blob: 9781d521963d145261a9b3d7e1cacfb5c3cbe5e6 [file] [log] [blame]
Greg Kroah-Hartmanb2441312017-11-01 15:07:57 +01001// SPDX-License-Identifier: GPL-2.0
Oskar Schirmer8759ef32009-06-11 14:51:15 +01002/*
3 * rational fractions
4 *
Oskar Schirmer6684b572012-05-16 09:41:19 +00005 * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com>
Trent Piepho323dd2c2019-12-04 16:51:57 -08006 * Copyright (C) 2019 Trent Piepho <tpiepho@gmail.com>
Oskar Schirmer8759ef32009-06-11 14:51:15 +01007 *
8 * helper functions when coping with rational numbers
9 */
10
11#include <linux/rational.h>
Paul Gortmaker8bc3bcc2011-11-16 21:29:17 -050012#include <linux/compiler.h>
13#include <linux/export.h>
Andy Shevchenkob296a6d2020-10-15 20:10:21 -070014#include <linux/minmax.h>
Oskar Schirmer8759ef32009-06-11 14:51:15 +010015
16/*
17 * calculate best rational approximation for a given fraction
18 * taking into account restricted register size, e.g. to find
19 * appropriate values for a pll with 5 bit denominator and
20 * 8 bit numerator register fields, trying to set up with a
21 * frequency ratio of 3.1415, one would say:
22 *
23 * rational_best_approximation(31415, 10000,
24 * (1 << 8) - 1, (1 << 5) - 1, &n, &d);
25 *
26 * you may look at given_numerator as a fixed point number,
27 * with the fractional part size described in given_denominator.
28 *
29 * for theoretical background, see:
Alexander A. Klimovd89775f2020-08-11 18:34:50 -070030 * https://en.wikipedia.org/wiki/Continued_fraction
Oskar Schirmer8759ef32009-06-11 14:51:15 +010031 */
32
33void rational_best_approximation(
34 unsigned long given_numerator, unsigned long given_denominator,
35 unsigned long max_numerator, unsigned long max_denominator,
36 unsigned long *best_numerator, unsigned long *best_denominator)
37{
Trent Piepho323dd2c2019-12-04 16:51:57 -080038 /* n/d is the starting rational, which is continually
39 * decreased each iteration using the Euclidean algorithm.
40 *
41 * dp is the value of d from the prior iteration.
42 *
43 * n2/d2, n1/d1, and n0/d0 are our successively more accurate
44 * approximations of the rational. They are, respectively,
45 * the current, previous, and two prior iterations of it.
46 *
47 * a is current term of the continued fraction.
48 */
49 unsigned long n, d, n0, d0, n1, d1, n2, d2;
Oskar Schirmer8759ef32009-06-11 14:51:15 +010050 n = given_numerator;
51 d = given_denominator;
52 n0 = d1 = 0;
53 n1 = d0 = 1;
Trent Piepho323dd2c2019-12-04 16:51:57 -080054
Oskar Schirmer8759ef32009-06-11 14:51:15 +010055 for (;;) {
Trent Piepho323dd2c2019-12-04 16:51:57 -080056 unsigned long dp, a;
57
Oskar Schirmer8759ef32009-06-11 14:51:15 +010058 if (d == 0)
59 break;
Trent Piepho323dd2c2019-12-04 16:51:57 -080060 /* Find next term in continued fraction, 'a', via
61 * Euclidean algorithm.
62 */
63 dp = d;
Oskar Schirmer8759ef32009-06-11 14:51:15 +010064 a = n / d;
65 d = n % d;
Trent Piepho323dd2c2019-12-04 16:51:57 -080066 n = dp;
67
68 /* Calculate the current rational approximation (aka
69 * convergent), n2/d2, using the term just found and
70 * the two prior approximations.
71 */
72 n2 = n0 + a * n1;
73 d2 = d0 + a * d1;
74
75 /* If the current convergent exceeds the maxes, then
76 * return either the previous convergent or the
77 * largest semi-convergent, the final term of which is
78 * found below as 't'.
79 */
80 if ((n2 > max_numerator) || (d2 > max_denominator)) {
81 unsigned long t = min((max_numerator - n0) / n1,
82 (max_denominator - d0) / d1);
83
84 /* This tests if the semi-convergent is closer
85 * than the previous convergent.
86 */
87 if (2u * t > a || (2u * t == a && d0 * dp > d1 * d)) {
88 n1 = n0 + t * n1;
89 d1 = d0 + t * d1;
90 }
91 break;
92 }
Oskar Schirmer8759ef32009-06-11 14:51:15 +010093 n0 = n1;
Trent Piepho323dd2c2019-12-04 16:51:57 -080094 n1 = n2;
Oskar Schirmer8759ef32009-06-11 14:51:15 +010095 d0 = d1;
Trent Piepho323dd2c2019-12-04 16:51:57 -080096 d1 = d2;
Oskar Schirmer8759ef32009-06-11 14:51:15 +010097 }
98 *best_numerator = n1;
99 *best_denominator = d1;
100}
101
102EXPORT_SYMBOL(rational_best_approximation);