blob: f04791f694081d16dab799ae16f5b3f405683e4d [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30#include <linux/module.h>
31#include <linux/timex.h>
Randy.Dunlapc59ede72006-01-11 12:17:46 -080032#include <linux/capability.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070033#include <linux/errno.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070034#include <linux/syscalls.h>
35#include <linux/security.h>
36#include <linux/fs.h>
37#include <linux/module.h>
38
39#include <asm/uaccess.h>
40#include <asm/unistd.h>
41
42/*
43 * The timezone where the local system is located. Used as a default by some
44 * programs who obtain this value by using gettimeofday.
45 */
46struct timezone sys_tz;
47
48EXPORT_SYMBOL(sys_tz);
49
50#ifdef __ARCH_WANT_SYS_TIME
51
52/*
53 * sys_time() can be implemented in user-level using
54 * sys_gettimeofday(). Is this for backwards compatibility? If so,
55 * why not move it into the appropriate arch directory (for those
56 * architectures that need it).
57 */
58asmlinkage long sys_time(time_t __user * tloc)
59{
60 time_t i;
61 struct timeval tv;
62
63 do_gettimeofday(&tv);
64 i = tv.tv_sec;
65
66 if (tloc) {
67 if (put_user(i,tloc))
68 i = -EFAULT;
69 }
70 return i;
71}
72
73/*
74 * sys_stime() can be implemented in user-level using
75 * sys_settimeofday(). Is this for backwards compatibility? If so,
76 * why not move it into the appropriate arch directory (for those
77 * architectures that need it).
78 */
79
80asmlinkage long sys_stime(time_t __user *tptr)
81{
82 struct timespec tv;
83 int err;
84
85 if (get_user(tv.tv_sec, tptr))
86 return -EFAULT;
87
88 tv.tv_nsec = 0;
89
90 err = security_settime(&tv, NULL);
91 if (err)
92 return err;
93
94 do_settimeofday(&tv);
95 return 0;
96}
97
98#endif /* __ARCH_WANT_SYS_TIME */
99
100asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
101{
102 if (likely(tv != NULL)) {
103 struct timeval ktv;
104 do_gettimeofday(&ktv);
105 if (copy_to_user(tv, &ktv, sizeof(ktv)))
106 return -EFAULT;
107 }
108 if (unlikely(tz != NULL)) {
109 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
110 return -EFAULT;
111 }
112 return 0;
113}
114
115/*
116 * Adjust the time obtained from the CMOS to be UTC time instead of
117 * local time.
118 *
119 * This is ugly, but preferable to the alternatives. Otherwise we
120 * would either need to write a program to do it in /etc/rc (and risk
121 * confusion if the program gets run more than once; it would also be
122 * hard to make the program warp the clock precisely n hours) or
123 * compile in the timezone information into the kernel. Bad, bad....
124 *
125 * - TYT, 1992-01-01
126 *
127 * The best thing to do is to keep the CMOS clock in universal time (UTC)
128 * as real UNIX machines always do it. This avoids all headaches about
129 * daylight saving times and warping kernel clocks.
130 */
Jesper Juhl77933d72005-07-27 11:46:09 -0700131static inline void warp_clock(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700132{
133 write_seqlock_irq(&xtime_lock);
134 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
135 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
136 time_interpolator_reset();
137 write_sequnlock_irq(&xtime_lock);
138 clock_was_set();
139}
140
141/*
142 * In case for some reason the CMOS clock has not already been running
143 * in UTC, but in some local time: The first time we set the timezone,
144 * we will warp the clock so that it is ticking UTC time instead of
145 * local time. Presumably, if someone is setting the timezone then we
146 * are running in an environment where the programs understand about
147 * timezones. This should be done at boot time in the /etc/rc script,
148 * as soon as possible, so that the clock can be set right. Otherwise,
149 * various programs will get confused when the clock gets warped.
150 */
151
152int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
153{
154 static int firsttime = 1;
155 int error = 0;
156
Linus Torvalds951069e2006-01-31 10:16:55 -0800157 if (tv && !timespec_valid(tv))
Thomas Gleixner718bcce2006-01-09 20:52:29 -0800158 return -EINVAL;
159
Linus Torvalds1da177e2005-04-16 15:20:36 -0700160 error = security_settime(tv, tz);
161 if (error)
162 return error;
163
164 if (tz) {
165 /* SMP safe, global irq locking makes it work. */
166 sys_tz = *tz;
167 if (firsttime) {
168 firsttime = 0;
169 if (!tv)
170 warp_clock();
171 }
172 }
173 if (tv)
174 {
175 /* SMP safe, again the code in arch/foo/time.c should
176 * globally block out interrupts when it runs.
177 */
178 return do_settimeofday(tv);
179 }
180 return 0;
181}
182
183asmlinkage long sys_settimeofday(struct timeval __user *tv,
184 struct timezone __user *tz)
185{
186 struct timeval user_tv;
187 struct timespec new_ts;
188 struct timezone new_tz;
189
190 if (tv) {
191 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
192 return -EFAULT;
193 new_ts.tv_sec = user_tv.tv_sec;
194 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
195 }
196 if (tz) {
197 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
198 return -EFAULT;
199 }
200
201 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
202}
203
Linus Torvalds1da177e2005-04-16 15:20:36 -0700204asmlinkage long sys_adjtimex(struct timex __user *txc_p)
205{
206 struct timex txc; /* Local copy of parameter */
207 int ret;
208
209 /* Copy the user data space into the kernel copy
210 * structure. But bear in mind that the structures
211 * may change
212 */
213 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
214 return -EFAULT;
215 ret = do_adjtimex(&txc);
216 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
217}
218
219inline struct timespec current_kernel_time(void)
220{
221 struct timespec now;
222 unsigned long seq;
223
224 do {
225 seq = read_seqbegin(&xtime_lock);
226
227 now = xtime;
228 } while (read_seqretry(&xtime_lock, seq));
229
230 return now;
231}
232
233EXPORT_SYMBOL(current_kernel_time);
234
235/**
236 * current_fs_time - Return FS time
237 * @sb: Superblock.
238 *
Kalin KOZHUHAROV8ba8e952006-04-01 01:41:22 +0200239 * Return the current time truncated to the time granularity supported by
Linus Torvalds1da177e2005-04-16 15:20:36 -0700240 * the fs.
241 */
242struct timespec current_fs_time(struct super_block *sb)
243{
244 struct timespec now = current_kernel_time();
245 return timespec_trunc(now, sb->s_time_gran);
246}
247EXPORT_SYMBOL(current_fs_time);
248
Eric Dumazet753e9c52007-05-08 00:25:32 -0700249/*
250 * Convert jiffies to milliseconds and back.
251 *
252 * Avoid unnecessary multiplications/divisions in the
253 * two most common HZ cases:
254 */
255unsigned int inline jiffies_to_msecs(const unsigned long j)
256{
257#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
258 return (MSEC_PER_SEC / HZ) * j;
259#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
260 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
261#else
262 return (j * MSEC_PER_SEC) / HZ;
263#endif
264}
265EXPORT_SYMBOL(jiffies_to_msecs);
266
267unsigned int inline jiffies_to_usecs(const unsigned long j)
268{
269#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
270 return (USEC_PER_SEC / HZ) * j;
271#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
272 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
273#else
274 return (j * USEC_PER_SEC) / HZ;
275#endif
276}
277EXPORT_SYMBOL(jiffies_to_usecs);
278
Linus Torvalds1da177e2005-04-16 15:20:36 -0700279/**
Kalin KOZHUHAROV8ba8e952006-04-01 01:41:22 +0200280 * timespec_trunc - Truncate timespec to a granularity
Linus Torvalds1da177e2005-04-16 15:20:36 -0700281 * @t: Timespec
Kalin KOZHUHAROV8ba8e952006-04-01 01:41:22 +0200282 * @gran: Granularity in ns.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700283 *
Kalin KOZHUHAROV8ba8e952006-04-01 01:41:22 +0200284 * Truncate a timespec to a granularity. gran must be smaller than a second.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700285 * Always rounds down.
286 *
287 * This function should be only used for timestamps returned by
288 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
289 * it doesn't handle the better resolution of the later.
290 */
291struct timespec timespec_trunc(struct timespec t, unsigned gran)
292{
293 /*
294 * Division is pretty slow so avoid it for common cases.
295 * Currently current_kernel_time() never returns better than
296 * jiffies resolution. Exploit that.
297 */
298 if (gran <= jiffies_to_usecs(1) * 1000) {
299 /* nothing */
300 } else if (gran == 1000000000) {
301 t.tv_nsec = 0;
302 } else {
303 t.tv_nsec -= t.tv_nsec % gran;
304 }
305 return t;
306}
307EXPORT_SYMBOL(timespec_trunc);
308
309#ifdef CONFIG_TIME_INTERPOLATION
310void getnstimeofday (struct timespec *tv)
311{
312 unsigned long seq,sec,nsec;
313
314 do {
315 seq = read_seqbegin(&xtime_lock);
316 sec = xtime.tv_sec;
317 nsec = xtime.tv_nsec+time_interpolator_get_offset();
318 } while (unlikely(read_seqretry(&xtime_lock, seq)));
319
320 while (unlikely(nsec >= NSEC_PER_SEC)) {
321 nsec -= NSEC_PER_SEC;
322 ++sec;
323 }
324 tv->tv_sec = sec;
325 tv->tv_nsec = nsec;
326}
327EXPORT_SYMBOL_GPL(getnstimeofday);
328
329int do_settimeofday (struct timespec *tv)
330{
331 time_t wtm_sec, sec = tv->tv_sec;
332 long wtm_nsec, nsec = tv->tv_nsec;
333
334 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
335 return -EINVAL;
336
337 write_seqlock_irq(&xtime_lock);
338 {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700339 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
340 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
341
342 set_normalized_timespec(&xtime, sec, nsec);
343 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
344
345 time_adjust = 0; /* stop active adjtime() */
346 time_status |= STA_UNSYNC;
347 time_maxerror = NTP_PHASE_LIMIT;
348 time_esterror = NTP_PHASE_LIMIT;
349 time_interpolator_reset();
350 }
351 write_sequnlock_irq(&xtime_lock);
352 clock_was_set();
353 return 0;
354}
Al Viro943eae02005-10-29 07:32:07 +0100355EXPORT_SYMBOL(do_settimeofday);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700356
357void do_gettimeofday (struct timeval *tv)
358{
359 unsigned long seq, nsec, usec, sec, offset;
360 do {
361 seq = read_seqbegin(&xtime_lock);
362 offset = time_interpolator_get_offset();
363 sec = xtime.tv_sec;
364 nsec = xtime.tv_nsec;
365 } while (unlikely(read_seqretry(&xtime_lock, seq)));
366
367 usec = (nsec + offset) / 1000;
368
369 while (unlikely(usec >= USEC_PER_SEC)) {
370 usec -= USEC_PER_SEC;
371 ++sec;
372 }
373
374 tv->tv_sec = sec;
375 tv->tv_usec = usec;
376}
377
378EXPORT_SYMBOL(do_gettimeofday);
379
380
381#else
john stultzcf3c7692006-06-26 00:25:08 -0700382#ifndef CONFIG_GENERIC_TIME
Linus Torvalds1da177e2005-04-16 15:20:36 -0700383/*
384 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
385 * and therefore only yields usec accuracy
386 */
387void getnstimeofday(struct timespec *tv)
388{
389 struct timeval x;
390
391 do_gettimeofday(&x);
392 tv->tv_sec = x.tv_sec;
393 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
394}
Takashi Iwaic6ecf7e2005-10-14 15:59:03 -0700395EXPORT_SYMBOL_GPL(getnstimeofday);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700396#endif
john stultzcf3c7692006-06-26 00:25:08 -0700397#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700398
Thomas Gleixner753be622006-01-09 20:52:22 -0800399/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
400 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
401 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
402 *
403 * [For the Julian calendar (which was used in Russia before 1917,
404 * Britain & colonies before 1752, anywhere else before 1582,
405 * and is still in use by some communities) leave out the
406 * -year/100+year/400 terms, and add 10.]
407 *
408 * This algorithm was first published by Gauss (I think).
409 *
410 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
411 * machines were long is 32-bit! (However, as time_t is signed, we
412 * will already get problems at other places on 2038-01-19 03:14:08)
413 */
414unsigned long
Ingo Molnarf4818902006-01-09 20:52:23 -0800415mktime(const unsigned int year0, const unsigned int mon0,
416 const unsigned int day, const unsigned int hour,
417 const unsigned int min, const unsigned int sec)
Thomas Gleixner753be622006-01-09 20:52:22 -0800418{
Ingo Molnarf4818902006-01-09 20:52:23 -0800419 unsigned int mon = mon0, year = year0;
420
421 /* 1..12 -> 11,12,1..10 */
422 if (0 >= (int) (mon -= 2)) {
423 mon += 12; /* Puts Feb last since it has leap day */
Thomas Gleixner753be622006-01-09 20:52:22 -0800424 year -= 1;
425 }
426
427 return ((((unsigned long)
428 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
429 year*365 - 719499
430 )*24 + hour /* now have hours */
431 )*60 + min /* now have minutes */
432 )*60 + sec; /* finally seconds */
433}
434
Andrew Morton199e7052006-01-09 20:52:24 -0800435EXPORT_SYMBOL(mktime);
436
Thomas Gleixner753be622006-01-09 20:52:22 -0800437/**
438 * set_normalized_timespec - set timespec sec and nsec parts and normalize
439 *
440 * @ts: pointer to timespec variable to be set
441 * @sec: seconds to set
442 * @nsec: nanoseconds to set
443 *
444 * Set seconds and nanoseconds field of a timespec variable and
445 * normalize to the timespec storage format
446 *
447 * Note: The tv_nsec part is always in the range of
448 * 0 <= tv_nsec < NSEC_PER_SEC
449 * For negative values only the tv_sec field is negative !
450 */
Ingo Molnarf4818902006-01-09 20:52:23 -0800451void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
Thomas Gleixner753be622006-01-09 20:52:22 -0800452{
453 while (nsec >= NSEC_PER_SEC) {
454 nsec -= NSEC_PER_SEC;
455 ++sec;
456 }
457 while (nsec < 0) {
458 nsec += NSEC_PER_SEC;
459 --sec;
460 }
461 ts->tv_sec = sec;
462 ts->tv_nsec = nsec;
463}
464
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800465/**
466 * ns_to_timespec - Convert nanoseconds to timespec
467 * @nsec: the nanoseconds value to be converted
468 *
469 * Returns the timespec representation of the nsec parameter.
470 */
Roman Zippeldf869b62006-03-26 01:38:11 -0800471struct timespec ns_to_timespec(const s64 nsec)
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800472{
473 struct timespec ts;
474
George Anzinger88fc3892006-02-03 03:04:20 -0800475 if (!nsec)
476 return (struct timespec) {0, 0};
477
478 ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
479 if (unlikely(nsec < 0))
480 set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800481
482 return ts;
483}
Stephen Hemminger85795d62007-03-24 21:35:33 -0700484EXPORT_SYMBOL(ns_to_timespec);
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800485
486/**
487 * ns_to_timeval - Convert nanoseconds to timeval
488 * @nsec: the nanoseconds value to be converted
489 *
490 * Returns the timeval representation of the nsec parameter.
491 */
Roman Zippeldf869b62006-03-26 01:38:11 -0800492struct timeval ns_to_timeval(const s64 nsec)
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800493{
494 struct timespec ts = ns_to_timespec(nsec);
495 struct timeval tv;
496
497 tv.tv_sec = ts.tv_sec;
498 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
499
500 return tv;
501}
Eric Dumazetb7aa0bf2007-04-19 16:16:32 -0700502EXPORT_SYMBOL(ns_to_timeval);
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800503
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800504/*
Ingo Molnar41cf5442007-02-16 01:27:28 -0800505 * When we convert to jiffies then we interpret incoming values
506 * the following way:
507 *
508 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
509 *
510 * - 'too large' values [that would result in larger than
511 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
512 *
513 * - all other values are converted to jiffies by either multiplying
514 * the input value by a factor or dividing it with a factor
515 *
516 * We must also be careful about 32-bit overflows.
517 */
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800518unsigned long msecs_to_jiffies(const unsigned int m)
519{
Ingo Molnar41cf5442007-02-16 01:27:28 -0800520 /*
521 * Negative value, means infinite timeout:
522 */
523 if ((int)m < 0)
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800524 return MAX_JIFFY_OFFSET;
Ingo Molnar41cf5442007-02-16 01:27:28 -0800525
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800526#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
Ingo Molnar41cf5442007-02-16 01:27:28 -0800527 /*
528 * HZ is equal to or smaller than 1000, and 1000 is a nice
529 * round multiple of HZ, divide with the factor between them,
530 * but round upwards:
531 */
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800532 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
533#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
Ingo Molnar41cf5442007-02-16 01:27:28 -0800534 /*
535 * HZ is larger than 1000, and HZ is a nice round multiple of
536 * 1000 - simply multiply with the factor between them.
537 *
538 * But first make sure the multiplication result cannot
539 * overflow:
540 */
541 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
542 return MAX_JIFFY_OFFSET;
543
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800544 return m * (HZ / MSEC_PER_SEC);
545#else
Ingo Molnar41cf5442007-02-16 01:27:28 -0800546 /*
547 * Generic case - multiply, round and divide. But first
548 * check that if we are doing a net multiplication, that
549 * we wouldnt overflow:
550 */
551 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
552 return MAX_JIFFY_OFFSET;
553
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800554 return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
555#endif
556}
557EXPORT_SYMBOL(msecs_to_jiffies);
558
559unsigned long usecs_to_jiffies(const unsigned int u)
560{
561 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
562 return MAX_JIFFY_OFFSET;
563#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
564 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
565#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
566 return u * (HZ / USEC_PER_SEC);
567#else
568 return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
569#endif
570}
571EXPORT_SYMBOL(usecs_to_jiffies);
572
573/*
574 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
575 * that a remainder subtract here would not do the right thing as the
576 * resolution values don't fall on second boundries. I.e. the line:
577 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
578 *
579 * Rather, we just shift the bits off the right.
580 *
581 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
582 * value to a scaled second value.
583 */
584unsigned long
585timespec_to_jiffies(const struct timespec *value)
586{
587 unsigned long sec = value->tv_sec;
588 long nsec = value->tv_nsec + TICK_NSEC - 1;
589
590 if (sec >= MAX_SEC_IN_JIFFIES){
591 sec = MAX_SEC_IN_JIFFIES;
592 nsec = 0;
593 }
594 return (((u64)sec * SEC_CONVERSION) +
595 (((u64)nsec * NSEC_CONVERSION) >>
596 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
597
598}
599EXPORT_SYMBOL(timespec_to_jiffies);
600
601void
602jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
603{
604 /*
605 * Convert jiffies to nanoseconds and separate with
606 * one divide.
607 */
608 u64 nsec = (u64)jiffies * TICK_NSEC;
609 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
610}
611EXPORT_SYMBOL(jiffies_to_timespec);
612
613/* Same for "timeval"
614 *
615 * Well, almost. The problem here is that the real system resolution is
616 * in nanoseconds and the value being converted is in micro seconds.
617 * Also for some machines (those that use HZ = 1024, in-particular),
618 * there is a LARGE error in the tick size in microseconds.
619
620 * The solution we use is to do the rounding AFTER we convert the
621 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
622 * Instruction wise, this should cost only an additional add with carry
623 * instruction above the way it was done above.
624 */
625unsigned long
626timeval_to_jiffies(const struct timeval *value)
627{
628 unsigned long sec = value->tv_sec;
629 long usec = value->tv_usec;
630
631 if (sec >= MAX_SEC_IN_JIFFIES){
632 sec = MAX_SEC_IN_JIFFIES;
633 usec = 0;
634 }
635 return (((u64)sec * SEC_CONVERSION) +
636 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
637 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
638}
Thomas Bittermann456a09d2007-04-04 22:20:54 +0200639EXPORT_SYMBOL(timeval_to_jiffies);
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800640
641void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
642{
643 /*
644 * Convert jiffies to nanoseconds and separate with
645 * one divide.
646 */
647 u64 nsec = (u64)jiffies * TICK_NSEC;
648 long tv_usec;
649
650 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
651 tv_usec /= NSEC_PER_USEC;
652 value->tv_usec = tv_usec;
653}
Thomas Bittermann456a09d2007-04-04 22:20:54 +0200654EXPORT_SYMBOL(jiffies_to_timeval);
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800655
656/*
657 * Convert jiffies/jiffies_64 to clock_t and back.
658 */
659clock_t jiffies_to_clock_t(long x)
660{
661#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
662 return x / (HZ / USER_HZ);
663#else
664 u64 tmp = (u64)x * TICK_NSEC;
665 do_div(tmp, (NSEC_PER_SEC / USER_HZ));
666 return (long)tmp;
667#endif
668}
669EXPORT_SYMBOL(jiffies_to_clock_t);
670
671unsigned long clock_t_to_jiffies(unsigned long x)
672{
673#if (HZ % USER_HZ)==0
674 if (x >= ~0UL / (HZ / USER_HZ))
675 return ~0UL;
676 return x * (HZ / USER_HZ);
677#else
678 u64 jif;
679
680 /* Don't worry about loss of precision here .. */
681 if (x >= ~0UL / HZ * USER_HZ)
682 return ~0UL;
683
684 /* .. but do try to contain it here */
685 jif = x * (u64) HZ;
686 do_div(jif, USER_HZ);
687 return jif;
688#endif
689}
690EXPORT_SYMBOL(clock_t_to_jiffies);
691
692u64 jiffies_64_to_clock_t(u64 x)
693{
694#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
695 do_div(x, HZ / USER_HZ);
696#else
697 /*
698 * There are better ways that don't overflow early,
699 * but even this doesn't overflow in hundreds of years
700 * in 64 bits, so..
701 */
702 x *= TICK_NSEC;
703 do_div(x, (NSEC_PER_SEC / USER_HZ));
704#endif
705 return x;
706}
707
708EXPORT_SYMBOL(jiffies_64_to_clock_t);
709
710u64 nsec_to_clock_t(u64 x)
711{
712#if (NSEC_PER_SEC % USER_HZ) == 0
713 do_div(x, (NSEC_PER_SEC / USER_HZ));
714#elif (USER_HZ % 512) == 0
715 x *= USER_HZ/512;
716 do_div(x, (NSEC_PER_SEC / 512));
717#else
718 /*
719 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
720 * overflow after 64.99 years.
721 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
722 */
723 x *= 9;
724 do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
725 USER_HZ));
726#endif
727 return x;
728}
729
Linus Torvalds1da177e2005-04-16 15:20:36 -0700730#if (BITS_PER_LONG < 64)
731u64 get_jiffies_64(void)
732{
733 unsigned long seq;
734 u64 ret;
735
736 do {
737 seq = read_seqbegin(&xtime_lock);
738 ret = jiffies_64;
739 } while (read_seqretry(&xtime_lock, seq));
740 return ret;
741}
742
743EXPORT_SYMBOL(get_jiffies_64);
744#endif
745
746EXPORT_SYMBOL(jiffies);