);
1114 remove_extent_mapping(em_tree, em);
1115 write_unlock(&em_tree->lock);
1116 /* once for the tree */
1117 free_extent_map(em);
1118 }
1119out:
1120 if (remove_rsv)
1121 btrfs_delayed_refs_rsv_release(fs_info, 1);
1122 btrfs_free_path(path);
1123 return ret;
1124}
1125
1126struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1127 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1128{
1129 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1130 struct extent_map *em;
1131 struct map_lookup *map;
1132 unsigned int num_items;
1133
1134 read_lock(&em_tree->lock);
1135 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1136 read_unlock(&em_tree->lock);
1137 ASSERT(em && em->start == chunk_offset);
1138
1139 /*
1140 * We need to reserve 3 + N units from the metadata space info in order
1141 * to remove a block group (done at btrfs_remove_chunk() and at
1142 * btrfs_remove_block_group()), which are used for:
1143 *
1144 * 1 unit for adding the free space inode's orphan (located in the tree
1145 * of tree roots).
1146 * 1 unit for deleting the block group item (located in the extent
1147 * tree).
1148 * 1 unit for deleting the free space item (located in tree of tree
1149 * roots).
1150 * N units for deleting N device extent items corresponding to each
1151 * stripe (located in the device tree).
1152 *
1153 * In order to remove a block group we also need to reserve units in the
1154 * system space info in order to update the chunk tree (update one or
1155 * more device items and remove one chunk item), but this is done at
1156 * btrfs_remove_chunk() through a call to check_system_chunk().
1157 */
1158 map = em->map_lookup;
1159 num_items = 3 + map->num_stripes;
1160 free_extent_map(em);
1161
1162 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1163 num_items, 1);
1164}
1165
1166/*
Josef Bacik26ce2092019-06-20 15:37:59 -04001167 * Mark block group @cache read-only, so later write won't happen to block
1168 * group @cache.
1169 *
1170 * If @force is not set, this function will only mark the block group readonly
1171 * if we have enough free space (1M) in other metadata/system block groups.
1172 * If @force is not set, this function will mark the block group readonly
1173 * without checking free space.
1174 *
1175 * NOTE: This function doesn't care if other block groups can contain all the
1176 * data in this block group. That check should be done by relocation routine,
1177 * not this function.
1178 */
Josef Bacike11c0402019-06-20 15:38:07 -04001179static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
Josef Bacik26ce2092019-06-20 15:37:59 -04001180{
1181 struct btrfs_space_info *sinfo = cache->space_info;
1182 u64 num_bytes;
1183 u64 sinfo_used;
1184 u64 min_allocable_bytes;
1185 int ret = -ENOSPC;
1186
1187 /*
1188 * We need some metadata space and system metadata space for
1189 * allocating chunks in some corner cases until we force to set
1190 * it to be readonly.
1191 */
1192 if ((sinfo->flags &
1193 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
1194 !force)
1195 min_allocable_bytes = SZ_1M;
1196 else
1197 min_allocable_bytes = 0;
1198
1199 spin_lock(&sinfo->lock);
1200 spin_lock(&cache->lock);
1201
1202 if (cache->ro) {
1203 cache->ro++;
1204 ret = 0;
1205 goto out;
1206 }
1207
David Sterbab3470b52019-10-23 18:48:22 +02001208 num_bytes = cache->length - cache->reserved - cache->pinned -
David Sterbabf38be62019-10-23 18:48:11 +02001209 cache->bytes_super - cache->used;
Josef Bacik26ce2092019-06-20 15:37:59 -04001210 sinfo_used = btrfs_space_info_used(sinfo, true);
1211
1212 /*
1213 * sinfo_used + num_bytes should always <= sinfo->total_bytes.
1214 *
1215 * Here we make sure if we mark this bg RO, we still have enough
1216 * free space as buffer (if min_allocable_bytes is not 0).
1217 */
1218 if (sinfo_used + num_bytes + min_allocable_bytes <=
1219 sinfo->total_bytes) {
1220 sinfo->bytes_readonly += num_bytes;
1221 cache->ro++;
1222 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1223 ret = 0;
1224 }
1225out:
1226 spin_unlock(&cache->lock);
1227 spin_unlock(&sinfo->lock);
1228 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1229 btrfs_info(cache->fs_info,
David Sterbab3470b52019-10-23 18:48:22 +02001230 "unable to make block group %llu ro", cache->start);
Josef Bacik26ce2092019-06-20 15:37:59 -04001231 btrfs_info(cache->fs_info,
1232 "sinfo_used=%llu bg_num_bytes=%llu min_allocable=%llu",
1233 sinfo_used, num_bytes, min_allocable_bytes);
1234 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1235 }
1236 return ret;
1237}
1238
1239/*
Josef Bacike3e05202019-06-20 15:37:55 -04001240 * Process the unused_bgs list and remove any that don't have any allocated
1241 * space inside of them.
1242 */
1243void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1244{
1245 struct btrfs_block_group_cache *block_group;
1246 struct btrfs_space_info *space_info;
1247 struct btrfs_trans_handle *trans;
1248 int ret = 0;
1249
1250 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1251 return;
1252
1253 spin_lock(&fs_info->unused_bgs_lock);
1254 while (!list_empty(&fs_info->unused_bgs)) {
1255 u64 start, end;
1256 int trimming;
1257
1258 block_group = list_first_entry(&fs_info->unused_bgs,
1259 struct btrfs_block_group_cache,
1260 bg_list);
1261 list_del_init(&block_group->bg_list);
1262
1263 space_info = block_group->space_info;
1264
1265 if (ret || btrfs_mixed_space_info(space_info)) {
1266 btrfs_put_block_group(block_group);
1267 continue;
1268 }
1269 spin_unlock(&fs_info->unused_bgs_lock);
1270
1271 mutex_lock(&fs_info->delete_unused_bgs_mutex);
1272
1273 /* Don't want to race with allocators so take the groups_sem */
1274 down_write(&space_info->groups_sem);
1275 spin_lock(&block_group->lock);
1276 if (block_group->reserved || block_group->pinned ||
David Sterbabf38be62019-10-23 18:48:11 +02001277 block_group->used || block_group->ro ||
Josef Bacike3e05202019-06-20 15:37:55 -04001278 list_is_singular(&block_group->list)) {
1279 /*
1280 * We want to bail if we made new allocations or have
1281 * outstanding allocations in this block group. We do
1282 * the ro check in case balance is currently acting on
1283 * this block group.
1284 */
1285 trace_btrfs_skip_unused_block_group(block_group);
1286 spin_unlock(&block_group->lock);
1287 up_write(&space_info->groups_sem);
1288 goto next;
1289 }
1290 spin_unlock(&block_group->lock);
1291
1292 /* We don't want to force the issue, only flip if it's ok. */
Josef Bacike11c0402019-06-20 15:38:07 -04001293 ret = inc_block_group_ro(block_group, 0);
Josef Bacike3e05202019-06-20 15:37:55 -04001294 up_write(&space_info->groups_sem);
1295 if (ret < 0) {
1296 ret = 0;
1297 goto next;
1298 }
1299
1300 /*
1301 * Want to do this before we do anything else so we can recover
1302 * properly if we fail to join the transaction.
1303 */
1304 trans = btrfs_start_trans_remove_block_group(fs_info,
David Sterbab3470b52019-10-23 18:48:22 +02001305 block_group->start);
Josef Bacike3e05202019-06-20 15:37:55 -04001306 if (IS_ERR(trans)) {
1307 btrfs_dec_block_group_ro(block_group);
1308 ret = PTR_ERR(trans);
1309 goto next;
1310 }
1311
1312 /*
1313 * We could have pending pinned extents for this block group,
1314 * just delete them, we don't care about them anymore.
1315 */
David Sterbab3470b52019-10-23 18:48:22 +02001316 start = block_group->start;
1317 end = start + block_group->length - 1;
Josef Bacike3e05202019-06-20 15:37:55 -04001318 /*
1319 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1320 * btrfs_finish_extent_commit(). If we are at transaction N,
1321 * another task might be running finish_extent_commit() for the
1322 * previous transaction N - 1, and have seen a range belonging
1323 * to the block group in freed_extents[] before we were able to
1324 * clear the whole block group range from freed_extents[]. This
1325 * means that task can lookup for the block group after we
1326 * unpinned it from freed_extents[] and removed it, leading to
1327 * a BUG_ON() at btrfs_unpin_extent_range().
1328 */
1329 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1330 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
1331 EXTENT_DIRTY);
1332 if (ret) {
1333 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1334 btrfs_dec_block_group_ro(block_group);
1335 goto end_trans;
1336 }
1337 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
1338 EXTENT_DIRTY);
1339 if (ret) {
1340 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1341 btrfs_dec_block_group_ro(block_group);
1342 goto end_trans;
1343 }
1344 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1345
1346 /* Reset pinned so btrfs_put_block_group doesn't complain */
1347 spin_lock(&space_info->lock);
1348 spin_lock(&block_group->lock);
1349
1350 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1351 -block_group->pinned);
1352 space_info->bytes_readonly += block_group->pinned;
1353 percpu_counter_add_batch(&space_info->total_bytes_pinned,
1354 -block_group->pinned,
1355 BTRFS_TOTAL_BYTES_PINNED_BATCH);
1356 block_group->pinned = 0;
1357
1358 spin_unlock(&block_group->lock);
1359 spin_unlock(&space_info->lock);
1360
1361 /* DISCARD can flip during remount */
1362 trimming = btrfs_test_opt(fs_info, DISCARD);
1363
1364 /* Implicit trim during transaction commit. */
1365 if (trimming)
1366 btrfs_get_block_group_trimming(block_group);
1367
1368 /*
1369 * Btrfs_remove_chunk will abort the transaction if things go
1370 * horribly wrong.
1371 */
David Sterbab3470b52019-10-23 18:48:22 +02001372 ret = btrfs_remove_chunk(trans, block_group->start);
Josef Bacike3e05202019-06-20 15:37:55 -04001373
1374 if (ret) {
1375 if (trimming)
1376 btrfs_put_block_group_trimming(block_group);
1377 goto end_trans;
1378 }
1379
1380 /*
1381 * If we're not mounted with -odiscard, we can just forget
1382 * about this block group. Otherwise we'll need to wait
1383 * until transaction commit to do the actual discard.
1384 */
1385 if (trimming) {
1386 spin_lock(&fs_info->unused_bgs_lock);
1387 /*
1388 * A concurrent scrub might have added us to the list
1389 * fs_info->unused_bgs, so use a list_move operation
1390 * to add the block group to the deleted_bgs list.
1391 */
1392 list_move(&block_group->bg_list,
1393 &trans->transaction->deleted_bgs);
1394 spin_unlock(&fs_info->unused_bgs_lock);
1395 btrfs_get_block_group(block_group);
1396 }
1397end_trans:
1398 btrfs_end_transaction(trans);
1399next:
1400 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1401 btrfs_put_block_group(block_group);
1402 spin_lock(&fs_info->unused_bgs_lock);
1403 }
1404 spin_unlock(&fs_info->unused_bgs_lock);
1405}
1406
1407void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
1408{
1409 struct btrfs_fs_info *fs_info = bg->fs_info;
1410
1411 spin_lock(&fs_info->unused_bgs_lock);
1412 if (list_empty(&bg->bg_list)) {
1413 btrfs_get_block_group(bg);
1414 trace_btrfs_add_unused_block_group(bg);
1415 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1416 }
1417 spin_unlock(&fs_info->unused_bgs_lock);
1418}
Josef Bacik4358d9632019-06-20 15:37:57 -04001419
1420static int find_first_block_group(struct btrfs_fs_info *fs_info,
1421 struct btrfs_path *path,
1422 struct btrfs_key *key)
1423{
1424 struct btrfs_root *root = fs_info->extent_root;
1425 int ret = 0;
1426 struct btrfs_key found_key;
1427 struct extent_buffer *leaf;
1428 struct btrfs_block_group_item bg;
1429 u64 flags;
1430 int slot;
1431
1432 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1433 if (ret < 0)
1434 goto out;
1435
1436 while (1) {
1437 slot = path->slots[0];
1438 leaf = path->nodes[0];
1439 if (slot >= btrfs_header_nritems(leaf)) {
1440 ret = btrfs_next_leaf(root, path);
1441 if (ret == 0)
1442 continue;
1443 if (ret < 0)
1444 goto out;
1445 break;
1446 }
1447 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1448
1449 if (found_key.objectid >= key->objectid &&
1450 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1451 struct extent_map_tree *em_tree;
1452 struct extent_map *em;
1453
1454 em_tree = &root->fs_info->mapping_tree;
1455 read_lock(&em_tree->lock);
1456 em = lookup_extent_mapping(em_tree, found_key.objectid,
1457 found_key.offset);
1458 read_unlock(&em_tree->lock);
1459 if (!em) {
1460 btrfs_err(fs_info,
1461 "logical %llu len %llu found bg but no related chunk",
1462 found_key.objectid, found_key.offset);
1463 ret = -ENOENT;
1464 } else if (em->start != found_key.objectid ||
1465 em->len != found_key.offset) {
1466 btrfs_err(fs_info,
1467 "block group %llu len %llu mismatch with chunk %llu len %llu",
1468 found_key.objectid, found_key.offset,
1469 em->start, em->len);
1470 ret = -EUCLEAN;
1471 } else {
1472 read_extent_buffer(leaf, &bg,
1473 btrfs_item_ptr_offset(leaf, slot),
1474 sizeof(bg));
David Sterbade0dc452019-10-23 18:48:18 +02001475 flags = btrfs_stack_block_group_flags(&bg) &
Josef Bacik4358d9632019-06-20 15:37:57 -04001476 BTRFS_BLOCK_GROUP_TYPE_MASK;
1477
1478 if (flags != (em->map_lookup->type &
1479 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1480 btrfs_err(fs_info,
1481"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1482 found_key.objectid,
1483 found_key.offset, flags,
1484 (BTRFS_BLOCK_GROUP_TYPE_MASK &
1485 em->map_lookup->type));
1486 ret = -EUCLEAN;
1487 } else {
1488 ret = 0;
1489 }
1490 }
1491 free_extent_map(em);
1492 goto out;
1493 }
1494 path->slots[0]++;
1495 }
1496out:
1497 return ret;
1498}
1499
1500static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1501{
1502 u64 extra_flags = chunk_to_extended(flags) &
1503 BTRFS_EXTENDED_PROFILE_MASK;
1504
1505 write_seqlock(&fs_info->profiles_lock);
1506 if (flags & BTRFS_BLOCK_GROUP_DATA)
1507 fs_info->avail_data_alloc_bits |= extra_flags;
1508 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1509 fs_info->avail_metadata_alloc_bits |= extra_flags;
1510 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1511 fs_info->avail_system_alloc_bits |= extra_flags;
1512 write_sequnlock(&fs_info->profiles_lock);
1513}
1514
1515static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
1516{
1517 struct btrfs_fs_info *fs_info = cache->fs_info;
1518 u64 bytenr;
1519 u64 *logical;
1520 int stripe_len;
1521 int i, nr, ret;
1522
David Sterbab3470b52019-10-23 18:48:22 +02001523 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1524 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
Josef Bacik4358d9632019-06-20 15:37:57 -04001525 cache->bytes_super += stripe_len;
David Sterbab3470b52019-10-23 18:48:22 +02001526 ret = btrfs_add_excluded_extent(fs_info, cache->start,
Josef Bacik4358d9632019-06-20 15:37:57 -04001527 stripe_len);
1528 if (ret)
1529 return ret;
1530 }
1531
1532 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1533 bytenr = btrfs_sb_offset(i);
David Sterbab3470b52019-10-23 18:48:22 +02001534 ret = btrfs_rmap_block(fs_info, cache->start,
Josef Bacik4358d9632019-06-20 15:37:57 -04001535 bytenr, &logical, &nr, &stripe_len);
1536 if (ret)
1537 return ret;
1538
1539 while (nr--) {
1540 u64 start, len;
1541
David Sterbab3470b52019-10-23 18:48:22 +02001542 if (logical[nr] > cache->start + cache->length)
Josef Bacik4358d9632019-06-20 15:37:57 -04001543 continue;
1544
David Sterbab3470b52019-10-23 18:48:22 +02001545 if (logical[nr] + stripe_len <= cache->start)
Josef Bacik4358d9632019-06-20 15:37:57 -04001546 continue;
1547
1548 start = logical[nr];
David Sterbab3470b52019-10-23 18:48:22 +02001549 if (start < cache->start) {
1550 start = cache->start;
Josef Bacik4358d9632019-06-20 15:37:57 -04001551 len = (logical[nr] + stripe_len) - start;
1552 } else {
1553 len = min_t(u64, stripe_len,
David Sterbab3470b52019-10-23 18:48:22 +02001554 cache->start + cache->length - start);
Josef Bacik4358d9632019-06-20 15:37:57 -04001555 }
1556
1557 cache->bytes_super += len;
1558 ret = btrfs_add_excluded_extent(fs_info, start, len);
1559 if (ret) {
1560 kfree(logical);
1561 return ret;
1562 }
1563 }
1564
1565 kfree(logical);
1566 }
1567 return 0;
1568}
1569
1570static void link_block_group(struct btrfs_block_group_cache *cache)
1571{
1572 struct btrfs_space_info *space_info = cache->space_info;
1573 int index = btrfs_bg_flags_to_raid_index(cache->flags);
1574 bool first = false;
1575
1576 down_write(&space_info->groups_sem);
1577 if (list_empty(&space_info->block_groups[index]))
1578 first = true;
1579 list_add_tail(&cache->list, &space_info->block_groups[index]);
1580 up_write(&space_info->groups_sem);
1581
1582 if (first)
1583 btrfs_sysfs_add_block_group_type(cache);
1584}
1585
1586static struct btrfs_block_group_cache *btrfs_create_block_group_cache(
1587 struct btrfs_fs_info *fs_info, u64 start, u64 size)
1588{
1589 struct btrfs_block_group_cache *cache;
1590
1591 cache = kzalloc(sizeof(*cache), GFP_NOFS);
1592 if (!cache)
1593 return NULL;
1594
1595 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1596 GFP_NOFS);
1597 if (!cache->free_space_ctl) {
1598 kfree(cache);
1599 return NULL;
1600 }
1601
David Sterbab3470b52019-10-23 18:48:22 +02001602 cache->start = start;
1603 cache->length = size;
Josef Bacik4358d9632019-06-20 15:37:57 -04001604
1605 cache->fs_info = fs_info;
1606 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1607 set_free_space_tree_thresholds(cache);
1608
1609 atomic_set(&cache->count, 1);
1610 spin_lock_init(&cache->lock);
1611 init_rwsem(&cache->data_rwsem);
1612 INIT_LIST_HEAD(&cache->list);
1613 INIT_LIST_HEAD(&cache->cluster_list);
1614 INIT_LIST_HEAD(&cache->bg_list);
1615 INIT_LIST_HEAD(&cache->ro_list);
1616 INIT_LIST_HEAD(&cache->dirty_list);
1617 INIT_LIST_HEAD(&cache->io_list);
1618 btrfs_init_free_space_ctl(cache);
1619 atomic_set(&cache->trimming, 0);
1620 mutex_init(&cache->free_space_lock);
1621 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1622
1623 return cache;
1624}
1625
1626/*
1627 * Iterate all chunks and verify that each of them has the corresponding block
1628 * group
1629 */
1630static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1631{
1632 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1633 struct extent_map *em;
1634 struct btrfs_block_group_cache *bg;
1635 u64 start = 0;
1636 int ret = 0;
1637
1638 while (1) {
1639 read_lock(&map_tree->lock);
1640 /*
1641 * lookup_extent_mapping will return the first extent map
1642 * intersecting the range, so setting @len to 1 is enough to
1643 * get the first chunk.
1644 */
1645 em = lookup_extent_mapping(map_tree, start, 1);
1646 read_unlock(&map_tree->lock);
1647 if (!em)
1648 break;
1649
1650 bg = btrfs_lookup_block_group(fs_info, em->start);
1651 if (!bg) {
1652 btrfs_err(fs_info,
1653 "chunk start=%llu len=%llu doesn't have corresponding block group",
1654 em->start, em->len);
1655 ret = -EUCLEAN;
1656 free_extent_map(em);
1657 break;
1658 }
David Sterbab3470b52019-10-23 18:48:22 +02001659 if (bg->start != em->start || bg->length != em->len ||
Josef Bacik4358d9632019-06-20 15:37:57 -04001660 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1661 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1662 btrfs_err(fs_info,
1663"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1664 em->start, em->len,
1665 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
David Sterbab3470b52019-10-23 18:48:22 +02001666 bg->start, bg->length,
Josef Bacik4358d9632019-06-20 15:37:57 -04001667 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1668 ret = -EUCLEAN;
1669 free_extent_map(em);
1670 btrfs_put_block_group(bg);
1671 break;
1672 }
1673 start = em->start + em->len;
1674 free_extent_map(em);
1675 btrfs_put_block_group(bg);
1676 }
1677 return ret;
1678}
1679
1680int btrfs_read_block_groups(struct btrfs_fs_info *info)
1681{
1682 struct btrfs_path *path;
1683 int ret;
1684 struct btrfs_block_group_cache *cache;
1685 struct btrfs_space_info *space_info;
1686 struct btrfs_key key;
1687 struct btrfs_key found_key;
1688 struct extent_buffer *leaf;
1689 int need_clear = 0;
1690 u64 cache_gen;
1691 u64 feature;
1692 int mixed;
1693
1694 feature = btrfs_super_incompat_flags(info->super_copy);
1695 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
1696
1697 key.objectid = 0;
1698 key.offset = 0;
1699 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1700 path = btrfs_alloc_path();
1701 if (!path)
1702 return -ENOMEM;
1703 path->reada = READA_FORWARD;
1704
1705 cache_gen = btrfs_super_cache_generation(info->super_copy);
1706 if (btrfs_test_opt(info, SPACE_CACHE) &&
1707 btrfs_super_generation(info->super_copy) != cache_gen)
1708 need_clear = 1;
1709 if (btrfs_test_opt(info, CLEAR_CACHE))
1710 need_clear = 1;
1711
1712 while (1) {
David Sterbabf38be62019-10-23 18:48:11 +02001713 struct btrfs_block_group_item bgi;
1714
Josef Bacik4358d9632019-06-20 15:37:57 -04001715 ret = find_first_block_group(info, path, &key);
1716 if (ret > 0)
1717 break;
1718 if (ret != 0)
1719 goto error;
1720
1721 leaf = path->nodes[0];
1722 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1723
1724 cache = btrfs_create_block_group_cache(info, found_key.objectid,
1725 found_key.offset);
1726 if (!cache) {
1727 ret = -ENOMEM;
1728 goto error;
1729 }
1730
1731 if (need_clear) {
1732 /*
1733 * When we mount with old space cache, we need to
1734 * set BTRFS_DC_CLEAR and set dirty flag.
1735 *
1736 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1737 * truncate the old free space cache inode and
1738 * setup a new one.
1739 * b) Setting 'dirty flag' makes sure that we flush
1740 * the new space cache info onto disk.
1741 */
1742 if (btrfs_test_opt(info, SPACE_CACHE))
1743 cache->disk_cache_state = BTRFS_DC_CLEAR;
1744 }
1745
David Sterbabf38be62019-10-23 18:48:11 +02001746 read_extent_buffer(leaf, &bgi,
Josef Bacik4358d9632019-06-20 15:37:57 -04001747 btrfs_item_ptr_offset(leaf, path->slots[0]),
David Sterbabf38be62019-10-23 18:48:11 +02001748 sizeof(bgi));
David Sterba3d976382019-10-23 18:48:15 +02001749 /* cache::chunk_objectid is unused */
David Sterbade0dc452019-10-23 18:48:18 +02001750 cache->used = btrfs_stack_block_group_used(&bgi);
1751 cache->flags = btrfs_stack_block_group_flags(&bgi);
Josef Bacik4358d9632019-06-20 15:37:57 -04001752 if (!mixed &&
1753 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1754 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1755 btrfs_err(info,
1756"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
David Sterbab3470b52019-10-23 18:48:22 +02001757 cache->start);
Qu Wenruo4b654ac2019-10-10 10:39:26 +08001758 btrfs_put_block_group(cache);
Josef Bacik4358d9632019-06-20 15:37:57 -04001759 ret = -EINVAL;
1760 goto error;
1761 }
1762
1763 key.objectid = found_key.objectid + found_key.offset;
1764 btrfs_release_path(path);
1765
1766 /*
1767 * We need to exclude the super stripes now so that the space
1768 * info has super bytes accounted for, otherwise we'll think
1769 * we have more space than we actually do.
1770 */
1771 ret = exclude_super_stripes(cache);
1772 if (ret) {
1773 /*
1774 * We may have excluded something, so call this just in
1775 * case.
1776 */
1777 btrfs_free_excluded_extents(cache);
1778 btrfs_put_block_group(cache);
1779 goto error;
1780 }
1781
1782 /*
1783 * Check for two cases, either we are full, and therefore
1784 * don't need to bother with the caching work since we won't
1785 * find any space, or we are empty, and we can just add all
1786 * the space in and be done with it. This saves us _a_lot_ of
1787 * time, particularly in the full case.
1788 */
David Sterbabf38be62019-10-23 18:48:11 +02001789 if (found_key.offset == cache->used) {
Josef Bacik4358d9632019-06-20 15:37:57 -04001790 cache->last_byte_to_unpin = (u64)-1;
1791 cache->cached = BTRFS_CACHE_FINISHED;
1792 btrfs_free_excluded_extents(cache);
David Sterbabf38be62019-10-23 18:48:11 +02001793 } else if (cache->used == 0) {
Josef Bacik4358d9632019-06-20 15:37:57 -04001794 cache->last_byte_to_unpin = (u64)-1;
1795 cache->cached = BTRFS_CACHE_FINISHED;
1796 add_new_free_space(cache, found_key.objectid,
1797 found_key.objectid +
1798 found_key.offset);
1799 btrfs_free_excluded_extents(cache);
1800 }
1801
1802 ret = btrfs_add_block_group_cache(info, cache);
1803 if (ret) {
1804 btrfs_remove_free_space_cache(cache);
1805 btrfs_put_block_group(cache);
1806 goto error;
1807 }
1808
1809 trace_btrfs_add_block_group(info, cache, 0);
1810 btrfs_update_space_info(info, cache->flags, found_key.offset,
David Sterbabf38be62019-10-23 18:48:11 +02001811 cache->used,
Josef Bacik4358d9632019-06-20 15:37:57 -04001812 cache->bytes_super, &space_info);
1813
1814 cache->space_info = space_info;
1815
1816 link_block_group(cache);
1817
1818 set_avail_alloc_bits(info, cache->flags);
David Sterbab3470b52019-10-23 18:48:22 +02001819 if (btrfs_chunk_readonly(info, cache->start)) {
Josef Bacike11c0402019-06-20 15:38:07 -04001820 inc_block_group_ro(cache, 1);
David Sterbabf38be62019-10-23 18:48:11 +02001821 } else if (cache->used == 0) {
Josef Bacik4358d9632019-06-20 15:37:57 -04001822 ASSERT(list_empty(&cache->bg_list));
1823 btrfs_mark_bg_unused(cache);
1824 }
1825 }
1826
1827 list_for_each_entry_rcu(space_info, &info->space_info, list) {
1828 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
1829 (BTRFS_BLOCK_GROUP_RAID10 |
1830 BTRFS_BLOCK_GROUP_RAID1_MASK |
1831 BTRFS_BLOCK_GROUP_RAID56_MASK |
1832 BTRFS_BLOCK_GROUP_DUP)))
1833 continue;
1834 /*
1835 * Avoid allocating from un-mirrored block group if there are
1836 * mirrored block groups.
1837 */
1838 list_for_each_entry(cache,
1839 &space_info->block_groups[BTRFS_RAID_RAID0],
1840 list)
Josef Bacike11c0402019-06-20 15:38:07 -04001841 inc_block_group_ro(cache, 1);
Josef Bacik4358d9632019-06-20 15:37:57 -04001842 list_for_each_entry(cache,
1843 &space_info->block_groups[BTRFS_RAID_SINGLE],
1844 list)
Josef Bacike11c0402019-06-20 15:38:07 -04001845 inc_block_group_ro(cache, 1);
Josef Bacik4358d9632019-06-20 15:37:57 -04001846 }
1847
1848 btrfs_init_global_block_rsv(info);
1849 ret = check_chunk_block_group_mappings(info);
1850error:
1851 btrfs_free_path(path);
1852 return ret;
1853}
1854
1855void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
1856{
1857 struct btrfs_fs_info *fs_info = trans->fs_info;
1858 struct btrfs_block_group_cache *block_group;
1859 struct btrfs_root *extent_root = fs_info->extent_root;
1860 struct btrfs_block_group_item item;
1861 struct btrfs_key key;
1862 int ret = 0;
1863
1864 if (!trans->can_flush_pending_bgs)
1865 return;
1866
1867 while (!list_empty(&trans->new_bgs)) {
1868 block_group = list_first_entry(&trans->new_bgs,
1869 struct btrfs_block_group_cache,
1870 bg_list);
1871 if (ret)
1872 goto next;
1873
1874 spin_lock(&block_group->lock);
David Sterbade0dc452019-10-23 18:48:18 +02001875 btrfs_set_stack_block_group_used(&item, block_group->used);
1876 btrfs_set_stack_block_group_chunk_objectid(&item,
David Sterba3d976382019-10-23 18:48:15 +02001877 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
David Sterbade0dc452019-10-23 18:48:18 +02001878 btrfs_set_stack_block_group_flags(&item, block_group->flags);
David Sterbab3470b52019-10-23 18:48:22 +02001879 key.objectid = block_group->start;
1880 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1881 key.offset = block_group->length;
Josef Bacik4358d9632019-06-20 15:37:57 -04001882 spin_unlock(&block_group->lock);
1883
1884 ret = btrfs_insert_item(trans, extent_root, &key, &item,
1885 sizeof(item));
1886 if (ret)
1887 btrfs_abort_transaction(trans, ret);
1888 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
1889 if (ret)
1890 btrfs_abort_transaction(trans, ret);
1891 add_block_group_free_space(trans, block_group);
1892 /* Already aborted the transaction if it failed. */
1893next:
1894 btrfs_delayed_refs_rsv_release(fs_info, 1);
1895 list_del_init(&block_group->bg_list);
1896 }
1897 btrfs_trans_release_chunk_metadata(trans);
1898}
1899
1900int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
1901 u64 type, u64 chunk_offset, u64 size)
1902{
1903 struct btrfs_fs_info *fs_info = trans->fs_info;
1904 struct btrfs_block_group_cache *cache;
1905 int ret;
1906
1907 btrfs_set_log_full_commit(trans);
1908
1909 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
1910 if (!cache)
1911 return -ENOMEM;
1912
David Sterbabf38be62019-10-23 18:48:11 +02001913 cache->used = bytes_used;
Josef Bacik4358d9632019-06-20 15:37:57 -04001914 cache->flags = type;
1915 cache->last_byte_to_unpin = (u64)-1;
1916 cache->cached = BTRFS_CACHE_FINISHED;
1917 cache->needs_free_space = 1;
1918 ret = exclude_super_stripes(cache);
1919 if (ret) {
1920 /* We may have excluded something, so call this just in case */
1921 btrfs_free_excluded_extents(cache);
1922 btrfs_put_block_group(cache);
1923 return ret;
1924 }
1925
1926 add_new_free_space(cache, chunk_offset, chunk_offset + size);
1927
1928 btrfs_free_excluded_extents(cache);
1929
1930#ifdef CONFIG_BTRFS_DEBUG
1931 if (btrfs_should_fragment_free_space(cache)) {
1932 u64 new_bytes_used = size - bytes_used;
1933
1934 bytes_used += new_bytes_used >> 1;
Josef Bacike11c0402019-06-20 15:38:07 -04001935 fragment_free_space(cache);
Josef Bacik4358d9632019-06-20 15:37:57 -04001936 }
1937#endif
1938 /*
1939 * Ensure the corresponding space_info object is created and
1940 * assigned to our block group. We want our bg to be added to the rbtree
1941 * with its ->space_info set.
1942 */
1943 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
1944 ASSERT(cache->space_info);
1945
1946 ret = btrfs_add_block_group_cache(fs_info, cache);
1947 if (ret) {
1948 btrfs_remove_free_space_cache(cache);
1949 btrfs_put_block_group(cache);
1950 return ret;
1951 }
1952
1953 /*
1954 * Now that our block group has its ->space_info set and is inserted in
1955 * the rbtree, update the space info's counters.
1956 */
1957 trace_btrfs_add_block_group(fs_info, cache, 1);
1958 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
1959 cache->bytes_super, &cache->space_info);
1960 btrfs_update_global_block_rsv(fs_info);
1961
1962 link_block_group(cache);
1963
1964 list_add_tail(&cache->bg_list, &trans->new_bgs);
1965 trans->delayed_ref_updates++;
1966 btrfs_update_delayed_refs_rsv(trans);
1967
1968 set_avail_alloc_bits(fs_info, type);
1969 return 0;
1970}
Josef Bacik26ce2092019-06-20 15:37:59 -04001971
1972static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
1973{
1974 u64 num_devices;
1975 u64 stripped;
1976
1977 /*
1978 * if restripe for this chunk_type is on pick target profile and
1979 * return, otherwise do the usual balance
1980 */
Josef Bacike11c0402019-06-20 15:38:07 -04001981 stripped = get_restripe_target(fs_info, flags);
Josef Bacik26ce2092019-06-20 15:37:59 -04001982 if (stripped)
1983 return extended_to_chunk(stripped);
1984
1985 num_devices = fs_info->fs_devices->rw_devices;
1986
1987 stripped = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID56_MASK |
1988 BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10;
1989
1990 if (num_devices == 1) {
1991 stripped |= BTRFS_BLOCK_GROUP_DUP;
1992 stripped = flags & ~stripped;
1993
1994 /* turn raid0 into single device chunks */
1995 if (flags & BTRFS_BLOCK_GROUP_RAID0)
1996 return stripped;
1997
1998 /* turn mirroring into duplication */
1999 if (flags & (BTRFS_BLOCK_GROUP_RAID1_MASK |
2000 BTRFS_BLOCK_GROUP_RAID10))
2001 return stripped | BTRFS_BLOCK_GROUP_DUP;
2002 } else {
2003 /* they already had raid on here, just return */
2004 if (flags & stripped)
2005 return flags;
2006
2007 stripped |= BTRFS_BLOCK_GROUP_DUP;
2008 stripped = flags & ~stripped;
2009
2010 /* switch duplicated blocks with raid1 */
2011 if (flags & BTRFS_BLOCK_GROUP_DUP)
2012 return stripped | BTRFS_BLOCK_GROUP_RAID1;
2013
2014 /* this is drive concat, leave it alone */
2015 }
2016
2017 return flags;
2018}
2019
2020int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
2021
2022{
2023 struct btrfs_fs_info *fs_info = cache->fs_info;
2024 struct btrfs_trans_handle *trans;
2025 u64 alloc_flags;
2026 int ret;
2027
2028again:
2029 trans = btrfs_join_transaction(fs_info->extent_root);
2030 if (IS_ERR(trans))
2031 return PTR_ERR(trans);
2032
2033 /*
2034 * we're not allowed to set block groups readonly after the dirty
2035 * block groups cache has started writing. If it already started,
2036 * back off and let this transaction commit
2037 */
2038 mutex_lock(&fs_info->ro_block_group_mutex);
2039 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2040 u64 transid = trans->transid;
2041
2042 mutex_unlock(&fs_info->ro_block_group_mutex);
2043 btrfs_end_transaction(trans);
2044
2045 ret = btrfs_wait_for_commit(fs_info, transid);
2046 if (ret)
2047 return ret;
2048 goto again;
2049 }
2050
2051 /*
2052 * if we are changing raid levels, try to allocate a corresponding
2053 * block group with the new raid level.
2054 */
2055 alloc_flags = update_block_group_flags(fs_info, cache->flags);
2056 if (alloc_flags != cache->flags) {
2057 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2058 /*
2059 * ENOSPC is allowed here, we may have enough space
2060 * already allocated at the new raid level to
2061 * carry on
2062 */
2063 if (ret == -ENOSPC)
2064 ret = 0;
2065 if (ret < 0)
2066 goto out;
2067 }
2068
Josef Bacike11c0402019-06-20 15:38:07 -04002069 ret = inc_block_group_ro(cache, 0);
Josef Bacik26ce2092019-06-20 15:37:59 -04002070 if (!ret)
2071 goto out;
2072 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2073 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2074 if (ret < 0)
2075 goto out;
Josef Bacike11c0402019-06-20 15:38:07 -04002076 ret = inc_block_group_ro(cache, 0);
Josef Bacik26ce2092019-06-20 15:37:59 -04002077out:
2078 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2079 alloc_flags = update_block_group_flags(fs_info, cache->flags);
2080 mutex_lock(&fs_info->chunk_mutex);
2081 check_system_chunk(trans, alloc_flags);
2082 mutex_unlock(&fs_info->chunk_mutex);
2083 }
2084 mutex_unlock(&fs_info->ro_block_group_mutex);
2085
2086 btrfs_end_transaction(trans);
2087 return ret;
2088}
2089
2090void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
2091{
2092 struct btrfs_space_info *sinfo = cache->space_info;
2093 u64 num_bytes;
2094
2095 BUG_ON(!cache->ro);
2096
2097 spin_lock(&sinfo->lock);
2098 spin_lock(&cache->lock);
2099 if (!--cache->ro) {
David Sterbab3470b52019-10-23 18:48:22 +02002100 num_bytes = cache->length - cache->reserved -
David Sterbabf38be62019-10-23 18:48:11 +02002101 cache->pinned - cache->bytes_super - cache->used;
Josef Bacik26ce2092019-06-20 15:37:59 -04002102 sinfo->bytes_readonly -= num_bytes;
2103 list_del_init(&cache->ro_list);
2104 }
2105 spin_unlock(&cache->lock);
2106 spin_unlock(&sinfo->lock);
2107}
Josef Bacik77745c02019-06-20 15:38:00 -04002108
2109static int write_one_cache_group(struct btrfs_trans_handle *trans,
2110 struct btrfs_path *path,
2111 struct btrfs_block_group_cache *cache)
2112{
2113 struct btrfs_fs_info *fs_info = trans->fs_info;
2114 int ret;
2115 struct btrfs_root *extent_root = fs_info->extent_root;
2116 unsigned long bi;
2117 struct extent_buffer *leaf;
David Sterbabf38be62019-10-23 18:48:11 +02002118 struct btrfs_block_group_item bgi;
David Sterbab3470b52019-10-23 18:48:22 +02002119 struct btrfs_key key;
Josef Bacik77745c02019-06-20 15:38:00 -04002120
David Sterbab3470b52019-10-23 18:48:22 +02002121 key.objectid = cache->start;
2122 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2123 key.offset = cache->length;
2124
2125 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 1);
Josef Bacik77745c02019-06-20 15:38:00 -04002126 if (ret) {
2127 if (ret > 0)
2128 ret = -ENOENT;
2129 goto fail;
2130 }
2131
2132 leaf = path->nodes[0];
2133 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
David Sterbade0dc452019-10-23 18:48:18 +02002134 btrfs_set_stack_block_group_used(&bgi, cache->used);
2135 btrfs_set_stack_block_group_chunk_objectid(&bgi,
David Sterba3d976382019-10-23 18:48:15 +02002136 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
David Sterbade0dc452019-10-23 18:48:18 +02002137 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
David Sterbabf38be62019-10-23 18:48:11 +02002138 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
Josef Bacik77745c02019-06-20 15:38:00 -04002139 btrfs_mark_buffer_dirty(leaf);
2140fail:
2141 btrfs_release_path(path);
2142 return ret;
2143
2144}
2145
2146static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2147 struct btrfs_trans_handle *trans,
2148 struct btrfs_path *path)
2149{
2150 struct btrfs_fs_info *fs_info = block_group->fs_info;
2151 struct btrfs_root *root = fs_info->tree_root;
2152 struct inode *inode = NULL;
2153 struct extent_changeset *data_reserved = NULL;
2154 u64 alloc_hint = 0;
2155 int dcs = BTRFS_DC_ERROR;
2156 u64 num_pages = 0;
2157 int retries = 0;
2158 int ret = 0;
2159
2160 /*
2161 * If this block group is smaller than 100 megs don't bother caching the
2162 * block group.
2163 */
David Sterbab3470b52019-10-23 18:48:22 +02002164 if (block_group->length < (100 * SZ_1M)) {
Josef Bacik77745c02019-06-20 15:38:00 -04002165 spin_lock(&block_group->lock);
2166 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2167 spin_unlock(&block_group->lock);
2168 return 0;
2169 }
2170
2171 if (trans->aborted)
2172 return 0;
2173again:
2174 inode = lookup_free_space_inode(block_group, path);
2175 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2176 ret = PTR_ERR(inode);
2177 btrfs_release_path(path);
2178 goto out;
2179 }
2180
2181 if (IS_ERR(inode)) {
2182 BUG_ON(retries);
2183 retries++;
2184
2185 if (block_group->ro)
2186 goto out_free;
2187
2188 ret = create_free_space_inode(trans, block_group, path);
2189 if (ret)
2190 goto out_free;
2191 goto again;
2192 }
2193
2194 /*
2195 * We want to set the generation to 0, that way if anything goes wrong
2196 * from here on out we know not to trust this cache when we load up next
2197 * time.
2198 */
2199 BTRFS_I(inode)->generation = 0;
2200 ret = btrfs_update_inode(trans, root, inode);
2201 if (ret) {
2202 /*
2203 * So theoretically we could recover from this, simply set the
2204 * super cache generation to 0 so we know to invalidate the
2205 * cache, but then we'd have to keep track of the block groups
2206 * that fail this way so we know we _have_ to reset this cache
2207 * before the next commit or risk reading stale cache. So to
2208 * limit our exposure to horrible edge cases lets just abort the
2209 * transaction, this only happens in really bad situations
2210 * anyway.
2211 */
2212 btrfs_abort_transaction(trans, ret);
2213 goto out_put;
2214 }
2215 WARN_ON(ret);
2216
2217 /* We've already setup this transaction, go ahead and exit */
2218 if (block_group->cache_generation == trans->transid &&
2219 i_size_read(inode)) {
2220 dcs = BTRFS_DC_SETUP;
2221 goto out_put;
2222 }
2223
2224 if (i_size_read(inode) > 0) {
2225 ret = btrfs_check_trunc_cache_free_space(fs_info,
2226 &fs_info->global_block_rsv);
2227 if (ret)
2228 goto out_put;
2229
2230 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2231 if (ret)
2232 goto out_put;
2233 }
2234
2235 spin_lock(&block_group->lock);
2236 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2237 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2238 /*
2239 * don't bother trying to write stuff out _if_
2240 * a) we're not cached,
2241 * b) we're with nospace_cache mount option,
2242 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2243 */
2244 dcs = BTRFS_DC_WRITTEN;
2245 spin_unlock(&block_group->lock);
2246 goto out_put;
2247 }
2248 spin_unlock(&block_group->lock);
2249
2250 /*
2251 * We hit an ENOSPC when setting up the cache in this transaction, just
2252 * skip doing the setup, we've already cleared the cache so we're safe.
2253 */
2254 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2255 ret = -ENOSPC;
2256 goto out_put;
2257 }
2258
2259 /*
2260 * Try to preallocate enough space based on how big the block group is.
2261 * Keep in mind this has to include any pinned space which could end up
2262 * taking up quite a bit since it's not folded into the other space
2263 * cache.
2264 */
David Sterbab3470b52019-10-23 18:48:22 +02002265 num_pages = div_u64(block_group->length, SZ_256M);
Josef Bacik77745c02019-06-20 15:38:00 -04002266 if (!num_pages)
2267 num_pages = 1;
2268
2269 num_pages *= 16;
2270 num_pages *= PAGE_SIZE;
2271
2272 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
2273 if (ret)
2274 goto out_put;
2275
2276 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2277 num_pages, num_pages,
2278 &alloc_hint);
2279 /*
2280 * Our cache requires contiguous chunks so that we don't modify a bunch
2281 * of metadata or split extents when writing the cache out, which means
2282 * we can enospc if we are heavily fragmented in addition to just normal
2283 * out of space conditions. So if we hit this just skip setting up any
2284 * other block groups for this transaction, maybe we'll unpin enough
2285 * space the next time around.
2286 */
2287 if (!ret)
2288 dcs = BTRFS_DC_SETUP;
2289 else if (ret == -ENOSPC)
2290 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2291
2292out_put:
2293 iput(inode);
2294out_free:
2295 btrfs_release_path(path);
2296out:
2297 spin_lock(&block_group->lock);
2298 if (!ret && dcs == BTRFS_DC_SETUP)
2299 block_group->cache_generation = trans->transid;
2300 block_group->disk_cache_state = dcs;
2301 spin_unlock(&block_group->lock);
2302
2303 extent_changeset_free(data_reserved);
2304 return ret;
2305}
2306
2307int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2308{
2309 struct btrfs_fs_info *fs_info = trans->fs_info;
2310 struct btrfs_block_group_cache *cache, *tmp;
2311 struct btrfs_transaction *cur_trans = trans->transaction;
2312 struct btrfs_path *path;
2313
2314 if (list_empty(&cur_trans->dirty_bgs) ||
2315 !btrfs_test_opt(fs_info, SPACE_CACHE))
2316 return 0;
2317
2318 path = btrfs_alloc_path();
2319 if (!path)
2320 return -ENOMEM;
2321
2322 /* Could add new block groups, use _safe just in case */
2323 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2324 dirty_list) {
2325 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2326 cache_save_setup(cache, trans, path);
2327 }
2328
2329 btrfs_free_path(path);
2330 return 0;
2331}
2332
2333/*
2334 * Transaction commit does final block group cache writeback during a critical
2335 * section where nothing is allowed to change the FS. This is required in
2336 * order for the cache to actually match the block group, but can introduce a
2337 * lot of latency into the commit.
2338 *
2339 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2340 * There's a chance we'll have to redo some of it if the block group changes
2341 * again during the commit, but it greatly reduces the commit latency by
2342 * getting rid of the easy block groups while we're still allowing others to
2343 * join the commit.
2344 */
2345int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2346{
2347 struct btrfs_fs_info *fs_info = trans->fs_info;
2348 struct btrfs_block_group_cache *cache;
2349 struct btrfs_transaction *cur_trans = trans->transaction;
2350 int ret = 0;
2351 int should_put;
2352 struct btrfs_path *path = NULL;
2353 LIST_HEAD(dirty);
2354 struct list_head *io = &cur_trans->io_bgs;
2355 int num_started = 0;
2356 int loops = 0;
2357
2358 spin_lock(&cur_trans->dirty_bgs_lock);
2359 if (list_empty(&cur_trans->dirty_bgs)) {
2360 spin_unlock(&cur_trans->dirty_bgs_lock);
2361 return 0;
2362 }
2363 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2364 spin_unlock(&cur_trans->dirty_bgs_lock);
2365
2366again:
2367 /* Make sure all the block groups on our dirty list actually exist */
2368 btrfs_create_pending_block_groups(trans);
2369
2370 if (!path) {
2371 path = btrfs_alloc_path();
2372 if (!path)
2373 return -ENOMEM;
2374 }
2375
2376 /*
2377 * cache_write_mutex is here only to save us from balance or automatic
2378 * removal of empty block groups deleting this block group while we are
2379 * writing out the cache
2380 */
2381 mutex_lock(&trans->transaction->cache_write_mutex);
2382 while (!list_empty(&dirty)) {
2383 bool drop_reserve = true;
2384
2385 cache = list_first_entry(&dirty,
2386 struct btrfs_block_group_cache,
2387 dirty_list);
2388 /*
2389 * This can happen if something re-dirties a block group that
2390 * is already under IO. Just wait for it to finish and then do
2391 * it all again
2392 */
2393 if (!list_empty(&cache->io_list)) {
2394 list_del_init(&cache->io_list);
2395 btrfs_wait_cache_io(trans, cache, path);
2396 btrfs_put_block_group(cache);
2397 }
2398
2399
2400 /*
2401 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2402 * it should update the cache_state. Don't delete until after
2403 * we wait.
2404 *
2405 * Since we're not running in the commit critical section
2406 * we need the dirty_bgs_lock to protect from update_block_group
2407 */
2408 spin_lock(&cur_trans->dirty_bgs_lock);
2409 list_del_init(&cache->dirty_list);
2410 spin_unlock(&cur_trans->dirty_bgs_lock);
2411
2412 should_put = 1;
2413
2414 cache_save_setup(cache, trans, path);
2415
2416 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2417 cache->io_ctl.inode = NULL;
2418 ret = btrfs_write_out_cache(trans, cache, path);
2419 if (ret == 0 && cache->io_ctl.inode) {
2420 num_started++;
2421 should_put = 0;
2422
2423 /*
2424 * The cache_write_mutex is protecting the
2425 * io_list, also refer to the definition of
2426 * btrfs_transaction::io_bgs for more details
2427 */
2428 list_add_tail(&cache->io_list, io);
2429 } else {
2430 /*
2431 * If we failed to write the cache, the
2432 * generation will be bad and life goes on
2433 */
2434 ret = 0;
2435 }
2436 }
2437 if (!ret) {
2438 ret = write_one_cache_group(trans, path, cache);
2439 /*
2440 * Our block group might still be attached to the list
2441 * of new block groups in the transaction handle of some
2442 * other task (struct btrfs_trans_handle->new_bgs). This
2443 * means its block group item isn't yet in the extent
2444 * tree. If this happens ignore the error, as we will
2445 * try again later in the critical section of the
2446 * transaction commit.
2447 */
2448 if (ret == -ENOENT) {
2449 ret = 0;
2450 spin_lock(&cur_trans->dirty_bgs_lock);
2451 if (list_empty(&cache->dirty_list)) {
2452 list_add_tail(&cache->dirty_list,
2453 &cur_trans->dirty_bgs);
2454 btrfs_get_block_group(cache);
2455 drop_reserve = false;
2456 }
2457 spin_unlock(&cur_trans->dirty_bgs_lock);
2458 } else if (ret) {
2459 btrfs_abort_transaction(trans, ret);
2460 }
2461 }
2462
2463 /* If it's not on the io list, we need to put the block group */
2464 if (should_put)
2465 btrfs_put_block_group(cache);
2466 if (drop_reserve)
2467 btrfs_delayed_refs_rsv_release(fs_info, 1);
2468
2469 if (ret)
2470 break;
2471
2472 /*
2473 * Avoid blocking other tasks for too long. It might even save
2474 * us from writing caches for block groups that are going to be
2475 * removed.
2476 */
2477 mutex_unlock(&trans->transaction->cache_write_mutex);
2478 mutex_lock(&trans->transaction->cache_write_mutex);
2479 }
2480 mutex_unlock(&trans->transaction->cache_write_mutex);
2481
2482 /*
2483 * Go through delayed refs for all the stuff we've just kicked off
2484 * and then loop back (just once)
2485 */
2486 ret = btrfs_run_delayed_refs(trans, 0);
2487 if (!ret && loops == 0) {
2488 loops++;
2489 spin_lock(&cur_trans->dirty_bgs_lock);
2490 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2491 /*
2492 * dirty_bgs_lock protects us from concurrent block group
2493 * deletes too (not just cache_write_mutex).
2494 */
2495 if (!list_empty(&dirty)) {
2496 spin_unlock(&cur_trans->dirty_bgs_lock);
2497 goto again;
2498 }
2499 spin_unlock(&cur_trans->dirty_bgs_lock);
2500 } else if (ret < 0) {
2501 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2502 }
2503
2504 btrfs_free_path(path);
2505 return ret;
2506}
2507
2508int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2509{
2510 struct btrfs_fs_info *fs_info = trans->fs_info;
2511 struct btrfs_block_group_cache *cache;
2512 struct btrfs_transaction *cur_trans = trans->transaction;
2513 int ret = 0;
2514 int should_put;
2515 struct btrfs_path *path;
2516 struct list_head *io = &cur_trans->io_bgs;
2517 int num_started = 0;
2518
2519 path = btrfs_alloc_path();
2520 if (!path)
2521 return -ENOMEM;
2522
2523 /*
2524 * Even though we are in the critical section of the transaction commit,
2525 * we can still have concurrent tasks adding elements to this
2526 * transaction's list of dirty block groups. These tasks correspond to
2527 * endio free space workers started when writeback finishes for a
2528 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2529 * allocate new block groups as a result of COWing nodes of the root
2530 * tree when updating the free space inode. The writeback for the space
2531 * caches is triggered by an earlier call to
2532 * btrfs_start_dirty_block_groups() and iterations of the following
2533 * loop.
2534 * Also we want to do the cache_save_setup first and then run the
2535 * delayed refs to make sure we have the best chance at doing this all
2536 * in one shot.
2537 */
2538 spin_lock(&cur_trans->dirty_bgs_lock);
2539 while (!list_empty(&cur_trans->dirty_bgs)) {
2540 cache = list_first_entry(&cur_trans->dirty_bgs,
2541 struct btrfs_block_group_cache,
2542 dirty_list);
2543
2544 /*
2545 * This can happen if cache_save_setup re-dirties a block group
2546 * that is already under IO. Just wait for it to finish and
2547 * then do it all again
2548 */
2549 if (!list_empty(&cache->io_list)) {
2550 spin_unlock(&cur_trans->dirty_bgs_lock);
2551 list_del_init(&cache->io_list);
2552 btrfs_wait_cache_io(trans, cache, path);
2553 btrfs_put_block_group(cache);
2554 spin_lock(&cur_trans->dirty_bgs_lock);
2555 }
2556
2557 /*
2558 * Don't remove from the dirty list until after we've waited on
2559 * any pending IO
2560 */
2561 list_del_init(&cache->dirty_list);
2562 spin_unlock(&cur_trans->dirty_bgs_lock);
2563 should_put = 1;
2564
2565 cache_save_setup(cache, trans, path);
2566
2567 if (!ret)
2568 ret = btrfs_run_delayed_refs(trans,
2569 (unsigned long) -1);
2570
2571 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2572 cache->io_ctl.inode = NULL;
2573 ret = btrfs_write_out_cache(trans, cache, path);
2574 if (ret == 0 && cache->io_ctl.inode) {
2575 num_started++;
2576 should_put = 0;
2577 list_add_tail(&cache->io_list, io);
2578 } else {
2579 /*
2580 * If we failed to write the cache, the
2581 * generation will be bad and life goes on
2582 */
2583 ret = 0;
2584 }
2585 }
2586 if (!ret) {
2587 ret = write_one_cache_group(trans, path, cache);
2588 /*
2589 * One of the free space endio workers might have
2590 * created a new block group while updating a free space
2591 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2592 * and hasn't released its transaction handle yet, in
2593 * which case the new block group is still attached to
2594 * its transaction handle and its creation has not
2595 * finished yet (no block group item in the extent tree
2596 * yet, etc). If this is the case, wait for all free
2597 * space endio workers to finish and retry. This is a
2598 * a very rare case so no need for a more efficient and
2599 * complex approach.
2600 */
2601 if (ret == -ENOENT) {
2602 wait_event(cur_trans->writer_wait,
2603 atomic_read(&cur_trans->num_writers) == 1);
2604 ret = write_one_cache_group(trans, path, cache);
2605 }
2606 if (ret)
2607 btrfs_abort_transaction(trans, ret);
2608 }
2609
2610 /* If its not on the io list, we need to put the block group */
2611 if (should_put)
2612 btrfs_put_block_group(cache);
2613 btrfs_delayed_refs_rsv_release(fs_info, 1);
2614 spin_lock(&cur_trans->dirty_bgs_lock);
2615 }
2616 spin_unlock(&cur_trans->dirty_bgs_lock);
2617
2618 /*
2619 * Refer to the definition of io_bgs member for details why it's safe
2620 * to use it without any locking
2621 */
2622 while (!list_empty(io)) {
2623 cache = list_first_entry(io, struct btrfs_block_group_cache,
2624 io_list);
2625 list_del_init(&cache->io_list);
2626 btrfs_wait_cache_io(trans, cache, path);
2627 btrfs_put_block_group(cache);
2628 }
2629
2630 btrfs_free_path(path);
2631 return ret;
2632}
Josef Bacik606d1bf2019-06-20 15:38:02 -04002633
2634int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2635 u64 bytenr, u64 num_bytes, int alloc)
2636{
2637 struct btrfs_fs_info *info = trans->fs_info;
2638 struct btrfs_block_group_cache *cache = NULL;
2639 u64 total = num_bytes;
2640 u64 old_val;
2641 u64 byte_in_group;
2642 int factor;
2643 int ret = 0;
2644
2645 /* Block accounting for super block */
2646 spin_lock(&info->delalloc_root_lock);
2647 old_val = btrfs_super_bytes_used(info->super_copy);
2648 if (alloc)
2649 old_val += num_bytes;
2650 else
2651 old_val -= num_bytes;
2652 btrfs_set_super_bytes_used(info->super_copy, old_val);
2653 spin_unlock(&info->delalloc_root_lock);
2654
2655 while (total) {
2656 cache = btrfs_lookup_block_group(info, bytenr);
2657 if (!cache) {
2658 ret = -ENOENT;
2659 break;
2660 }
2661 factor = btrfs_bg_type_to_factor(cache->flags);
2662
2663 /*
2664 * If this block group has free space cache written out, we
2665 * need to make sure to load it if we are removing space. This
2666 * is because we need the unpinning stage to actually add the
2667 * space back to the block group, otherwise we will leak space.
2668 */
Josef Bacika60adce2019-09-24 16:50:44 -04002669 if (!alloc && !btrfs_block_group_cache_done(cache))
Josef Bacik606d1bf2019-06-20 15:38:02 -04002670 btrfs_cache_block_group(cache, 1);
2671
David Sterbab3470b52019-10-23 18:48:22 +02002672 byte_in_group = bytenr - cache->start;
2673 WARN_ON(byte_in_group > cache->length);
Josef Bacik606d1bf2019-06-20 15:38:02 -04002674
2675 spin_lock(&cache->space_info->lock);
2676 spin_lock(&cache->lock);
2677
2678 if (btrfs_test_opt(info, SPACE_CACHE) &&
2679 cache->disk_cache_state < BTRFS_DC_CLEAR)
2680 cache->disk_cache_state = BTRFS_DC_CLEAR;
2681
David Sterbabf38be62019-10-23 18:48:11 +02002682 old_val = cache->used;
David Sterbab3470b52019-10-23 18:48:22 +02002683 num_bytes = min(total, cache->length - byte_in_group);
Josef Bacik606d1bf2019-06-20 15:38:02 -04002684 if (alloc) {
2685 old_val += num_bytes;
David Sterbabf38be62019-10-23 18:48:11 +02002686 cache->used = old_val;
Josef Bacik606d1bf2019-06-20 15:38:02 -04002687 cache->reserved -= num_bytes;
2688 cache->space_info->bytes_reserved -= num_bytes;
2689 cache->space_info->bytes_used += num_bytes;
2690 cache->space_info->disk_used += num_bytes * factor;
2691 spin_unlock(&cache->lock);
2692 spin_unlock(&cache->space_info->lock);
2693 } else {
2694 old_val -= num_bytes;
David Sterbabf38be62019-10-23 18:48:11 +02002695 cache->used = old_val;
Josef Bacik606d1bf2019-06-20 15:38:02 -04002696 cache->pinned += num_bytes;
2697 btrfs_space_info_update_bytes_pinned(info,
2698 cache->space_info, num_bytes);
2699 cache->space_info->bytes_used -= num_bytes;
2700 cache->space_info->disk_used -= num_bytes * factor;
2701 spin_unlock(&cache->lock);
2702 spin_unlock(&cache->space_info->lock);
2703
Josef Bacik606d1bf2019-06-20 15:38:02 -04002704 percpu_counter_add_batch(
2705 &cache->space_info->total_bytes_pinned,
2706 num_bytes,
2707 BTRFS_TOTAL_BYTES_PINNED_BATCH);
2708 set_extent_dirty(info->pinned_extents,
2709 bytenr, bytenr + num_bytes - 1,
2710 GFP_NOFS | __GFP_NOFAIL);
2711 }
2712
2713 spin_lock(&trans->transaction->dirty_bgs_lock);
2714 if (list_empty(&cache->dirty_list)) {
2715 list_add_tail(&cache->dirty_list,
2716 &trans->transaction->dirty_bgs);
2717 trans->delayed_ref_updates++;
2718 btrfs_get_block_group(cache);
2719 }
2720 spin_unlock(&trans->transaction->dirty_bgs_lock);
2721
2722 /*
2723 * No longer have used bytes in this block group, queue it for
2724 * deletion. We do this after adding the block group to the
2725 * dirty list to avoid races between cleaner kthread and space
2726 * cache writeout.
2727 */
2728 if (!alloc && old_val == 0)
2729 btrfs_mark_bg_unused(cache);
2730
2731 btrfs_put_block_group(cache);
2732 total -= num_bytes;
2733 bytenr += num_bytes;
2734 }
2735
2736 /* Modified block groups are accounted for in the delayed_refs_rsv. */
2737 btrfs_update_delayed_refs_rsv(trans);
2738 return ret;
2739}
2740
2741/**
2742 * btrfs_add_reserved_bytes - update the block_group and space info counters
2743 * @cache: The cache we are manipulating
2744 * @ram_bytes: The number of bytes of file content, and will be same to
2745 * @num_bytes except for the compress path.
2746 * @num_bytes: The number of bytes in question
2747 * @delalloc: The blocks are allocated for the delalloc write
2748 *
2749 * This is called by the allocator when it reserves space. If this is a
2750 * reservation and the block group has become read only we cannot make the
2751 * reservation and return -EAGAIN, otherwise this function always succeeds.
2752 */
2753int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
2754 u64 ram_bytes, u64 num_bytes, int delalloc)
2755{
2756 struct btrfs_space_info *space_info = cache->space_info;
2757 int ret = 0;
2758
2759 spin_lock(&space_info->lock);
2760 spin_lock(&cache->lock);
2761 if (cache->ro) {
2762 ret = -EAGAIN;
2763 } else {
2764 cache->reserved += num_bytes;
2765 space_info->bytes_reserved += num_bytes;
Josef Bacika43c3832019-08-22 15:10:56 -04002766 trace_btrfs_space_reservation(cache->fs_info, "space_info",
2767 space_info->flags, num_bytes, 1);
Josef Bacik606d1bf2019-06-20 15:38:02 -04002768 btrfs_space_info_update_bytes_may_use(cache->fs_info,
2769 space_info, -ram_bytes);
2770 if (delalloc)
2771 cache->delalloc_bytes += num_bytes;
2772 }
2773 spin_unlock(&cache->lock);
2774 spin_unlock(&space_info->lock);
2775 return ret;
2776}
2777
2778/**
2779 * btrfs_free_reserved_bytes - update the block_group and space info counters
2780 * @cache: The cache we are manipulating
2781 * @num_bytes: The number of bytes in question
2782 * @delalloc: The blocks are allocated for the delalloc write
2783 *
2784 * This is called by somebody who is freeing space that was never actually used
2785 * on disk. For example if you reserve some space for a new leaf in transaction
2786 * A and before transaction A commits you free that leaf, you call this with
2787 * reserve set to 0 in order to clear the reservation.
2788 */
2789void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
2790 u64 num_bytes, int delalloc)
2791{
2792 struct btrfs_space_info *space_info = cache->space_info;
2793
2794 spin_lock(&space_info->lock);
2795 spin_lock(&cache->lock);
2796 if (cache->ro)
2797 space_info->bytes_readonly += num_bytes;
2798 cache->reserved -= num_bytes;
2799 space_info->bytes_reserved -= num_bytes;
2800 space_info->max_extent_size = 0;
2801
2802 if (delalloc)
2803 cache->delalloc_bytes -= num_bytes;
2804 spin_unlock(&cache->lock);
2805 spin_unlock(&space_info->lock);
2806}
Josef Bacik07730d82019-06-20 15:38:04 -04002807
2808static void force_metadata_allocation(struct btrfs_fs_info *info)
2809{
2810 struct list_head *head = &info->space_info;
2811 struct btrfs_space_info *found;
2812
2813 rcu_read_lock();
2814 list_for_each_entry_rcu(found, head, list) {
2815 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
2816 found->force_alloc = CHUNK_ALLOC_FORCE;
2817 }
2818 rcu_read_unlock();
2819}
2820
2821static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
2822 struct btrfs_space_info *sinfo, int force)
2823{
2824 u64 bytes_used = btrfs_space_info_used(sinfo, false);
2825 u64 thresh;
2826
2827 if (force == CHUNK_ALLOC_FORCE)
2828 return 1;
2829
2830 /*
2831 * in limited mode, we want to have some free space up to
2832 * about 1% of the FS size.
2833 */
2834 if (force == CHUNK_ALLOC_LIMITED) {
2835 thresh = btrfs_super_total_bytes(fs_info->super_copy);
2836 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
2837
2838 if (sinfo->total_bytes - bytes_used < thresh)
2839 return 1;
2840 }
2841
2842 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
2843 return 0;
2844 return 1;
2845}
2846
2847int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
2848{
2849 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
2850
2851 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2852}
2853
2854/*
2855 * If force is CHUNK_ALLOC_FORCE:
2856 * - return 1 if it successfully allocates a chunk,
2857 * - return errors including -ENOSPC otherwise.
2858 * If force is NOT CHUNK_ALLOC_FORCE:
2859 * - return 0 if it doesn't need to allocate a new chunk,
2860 * - return 1 if it successfully allocates a chunk,
2861 * - return errors including -ENOSPC otherwise.
2862 */
2863int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
2864 enum btrfs_chunk_alloc_enum force)
2865{
2866 struct btrfs_fs_info *fs_info = trans->fs_info;
2867 struct btrfs_space_info *space_info;
2868 bool wait_for_alloc = false;
2869 bool should_alloc = false;
2870 int ret = 0;
2871
2872 /* Don't re-enter if we're already allocating a chunk */
2873 if (trans->allocating_chunk)
2874 return -ENOSPC;
2875
2876 space_info = btrfs_find_space_info(fs_info, flags);
2877 ASSERT(space_info);
2878
2879 do {
2880 spin_lock(&space_info->lock);
2881 if (force < space_info->force_alloc)
2882 force = space_info->force_alloc;
2883 should_alloc = should_alloc_chunk(fs_info, space_info, force);
2884 if (space_info->full) {
2885 /* No more free physical space */
2886 if (should_alloc)
2887 ret = -ENOSPC;
2888 else
2889 ret = 0;
2890 spin_unlock(&space_info->lock);
2891 return ret;
2892 } else if (!should_alloc) {
2893 spin_unlock(&space_info->lock);
2894 return 0;
2895 } else if (space_info->chunk_alloc) {
2896 /*
2897 * Someone is already allocating, so we need to block
2898 * until this someone is finished and then loop to
2899 * recheck if we should continue with our allocation
2900 * attempt.
2901 */
2902 wait_for_alloc = true;
2903 spin_unlock(&space_info->lock);
2904 mutex_lock(&fs_info->chunk_mutex);
2905 mutex_unlock(&fs_info->chunk_mutex);
2906 } else {
2907 /* Proceed with allocation */
2908 space_info->chunk_alloc = 1;
2909 wait_for_alloc = false;
2910 spin_unlock(&space_info->lock);
2911 }
2912
2913 cond_resched();
2914 } while (wait_for_alloc);
2915
2916 mutex_lock(&fs_info->chunk_mutex);
2917 trans->allocating_chunk = true;
2918
2919 /*
2920 * If we have mixed data/metadata chunks we want to make sure we keep
2921 * allocating mixed chunks instead of individual chunks.
2922 */
2923 if (btrfs_mixed_space_info(space_info))
2924 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
2925
2926 /*
2927 * if we're doing a data chunk, go ahead and make sure that
2928 * we keep a reasonable number of metadata chunks allocated in the
2929 * FS as well.
2930 */
2931 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
2932 fs_info->data_chunk_allocations++;
2933 if (!(fs_info->data_chunk_allocations %
2934 fs_info->metadata_ratio))
2935 force_metadata_allocation(fs_info);
2936 }
2937
2938 /*
2939 * Check if we have enough space in SYSTEM chunk because we may need
2940 * to update devices.
2941 */
2942 check_system_chunk(trans, flags);
2943
2944 ret = btrfs_alloc_chunk(trans, flags);
2945 trans->allocating_chunk = false;
2946
2947 spin_lock(&space_info->lock);
2948 if (ret < 0) {
2949 if (ret == -ENOSPC)
2950 space_info->full = 1;
2951 else
2952 goto out;
2953 } else {
2954 ret = 1;
2955 space_info->max_extent_size = 0;
2956 }
2957
2958 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
2959out:
2960 space_info->chunk_alloc = 0;
2961 spin_unlock(&space_info->lock);
2962 mutex_unlock(&fs_info->chunk_mutex);
2963 /*
2964 * When we allocate a new chunk we reserve space in the chunk block
2965 * reserve to make sure we can COW nodes/leafs in the chunk tree or
2966 * add new nodes/leafs to it if we end up needing to do it when
2967 * inserting the chunk item and updating device items as part of the
2968 * second phase of chunk allocation, performed by
2969 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
2970 * large number of new block groups to create in our transaction
2971 * handle's new_bgs list to avoid exhausting the chunk block reserve
2972 * in extreme cases - like having a single transaction create many new
2973 * block groups when starting to write out the free space caches of all
2974 * the block groups that were made dirty during the lifetime of the
2975 * transaction.
2976 */
2977 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
2978 btrfs_create_pending_block_groups(trans);
2979
2980 return ret;
2981}
2982
2983static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
2984{
2985 u64 num_dev;
2986
2987 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
2988 if (!num_dev)
2989 num_dev = fs_info->fs_devices->rw_devices;
2990
2991 return num_dev;
2992}
2993
2994/*
Marcos Paulo de Souzaa9143bd2019-10-07 21:50:38 -03002995 * Reserve space in the system space for allocating or removing a chunk
Josef Bacik07730d82019-06-20 15:38:04 -04002996 */
2997void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
2998{
2999 struct btrfs_fs_info *fs_info = trans->fs_info;
3000 struct btrfs_space_info *info;
3001 u64 left;
3002 u64 thresh;
3003 int ret = 0;
3004 u64 num_devs;
3005
3006 /*
3007 * Needed because we can end up allocating a system chunk and for an
3008 * atomic and race free space reservation in the chunk block reserve.
3009 */
3010 lockdep_assert_held(&fs_info->chunk_mutex);
3011
3012 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3013 spin_lock(&info->lock);
3014 left = info->total_bytes - btrfs_space_info_used(info, true);
3015 spin_unlock(&info->lock);
3016
3017 num_devs = get_profile_num_devs(fs_info, type);
3018
3019 /* num_devs device items to update and 1 chunk item to add or remove */
Josef Bacik2bd36e72019-08-22 15:14:33 -04003020 thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3021 btrfs_calc_insert_metadata_size(fs_info, 1);
Josef Bacik07730d82019-06-20 15:38:04 -04003022
3023 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3024 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3025 left, thresh, type);
3026 btrfs_dump_space_info(fs_info, info, 0, 0);
3027 }
3028
3029 if (left < thresh) {
3030 u64 flags = btrfs_system_alloc_profile(fs_info);
3031
3032 /*
3033 * Ignore failure to create system chunk. We might end up not
3034 * needing it, as we might not need to COW all nodes/leafs from
3035 * the paths we visit in the chunk tree (they were already COWed
3036 * or created in the current transaction for example).
3037 */
3038 ret = btrfs_alloc_chunk(trans, flags);
3039 }
3040
3041 if (!ret) {
3042 ret = btrfs_block_rsv_add(fs_info->chunk_root,
3043 &fs_info->chunk_block_rsv,
3044 thresh, BTRFS_RESERVE_NO_FLUSH);
3045 if (!ret)
3046 trans->chunk_bytes_reserved += thresh;
3047 }
3048}
3049
Josef Bacik3e43c272019-06-20 15:38:06 -04003050void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3051{
3052 struct btrfs_block_group_cache *block_group;
3053 u64 last = 0;
3054
3055 while (1) {
3056 struct inode *inode;
3057
3058 block_group = btrfs_lookup_first_block_group(info, last);
3059 while (block_group) {
3060 btrfs_wait_block_group_cache_done(block_group);
3061 spin_lock(&block_group->lock);
3062 if (block_group->iref)
3063 break;
3064 spin_unlock(&block_group->lock);
3065 block_group = btrfs_next_block_group(block_group);
3066 }
3067 if (!block_group) {
3068 if (last == 0)
3069 break;
3070 last = 0;
3071 continue;
3072 }
3073
3074 inode = block_group->inode;
3075 block_group->iref = 0;
3076 block_group->inode = NULL;
3077 spin_unlock(&block_group->lock);
3078 ASSERT(block_group->io_ctl.inode == NULL);
3079 iput(inode);
David Sterbab3470b52019-10-23 18:48:22 +02003080 last = block_group->start + block_group->length;
Josef Bacik3e43c272019-06-20 15:38:06 -04003081 btrfs_put_block_group(block_group);
3082 }
3083}
3084
3085/*
3086 * Must be called only after stopping all workers, since we could have block
3087 * group caching kthreads running, and therefore they could race with us if we
3088 * freed the block groups before stopping them.
3089 */
3090int btrfs_free_block_groups(struct btrfs_fs_info *info)
3091{
3092 struct btrfs_block_group_cache *block_group;
3093 struct btrfs_space_info *space_info;
3094 struct btrfs_caching_control *caching_ctl;
3095 struct rb_node *n;
3096
3097 down_write(&info->commit_root_sem);
3098 while (!list_empty(&info->caching_block_groups)) {
3099 caching_ctl = list_entry(info->caching_block_groups.next,
3100 struct btrfs_caching_control, list);
3101 list_del(&caching_ctl->list);
3102 btrfs_put_caching_control(caching_ctl);
3103 }
3104 up_write(&info->commit_root_sem);
3105
3106 spin_lock(&info->unused_bgs_lock);
3107 while (!list_empty(&info->unused_bgs)) {
3108 block_group = list_first_entry(&info->unused_bgs,
3109 struct btrfs_block_group_cache,
3110 bg_list);
3111 list_del_init(&block_group->bg_list);
3112 btrfs_put_block_group(block_group);
3113 }
3114 spin_unlock(&info->unused_bgs_lock);
3115
3116 spin_lock(&info->block_group_cache_lock);
3117 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3118 block_group = rb_entry(n, struct btrfs_block_group_cache,
3119 cache_node);
3120 rb_erase(&block_group->cache_node,
3121 &info->block_group_cache_tree);
3122 RB_CLEAR_NODE(&block_group->cache_node);
3123 spin_unlock(&info->block_group_cache_lock);
3124
3125 down_write(&block_group->space_info->groups_sem);
3126 list_del(&block_group->list);
3127 up_write(&block_group->space_info->groups_sem);
3128
3129 /*
3130 * We haven't cached this block group, which means we could
3131 * possibly have excluded extents on this block group.
3132 */
3133 if (block_group->cached == BTRFS_CACHE_NO ||
3134 block_group->cached == BTRFS_CACHE_ERROR)
3135 btrfs_free_excluded_extents(block_group);
3136
3137 btrfs_remove_free_space_cache(block_group);
3138 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3139 ASSERT(list_empty(&block_group->dirty_list));
3140 ASSERT(list_empty(&block_group->io_list));
3141 ASSERT(list_empty(&block_group->bg_list));
3142 ASSERT(atomic_read(&block_group->count) == 1);
3143 btrfs_put_block_group(block_group);
3144
3145 spin_lock(&info->block_group_cache_lock);
3146 }
3147 spin_unlock(&info->block_group_cache_lock);
3148
3149 /*
3150 * Now that all the block groups are freed, go through and free all the
3151 * space_info structs. This is only called during the final stages of
3152 * unmount, and so we know nobody is using them. We call
3153 * synchronize_rcu() once before we start, just to be on the safe side.
3154 */
3155 synchronize_rcu();
3156
3157 btrfs_release_global_block_rsv(info);
3158
3159 while (!list_empty(&info->space_info)) {
3160 space_info = list_entry(info->space_info.next,
3161 struct btrfs_space_info,
3162 list);
3163
3164 /*
3165 * Do not hide this behind enospc_debug, this is actually
3166 * important and indicates a real bug if this happens.
3167 */
3168 if (WARN_ON(space_info->bytes_pinned > 0 ||
3169 space_info->bytes_reserved > 0 ||
3170 space_info->bytes_may_use > 0))
3171 btrfs_dump_space_info(info, space_info, 0, 0);
3172 list_del(&space_info->list);
3173 btrfs_sysfs_remove_space_info(space_info);
3174 }
3175 return 0;
3176}