Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Adaptec U320 device driver firmware for Linux and FreeBSD. |
| 3 | * |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 4 | * Copyright (c) 1994-2001, 2004 Justin T. Gibbs. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5 | * Copyright (c) 2000-2002 Adaptec Inc. |
| 6 | * All rights reserved. |
| 7 | * |
| 8 | * Redistribution and use in source and binary forms, with or without |
| 9 | * modification, are permitted provided that the following conditions |
| 10 | * are met: |
| 11 | * 1. Redistributions of source code must retain the above copyright |
| 12 | * notice, this list of conditions, and the following disclaimer, |
| 13 | * without modification. |
| 14 | * 2. Redistributions in binary form must reproduce at minimum a disclaimer |
| 15 | * substantially similar to the "NO WARRANTY" disclaimer below |
| 16 | * ("Disclaimer") and any redistribution must be conditioned upon |
| 17 | * including a substantially similar Disclaimer requirement for further |
| 18 | * binary redistribution. |
| 19 | * 3. Neither the names of the above-listed copyright holders nor the names |
| 20 | * of any contributors may be used to endorse or promote products derived |
| 21 | * from this software without specific prior written permission. |
| 22 | * |
| 23 | * Alternatively, this software may be distributed under the terms of the |
| 24 | * GNU General Public License ("GPL") version 2 as published by the Free |
| 25 | * Software Foundation. |
| 26 | * |
| 27 | * NO WARRANTY |
| 28 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 29 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 30 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR |
| 31 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 32 | * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 33 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 34 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 35 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 36 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING |
| 37 | * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 38 | * POSSIBILITY OF SUCH DAMAGES. |
| 39 | * |
| 40 | * $FreeBSD$ |
| 41 | */ |
| 42 | |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 43 | VERSION = "$Id: //depot/aic7xxx/aic7xxx/aic79xx.seq#120 $" |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 44 | PATCH_ARG_LIST = "struct ahd_softc *ahd" |
| 45 | PREFIX = "ahd_" |
| 46 | |
| 47 | #include "aic79xx.reg" |
| 48 | #include "scsi_message.h" |
| 49 | |
| 50 | restart: |
| 51 | if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { |
| 52 | test SEQINTCODE, 0xFF jz idle_loop; |
| 53 | SET_SEQINTCODE(NO_SEQINT) |
| 54 | } |
| 55 | |
| 56 | idle_loop: |
| 57 | |
| 58 | if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { |
| 59 | /* |
| 60 | * Convert ERROR status into a sequencer |
| 61 | * interrupt to handle the case of an |
| 62 | * interrupt collision on the hardware |
| 63 | * setting of HWERR. |
| 64 | */ |
| 65 | test ERROR, 0xFF jz no_error_set; |
| 66 | SET_SEQINTCODE(SAW_HWERR) |
| 67 | no_error_set: |
| 68 | } |
| 69 | SET_MODE(M_SCSI, M_SCSI) |
| 70 | test SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus; |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 71 | test SEQ_FLAGS2, SELECTOUT_QFROZEN jz check_waiting_list; |
| 72 | /* |
| 73 | * If the kernel has caught up with us, thaw the queue. |
| 74 | */ |
| 75 | mov A, KERNEL_QFREEZE_COUNT; |
| 76 | cmp QFREEZE_COUNT, A jne check_frozen_completions; |
| 77 | mov A, KERNEL_QFREEZE_COUNT[1]; |
| 78 | cmp QFREEZE_COUNT[1], A jne check_frozen_completions; |
| 79 | and SEQ_FLAGS2, ~SELECTOUT_QFROZEN; |
| 80 | jmp check_waiting_list; |
| 81 | check_frozen_completions: |
| 82 | test SSTAT0, SELDO|SELINGO jnz idle_loop_checkbus; |
| 83 | BEGIN_CRITICAL; |
| 84 | /* |
| 85 | * If we have completions stalled waiting for the qfreeze |
| 86 | * to take effect, move them over to the complete_scb list |
| 87 | * now that no selections are pending. |
| 88 | */ |
| 89 | cmp COMPLETE_ON_QFREEZE_HEAD[1],SCB_LIST_NULL je idle_loop_checkbus; |
| 90 | /* |
| 91 | * Find the end of the qfreeze list. The first element has |
| 92 | * to be treated specially. |
| 93 | */ |
| 94 | bmov SCBPTR, COMPLETE_ON_QFREEZE_HEAD, 2; |
| 95 | cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je join_lists; |
| 96 | /* |
| 97 | * Now the normal loop. |
| 98 | */ |
| 99 | bmov SCBPTR, SCB_NEXT_COMPLETE, 2; |
| 100 | cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL jne . - 1; |
| 101 | join_lists: |
| 102 | bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; |
| 103 | bmov COMPLETE_SCB_HEAD, COMPLETE_ON_QFREEZE_HEAD, 2; |
| 104 | mvi COMPLETE_ON_QFREEZE_HEAD[1], SCB_LIST_NULL; |
| 105 | jmp idle_loop_checkbus; |
| 106 | check_waiting_list: |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 107 | cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus; |
| 108 | /* |
| 109 | * ENSELO is cleared by a SELDO, so we must test for SELDO |
| 110 | * one last time. |
| 111 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 112 | test SSTAT0, SELDO jnz select_out; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 113 | call start_selection; |
| 114 | idle_loop_checkbus: |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 115 | test SSTAT0, SELDO jnz select_out; |
| 116 | END_CRITICAL; |
| 117 | test SSTAT0, SELDI jnz select_in; |
| 118 | test SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq; |
| 119 | test SCSISIGO, ATNO jz idle_loop_check_nonpackreq; |
| 120 | call unexpected_nonpkt_phase_find_ctxt; |
| 121 | idle_loop_check_nonpackreq: |
| 122 | test SSTAT2, NONPACKREQ jz . + 2; |
| 123 | call unexpected_nonpkt_phase_find_ctxt; |
| 124 | if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) { |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 125 | /* |
| 126 | * On Rev A. hardware, the busy LED is only |
| 127 | * turned on automaically during selections |
| 128 | * and re-selections. Make the LED status |
| 129 | * more useful by forcing it to be on so |
| 130 | * long as one of our data FIFOs is active. |
| 131 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 132 | and A, FIFO0FREE|FIFO1FREE, DFFSTAT; |
| 133 | cmp A, FIFO0FREE|FIFO1FREE jne . + 3; |
| 134 | and SBLKCTL, ~DIAGLEDEN|DIAGLEDON; |
| 135 | jmp . + 2; |
| 136 | or SBLKCTL, DIAGLEDEN|DIAGLEDON; |
| 137 | } |
| 138 | call idle_loop_gsfifo_in_scsi_mode; |
| 139 | call idle_loop_service_fifos; |
| 140 | call idle_loop_cchan; |
| 141 | jmp idle_loop; |
| 142 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 143 | idle_loop_gsfifo: |
| 144 | SET_MODE(M_SCSI, M_SCSI) |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 145 | BEGIN_CRITICAL; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 146 | idle_loop_gsfifo_in_scsi_mode: |
| 147 | test LQISTAT2, LQIGSAVAIL jz return; |
| 148 | /* |
| 149 | * We have received good status for this transaction. There may |
| 150 | * still be data in our FIFOs draining to the host. Complete |
| 151 | * the SCB only if all data has transferred to the host. |
| 152 | */ |
| 153 | good_status_IU_done: |
| 154 | bmov SCBPTR, GSFIFO, 2; |
| 155 | clr SCB_SCSI_STATUS; |
| 156 | /* |
| 157 | * If a command completed before an attempted task management |
| 158 | * function completed, notify the host after disabling any |
| 159 | * pending select-outs. |
| 160 | */ |
| 161 | test SCB_TASK_MANAGEMENT, 0xFF jz gsfifo_complete_normally; |
| 162 | test SSTAT0, SELDO|SELINGO jnz . + 2; |
| 163 | and SCSISEQ0, ~ENSELO; |
| 164 | SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY) |
| 165 | gsfifo_complete_normally: |
| 166 | or SCB_CONTROL, STATUS_RCVD; |
| 167 | |
| 168 | /* |
| 169 | * Since this status did not consume a FIFO, we have to |
| 170 | * be a bit more dilligent in how we check for FIFOs pertaining |
| 171 | * to this transaction. There are two states that a FIFO still |
| 172 | * transferring data may be in. |
| 173 | * |
| 174 | * 1) Configured and draining to the host, with a FIFO handler. |
| 175 | * 2) Pending cfg4data, fifo not empty. |
| 176 | * |
| 177 | * Case 1 can be detected by noticing a non-zero FIFO active |
| 178 | * count in the SCB. In this case, we allow the routine servicing |
| 179 | * the FIFO to complete the SCB. |
| 180 | * |
| 181 | * Case 2 implies either a pending or yet to occur save data |
| 182 | * pointers for this same context in the other FIFO. So, if |
| 183 | * we detect case 1, we will properly defer the post of the SCB |
| 184 | * and achieve the desired result. The pending cfg4data will |
| 185 | * notice that status has been received and complete the SCB. |
| 186 | */ |
| 187 | test SCB_FIFO_USE_COUNT, 0xFF jnz idle_loop_gsfifo_in_scsi_mode; |
| 188 | call complete; |
| 189 | END_CRITICAL; |
| 190 | jmp idle_loop_gsfifo_in_scsi_mode; |
| 191 | |
| 192 | idle_loop_service_fifos: |
| 193 | SET_MODE(M_DFF0, M_DFF0) |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 194 | BEGIN_CRITICAL; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 195 | test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo; |
| 196 | call longjmp; |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 197 | END_CRITICAL; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 198 | idle_loop_next_fifo: |
| 199 | SET_MODE(M_DFF1, M_DFF1) |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 200 | BEGIN_CRITICAL; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 201 | test LONGJMP_ADDR[1], INVALID_ADDR jz longjmp; |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 202 | END_CRITICAL; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 203 | return: |
| 204 | ret; |
| 205 | |
| 206 | idle_loop_cchan: |
| 207 | SET_MODE(M_CCHAN, M_CCHAN) |
| 208 | test QOFF_CTLSTA, HS_MAILBOX_ACT jz hs_mailbox_empty; |
| 209 | or QOFF_CTLSTA, HS_MAILBOX_ACT; |
| 210 | mov LOCAL_HS_MAILBOX, HS_MAILBOX; |
| 211 | hs_mailbox_empty: |
| 212 | BEGIN_CRITICAL; |
| 213 | test CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle; |
| 214 | test CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog; |
| 215 | test CCSCBCTL, CCSCBDONE jz return; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 216 | /* FALLTHROUGH */ |
| 217 | scbdma_tohost_done: |
| 218 | test CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone; |
| 219 | /* |
André Goddard Rosa | af901ca | 2009-11-14 13:09:05 -0200 | [diff] [blame^] | 220 | * An SCB has been successfully uploaded to the host. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 221 | * If the SCB was uploaded for some reason other than |
| 222 | * bad SCSI status (currently only for underruns), we |
| 223 | * queue the SCB for normal completion. Otherwise, we |
| 224 | * wait until any select-out activity has halted, and |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 225 | * then queue the completion. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 226 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 227 | and CCSCBCTL, ~(CCARREN|CCSCBEN); |
| 228 | bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2; |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 229 | cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL jne . + 2; |
| 230 | mvi COMPLETE_DMA_SCB_TAIL[1], SCB_LIST_NULL; |
| 231 | test SCB_SCSI_STATUS, 0xff jz scbdma_queue_completion; |
| 232 | bmov SCB_NEXT_COMPLETE, COMPLETE_ON_QFREEZE_HEAD, 2; |
| 233 | bmov COMPLETE_ON_QFREEZE_HEAD, SCBPTR, 2 ret; |
| 234 | scbdma_queue_completion: |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 235 | bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; |
| 236 | bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 237 | fill_qoutfifo_dmadone: |
| 238 | and CCSCBCTL, ~(CCARREN|CCSCBEN); |
| 239 | call qoutfifo_updated; |
| 240 | mvi COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL; |
| 241 | bmov QOUTFIFO_NEXT_ADDR, SCBHADDR, 4; |
| 242 | test QOFF_CTLSTA, SDSCB_ROLLOVR jz return; |
| 243 | bmov QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4; |
| 244 | xor QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret; |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 245 | END_CRITICAL; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 246 | |
| 247 | qoutfifo_updated: |
| 248 | /* |
| 249 | * If there are more commands waiting to be dma'ed |
| 250 | * to the host, always coalesce. Otherwise honor the |
| 251 | * host's wishes. |
| 252 | */ |
| 253 | cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count; |
| 254 | cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count; |
| 255 | test LOCAL_HS_MAILBOX, ENINT_COALESCE jz issue_cmdcmplt; |
| 256 | |
| 257 | /* |
| 258 | * If we have relatively few commands outstanding, don't |
| 259 | * bother waiting for another command to complete. |
| 260 | */ |
| 261 | test CMDS_PENDING[1], 0xFF jnz coalesce_by_count; |
| 262 | /* Add -1 so that jnc means <= not just < */ |
| 263 | add A, -1, INT_COALESCING_MINCMDS; |
| 264 | add NONE, A, CMDS_PENDING; |
| 265 | jnc issue_cmdcmplt; |
| 266 | |
| 267 | /* |
| 268 | * If coalescing, only coalesce up to the limit |
| 269 | * provided by the host driver. |
| 270 | */ |
| 271 | coalesce_by_count: |
| 272 | mov A, INT_COALESCING_MAXCMDS; |
| 273 | add NONE, A, INT_COALESCING_CMDCOUNT; |
| 274 | jc issue_cmdcmplt; |
| 275 | /* |
| 276 | * If the timer is not currently active, |
| 277 | * fire it up. |
| 278 | */ |
| 279 | test INTCTL, SWTMINTMASK jz return; |
| 280 | bmov SWTIMER, INT_COALESCING_TIMER, 2; |
| 281 | mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO; |
| 282 | or INTCTL, SWTMINTEN|SWTIMER_START; |
| 283 | and INTCTL, ~SWTMINTMASK ret; |
| 284 | |
| 285 | issue_cmdcmplt: |
| 286 | mvi INTSTAT, CMDCMPLT; |
| 287 | clr INT_COALESCING_CMDCOUNT; |
| 288 | or INTCTL, SWTMINTMASK ret; |
| 289 | |
| 290 | BEGIN_CRITICAL; |
| 291 | fetch_new_scb_inprog: |
| 292 | test CCSCBCTL, ARRDONE jz return; |
| 293 | fetch_new_scb_done: |
| 294 | and CCSCBCTL, ~(CCARREN|CCSCBEN); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 295 | clr A; |
| 296 | add CMDS_PENDING, 1; |
| 297 | adc CMDS_PENDING[1], A; |
| 298 | if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) { |
| 299 | /* |
| 300 | * "Short Luns" are not placed into outgoing LQ |
| 301 | * packets in the correct byte order. Use a full |
| 302 | * sized lun field instead and fill it with the |
| 303 | * one byte of lun information we support. |
| 304 | */ |
| 305 | mov SCB_PKT_LUN[6], SCB_LUN; |
| 306 | } |
| 307 | /* |
| 308 | * The FIFO use count field is shared with the |
| 309 | * tag set by the host so that our SCB dma engine |
| 310 | * knows the correct location to store the SCB. |
| 311 | * Set it to zero before processing the SCB. |
| 312 | */ |
| 313 | clr SCB_FIFO_USE_COUNT; |
| 314 | /* Update the next SCB address to download. */ |
| 315 | bmov NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4; |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 316 | /* |
| 317 | * NULL out the SCB links since these fields |
| 318 | * occupy the same location as SCB_NEXT_SCB_BUSADDR. |
| 319 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 320 | mvi SCB_NEXT[1], SCB_LIST_NULL; |
| 321 | mvi SCB_NEXT2[1], SCB_LIST_NULL; |
| 322 | /* Increment our position in the QINFIFO. */ |
| 323 | mov NONE, SNSCB_QOFF; |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 324 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 325 | /* |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 326 | * Save SCBID of this SCB in REG0 since |
| 327 | * SCBPTR will be clobbered during target |
| 328 | * list updates. We also record the SCB's |
| 329 | * flags so that we can refer to them even |
| 330 | * after SCBPTR has been changed. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 331 | */ |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 332 | bmov REG0, SCBPTR, 2; |
| 333 | mov A, SCB_CONTROL; |
| 334 | |
| 335 | /* |
| 336 | * Find the tail SCB of the execution queue |
| 337 | * for this target. |
| 338 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 339 | shr SINDEX, 3, SCB_SCSIID; |
| 340 | and SINDEX, ~0x1; |
| 341 | mvi SINDEX[1], (WAITING_SCB_TAILS >> 8); |
| 342 | bmov DINDEX, SINDEX, 2; |
| 343 | bmov SCBPTR, SINDIR, 2; |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 344 | |
| 345 | /* |
| 346 | * Update the tail to point to the new SCB. |
| 347 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 348 | bmov DINDIR, REG0, 2; |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 349 | |
| 350 | /* |
| 351 | * If the queue was empty, queue this SCB as |
| 352 | * the first for this target. |
| 353 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 354 | cmp SCBPTR[1], SCB_LIST_NULL je first_new_target_scb; |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 355 | |
| 356 | /* |
| 357 | * SCBs that want to send messages must always be |
| 358 | * at the head of their per-target queue so that |
| 359 | * ATN can be asserted even if the current |
| 360 | * negotiation agreement is packetized. If the |
| 361 | * target queue is empty, the SCB can be queued |
| 362 | * immediately. If the queue is not empty, we must |
| 363 | * wait for it to empty before entering this SCB |
| 364 | * into the waiting for selection queue. Otherwise |
| 365 | * our batching and round-robin selection scheme |
| 366 | * could allow commands to be queued out of order. |
| 367 | * To simplify the implementation, we stop pulling |
| 368 | * new commands from the host until the MK_MESSAGE |
| 369 | * SCB can be queued to the waiting for selection |
| 370 | * list. |
| 371 | */ |
| 372 | test A, MK_MESSAGE jz batch_scb; |
| 373 | |
| 374 | /* |
| 375 | * If the last SCB is also a MK_MESSAGE SCB, then |
| 376 | * order is preserved even if we batch. |
| 377 | */ |
| 378 | test SCB_CONTROL, MK_MESSAGE jz batch_scb; |
| 379 | |
| 380 | /* |
| 381 | * Defer this SCB and stop fetching new SCBs until |
| 382 | * it can be queued. Since the SCB_SCSIID of the |
| 383 | * tail SCB must be the same as that of the newly |
| 384 | * queued SCB, there is no need to restore the SCBID |
| 385 | * here. |
| 386 | */ |
| 387 | or SEQ_FLAGS2, PENDING_MK_MESSAGE; |
| 388 | bmov MK_MESSAGE_SCB, REG0, 2; |
| 389 | mov MK_MESSAGE_SCSIID, SCB_SCSIID ret; |
| 390 | |
| 391 | batch_scb: |
| 392 | /* |
| 393 | * Otherwise just update the previous tail SCB to |
| 394 | * point to the new tail. |
| 395 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 396 | bmov SCB_NEXT, REG0, 2 ret; |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 397 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 398 | first_new_target_scb: |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 399 | /* |
| 400 | * Append SCB to the tail of the waiting for |
| 401 | * selection list. |
| 402 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 403 | cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb; |
| 404 | bmov SCBPTR, WAITING_TID_TAIL, 2; |
| 405 | bmov SCB_NEXT2, REG0, 2; |
| 406 | bmov WAITING_TID_TAIL, REG0, 2 ret; |
| 407 | first_new_scb: |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 408 | /* |
| 409 | * Whole list is empty, so the head of |
| 410 | * the list must be initialized too. |
| 411 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 412 | bmov WAITING_TID_HEAD, REG0, 2; |
| 413 | bmov WAITING_TID_TAIL, REG0, 2 ret; |
| 414 | END_CRITICAL; |
| 415 | |
| 416 | scbdma_idle: |
| 417 | /* |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 418 | * Don't bother downloading new SCBs to execute |
| 419 | * if select-outs are currently frozen or we have |
| 420 | * a MK_MESSAGE SCB waiting to enter the queue. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 421 | */ |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 422 | test SEQ_FLAGS2, SELECTOUT_QFROZEN|PENDING_MK_MESSAGE |
| 423 | jnz scbdma_no_new_scbs; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 424 | BEGIN_CRITICAL; |
| 425 | test QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb; |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 426 | scbdma_no_new_scbs: |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 427 | cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb; |
| 428 | cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return; |
| 429 | /* FALLTHROUGH */ |
| 430 | fill_qoutfifo: |
| 431 | /* |
| 432 | * Keep track of the SCBs we are dmaing just |
| 433 | * in case the DMA fails or is aborted. |
| 434 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 435 | bmov COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2; |
| 436 | mvi CCSCBCTL, CCSCBRESET; |
| 437 | bmov SCBHADDR, QOUTFIFO_NEXT_ADDR, 4; |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 438 | mov A, QOUTFIFO_NEXT_ADDR; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 439 | bmov SCBPTR, COMPLETE_SCB_HEAD, 2; |
| 440 | fill_qoutfifo_loop: |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 441 | bmov CCSCBRAM, SCBPTR, 2; |
| 442 | mov CCSCBRAM, SCB_SGPTR[0]; |
| 443 | mov CCSCBRAM, QOUTFIFO_ENTRY_VALID_TAG; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 444 | mov NONE, SDSCB_QOFF; |
| 445 | inc INT_COALESCING_CMDCOUNT; |
| 446 | add CMDS_PENDING, -1; |
| 447 | adc CMDS_PENDING[1], -1; |
| 448 | cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done; |
| 449 | cmp CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done; |
| 450 | test QOFF_CTLSTA, SDSCB_ROLLOVR jnz fill_qoutfifo_done; |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 451 | /* |
| 452 | * Don't cross an ADB or Cachline boundary when DMA'ing |
| 453 | * completion entries. In PCI mode, at least in 32/33 |
| 454 | * configurations, the SCB DMA engine may lose its place |
| 455 | * in the data-stream should the target force a retry on |
| 456 | * something other than an 8byte aligned boundary. In |
| 457 | * PCI-X mode, we do this to avoid split transactions since |
| 458 | * many chipsets seem to be unable to format proper split |
| 459 | * completions to continue the data transfer. |
| 460 | */ |
| 461 | add SINDEX, A, CCSCBADDR; |
| 462 | test SINDEX, CACHELINE_MASK jz fill_qoutfifo_done; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 463 | bmov SCBPTR, SCB_NEXT_COMPLETE, 2; |
| 464 | jmp fill_qoutfifo_loop; |
| 465 | fill_qoutfifo_done: |
| 466 | mov SCBHCNT, CCSCBADDR; |
| 467 | mvi CCSCBCTL, CCSCBEN|CCSCBRESET; |
| 468 | bmov COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2; |
| 469 | mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret; |
| 470 | |
| 471 | fetch_new_scb: |
| 472 | bmov SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4; |
| 473 | mvi CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb; |
| 474 | dma_complete_scb: |
| 475 | bmov SCBPTR, COMPLETE_DMA_SCB_HEAD, 2; |
| 476 | bmov SCBHADDR, SCB_BUSADDR, 4; |
| 477 | mvi CCARREN|CCSCBEN|CCSCBRESET jmp dma_scb; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 478 | |
| 479 | /* |
| 480 | * Either post or fetch an SCB from host memory. The caller |
| 481 | * is responsible for polling for transfer completion. |
| 482 | * |
| 483 | * Prerequisits: Mode == M_CCHAN |
| 484 | * SINDEX contains CCSCBCTL flags |
| 485 | * SCBHADDR set to Host SCB address |
| 486 | * SCBPTR set to SCB src location on "push" operations |
| 487 | */ |
| 488 | SET_SRC_MODE M_CCHAN; |
| 489 | SET_DST_MODE M_CCHAN; |
| 490 | dma_scb: |
| 491 | mvi SCBHCNT, SCB_TRANSFER_SIZE; |
| 492 | mov CCSCBCTL, SINDEX ret; |
| 493 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 494 | setjmp: |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 495 | /* |
| 496 | * At least on the A, a return in the same |
| 497 | * instruction as the bmov results in a return |
| 498 | * to the caller, not to the new address at the |
| 499 | * top of the stack. Since we want the latter |
| 500 | * (we use setjmp to register a handler from an |
| 501 | * interrupt context but not invoke that handler |
| 502 | * until we return to our idle loop), use a |
| 503 | * separate ret instruction. |
| 504 | */ |
| 505 | bmov LONGJMP_ADDR, STACK, 2; |
| 506 | ret; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 507 | setjmp_inline: |
| 508 | bmov LONGJMP_ADDR, STACK, 2; |
| 509 | longjmp: |
| 510 | bmov STACK, LONGJMP_ADDR, 2 ret; |
| 511 | END_CRITICAL; |
| 512 | |
| 513 | /*************************** Chip Bug Work Arounds ****************************/ |
| 514 | /* |
| 515 | * Must disable interrupts when setting the mode pointer |
| 516 | * register as an interrupt occurring mid update will |
| 517 | * fail to store the new mode value for restoration on |
| 518 | * an iret. |
| 519 | */ |
| 520 | if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { |
| 521 | set_mode_work_around: |
| 522 | mvi SEQINTCTL, INTVEC1DSL; |
| 523 | mov MODE_PTR, SINDEX; |
| 524 | clr SEQINTCTL ret; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 525 | } |
| 526 | |
| 527 | |
| 528 | if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { |
| 529 | set_seqint_work_around: |
| 530 | mov SEQINTCODE, SINDEX; |
| 531 | mvi SEQINTCODE, NO_SEQINT ret; |
| 532 | } |
| 533 | |
| 534 | /************************ Packetized LongJmp Routines *************************/ |
| 535 | SET_SRC_MODE M_SCSI; |
| 536 | SET_DST_MODE M_SCSI; |
| 537 | start_selection: |
| 538 | BEGIN_CRITICAL; |
| 539 | if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { |
| 540 | /* |
| 541 | * Razor #494 |
| 542 | * Rev A hardware fails to update LAST/CURR/NEXTSCB |
| 543 | * correctly after a packetized selection in several |
| 544 | * situations: |
| 545 | * |
| 546 | * 1) If only one command existed in the queue, the |
| 547 | * LAST/CURR/NEXTSCB are unchanged. |
| 548 | * |
| 549 | * 2) In a non QAS, protocol allowed phase change, |
| 550 | * the queue is shifted 1 too far. LASTSCB is |
| 551 | * the last SCB that was correctly processed. |
| 552 | * |
| 553 | * 3) In the QAS case, if the full list of commands |
| 554 | * was successfully sent, NEXTSCB is NULL and neither |
| 555 | * CURRSCB nor LASTSCB can be trusted. We must |
| 556 | * manually walk the list counting MAXCMDCNT elements |
| 557 | * to find the last SCB that was sent correctly. |
| 558 | * |
| 559 | * To simplify the workaround for this bug in SELDO |
| 560 | * handling, we initialize LASTSCB prior to enabling |
| 561 | * selection so we can rely on it even for case #1 above. |
| 562 | */ |
| 563 | bmov LASTSCB, WAITING_TID_HEAD, 2; |
| 564 | } |
| 565 | bmov CURRSCB, WAITING_TID_HEAD, 2; |
| 566 | bmov SCBPTR, WAITING_TID_HEAD, 2; |
| 567 | shr SELOID, 4, SCB_SCSIID; |
| 568 | /* |
| 569 | * If we want to send a message to the device, ensure |
| 570 | * we are selecting with atn irregardless of our packetized |
| 571 | * agreement. Since SPI4 only allows target reset or PPR |
| 572 | * messages if this is a packetized connection, the change |
| 573 | * to our negotiation table entry for this selection will |
| 574 | * be cleared when the message is acted on. |
| 575 | */ |
| 576 | test SCB_CONTROL, MK_MESSAGE jz . + 3; |
| 577 | mov NEGOADDR, SELOID; |
| 578 | or NEGCONOPTS, ENAUTOATNO; |
| 579 | or SCSISEQ0, ENSELO ret; |
| 580 | END_CRITICAL; |
| 581 | |
| 582 | /* |
| 583 | * Allocate a FIFO for a non-packetized transaction. |
| 584 | * In RevA hardware, both FIFOs must be free before we |
| 585 | * can allocate a FIFO for a non-packetized transaction. |
| 586 | */ |
| 587 | allocate_fifo_loop: |
| 588 | /* |
| 589 | * Do whatever work is required to free a FIFO. |
| 590 | */ |
| 591 | call idle_loop_service_fifos; |
| 592 | SET_MODE(M_SCSI, M_SCSI) |
| 593 | allocate_fifo: |
| 594 | if ((ahd->bugs & AHD_NONPACKFIFO_BUG) != 0) { |
| 595 | and A, FIFO0FREE|FIFO1FREE, DFFSTAT; |
| 596 | cmp A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop; |
| 597 | } else { |
| 598 | test DFFSTAT, FIFO1FREE jnz allocate_fifo1; |
| 599 | test DFFSTAT, FIFO0FREE jz allocate_fifo_loop; |
| 600 | mvi DFFSTAT, B_CURRFIFO_0; |
| 601 | SET_MODE(M_DFF0, M_DFF0) |
| 602 | bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; |
| 603 | } |
| 604 | SET_SRC_MODE M_SCSI; |
| 605 | SET_DST_MODE M_SCSI; |
| 606 | allocate_fifo1: |
| 607 | mvi DFFSTAT, CURRFIFO_1; |
| 608 | SET_MODE(M_DFF1, M_DFF1) |
| 609 | bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; |
| 610 | |
| 611 | /* |
| 612 | * We have been reselected as an initiator |
| 613 | * or selected as a target. |
| 614 | */ |
| 615 | SET_SRC_MODE M_SCSI; |
| 616 | SET_DST_MODE M_SCSI; |
| 617 | select_in: |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 618 | if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) { |
| 619 | /* |
| 620 | * On Rev A. hardware, the busy LED is only |
| 621 | * turned on automaically during selections |
| 622 | * and re-selections. Make the LED status |
| 623 | * more useful by forcing it to be on from |
| 624 | * the point of selection until our idle |
| 625 | * loop determines that neither of our FIFOs |
| 626 | * are busy. This handles the non-packetized |
| 627 | * case nicely as we will not return to the |
| 628 | * idle loop until the busfree at the end of |
| 629 | * each transaction. |
| 630 | */ |
| 631 | or SBLKCTL, DIAGLEDEN|DIAGLEDON; |
| 632 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 633 | if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { |
| 634 | /* |
| 635 | * Test to ensure that the bus has not |
| 636 | * already gone free prior to clearing |
| 637 | * any stale busfree status. This avoids |
| 638 | * a window whereby a busfree just after |
| 639 | * a selection could be missed. |
| 640 | */ |
| 641 | test SCSISIGI, BSYI jz . + 2; |
| 642 | mvi CLRSINT1,CLRBUSFREE; |
| 643 | or SIMODE1, ENBUSFREE; |
| 644 | } |
| 645 | or SXFRCTL0, SPIOEN; |
| 646 | and SAVED_SCSIID, SELID_MASK, SELID; |
| 647 | and A, OID, IOWNID; |
| 648 | or SAVED_SCSIID, A; |
| 649 | mvi CLRSINT0, CLRSELDI; |
| 650 | jmp ITloop; |
| 651 | |
| 652 | /* |
| 653 | * We have successfully selected out. |
| 654 | * |
| 655 | * Clear SELDO. |
| 656 | * Dequeue all SCBs sent from the waiting queue |
| 657 | * Requeue all SCBs *not* sent to the tail of the waiting queue |
| 658 | * Take Razor #494 into account for above. |
| 659 | * |
| 660 | * In Packetized Mode: |
| 661 | * Return to the idle loop. Our interrupt handler will take |
| 662 | * care of any incoming L_Qs. |
| 663 | * |
| 664 | * In Non-Packetize Mode: |
| 665 | * Continue to our normal state machine. |
| 666 | */ |
| 667 | SET_SRC_MODE M_SCSI; |
| 668 | SET_DST_MODE M_SCSI; |
| 669 | select_out: |
| 670 | BEGIN_CRITICAL; |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 671 | if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) { |
| 672 | /* |
| 673 | * On Rev A. hardware, the busy LED is only |
| 674 | * turned on automaically during selections |
| 675 | * and re-selections. Make the LED status |
| 676 | * more useful by forcing it to be on from |
| 677 | * the point of re-selection until our idle |
| 678 | * loop determines that neither of our FIFOs |
| 679 | * are busy. This handles the non-packetized |
| 680 | * case nicely as we will not return to the |
| 681 | * idle loop until the busfree at the end of |
| 682 | * each transaction. |
| 683 | */ |
| 684 | or SBLKCTL, DIAGLEDEN|DIAGLEDON; |
| 685 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 686 | /* Clear out all SCBs that have been successfully sent. */ |
| 687 | if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { |
| 688 | /* |
| 689 | * For packetized, the LQO manager clears ENSELO on |
| 690 | * the assertion of SELDO. If we are non-packetized, |
| 691 | * LASTSCB and CURRSCB are accurate. |
| 692 | */ |
| 693 | test SCSISEQ0, ENSELO jnz use_lastscb; |
| 694 | |
| 695 | /* |
| 696 | * The update is correct for LQOSTAT1 errors. All |
| 697 | * but LQOBUSFREE are handled by kernel interrupts. |
| 698 | * If we see LQOBUSFREE, return to the idle loop. |
| 699 | * Once we are out of the select_out critical section, |
| 700 | * the kernel will cleanup the LQOBUSFREE and we will |
| 701 | * eventually restart the selection if appropriate. |
| 702 | */ |
| 703 | test LQOSTAT1, LQOBUSFREE jnz idle_loop; |
| 704 | |
| 705 | /* |
| 706 | * On a phase change oustside of packet boundaries, |
| 707 | * LASTSCB points to the currently active SCB context |
| 708 | * on the bus. |
| 709 | */ |
| 710 | test LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb; |
| 711 | |
| 712 | /* |
| 713 | * If the hardware has traversed the whole list, NEXTSCB |
| 714 | * will be NULL, CURRSCB and LASTSCB cannot be trusted, |
| 715 | * but MAXCMDCNT is accurate. If we stop part way through |
| 716 | * the list or only had one command to issue, NEXTSCB[1] is |
| 717 | * not NULL and LASTSCB is the last command to go out. |
| 718 | */ |
| 719 | cmp NEXTSCB[1], SCB_LIST_NULL jne use_lastscb; |
| 720 | |
| 721 | /* |
| 722 | * Brute force walk. |
| 723 | */ |
| 724 | bmov SCBPTR, WAITING_TID_HEAD, 2; |
| 725 | mvi SEQINTCTL, INTVEC1DSL; |
| 726 | mvi MODE_PTR, MK_MODE(M_CFG, M_CFG); |
| 727 | mov A, MAXCMDCNT; |
| 728 | mvi MODE_PTR, MK_MODE(M_SCSI, M_SCSI); |
| 729 | clr SEQINTCTL; |
| 730 | find_lastscb_loop: |
| 731 | dec A; |
| 732 | test A, 0xFF jz found_last_sent_scb; |
| 733 | bmov SCBPTR, SCB_NEXT, 2; |
| 734 | jmp find_lastscb_loop; |
| 735 | use_lastscb: |
| 736 | bmov SCBPTR, LASTSCB, 2; |
| 737 | found_last_sent_scb: |
| 738 | bmov CURRSCB, SCBPTR, 2; |
| 739 | curscb_ww_done: |
| 740 | } else { |
| 741 | bmov SCBPTR, CURRSCB, 2; |
| 742 | } |
| 743 | |
| 744 | /* |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 745 | * The whole list made it. Clear our tail pointer to indicate |
| 746 | * that the per-target selection queue is now empty. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 747 | */ |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 748 | cmp SCB_NEXT[1], SCB_LIST_NULL je select_out_clear_tail; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 749 | |
| 750 | /* |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 751 | * Requeue any SCBs not sent, to the tail of the waiting Q. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 752 | * We know that neither the per-TID list nor the list of |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 753 | * TIDs is empty. Use this knowledge to our advantage and |
| 754 | * queue the remainder to the tail of the global execution |
| 755 | * queue. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 756 | */ |
| 757 | bmov REG0, SCB_NEXT, 2; |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 758 | select_out_queue_remainder: |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 759 | bmov SCBPTR, WAITING_TID_TAIL, 2; |
| 760 | bmov SCB_NEXT2, REG0, 2; |
| 761 | bmov WAITING_TID_TAIL, REG0, 2; |
| 762 | jmp select_out_inc_tid_q; |
| 763 | |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 764 | select_out_clear_tail: |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 765 | /* |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 766 | * Queue any pending MK_MESSAGE SCB for this target now |
| 767 | * that the queue is empty. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 768 | */ |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 769 | test SEQ_FLAGS2, PENDING_MK_MESSAGE jz select_out_no_mk_message_scb; |
| 770 | mov A, MK_MESSAGE_SCSIID; |
| 771 | cmp SCB_SCSIID, A jne select_out_no_mk_message_scb; |
| 772 | and SEQ_FLAGS2, ~PENDING_MK_MESSAGE; |
| 773 | bmov REG0, MK_MESSAGE_SCB, 2; |
| 774 | jmp select_out_queue_remainder; |
| 775 | |
| 776 | select_out_no_mk_message_scb: |
| 777 | /* |
| 778 | * Clear this target's execution tail and increment the queue. |
| 779 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 780 | shr DINDEX, 3, SCB_SCSIID; |
| 781 | or DINDEX, 1; /* Want only the second byte */ |
| 782 | mvi DINDEX[1], ((WAITING_SCB_TAILS) >> 8); |
| 783 | mvi DINDIR, SCB_LIST_NULL; |
| 784 | select_out_inc_tid_q: |
| 785 | bmov SCBPTR, WAITING_TID_HEAD, 2; |
| 786 | bmov WAITING_TID_HEAD, SCB_NEXT2, 2; |
| 787 | cmp WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2; |
| 788 | mvi WAITING_TID_TAIL[1], SCB_LIST_NULL; |
| 789 | bmov SCBPTR, CURRSCB, 2; |
| 790 | mvi CLRSINT0, CLRSELDO; |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 791 | test LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_mode_cleared; |
| 792 | test LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_mode_cleared; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 793 | |
| 794 | /* |
| 795 | * If this is a packetized connection, return to our |
| 796 | * idle_loop and let our interrupt handler deal with |
| 797 | * any connection setup/teardown issues. The only |
| 798 | * exceptions are the case of MK_MESSAGE and task management |
| 799 | * SCBs. |
| 800 | */ |
| 801 | if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) { |
| 802 | /* |
| 803 | * In the A, the LQO manager transitions to LQOSTOP0 even if |
| 804 | * we have selected out with ATN asserted and the target |
| 805 | * REQs in a non-packet phase. |
| 806 | */ |
| 807 | test SCB_CONTROL, MK_MESSAGE jz select_out_no_message; |
| 808 | test SCSISIGO, ATNO jnz select_out_non_packetized; |
| 809 | select_out_no_message: |
| 810 | } |
| 811 | test LQOSTAT2, LQOSTOP0 jz select_out_non_packetized; |
| 812 | test SCB_TASK_MANAGEMENT, 0xFF jz idle_loop; |
| 813 | SET_SEQINTCODE(TASKMGMT_FUNC_COMPLETE) |
| 814 | jmp idle_loop; |
| 815 | |
| 816 | select_out_non_packetized: |
| 817 | /* Non packetized request. */ |
| 818 | and SCSISEQ0, ~ENSELO; |
| 819 | if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { |
| 820 | /* |
| 821 | * Test to ensure that the bus has not |
| 822 | * already gone free prior to clearing |
| 823 | * any stale busfree status. This avoids |
| 824 | * a window whereby a busfree just after |
| 825 | * a selection could be missed. |
| 826 | */ |
| 827 | test SCSISIGI, BSYI jz . + 2; |
| 828 | mvi CLRSINT1,CLRBUSFREE; |
| 829 | or SIMODE1, ENBUSFREE; |
| 830 | } |
| 831 | mov SAVED_SCSIID, SCB_SCSIID; |
| 832 | mov SAVED_LUN, SCB_LUN; |
| 833 | mvi SEQ_FLAGS, NO_CDB_SENT; |
| 834 | END_CRITICAL; |
| 835 | or SXFRCTL0, SPIOEN; |
| 836 | |
| 837 | /* |
| 838 | * As soon as we get a successful selection, the target |
| 839 | * should go into the message out phase since we have ATN |
| 840 | * asserted. |
| 841 | */ |
| 842 | mvi MSG_OUT, MSG_IDENTIFYFLAG; |
| 843 | |
| 844 | /* |
| 845 | * Main loop for information transfer phases. Wait for the |
| 846 | * target to assert REQ before checking MSG, C/D and I/O for |
| 847 | * the bus phase. |
| 848 | */ |
| 849 | mesgin_phasemis: |
| 850 | ITloop: |
| 851 | call phase_lock; |
| 852 | |
| 853 | mov A, LASTPHASE; |
| 854 | |
| 855 | test A, ~P_DATAIN_DT jz p_data; |
| 856 | cmp A,P_COMMAND je p_command; |
| 857 | cmp A,P_MESGOUT je p_mesgout; |
| 858 | cmp A,P_STATUS je p_status; |
| 859 | cmp A,P_MESGIN je p_mesgin; |
| 860 | |
| 861 | SET_SEQINTCODE(BAD_PHASE) |
| 862 | jmp ITloop; /* Try reading the bus again. */ |
| 863 | |
| 864 | /* |
| 865 | * Command phase. Set up the DMA registers and let 'er rip. |
| 866 | */ |
| 867 | p_command: |
| 868 | test SEQ_FLAGS, NOT_IDENTIFIED jz p_command_okay; |
| 869 | SET_SEQINTCODE(PROTO_VIOLATION) |
| 870 | p_command_okay: |
| 871 | test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) |
| 872 | jnz p_command_allocate_fifo; |
| 873 | /* |
| 874 | * Command retry. Free our current FIFO and |
| 875 | * re-allocate a FIFO so transfer state is |
| 876 | * reset. |
| 877 | */ |
| 878 | SET_SRC_MODE M_DFF1; |
| 879 | SET_DST_MODE M_DFF1; |
| 880 | mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; |
| 881 | SET_MODE(M_SCSI, M_SCSI) |
| 882 | p_command_allocate_fifo: |
| 883 | bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; |
| 884 | call allocate_fifo; |
| 885 | SET_SRC_MODE M_DFF1; |
| 886 | SET_DST_MODE M_DFF1; |
| 887 | add NONE, -17, SCB_CDB_LEN; |
| 888 | jnc p_command_embedded; |
| 889 | p_command_from_host: |
| 890 | bmov HADDR[0], SCB_HOST_CDB_PTR, 9; |
| 891 | mvi SG_CACHE_PRE, LAST_SEG; |
| 892 | mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); |
| 893 | jmp p_command_xfer; |
| 894 | p_command_embedded: |
| 895 | bmov SHCNT[0], SCB_CDB_LEN, 1; |
| 896 | bmov DFDAT, SCB_CDB_STORE, 16; |
| 897 | mvi DFCNTRL, SCSIEN; |
| 898 | p_command_xfer: |
| 899 | and SEQ_FLAGS, ~NO_CDB_SENT; |
| 900 | if ((ahd->features & AHD_FAST_CDB_DELIVERY) != 0) { |
| 901 | /* |
| 902 | * To speed up CDB delivery in Rev B, all CDB acks |
| 903 | * are "released" to the output sync as soon as the |
| 904 | * command phase starts. There is only one problem |
| 905 | * with this approach. If the target changes phase |
| 906 | * before all data are sent, we have left over acks |
| 907 | * that can go out on the bus in a data phase. Due |
| 908 | * to other chip contraints, this only happens if |
| 909 | * the target goes to data-in, but if the acks go |
| 910 | * out before we can test SDONE, we'll think that |
| 911 | * the transfer has completed successfully. Work |
| 912 | * around this by taking advantage of the 400ns or |
| 913 | * 800ns dead time between command phase and the REQ |
| 914 | * of the new phase. If the transfer has completed |
| 915 | * successfully, SCSIEN should fall *long* before we |
| 916 | * see a phase change. We thus treat any phasemiss |
| 917 | * that occurs before SCSIEN falls as an incomplete |
| 918 | * transfer. |
| 919 | */ |
| 920 | test SSTAT1, PHASEMIS jnz p_command_xfer_failed; |
| 921 | test DFCNTRL, SCSIEN jnz . - 1; |
| 922 | } else { |
| 923 | test DFCNTRL, SCSIEN jnz .; |
| 924 | } |
| 925 | /* |
| 926 | * DMA Channel automatically disabled. |
| 927 | * Don't allow a data phase if the command |
| 928 | * was not fully transferred. |
| 929 | */ |
| 930 | test SSTAT2, SDONE jnz ITloop; |
| 931 | p_command_xfer_failed: |
| 932 | or SEQ_FLAGS, NO_CDB_SENT; |
| 933 | jmp ITloop; |
| 934 | |
| 935 | |
| 936 | /* |
| 937 | * Status phase. Wait for the data byte to appear, then read it |
| 938 | * and store it into the SCB. |
| 939 | */ |
| 940 | SET_SRC_MODE M_SCSI; |
| 941 | SET_DST_MODE M_SCSI; |
| 942 | p_status: |
| 943 | test SEQ_FLAGS,NOT_IDENTIFIED jnz mesgin_proto_violation; |
| 944 | p_status_okay: |
| 945 | mov SCB_SCSI_STATUS, SCSIDAT; |
| 946 | or SCB_CONTROL, STATUS_RCVD; |
| 947 | jmp ITloop; |
| 948 | |
| 949 | /* |
| 950 | * Message out phase. If MSG_OUT is MSG_IDENTIFYFLAG, build a full |
| 951 | * indentify message sequence and send it to the target. The host may |
| 952 | * override this behavior by setting the MK_MESSAGE bit in the SCB |
| 953 | * control byte. This will cause us to interrupt the host and allow |
| 954 | * it to handle the message phase completely on its own. If the bit |
| 955 | * associated with this target is set, we will also interrupt the host, |
| 956 | * thereby allowing it to send a message on the next selection regardless |
| 957 | * of the transaction being sent. |
| 958 | * |
| 959 | * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message. |
| 960 | * This is done to allow the host to send messages outside of an identify |
| 961 | * sequence while protecting the seqencer from testing the MK_MESSAGE bit |
| 962 | * on an SCB that might not be for the current nexus. (For example, a |
| 963 | * BDR message in responce to a bad reselection would leave us pointed to |
| 964 | * an SCB that doesn't have anything to do with the current target). |
| 965 | * |
| 966 | * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag, |
| 967 | * bus device reset). |
| 968 | * |
| 969 | * When there are no messages to send, MSG_OUT should be set to MSG_NOOP, |
| 970 | * in case the target decides to put us in this phase for some strange |
| 971 | * reason. |
| 972 | */ |
| 973 | p_mesgout_retry: |
| 974 | /* Turn on ATN for the retry */ |
| 975 | mvi SCSISIGO, ATNO; |
| 976 | p_mesgout: |
| 977 | mov SINDEX, MSG_OUT; |
| 978 | cmp SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host; |
| 979 | test SCB_CONTROL,MK_MESSAGE jnz host_message_loop; |
| 980 | p_mesgout_identify: |
| 981 | or SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN; |
| 982 | test SCB_CONTROL, DISCENB jnz . + 2; |
| 983 | and SINDEX, ~DISCENB; |
| 984 | /* |
| 985 | * Send a tag message if TAG_ENB is set in the SCB control block. |
| 986 | * Use SCB_NONPACKET_TAG as the tag value. |
| 987 | */ |
| 988 | p_mesgout_tag: |
| 989 | test SCB_CONTROL,TAG_ENB jz p_mesgout_onebyte; |
| 990 | mov SCSIDAT, SINDEX; /* Send the identify message */ |
| 991 | call phase_lock; |
| 992 | cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; |
| 993 | and SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL; |
| 994 | call phase_lock; |
| 995 | cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; |
| 996 | mov SCBPTR jmp p_mesgout_onebyte; |
| 997 | /* |
| 998 | * Interrupt the driver, and allow it to handle this message |
| 999 | * phase and any required retries. |
| 1000 | */ |
| 1001 | p_mesgout_from_host: |
| 1002 | cmp SINDEX, HOST_MSG jne p_mesgout_onebyte; |
| 1003 | jmp host_message_loop; |
| 1004 | |
| 1005 | p_mesgout_onebyte: |
| 1006 | mvi CLRSINT1, CLRATNO; |
| 1007 | mov SCSIDAT, SINDEX; |
| 1008 | |
| 1009 | /* |
| 1010 | * If the next bus phase after ATN drops is message out, it means |
| 1011 | * that the target is requesting that the last message(s) be resent. |
| 1012 | */ |
| 1013 | call phase_lock; |
| 1014 | cmp LASTPHASE, P_MESGOUT je p_mesgout_retry; |
| 1015 | |
| 1016 | p_mesgout_done: |
| 1017 | mvi CLRSINT1,CLRATNO; /* Be sure to turn ATNO off */ |
| 1018 | mov LAST_MSG, MSG_OUT; |
| 1019 | mvi MSG_OUT, MSG_NOOP; /* No message left */ |
| 1020 | jmp ITloop; |
| 1021 | |
| 1022 | /* |
| 1023 | * Message in phase. Bytes are read using Automatic PIO mode. |
| 1024 | */ |
| 1025 | p_mesgin: |
| 1026 | /* read the 1st message byte */ |
| 1027 | mvi ACCUM call inb_first; |
| 1028 | |
| 1029 | test A,MSG_IDENTIFYFLAG jnz mesgin_identify; |
| 1030 | cmp A,MSG_DISCONNECT je mesgin_disconnect; |
| 1031 | cmp A,MSG_SAVEDATAPOINTER je mesgin_sdptrs; |
| 1032 | cmp ALLZEROS,A je mesgin_complete; |
| 1033 | cmp A,MSG_RESTOREPOINTERS je mesgin_rdptrs; |
| 1034 | cmp A,MSG_IGN_WIDE_RESIDUE je mesgin_ign_wide_residue; |
| 1035 | cmp A,MSG_NOOP je mesgin_done; |
| 1036 | |
| 1037 | /* |
| 1038 | * Pushed message loop to allow the kernel to |
| 1039 | * run it's own message state engine. To avoid an |
| 1040 | * extra nop instruction after signaling the kernel, |
| 1041 | * we perform the phase_lock before checking to see |
| 1042 | * if we should exit the loop and skip the phase_lock |
| 1043 | * in the ITloop. Performing back to back phase_locks |
| 1044 | * shouldn't hurt, but why do it twice... |
| 1045 | */ |
| 1046 | host_message_loop: |
| 1047 | call phase_lock; /* Benign the first time through. */ |
| 1048 | SET_SEQINTCODE(HOST_MSG_LOOP) |
| 1049 | cmp RETURN_1, EXIT_MSG_LOOP je ITloop; |
| 1050 | cmp RETURN_1, CONT_MSG_LOOP_WRITE jne . + 3; |
| 1051 | mov SCSIDAT, RETURN_2; |
| 1052 | jmp host_message_loop; |
| 1053 | /* Must be CONT_MSG_LOOP_READ */ |
| 1054 | mov NONE, SCSIDAT; /* ACK Byte */ |
| 1055 | jmp host_message_loop; |
| 1056 | |
| 1057 | mesgin_ign_wide_residue: |
| 1058 | mov SAVED_MODE, MODE_PTR; |
| 1059 | SET_MODE(M_SCSI, M_SCSI) |
| 1060 | shr NEGOADDR, 4, SAVED_SCSIID; |
| 1061 | mov A, NEGCONOPTS; |
| 1062 | RESTORE_MODE(SAVED_MODE) |
| 1063 | test A, WIDEXFER jz mesgin_reject; |
| 1064 | /* Pull the residue byte */ |
| 1065 | mvi REG0 call inb_next; |
| 1066 | cmp REG0, 0x01 jne mesgin_reject; |
| 1067 | test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2; |
| 1068 | test SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jnz mesgin_done; |
| 1069 | SET_SEQINTCODE(IGN_WIDE_RES) |
| 1070 | jmp mesgin_done; |
| 1071 | |
| 1072 | mesgin_proto_violation: |
| 1073 | SET_SEQINTCODE(PROTO_VIOLATION) |
| 1074 | jmp mesgin_done; |
| 1075 | mesgin_reject: |
| 1076 | mvi MSG_MESSAGE_REJECT call mk_mesg; |
| 1077 | mesgin_done: |
| 1078 | mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ |
| 1079 | jmp ITloop; |
| 1080 | |
| 1081 | #define INDEX_DISC_LIST(scsiid, lun) \ |
| 1082 | and A, 0xC0, scsiid; \ |
| 1083 | or SCBPTR, A, lun; \ |
| 1084 | clr SCBPTR[1]; \ |
| 1085 | and SINDEX, 0x30, scsiid; \ |
| 1086 | shr SINDEX, 3; /* Multiply by 2 */ \ |
| 1087 | add SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF); \ |
| 1088 | mvi SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF) |
| 1089 | |
| 1090 | mesgin_identify: |
| 1091 | /* |
| 1092 | * Determine whether a target is using tagged or non-tagged |
| 1093 | * transactions by first looking at the transaction stored in |
| 1094 | * the per-device, disconnected array. If there is no untagged |
| 1095 | * transaction for this target, this must be a tagged transaction. |
| 1096 | */ |
| 1097 | and SAVED_LUN, MSG_IDENTIFY_LUNMASK, A; |
| 1098 | INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); |
| 1099 | bmov DINDEX, SINDEX, 2; |
| 1100 | bmov REG0, SINDIR, 2; |
| 1101 | cmp REG0[1], SCB_LIST_NULL je snoop_tag; |
| 1102 | /* Untagged. Clear the busy table entry and setup the SCB. */ |
| 1103 | bmov DINDIR, ALLONES, 2; |
| 1104 | bmov SCBPTR, REG0, 2; |
| 1105 | jmp setup_SCB; |
| 1106 | |
| 1107 | /* |
| 1108 | * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message. |
| 1109 | * If we get one, we use the tag returned to find the proper |
| 1110 | * SCB. After receiving the tag, look for the SCB at SCB locations tag and |
| 1111 | * tag + 256. |
| 1112 | */ |
| 1113 | snoop_tag: |
| 1114 | if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { |
| 1115 | or SEQ_FLAGS, 0x80; |
| 1116 | } |
| 1117 | mov NONE, SCSIDAT; /* ACK Identify MSG */ |
| 1118 | call phase_lock; |
| 1119 | if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { |
| 1120 | or SEQ_FLAGS, 0x1; |
| 1121 | } |
| 1122 | cmp LASTPHASE, P_MESGIN jne not_found_ITloop; |
| 1123 | if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { |
| 1124 | or SEQ_FLAGS, 0x2; |
| 1125 | } |
| 1126 | cmp SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found; |
| 1127 | get_tag: |
| 1128 | clr SCBPTR[1]; |
| 1129 | mvi SCBPTR call inb_next; /* tag value */ |
| 1130 | verify_scb: |
| 1131 | test SCB_CONTROL,DISCONNECTED jz verify_other_scb; |
| 1132 | mov A, SAVED_SCSIID; |
| 1133 | cmp SCB_SCSIID, A jne verify_other_scb; |
| 1134 | mov A, SAVED_LUN; |
| 1135 | cmp SCB_LUN, A je setup_SCB_disconnected; |
| 1136 | verify_other_scb: |
| 1137 | xor SCBPTR[1], 1; |
| 1138 | test SCBPTR[1], 0xFF jnz verify_scb; |
| 1139 | jmp not_found; |
| 1140 | |
| 1141 | /* |
| 1142 | * Ensure that the SCB the tag points to is for |
| 1143 | * an SCB transaction to the reconnecting target. |
| 1144 | */ |
| 1145 | setup_SCB: |
| 1146 | if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { |
| 1147 | or SEQ_FLAGS, 0x10; |
| 1148 | } |
| 1149 | test SCB_CONTROL,DISCONNECTED jz not_found; |
| 1150 | setup_SCB_disconnected: |
| 1151 | and SCB_CONTROL,~DISCONNECTED; |
| 1152 | clr SEQ_FLAGS; /* make note of IDENTIFY */ |
| 1153 | test SCB_SGPTR, SG_LIST_NULL jnz . + 3; |
| 1154 | bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; |
| 1155 | call allocate_fifo; |
| 1156 | /* See if the host wants to send a message upon reconnection */ |
| 1157 | test SCB_CONTROL, MK_MESSAGE jz mesgin_done; |
| 1158 | mvi HOST_MSG call mk_mesg; |
| 1159 | jmp mesgin_done; |
| 1160 | |
| 1161 | not_found: |
| 1162 | SET_SEQINTCODE(NO_MATCH) |
| 1163 | jmp mesgin_done; |
| 1164 | |
| 1165 | not_found_ITloop: |
| 1166 | SET_SEQINTCODE(NO_MATCH) |
| 1167 | jmp ITloop; |
| 1168 | |
| 1169 | /* |
| 1170 | * We received a "command complete" message. Put the SCB on the complete |
| 1171 | * queue and trigger a completion interrupt via the idle loop. Before doing |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 1172 | * so, check to see if there is a residual or the status byte is something |
| 1173 | * other than STATUS_GOOD (0). In either of these conditions, we upload the |
| 1174 | * SCB back to the host so it can process this information. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1175 | */ |
| 1176 | mesgin_complete: |
| 1177 | |
| 1178 | /* |
| 1179 | * If ATN is raised, we still want to give the target a message. |
| 1180 | * Perhaps there was a parity error on this last message byte. |
| 1181 | * Either way, the target should take us to message out phase |
| 1182 | * and then attempt to complete the command again. We should use a |
| 1183 | * critical section here to guard against a timeout triggering |
| 1184 | * for this command and setting ATN while we are still processing |
| 1185 | * the completion. |
| 1186 | test SCSISIGI, ATNI jnz mesgin_done; |
| 1187 | */ |
| 1188 | |
| 1189 | /* |
| 1190 | * If we are identified and have successfully sent the CDB, |
| 1191 | * any status will do. Optimize this fast path. |
| 1192 | */ |
| 1193 | test SCB_CONTROL, STATUS_RCVD jz mesgin_proto_violation; |
| 1194 | test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz complete_accepted; |
| 1195 | |
| 1196 | /* |
| 1197 | * If the target never sent an identify message but instead went |
| 1198 | * to mesgin to give an invalid message, let the host abort us. |
| 1199 | */ |
| 1200 | test SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_proto_violation; |
| 1201 | |
| 1202 | /* |
| 1203 | * If we recevied good status but never successfully sent the |
| 1204 | * cdb, abort the command. |
| 1205 | */ |
| 1206 | test SCB_SCSI_STATUS,0xff jnz complete_accepted; |
| 1207 | test SEQ_FLAGS, NO_CDB_SENT jnz mesgin_proto_violation; |
| 1208 | complete_accepted: |
| 1209 | |
| 1210 | /* |
| 1211 | * See if we attempted to deliver a message but the target ingnored us. |
| 1212 | */ |
| 1213 | test SCB_CONTROL, MK_MESSAGE jz complete_nomsg; |
| 1214 | SET_SEQINTCODE(MKMSG_FAILED) |
| 1215 | complete_nomsg: |
| 1216 | call queue_scb_completion; |
| 1217 | jmp await_busfree; |
| 1218 | |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 1219 | BEGIN_CRITICAL; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1220 | freeze_queue: |
| 1221 | /* Cancel any pending select-out. */ |
| 1222 | test SSTAT0, SELDO|SELINGO jnz . + 2; |
| 1223 | and SCSISEQ0, ~ENSELO; |
| 1224 | mov ACCUM_SAVE, A; |
| 1225 | clr A; |
| 1226 | add QFREEZE_COUNT, 1; |
| 1227 | adc QFREEZE_COUNT[1], A; |
| 1228 | or SEQ_FLAGS2, SELECTOUT_QFROZEN; |
| 1229 | mov A, ACCUM_SAVE ret; |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 1230 | END_CRITICAL; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1231 | |
| 1232 | /* |
| 1233 | * Complete the current FIFO's SCB if data for this same |
| 1234 | * SCB is not transferring in the other FIFO. |
| 1235 | */ |
| 1236 | SET_SRC_MODE M_DFF1; |
| 1237 | SET_DST_MODE M_DFF1; |
| 1238 | pkt_complete_scb_if_fifos_idle: |
| 1239 | bmov ARG_1, SCBPTR, 2; |
| 1240 | mvi DFFSXFRCTL, CLRCHN; |
| 1241 | SET_MODE(M_SCSI, M_SCSI) |
| 1242 | bmov SCBPTR, ARG_1, 2; |
| 1243 | test SCB_FIFO_USE_COUNT, 0xFF jnz return; |
| 1244 | queue_scb_completion: |
| 1245 | test SCB_SCSI_STATUS,0xff jnz bad_status; |
| 1246 | /* |
| 1247 | * Check for residuals |
| 1248 | */ |
| 1249 | test SCB_SGPTR, SG_LIST_NULL jnz complete; /* No xfer */ |
| 1250 | test SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */ |
| 1251 | test SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb; |
| 1252 | complete: |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 1253 | BEGIN_CRITICAL; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1254 | bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; |
| 1255 | bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 1256 | END_CRITICAL; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1257 | bad_status: |
| 1258 | cmp SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb; |
| 1259 | call freeze_queue; |
| 1260 | upload_scb: |
| 1261 | /* |
| 1262 | * Restore SCB TAG since we reuse this field |
| 1263 | * in the sequencer. We don't want to corrupt |
| 1264 | * it on the host. |
| 1265 | */ |
| 1266 | bmov SCB_TAG, SCBPTR, 2; |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 1267 | BEGIN_CRITICAL; |
| 1268 | or SCB_SGPTR, SG_STATUS_VALID; |
| 1269 | mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL; |
| 1270 | cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne add_dma_scb_tail; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1271 | bmov COMPLETE_DMA_SCB_HEAD, SCBPTR, 2; |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 1272 | bmov COMPLETE_DMA_SCB_TAIL, SCBPTR, 2 ret; |
| 1273 | add_dma_scb_tail: |
| 1274 | bmov REG0, SCBPTR, 2; |
| 1275 | bmov SCBPTR, COMPLETE_DMA_SCB_TAIL, 2; |
| 1276 | bmov SCB_NEXT_COMPLETE, REG0, 2; |
| 1277 | bmov COMPLETE_DMA_SCB_TAIL, REG0, 2 ret; |
| 1278 | END_CRITICAL; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1279 | |
| 1280 | /* |
| 1281 | * Is it a disconnect message? Set a flag in the SCB to remind us |
| 1282 | * and await the bus going free. If this is an untagged transaction |
| 1283 | * store the SCB id for it in our untagged target table for lookup on |
Uwe Kleine-König | b71a8eb | 2009-10-06 12:42:51 +0200 | [diff] [blame] | 1284 | * a reselection. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1285 | */ |
| 1286 | mesgin_disconnect: |
| 1287 | /* |
| 1288 | * If ATN is raised, we still want to give the target a message. |
| 1289 | * Perhaps there was a parity error on this last message byte |
| 1290 | * or we want to abort this command. Either way, the target |
| 1291 | * should take us to message out phase and then attempt to |
| 1292 | * disconnect again. |
| 1293 | * XXX - Wait for more testing. |
| 1294 | test SCSISIGI, ATNI jnz mesgin_done; |
| 1295 | */ |
| 1296 | test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT |
| 1297 | jnz mesgin_proto_violation; |
| 1298 | or SCB_CONTROL,DISCONNECTED; |
| 1299 | test SCB_CONTROL, TAG_ENB jnz await_busfree; |
| 1300 | queue_disc_scb: |
| 1301 | bmov REG0, SCBPTR, 2; |
| 1302 | INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); |
| 1303 | bmov DINDEX, SINDEX, 2; |
| 1304 | bmov DINDIR, REG0, 2; |
| 1305 | bmov SCBPTR, REG0, 2; |
| 1306 | /* FALLTHROUGH */ |
| 1307 | await_busfree: |
| 1308 | and SIMODE1, ~ENBUSFREE; |
| 1309 | if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) { |
| 1310 | /* |
| 1311 | * In the BUSFREEREV_BUG case, the |
| 1312 | * busfree status was cleared at the |
| 1313 | * beginning of the connection. |
| 1314 | */ |
| 1315 | mvi CLRSINT1,CLRBUSFREE; |
| 1316 | } |
| 1317 | mov NONE, SCSIDAT; /* Ack the last byte */ |
| 1318 | test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) |
| 1319 | jnz await_busfree_not_m_dff; |
| 1320 | SET_SRC_MODE M_DFF1; |
| 1321 | SET_DST_MODE M_DFF1; |
| 1322 | await_busfree_clrchn: |
| 1323 | mvi DFFSXFRCTL, CLRCHN; |
| 1324 | await_busfree_not_m_dff: |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 1325 | /* clear target specific flags */ |
| 1326 | mvi SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1327 | test SSTAT1,REQINIT|BUSFREE jz .; |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 1328 | /* |
| 1329 | * We only set BUSFREE status once either a new |
| 1330 | * phase has been detected or we are really |
| 1331 | * BUSFREE. This allows the driver to know |
| 1332 | * that we are active on the bus even though |
| 1333 | * no identified transaction exists should a |
| 1334 | * timeout occur while awaiting busfree. |
| 1335 | */ |
| 1336 | mvi LASTPHASE, P_BUSFREE; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1337 | test SSTAT1, BUSFREE jnz idle_loop; |
| 1338 | SET_SEQINTCODE(MISSED_BUSFREE) |
| 1339 | |
| 1340 | |
| 1341 | /* |
| 1342 | * Save data pointers message: |
| 1343 | * Copying RAM values back to SCB, for Save Data Pointers message, but |
| 1344 | * only if we've actually been into a data phase to change them. This |
| 1345 | * protects against bogus data in scratch ram and the residual counts |
| 1346 | * since they are only initialized when we go into data_in or data_out. |
| 1347 | * Ack the message as soon as possible. |
| 1348 | */ |
| 1349 | SET_SRC_MODE M_DFF1; |
| 1350 | SET_DST_MODE M_DFF1; |
| 1351 | mesgin_sdptrs: |
| 1352 | mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ |
| 1353 | test SEQ_FLAGS, DPHASE jz ITloop; |
| 1354 | call save_pointers; |
| 1355 | jmp ITloop; |
| 1356 | |
| 1357 | save_pointers: |
| 1358 | /* |
| 1359 | * If we are asked to save our position at the end of the |
| 1360 | * transfer, just mark us at the end rather than perform a |
| 1361 | * full save. |
| 1362 | */ |
| 1363 | test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full; |
| 1364 | or SCB_SGPTR, SG_LIST_NULL ret; |
| 1365 | |
| 1366 | save_pointers_full: |
| 1367 | /* |
| 1368 | * The SCB_DATAPTR becomes the current SHADDR. |
| 1369 | * All other information comes directly from our residual |
| 1370 | * state. |
| 1371 | */ |
| 1372 | bmov SCB_DATAPTR, SHADDR, 8; |
| 1373 | bmov SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret; |
| 1374 | |
| 1375 | /* |
| 1376 | * Restore pointers message? Data pointers are recopied from the |
| 1377 | * SCB anytime we enter a data phase for the first time, so all |
| 1378 | * we need to do is clear the DPHASE flag and let the data phase |
| 1379 | * code do the rest. We also reset/reallocate the FIFO to make |
| 1380 | * sure we have a clean start for the next data or command phase. |
| 1381 | */ |
| 1382 | mesgin_rdptrs: |
| 1383 | and SEQ_FLAGS, ~DPHASE; |
| 1384 | test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo; |
| 1385 | mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; |
| 1386 | SET_MODE(M_SCSI, M_SCSI) |
| 1387 | msgin_rdptrs_get_fifo: |
| 1388 | call allocate_fifo; |
| 1389 | jmp mesgin_done; |
| 1390 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1391 | phase_lock: |
| 1392 | if ((ahd->bugs & AHD_EARLY_REQ_BUG) != 0) { |
| 1393 | /* |
| 1394 | * Don't ignore persistent REQ assertions just because |
| 1395 | * they were asserted within the bus settle delay window. |
| 1396 | * This allows us to tolerate devices like the GEM318 |
| 1397 | * that violate the SCSI spec. We are careful not to |
| 1398 | * count REQ while we are waiting for it to fall during |
| 1399 | * an async phase due to our asserted ACK. Each |
| 1400 | * sequencer instruction takes ~25ns, so the REQ must |
| 1401 | * last at least 100ns in order to be counted as a true |
| 1402 | * REQ. |
| 1403 | */ |
| 1404 | test SCSIPHASE, 0xFF jnz phase_locked; |
| 1405 | test SCSISIGI, ACKI jnz phase_lock; |
| 1406 | test SCSISIGI, REQI jz phase_lock; |
| 1407 | test SCSIPHASE, 0xFF jnz phase_locked; |
| 1408 | test SCSISIGI, ACKI jnz phase_lock; |
| 1409 | test SCSISIGI, REQI jz phase_lock; |
| 1410 | phase_locked: |
| 1411 | } else { |
| 1412 | test SCSIPHASE, 0xFF jz .; |
| 1413 | } |
| 1414 | test SSTAT1, SCSIPERR jnz phase_lock; |
| 1415 | phase_lock_latch_phase: |
| 1416 | and LASTPHASE, PHASE_MASK, SCSISIGI ret; |
| 1417 | |
| 1418 | /* |
| 1419 | * Functions to read data in Automatic PIO mode. |
| 1420 | * |
| 1421 | * An ACK is not sent on input from the target until SCSIDATL is read from. |
| 1422 | * So we wait until SCSIDATL is latched (the usual way), then read the data |
| 1423 | * byte directly off the bus using SCSIBUSL. When we have pulled the ATN |
| 1424 | * line, or we just want to acknowledge the byte, then we do a dummy read |
| 1425 | * from SCISDATL. The SCSI spec guarantees that the target will hold the |
| 1426 | * data byte on the bus until we send our ACK. |
| 1427 | * |
| 1428 | * The assumption here is that these are called in a particular sequence, |
| 1429 | * and that REQ is already set when inb_first is called. inb_{first,next} |
| 1430 | * use the same calling convention as inb. |
| 1431 | */ |
| 1432 | inb_next: |
| 1433 | mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ |
| 1434 | inb_next_wait: |
| 1435 | /* |
| 1436 | * If there is a parity error, wait for the kernel to |
| 1437 | * see the interrupt and prepare our message response |
| 1438 | * before continuing. |
| 1439 | */ |
| 1440 | test SCSIPHASE, 0xFF jz .; |
| 1441 | test SSTAT1, SCSIPERR jnz inb_next_wait; |
| 1442 | inb_next_check_phase: |
| 1443 | and LASTPHASE, PHASE_MASK, SCSISIGI; |
| 1444 | cmp LASTPHASE, P_MESGIN jne mesgin_phasemis; |
| 1445 | inb_first: |
| 1446 | clr DINDEX[1]; |
| 1447 | mov DINDEX,SINDEX; |
| 1448 | mov DINDIR,SCSIBUS ret; /*read byte directly from bus*/ |
| 1449 | inb_last: |
| 1450 | mov NONE,SCSIDAT ret; /*dummy read from latch to ACK*/ |
| 1451 | |
| 1452 | mk_mesg: |
| 1453 | mvi SCSISIGO, ATNO; |
| 1454 | mov MSG_OUT,SINDEX ret; |
| 1455 | |
| 1456 | SET_SRC_MODE M_DFF1; |
| 1457 | SET_DST_MODE M_DFF1; |
| 1458 | disable_ccsgen: |
| 1459 | test SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done; |
| 1460 | clr CCSGCTL; |
| 1461 | disable_ccsgen_fetch_done: |
| 1462 | clr SG_STATE ret; |
| 1463 | |
| 1464 | service_fifo: |
| 1465 | /* |
| 1466 | * Do we have any prefetch left??? |
| 1467 | */ |
| 1468 | test SG_STATE, SEGS_AVAIL jnz idle_sg_avail; |
| 1469 | |
| 1470 | /* |
| 1471 | * Can this FIFO have access to the S/G cache yet? |
| 1472 | */ |
| 1473 | test CCSGCTL, SG_CACHE_AVAIL jz return; |
| 1474 | |
| 1475 | /* Did we just finish fetching segs? */ |
| 1476 | test CCSGCTL, CCSGDONE jnz idle_sgfetch_complete; |
| 1477 | |
| 1478 | /* Are we actively fetching segments? */ |
| 1479 | test CCSGCTL, CCSGENACK jnz return; |
| 1480 | |
| 1481 | /* |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 1482 | * Should the other FIFO get the S/G cache first? If |
| 1483 | * both FIFOs have been allocated since we last checked |
| 1484 | * any FIFO, it is important that we service a FIFO |
| 1485 | * that is not actively on the bus first. This guarantees |
| 1486 | * that a FIFO will be freed to handle snapshot requests for |
| 1487 | * any FIFO that is still on the bus. Chips with RTI do not |
| 1488 | * perform snapshots, so don't bother with this test there. |
| 1489 | */ |
| 1490 | if ((ahd->features & AHD_RTI) == 0) { |
| 1491 | /* |
| 1492 | * If we're not still receiving SCSI data, |
| 1493 | * it is safe to allocate the S/G cache to |
| 1494 | * this FIFO. |
| 1495 | */ |
| 1496 | test DFCNTRL, SCSIEN jz idle_sgfetch_start; |
| 1497 | |
| 1498 | /* |
| 1499 | * Switch to the other FIFO. Non-RTI chips |
| 1500 | * also have the "set mode" bug, so we must |
| 1501 | * disable interrupts during the switch. |
| 1502 | */ |
| 1503 | mvi SEQINTCTL, INTVEC1DSL; |
| 1504 | xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); |
| 1505 | |
| 1506 | /* |
| 1507 | * If the other FIFO needs loading, then it |
| 1508 | * must not have claimed the S/G cache yet |
| 1509 | * (SG_CACHE_AVAIL would have been cleared in |
| 1510 | * the orginal FIFO mode and we test this above). |
| 1511 | * Return to the idle loop so we can process the |
| 1512 | * FIFO not currently on the bus first. |
| 1513 | */ |
| 1514 | test SG_STATE, LOADING_NEEDED jz idle_sgfetch_okay; |
| 1515 | clr SEQINTCTL ret; |
| 1516 | idle_sgfetch_okay: |
| 1517 | xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); |
| 1518 | clr SEQINTCTL; |
| 1519 | } |
| 1520 | |
| 1521 | idle_sgfetch_start: |
| 1522 | /* |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1523 | * We fetch a "cacheline aligned" and sized amount of data |
| 1524 | * so we don't end up referencing a non-existant page. |
| 1525 | * Cacheline aligned is in quotes because the kernel will |
| 1526 | * set the prefetch amount to a reasonable level if the |
| 1527 | * cacheline size is unknown. |
| 1528 | */ |
| 1529 | bmov SGHADDR, SCB_RESIDUAL_SGPTR, 4; |
| 1530 | mvi SGHCNT, SG_PREFETCH_CNT; |
| 1531 | if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) { |
| 1532 | /* |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 1533 | * Need two instructions between "touches" of SGHADDR. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1534 | */ |
| 1535 | nop; |
| 1536 | } |
| 1537 | and SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR; |
| 1538 | mvi CCSGCTL, CCSGEN|CCSGRESET; |
| 1539 | or SG_STATE, FETCH_INPROG ret; |
| 1540 | idle_sgfetch_complete: |
| 1541 | /* |
| 1542 | * Guard against SG_CACHE_AVAIL activating during sg fetch |
| 1543 | * request in the other FIFO. |
| 1544 | */ |
| 1545 | test SG_STATE, FETCH_INPROG jz return; |
| 1546 | clr CCSGCTL; |
| 1547 | and CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR; |
| 1548 | mvi SG_STATE, SEGS_AVAIL|LOADING_NEEDED; |
| 1549 | idle_sg_avail: |
| 1550 | /* Does the hardware have space for another SG entry? */ |
| 1551 | test DFSTATUS, PRELOAD_AVAIL jz return; |
| 1552 | /* |
| 1553 | * On the A, preloading a segment before HDMAENACK |
| 1554 | * comes true can clobber the shaddow address of the |
| 1555 | * first segment in the S/G FIFO. Wait until it is |
| 1556 | * safe to proceed. |
| 1557 | */ |
| 1558 | if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) == 0) { |
| 1559 | test DFCNTRL, HDMAENACK jz return; |
| 1560 | } |
| 1561 | if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { |
| 1562 | bmov HADDR, CCSGRAM, 8; |
| 1563 | } else { |
| 1564 | bmov HADDR, CCSGRAM, 4; |
| 1565 | } |
| 1566 | bmov HCNT, CCSGRAM, 3; |
| 1567 | bmov SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1; |
| 1568 | if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) { |
| 1569 | and HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3]; |
| 1570 | } |
| 1571 | if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { |
| 1572 | /* Skip 4 bytes of pad. */ |
| 1573 | add CCSGADDR, 4; |
| 1574 | } |
| 1575 | sg_advance: |
| 1576 | clr A; /* add sizeof(struct scatter) */ |
| 1577 | add SCB_RESIDUAL_SGPTR[0],SG_SIZEOF; |
| 1578 | adc SCB_RESIDUAL_SGPTR[1],A; |
| 1579 | adc SCB_RESIDUAL_SGPTR[2],A; |
| 1580 | adc SCB_RESIDUAL_SGPTR[3],A; |
| 1581 | mov SINDEX, SCB_RESIDUAL_SGPTR[0]; |
| 1582 | test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3; |
| 1583 | or SINDEX, LAST_SEG; |
| 1584 | clr SG_STATE; |
| 1585 | mov SG_CACHE_PRE, SINDEX; |
| 1586 | if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) { |
| 1587 | /* |
| 1588 | * Use SCSIENWRDIS so that SCSIEN is never |
| 1589 | * modified by this operation. |
| 1590 | */ |
| 1591 | or DFCNTRL, PRELOADEN|HDMAEN|SCSIENWRDIS; |
| 1592 | } else { |
| 1593 | or DFCNTRL, PRELOADEN|HDMAEN; |
| 1594 | } |
| 1595 | /* |
| 1596 | * Do we have another segment in the cache? |
| 1597 | */ |
| 1598 | add NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR; |
| 1599 | jnc return; |
| 1600 | and SG_STATE, ~SEGS_AVAIL ret; |
| 1601 | |
| 1602 | /* |
| 1603 | * Initialize the DMA address and counter from the SCB. |
| 1604 | */ |
| 1605 | load_first_seg: |
| 1606 | bmov HADDR, SCB_DATAPTR, 11; |
| 1607 | and REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0]; |
| 1608 | test SCB_DATACNT[3], SG_LAST_SEG jz . + 2; |
| 1609 | or REG_ISR, LAST_SEG; |
| 1610 | mov SG_CACHE_PRE, REG_ISR; |
| 1611 | mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); |
| 1612 | /* |
| 1613 | * Since we've are entering a data phase, we will |
| 1614 | * rely on the SCB_RESID* fields. Initialize the |
| 1615 | * residual and clear the full residual flag. |
| 1616 | */ |
| 1617 | and SCB_SGPTR[0], ~SG_FULL_RESID; |
| 1618 | bmov SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5; |
| 1619 | /* If we need more S/G elements, tell the idle loop */ |
| 1620 | test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2; |
| 1621 | mvi SG_STATE, LOADING_NEEDED ret; |
| 1622 | clr SG_STATE ret; |
| 1623 | |
| 1624 | p_data_handle_xfer: |
| 1625 | call setjmp; |
| 1626 | test SG_STATE, LOADING_NEEDED jnz service_fifo; |
| 1627 | p_data_clear_handler: |
| 1628 | or LONGJMP_ADDR[1], INVALID_ADDR ret; |
| 1629 | |
| 1630 | p_data: |
| 1631 | test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz p_data_allowed; |
| 1632 | SET_SEQINTCODE(PROTO_VIOLATION) |
| 1633 | p_data_allowed: |
| 1634 | |
| 1635 | test SEQ_FLAGS, DPHASE jz data_phase_initialize; |
| 1636 | |
| 1637 | /* |
| 1638 | * If we re-enter the data phase after going through another |
| 1639 | * phase, our transfer location has almost certainly been |
| 1640 | * corrupted by the interveining, non-data, transfers. Ask |
| 1641 | * the host driver to fix us up based on the transfer residual |
| 1642 | * unless we already know that we should be bitbucketing. |
| 1643 | */ |
| 1644 | test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; |
| 1645 | SET_SEQINTCODE(PDATA_REINIT) |
| 1646 | jmp data_phase_inbounds; |
| 1647 | |
| 1648 | p_data_bitbucket: |
| 1649 | /* |
| 1650 | * Turn on `Bit Bucket' mode, wait until the target takes |
| 1651 | * us to another phase, and then notify the host. |
| 1652 | */ |
| 1653 | mov SAVED_MODE, MODE_PTR; |
| 1654 | test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) |
| 1655 | jnz bitbucket_not_m_dff; |
| 1656 | /* |
| 1657 | * Ensure that any FIFO contents are cleared out and the |
| 1658 | * FIFO free'd prior to starting the BITBUCKET. BITBUCKET |
| 1659 | * doesn't discard data already in the FIFO. |
| 1660 | */ |
| 1661 | mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; |
| 1662 | SET_MODE(M_SCSI, M_SCSI) |
| 1663 | bitbucket_not_m_dff: |
| 1664 | or SXFRCTL1,BITBUCKET; |
| 1665 | /* Wait for non-data phase. */ |
| 1666 | test SCSIPHASE, ~DATA_PHASE_MASK jz .; |
| 1667 | and SXFRCTL1, ~BITBUCKET; |
| 1668 | RESTORE_MODE(SAVED_MODE) |
| 1669 | SET_SRC_MODE M_DFF1; |
| 1670 | SET_DST_MODE M_DFF1; |
| 1671 | SET_SEQINTCODE(DATA_OVERRUN) |
| 1672 | jmp ITloop; |
| 1673 | |
| 1674 | data_phase_initialize: |
| 1675 | test SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; |
| 1676 | call load_first_seg; |
| 1677 | data_phase_inbounds: |
| 1678 | /* We have seen a data phase at least once. */ |
| 1679 | or SEQ_FLAGS, DPHASE; |
| 1680 | mov SAVED_MODE, MODE_PTR; |
| 1681 | test SG_STATE, LOADING_NEEDED jz data_group_dma_loop; |
| 1682 | call p_data_handle_xfer; |
| 1683 | data_group_dma_loop: |
| 1684 | /* |
| 1685 | * The transfer is complete if either the last segment |
| 1686 | * completes or the target changes phase. Both conditions |
| 1687 | * will clear SCSIEN. |
| 1688 | */ |
| 1689 | call idle_loop_service_fifos; |
| 1690 | call idle_loop_cchan; |
| 1691 | call idle_loop_gsfifo; |
| 1692 | RESTORE_MODE(SAVED_MODE) |
| 1693 | test DFCNTRL, SCSIEN jnz data_group_dma_loop; |
| 1694 | |
| 1695 | data_group_dmafinish: |
| 1696 | /* |
| 1697 | * The transfer has terminated either due to a phase |
| 1698 | * change, and/or the completion of the last segment. |
| 1699 | * We have two goals here. Do as much other work |
| 1700 | * as possible while the data fifo drains on a read |
| 1701 | * and respond as quickly as possible to the standard |
| 1702 | * messages (save data pointers/disconnect and command |
| 1703 | * complete) that usually follow a data phase. |
| 1704 | */ |
| 1705 | call calc_residual; |
| 1706 | |
| 1707 | /* |
| 1708 | * Go ahead and shut down the DMA engine now. |
| 1709 | */ |
| 1710 | test DFCNTRL, DIRECTION jnz data_phase_finish; |
| 1711 | data_group_fifoflush: |
| 1712 | if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { |
| 1713 | or DFCNTRL, FIFOFLUSH; |
| 1714 | } |
| 1715 | /* |
| 1716 | * We have enabled the auto-ack feature. This means |
| 1717 | * that the controller may have already transferred |
| 1718 | * some overrun bytes into the data FIFO and acked them |
| 1719 | * on the bus. The only way to detect this situation is |
| 1720 | * to wait for LAST_SEG_DONE to come true on a completed |
| 1721 | * transfer and then test to see if the data FIFO is |
| 1722 | * non-empty. We know there is more data yet to transfer |
| 1723 | * if SG_LIST_NULL is not yet set, thus there cannot be |
| 1724 | * an overrun. |
| 1725 | */ |
| 1726 | test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish; |
| 1727 | test SG_CACHE_SHADOW, LAST_SEG_DONE jz .; |
| 1728 | test DFSTATUS, FIFOEMP jnz data_phase_finish; |
| 1729 | /* Overrun */ |
| 1730 | jmp p_data; |
| 1731 | data_phase_finish: |
| 1732 | /* |
| 1733 | * If the target has left us in data phase, loop through |
| 1734 | * the dma code again. We will only loop if there is a |
| 1735 | * data overrun. |
| 1736 | */ |
| 1737 | if ((ahd->flags & AHD_TARGETROLE) != 0) { |
| 1738 | test SSTAT0, TARGET jnz data_phase_done; |
| 1739 | } |
| 1740 | if ((ahd->flags & AHD_INITIATORROLE) != 0) { |
| 1741 | test SSTAT1, REQINIT jz .; |
| 1742 | test SCSIPHASE, DATA_PHASE_MASK jnz p_data; |
| 1743 | } |
| 1744 | |
| 1745 | data_phase_done: |
| 1746 | /* Kill off any pending prefetch */ |
| 1747 | call disable_ccsgen; |
| 1748 | or LONGJMP_ADDR[1], INVALID_ADDR; |
| 1749 | |
| 1750 | if ((ahd->flags & AHD_TARGETROLE) != 0) { |
| 1751 | test SEQ_FLAGS, DPHASE_PENDING jz ITloop; |
| 1752 | /* |
| 1753 | and SEQ_FLAGS, ~DPHASE_PENDING; |
| 1754 | * For data-in phases, wait for any pending acks from the |
| 1755 | * initiator before changing phase. We only need to |
| 1756 | * send Ignore Wide Residue messages for data-in phases. |
| 1757 | test DFCNTRL, DIRECTION jz target_ITloop; |
| 1758 | test SSTAT1, REQINIT jnz .; |
| 1759 | test SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jz target_ITloop; |
| 1760 | SET_MODE(M_SCSI, M_SCSI) |
| 1761 | test NEGCONOPTS, WIDEXFER jz target_ITloop; |
| 1762 | */ |
| 1763 | /* |
| 1764 | * Issue an Ignore Wide Residue Message. |
| 1765 | mvi P_MESGIN|BSYO call change_phase; |
| 1766 | mvi MSG_IGN_WIDE_RESIDUE call target_outb; |
| 1767 | mvi 1 call target_outb; |
| 1768 | jmp target_ITloop; |
| 1769 | */ |
| 1770 | } else { |
| 1771 | jmp ITloop; |
| 1772 | } |
| 1773 | |
| 1774 | /* |
| 1775 | * We assume that, even though data may still be |
| 1776 | * transferring to the host, that the SCSI side of |
| 1777 | * the DMA engine is now in a static state. This |
| 1778 | * allows us to update our notion of where we are |
| 1779 | * in this transfer. |
| 1780 | * |
| 1781 | * If, by chance, we stopped before being able |
| 1782 | * to fetch additional segments for this transfer, |
| 1783 | * yet the last S/G was completely exhausted, |
| 1784 | * call our idle loop until it is able to load |
| 1785 | * another segment. This will allow us to immediately |
| 1786 | * pickup on the next segment on the next data phase. |
| 1787 | * |
| 1788 | * If we happened to stop on the last segment, then |
| 1789 | * our residual information is still correct from |
| 1790 | * the idle loop and there is no need to perform |
| 1791 | * any fixups. |
| 1792 | */ |
| 1793 | residual_before_last_seg: |
| 1794 | test MDFFSTAT, SHVALID jnz sgptr_fixup; |
| 1795 | /* |
| 1796 | * Can never happen from an interrupt as the packetized |
| 1797 | * hardware will only interrupt us once SHVALID or |
| 1798 | * LAST_SEG_DONE. |
| 1799 | */ |
| 1800 | call idle_loop_service_fifos; |
| 1801 | RESTORE_MODE(SAVED_MODE) |
| 1802 | /* FALLTHROUGH */ |
| 1803 | calc_residual: |
| 1804 | test SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg; |
| 1805 | /* Record if we've consumed all S/G entries */ |
| 1806 | test MDFFSTAT, SHVALID jz . + 2; |
| 1807 | bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; |
| 1808 | or SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret; |
| 1809 | |
| 1810 | sgptr_fixup: |
| 1811 | /* |
| 1812 | * Fixup the residual next S/G pointer. The S/G preload |
| 1813 | * feature of the chip allows us to load two elements |
| 1814 | * in addition to the currently active element. We |
| 1815 | * store the bottom byte of the next S/G pointer in |
| 1816 | * the SG_CACHE_PTR register so we can restore the |
| 1817 | * correct value when the DMA completes. If the next |
| 1818 | * sg ptr value has advanced to the point where higher |
| 1819 | * bytes in the address have been affected, fix them |
| 1820 | * too. |
| 1821 | */ |
| 1822 | test SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done; |
| 1823 | test SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done; |
| 1824 | add SCB_RESIDUAL_SGPTR[1], -1; |
| 1825 | adc SCB_RESIDUAL_SGPTR[2], -1; |
| 1826 | adc SCB_RESIDUAL_SGPTR[3], -1; |
| 1827 | sgptr_fixup_done: |
| 1828 | and SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW; |
| 1829 | clr SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */ |
| 1830 | bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; |
| 1831 | |
| 1832 | export timer_isr: |
| 1833 | call issue_cmdcmplt; |
| 1834 | mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO; |
| 1835 | if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { |
| 1836 | /* |
| 1837 | * In H2A4, the mode pointer is not saved |
| 1838 | * for intvec2, but is restored on iret. |
| 1839 | * This can lead to the restoration of a |
| 1840 | * bogus mode ptr. Manually clear the |
| 1841 | * intmask bits and do a normal return |
| 1842 | * to compensate. |
| 1843 | */ |
| 1844 | and SEQINTCTL, ~(INTMASK2|INTMASK1) ret; |
| 1845 | } else { |
| 1846 | or SEQINTCTL, IRET ret; |
| 1847 | } |
| 1848 | |
| 1849 | export seq_isr: |
| 1850 | if ((ahd->features & AHD_RTI) == 0) { |
| 1851 | /* |
| 1852 | * On RevA Silicon, if the target returns us to data-out |
| 1853 | * after we have already trained for data-out, it is |
| 1854 | * possible for us to transition the free running clock to |
| 1855 | * data-valid before the required 100ns P1 setup time (8 P1 |
| 1856 | * assertions in fast-160 mode). This will only happen if |
| 1857 | * this L-Q is a continuation of a data transfer for which |
| 1858 | * we have already prefetched data into our FIFO (LQ/Data |
| 1859 | * followed by LQ/Data for the same write transaction). |
| 1860 | * This can cause some target implementations to miss the |
| 1861 | * first few data transfers on the bus. We detect this |
| 1862 | * situation by noticing that this is the first data transfer |
| 1863 | * after an LQ (LQIWORKONLQ true), that the data transfer is |
| 1864 | * a continuation of a transfer already setup in our FIFO |
| 1865 | * (SAVEPTRS interrupt), and that the transaction is a write |
| 1866 | * (DIRECTION set in DFCNTRL). The delay is performed by |
| 1867 | * disabling SCSIEN until we see the first REQ from the |
| 1868 | * target. |
| 1869 | * |
| 1870 | * First instruction in an ISR cannot be a branch on |
| 1871 | * Rev A. Snapshot LQISTAT2 so the status is not missed |
| 1872 | * and deffer the test by one instruction. |
| 1873 | */ |
| 1874 | mov REG_ISR, LQISTAT2; |
| 1875 | test REG_ISR, LQIWORKONLQ jz main_isr; |
| 1876 | test SEQINTSRC, SAVEPTRS jz main_isr; |
| 1877 | test LONGJMP_ADDR[1], INVALID_ADDR jz saveptr_active_fifo; |
| 1878 | /* |
| 1879 | * Switch to the active FIFO after clearing the snapshot |
| 1880 | * savepointer in the current FIFO. We do this so that |
| 1881 | * a pending CTXTDONE or SAVEPTR is visible in the active |
| 1882 | * FIFO. This status is the only way we can detect if we |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 1883 | * have lost the race (e.g. host paused us) and our attempts |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1884 | * to disable the channel occurred after all REQs were |
| 1885 | * already seen and acked (REQINIT never comes true). |
| 1886 | */ |
| 1887 | mvi DFFSXFRCTL, CLRCHN; |
| 1888 | xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); |
| 1889 | test DFCNTRL, DIRECTION jz interrupt_return; |
| 1890 | and DFCNTRL, ~SCSIEN; |
| 1891 | snapshot_wait_data_valid: |
Hannes Reinecke | 11668bb | 2006-01-12 12:08:06 +0100 | [diff] [blame] | 1892 | test SEQINTSRC, (CTXTDONE|SAVEPTRS) jnz interrupt_return; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1893 | test SSTAT1, REQINIT jz snapshot_wait_data_valid; |
| 1894 | snapshot_data_valid: |
| 1895 | or DFCNTRL, SCSIEN; |
| 1896 | or SEQINTCTL, IRET ret; |
| 1897 | snapshot_saveptr: |
| 1898 | mvi DFFSXFRCTL, CLRCHN; |
| 1899 | or SEQINTCTL, IRET ret; |
| 1900 | main_isr: |
| 1901 | } |
| 1902 | test SEQINTSRC, CFG4DATA jnz cfg4data_intr; |
| 1903 | test SEQINTSRC, CFG4ISTAT jnz cfg4istat_intr; |
| 1904 | test SEQINTSRC, SAVEPTRS jnz saveptr_intr; |
| 1905 | test SEQINTSRC, CFG4ICMD jnz cfg4icmd_intr; |
| 1906 | SET_SEQINTCODE(INVALID_SEQINT) |
| 1907 | |
| 1908 | /* |
| 1909 | * There are two types of save pointers interrupts: |
| 1910 | * The first is a snapshot save pointers where the current FIFO is not |
| 1911 | * active and contains a snapshot of the current poniter information. |
| 1912 | * This happens between packets in a stream for a single L_Q. Since we |
| 1913 | * are not performing a pointer save, we can safely clear the channel |
| 1914 | * so it can be used for other transactions. On RTI capable controllers, |
| 1915 | * where snapshots can, and are, disabled, the code to handle this type |
| 1916 | * of snapshot is not active. |
| 1917 | * |
| 1918 | * The second case is a save pointers on an active FIFO which occurs |
| 1919 | * if the target changes to a new L_Q or busfrees/QASes and the transfer |
| 1920 | * has a residual. This should occur coincident with a ctxtdone. We |
| 1921 | * disable the interrupt and allow our active routine to handle the |
| 1922 | * save. |
| 1923 | */ |
| 1924 | saveptr_intr: |
| 1925 | if ((ahd->features & AHD_RTI) == 0) { |
| 1926 | test LONGJMP_ADDR[1], INVALID_ADDR jnz snapshot_saveptr; |
| 1927 | } |
| 1928 | saveptr_active_fifo: |
| 1929 | and SEQIMODE, ~ENSAVEPTRS; |
| 1930 | or SEQINTCTL, IRET ret; |
| 1931 | |
| 1932 | cfg4data_intr: |
| 1933 | test SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun_inc_use_count; |
| 1934 | call load_first_seg; |
| 1935 | call pkt_handle_xfer; |
| 1936 | inc SCB_FIFO_USE_COUNT; |
| 1937 | interrupt_return: |
| 1938 | or SEQINTCTL, IRET ret; |
| 1939 | |
| 1940 | cfg4istat_intr: |
| 1941 | call freeze_queue; |
| 1942 | add NONE, -13, SCB_CDB_LEN; |
| 1943 | jnc cfg4istat_have_sense_addr; |
| 1944 | test SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr; |
| 1945 | /* |
| 1946 | * Host sets up address/count and enables transfer. |
| 1947 | */ |
| 1948 | SET_SEQINTCODE(CFG4ISTAT_INTR) |
| 1949 | jmp cfg4istat_setup_handler; |
| 1950 | cfg4istat_have_sense_addr: |
| 1951 | bmov HADDR, SCB_SENSE_BUSADDR, 4; |
| 1952 | mvi HCNT[1], (AHD_SENSE_BUFSIZE >> 8); |
| 1953 | mvi SG_CACHE_PRE, LAST_SEG; |
| 1954 | mvi DFCNTRL, PRELOADEN|SCSIEN|HDMAEN; |
| 1955 | cfg4istat_setup_handler: |
| 1956 | /* |
| 1957 | * Status pkt is transferring to host. |
| 1958 | * Wait in idle loop for transfer to complete. |
| 1959 | * If a command completed before an attempted |
| 1960 | * task management function completed, notify the host. |
| 1961 | */ |
| 1962 | test SCB_TASK_MANAGEMENT, 0xFF jz cfg4istat_no_taskmgmt_func; |
| 1963 | SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY) |
| 1964 | cfg4istat_no_taskmgmt_func: |
| 1965 | call pkt_handle_status; |
| 1966 | or SEQINTCTL, IRET ret; |
| 1967 | |
| 1968 | cfg4icmd_intr: |
| 1969 | /* |
| 1970 | * In the case of DMAing a CDB from the host, the normal |
| 1971 | * CDB buffer is formatted with an 8 byte address followed |
| 1972 | * by a 1 byte count. |
| 1973 | */ |
| 1974 | bmov HADDR[0], SCB_HOST_CDB_PTR, 9; |
| 1975 | mvi SG_CACHE_PRE, LAST_SEG; |
| 1976 | mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); |
| 1977 | call pkt_handle_cdb; |
| 1978 | or SEQINTCTL, IRET ret; |
| 1979 | |
| 1980 | /* |
| 1981 | * See if the target has gone on in this context creating an |
| 1982 | * overrun condition. For the write case, the hardware cannot |
| 1983 | * ack bytes until data are provided. So, if the target begins |
| 1984 | * another packet without changing contexts, implying we are |
| 1985 | * not sitting on a packet boundary, we are in an overrun |
| 1986 | * situation. For the read case, the hardware will continue to |
| 1987 | * ack bytes into the FIFO, and may even ack the last overrun packet |
| 1988 | * into the FIFO. If the FIFO should become non-empty, we are in |
| 1989 | * a read overrun case. |
| 1990 | */ |
| 1991 | #define check_overrun \ |
| 1992 | /* Not on a packet boundary. */ \ |
| 1993 | test MDFFSTAT, DLZERO jz pkt_handle_overrun; \ |
| 1994 | test DFSTATUS, FIFOEMP jz pkt_handle_overrun |
| 1995 | |
| 1996 | pkt_handle_xfer: |
| 1997 | test SG_STATE, LOADING_NEEDED jz pkt_last_seg; |
| 1998 | call setjmp; |
| 1999 | test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; |
| 2000 | test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; |
| 2001 | test SCSISIGO, ATNO jnz . + 2; |
| 2002 | test SSTAT2, NONPACKREQ jz pkt_service_fifo; |
| 2003 | /* |
| 2004 | * Defer handling of this NONPACKREQ until we |
| 2005 | * can be sure it pertains to this FIFO. SAVEPTRS |
| 2006 | * will not be asserted if the NONPACKREQ is for us, |
| 2007 | * so we must simulate it if shaddow is valid. If |
| 2008 | * shaddow is not valid, keep running this FIFO until we |
| 2009 | * have satisfied the transfer by loading segments and |
| 2010 | * waiting for either shaddow valid or last_seg_done. |
| 2011 | */ |
| 2012 | test MDFFSTAT, SHVALID jnz pkt_saveptrs; |
| 2013 | pkt_service_fifo: |
| 2014 | test SG_STATE, LOADING_NEEDED jnz service_fifo; |
| 2015 | pkt_last_seg: |
| 2016 | call setjmp; |
| 2017 | test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; |
| 2018 | test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_last_seg_done; |
| 2019 | test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; |
| 2020 | test SCSISIGO, ATNO jnz . + 2; |
| 2021 | test SSTAT2, NONPACKREQ jz return; |
| 2022 | test MDFFSTAT, SHVALID jz return; |
| 2023 | /* FALLTHROUGH */ |
| 2024 | |
| 2025 | /* |
| 2026 | * Either a SAVEPTRS interrupt condition is pending for this FIFO |
| 2027 | * or we have a pending NONPACKREQ for this FIFO. We differentiate |
| 2028 | * between the two by capturing the state of the SAVEPTRS interrupt |
| 2029 | * prior to clearing this status and executing the common code for |
| 2030 | * these two cases. |
| 2031 | */ |
| 2032 | pkt_saveptrs: |
| 2033 | BEGIN_CRITICAL; |
| 2034 | if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { |
| 2035 | or DFCNTRL, FIFOFLUSH; |
| 2036 | } |
| 2037 | mov REG0, SEQINTSRC; |
| 2038 | call calc_residual; |
| 2039 | call save_pointers; |
| 2040 | mvi CLRSEQINTSRC, CLRSAVEPTRS; |
| 2041 | call disable_ccsgen; |
| 2042 | or SEQIMODE, ENSAVEPTRS; |
| 2043 | test DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status; |
| 2044 | test DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status; |
| 2045 | /* |
| 2046 | * Keep a handler around for this FIFO until it drains |
| 2047 | * to the host to guarantee that we don't complete the |
| 2048 | * command to the host before the data arrives. |
| 2049 | */ |
| 2050 | pkt_saveptrs_wait_fifoemp: |
| 2051 | call setjmp; |
| 2052 | test DFSTATUS, FIFOEMP jz return; |
| 2053 | pkt_saveptrs_check_status: |
| 2054 | or LONGJMP_ADDR[1], INVALID_ADDR; |
| 2055 | test REG0, SAVEPTRS jz unexpected_nonpkt_phase; |
| 2056 | dec SCB_FIFO_USE_COUNT; |
| 2057 | test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; |
| 2058 | mvi DFFSXFRCTL, CLRCHN ret; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2059 | |
| 2060 | /* |
| 2061 | * LAST_SEG_DONE status has been seen in the current FIFO. |
| 2062 | * This indicates that all of the allowed data for this |
| 2063 | * command has transferred across the SCSI and host buses. |
| 2064 | * Check for overrun and see if we can complete this command. |
| 2065 | */ |
| 2066 | pkt_last_seg_done: |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2067 | /* |
| 2068 | * Mark transfer as completed. |
| 2069 | */ |
| 2070 | or SCB_SGPTR, SG_LIST_NULL; |
| 2071 | |
| 2072 | /* |
| 2073 | * Wait for the current context to finish to verify that |
| 2074 | * no overrun condition has occurred. |
| 2075 | */ |
| 2076 | test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done; |
| 2077 | call setjmp; |
| 2078 | pkt_wait_ctxt_done_loop: |
| 2079 | test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done; |
| 2080 | /* |
| 2081 | * A sufficiently large overrun or a NONPACKREQ may |
| 2082 | * prevent CTXTDONE from ever asserting, so we must |
| 2083 | * poll for these statuses too. |
| 2084 | */ |
| 2085 | check_overrun; |
| 2086 | test SSTAT2, NONPACKREQ jz return; |
| 2087 | test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; |
| 2088 | /* FALLTHROUGH */ |
| 2089 | |
| 2090 | pkt_ctxt_done: |
| 2091 | check_overrun; |
| 2092 | or LONGJMP_ADDR[1], INVALID_ADDR; |
| 2093 | /* |
| 2094 | * If status has been received, it is safe to skip |
| 2095 | * the check to see if another FIFO is active because |
| 2096 | * LAST_SEG_DONE has been observed. However, we check |
| 2097 | * the FIFO anyway since it costs us only one extra |
| 2098 | * instruction to leverage common code to perform the |
| 2099 | * SCB completion. |
| 2100 | */ |
| 2101 | dec SCB_FIFO_USE_COUNT; |
| 2102 | test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; |
| 2103 | mvi DFFSXFRCTL, CLRCHN ret; |
| 2104 | END_CRITICAL; |
| 2105 | |
| 2106 | /* |
| 2107 | * Must wait until CDB xfer is over before issuing the |
| 2108 | * clear channel. |
| 2109 | */ |
| 2110 | pkt_handle_cdb: |
| 2111 | call setjmp; |
| 2112 | test SG_CACHE_SHADOW, LAST_SEG_DONE jz return; |
| 2113 | or LONGJMP_ADDR[1], INVALID_ADDR; |
| 2114 | mvi DFFSXFRCTL, CLRCHN ret; |
| 2115 | |
| 2116 | /* |
| 2117 | * Watch over the status transfer. Our host sense buffer is |
| 2118 | * large enough to take the maximum allowed status packet. |
| 2119 | * None-the-less, we must still catch and report overruns to |
| 2120 | * the host. Additionally, properly catch unexpected non-packet |
| 2121 | * phases that are typically caused by CRC errors in status packet |
| 2122 | * transmission. |
| 2123 | */ |
| 2124 | pkt_handle_status: |
| 2125 | call setjmp; |
| 2126 | test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun; |
| 2127 | test SEQINTSRC, CTXTDONE jz pkt_status_check_nonpackreq; |
| 2128 | test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun; |
| 2129 | pkt_status_IU_done: |
| 2130 | if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { |
| 2131 | or DFCNTRL, FIFOFLUSH; |
| 2132 | } |
| 2133 | test DFSTATUS, FIFOEMP jz return; |
| 2134 | BEGIN_CRITICAL; |
| 2135 | or LONGJMP_ADDR[1], INVALID_ADDR; |
| 2136 | mvi SCB_SCSI_STATUS, STATUS_PKT_SENSE; |
| 2137 | or SCB_CONTROL, STATUS_RCVD; |
| 2138 | jmp pkt_complete_scb_if_fifos_idle; |
| 2139 | END_CRITICAL; |
| 2140 | pkt_status_check_overrun: |
| 2141 | /* |
| 2142 | * Status PKT overruns are uncerimoniously recovered with a |
| 2143 | * bus reset. If we've overrun, let the host know so that |
| 2144 | * recovery can be performed. |
| 2145 | * |
| 2146 | * LAST_SEG_DONE has been observed. If either CTXTDONE or |
| 2147 | * a NONPACKREQ phase change have occurred and the FIFO is |
| 2148 | * empty, there is no overrun. |
| 2149 | */ |
| 2150 | test DFSTATUS, FIFOEMP jz pkt_status_report_overrun; |
| 2151 | test SEQINTSRC, CTXTDONE jz . + 2; |
| 2152 | test DFSTATUS, FIFOEMP jnz pkt_status_IU_done; |
| 2153 | test SCSIPHASE, ~DATA_PHASE_MASK jz return; |
| 2154 | test DFSTATUS, FIFOEMP jnz pkt_status_check_nonpackreq; |
| 2155 | pkt_status_report_overrun: |
| 2156 | SET_SEQINTCODE(STATUS_OVERRUN) |
| 2157 | /* SEQUENCER RESTARTED */ |
| 2158 | pkt_status_check_nonpackreq: |
| 2159 | /* |
| 2160 | * CTXTDONE may be held off if a NONPACKREQ is associated with |
| 2161 | * the current context. If a NONPACKREQ is observed, decide |
| 2162 | * if it is for the current context. If it is for the current |
| 2163 | * context, we must defer NONPACKREQ processing until all data |
| 2164 | * has transferred to the host. |
| 2165 | */ |
| 2166 | test SCSIPHASE, ~DATA_PHASE_MASK jz return; |
| 2167 | test SCSISIGO, ATNO jnz . + 2; |
| 2168 | test SSTAT2, NONPACKREQ jz return; |
| 2169 | test SEQINTSRC, CTXTDONE jnz pkt_status_IU_done; |
| 2170 | test DFSTATUS, FIFOEMP jz return; |
| 2171 | /* |
| 2172 | * The unexpected nonpkt phase handler assumes that any |
| 2173 | * data channel use will have a FIFO reference count. It |
| 2174 | * turns out that the status handler doesn't need a refernce |
| 2175 | * count since the status received flag, and thus completion |
| 2176 | * processing, cannot be set until the handler is finished. |
| 2177 | * We increment the count here to make the nonpkt handler |
| 2178 | * happy. |
| 2179 | */ |
| 2180 | inc SCB_FIFO_USE_COUNT; |
| 2181 | /* FALLTHROUGH */ |
| 2182 | |
| 2183 | /* |
| 2184 | * Nonpackreq is a polled status. It can come true in three situations: |
| 2185 | * we have received an L_Q, we have sent one or more L_Qs, or there is no |
| 2186 | * L_Q context associated with this REQ (REQ occurs immediately after a |
| 2187 | * (re)selection). Routines that know that the context responsible for this |
| 2188 | * nonpackreq call directly into unexpected_nonpkt_phase. In the case of the |
| 2189 | * top level idle loop, we exhaust all active contexts prior to determining that |
| 2190 | * we simply do not have the full I_T_L_Q for this phase. |
| 2191 | */ |
| 2192 | unexpected_nonpkt_phase_find_ctxt: |
| 2193 | /* |
| 2194 | * This nonpackreq is most likely associated with one of the tags |
| 2195 | * in a FIFO or an outgoing LQ. Only treat it as an I_T only |
| 2196 | * nonpackreq if we've cleared out the FIFOs and handled any |
| 2197 | * pending SELDO. |
| 2198 | */ |
| 2199 | SET_SRC_MODE M_SCSI; |
| 2200 | SET_DST_MODE M_SCSI; |
| 2201 | and A, FIFO1FREE|FIFO0FREE, DFFSTAT; |
| 2202 | cmp A, FIFO1FREE|FIFO0FREE jne return; |
| 2203 | test SSTAT0, SELDO jnz return; |
| 2204 | mvi SCBPTR[1], SCB_LIST_NULL; |
| 2205 | unexpected_nonpkt_phase: |
| 2206 | test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) |
| 2207 | jnz unexpected_nonpkt_mode_cleared; |
| 2208 | SET_SRC_MODE M_DFF0; |
| 2209 | SET_DST_MODE M_DFF0; |
| 2210 | or LONGJMP_ADDR[1], INVALID_ADDR; |
| 2211 | dec SCB_FIFO_USE_COUNT; |
| 2212 | mvi DFFSXFRCTL, CLRCHN; |
| 2213 | unexpected_nonpkt_mode_cleared: |
| 2214 | mvi CLRSINT2, CLRNONPACKREQ; |
Hannes Reinecke | 53467e6 | 2006-01-24 10:43:26 +0100 | [diff] [blame] | 2215 | if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { |
| 2216 | /* |
| 2217 | * Test to ensure that the bus has not |
| 2218 | * already gone free prior to clearing |
| 2219 | * any stale busfree status. This avoids |
| 2220 | * a window whereby a busfree just after |
| 2221 | * a selection could be missed. |
| 2222 | */ |
| 2223 | test SCSISIGI, BSYI jz . + 2; |
| 2224 | mvi CLRSINT1,CLRBUSFREE; |
| 2225 | or SIMODE1, ENBUSFREE; |
| 2226 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2227 | test SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase; |
| 2228 | SET_SEQINTCODE(ENTERING_NONPACK) |
| 2229 | jmp ITloop; |
| 2230 | |
| 2231 | illegal_phase: |
| 2232 | SET_SEQINTCODE(ILLEGAL_PHASE) |
| 2233 | jmp ITloop; |
| 2234 | |
| 2235 | /* |
| 2236 | * We have entered an overrun situation. If we have working |
| 2237 | * BITBUCKET, flip that on and let the hardware eat any overrun |
| 2238 | * data. Otherwise use an overrun buffer in the host to simulate |
| 2239 | * BITBUCKET. |
| 2240 | */ |
| 2241 | pkt_handle_overrun_inc_use_count: |
| 2242 | inc SCB_FIFO_USE_COUNT; |
| 2243 | pkt_handle_overrun: |
| 2244 | SET_SEQINTCODE(CFG4OVERRUN) |
| 2245 | call freeze_queue; |
| 2246 | if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) { |
| 2247 | or DFFSXFRCTL, DFFBITBUCKET; |
| 2248 | SET_SRC_MODE M_DFF1; |
| 2249 | SET_DST_MODE M_DFF1; |
| 2250 | } else { |
| 2251 | call load_overrun_buf; |
| 2252 | mvi DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN); |
| 2253 | } |
| 2254 | call setjmp; |
| 2255 | if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { |
| 2256 | test DFSTATUS, PRELOAD_AVAIL jz overrun_load_done; |
| 2257 | call load_overrun_buf; |
| 2258 | or DFCNTRL, PRELOADEN; |
| 2259 | overrun_load_done: |
| 2260 | test SEQINTSRC, CTXTDONE jnz pkt_overrun_end; |
| 2261 | } else { |
| 2262 | test DFFSXFRCTL, DFFBITBUCKET jz pkt_overrun_end; |
| 2263 | } |
| 2264 | test SSTAT2, NONPACKREQ jz return; |
| 2265 | pkt_overrun_end: |
| 2266 | or SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID; |
| 2267 | test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; |
| 2268 | dec SCB_FIFO_USE_COUNT; |
| 2269 | or LONGJMP_ADDR[1], INVALID_ADDR; |
| 2270 | test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; |
| 2271 | mvi DFFSXFRCTL, CLRCHN ret; |
| 2272 | |
| 2273 | if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { |
| 2274 | load_overrun_buf: |
| 2275 | /* |
| 2276 | * Load a dummy segment if preload space is available. |
| 2277 | */ |
| 2278 | mov HADDR[0], SHARED_DATA_ADDR; |
| 2279 | add HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1]; |
| 2280 | mov ACCUM_SAVE, A; |
| 2281 | clr A; |
| 2282 | adc HADDR[2], A, SHARED_DATA_ADDR[2]; |
| 2283 | adc HADDR[3], A, SHARED_DATA_ADDR[3]; |
| 2284 | mov A, ACCUM_SAVE; |
| 2285 | bmov HADDR[4], ALLZEROS, 4; |
| 2286 | /* PKT_OVERRUN_BUFSIZE is a multiple of 256 */ |
| 2287 | clr HCNT[0]; |
| 2288 | mvi HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF); |
| 2289 | clr HCNT[2] ret; |
| 2290 | } |