Xuelin Shi | ad80da6 | 2015-03-03 14:26:22 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * drivers/dma/fsl_raid.c |
| 3 | * |
| 4 | * Freescale RAID Engine device driver |
| 5 | * |
| 6 | * Author: |
| 7 | * Harninder Rai <harninder.rai@freescale.com> |
| 8 | * Naveen Burmi <naveenburmi@freescale.com> |
| 9 | * |
| 10 | * Rewrite: |
| 11 | * Xuelin Shi <xuelin.shi@freescale.com> |
| 12 | * |
| 13 | * Copyright (c) 2010-2014 Freescale Semiconductor, Inc. |
| 14 | * |
| 15 | * Redistribution and use in source and binary forms, with or without |
| 16 | * modification, are permitted provided that the following conditions are met: |
| 17 | * * Redistributions of source code must retain the above copyright |
| 18 | * notice, this list of conditions and the following disclaimer. |
| 19 | * * Redistributions in binary form must reproduce the above copyright |
| 20 | * notice, this list of conditions and the following disclaimer in the |
| 21 | * documentation and/or other materials provided with the distribution. |
| 22 | * * Neither the name of Freescale Semiconductor nor the |
| 23 | * names of its contributors may be used to endorse or promote products |
| 24 | * derived from this software without specific prior written permission. |
| 25 | * |
| 26 | * ALTERNATIVELY, this software may be distributed under the terms of the |
| 27 | * GNU General Public License ("GPL") as published by the Free Software |
| 28 | * Foundation, either version 2 of that License or (at your option) any |
| 29 | * later version. |
| 30 | * |
| 31 | * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY |
| 32 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 33 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 34 | * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY |
| 35 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 36 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 37 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| 38 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 39 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 40 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 41 | * |
| 42 | * Theory of operation: |
| 43 | * |
| 44 | * General capabilities: |
| 45 | * RAID Engine (RE) block is capable of offloading XOR, memcpy and P/Q |
| 46 | * calculations required in RAID5 and RAID6 operations. RE driver |
| 47 | * registers with Linux's ASYNC layer as dma driver. RE hardware |
| 48 | * maintains strict ordering of the requests through chained |
| 49 | * command queueing. |
| 50 | * |
| 51 | * Data flow: |
| 52 | * Software RAID layer of Linux (MD layer) maintains RAID partitions, |
| 53 | * strips, stripes etc. It sends requests to the underlying ASYNC layer |
| 54 | * which further passes it to RE driver. ASYNC layer decides which request |
| 55 | * goes to which job ring of RE hardware. For every request processed by |
| 56 | * RAID Engine, driver gets an interrupt unless coalescing is set. The |
| 57 | * per job ring interrupt handler checks the status register for errors, |
| 58 | * clears the interrupt and leave the post interrupt processing to the irq |
| 59 | * thread. |
| 60 | */ |
| 61 | #include <linux/interrupt.h> |
| 62 | #include <linux/module.h> |
| 63 | #include <linux/of_irq.h> |
| 64 | #include <linux/of_address.h> |
| 65 | #include <linux/of_platform.h> |
| 66 | #include <linux/dma-mapping.h> |
| 67 | #include <linux/dmapool.h> |
| 68 | #include <linux/dmaengine.h> |
| 69 | #include <linux/io.h> |
| 70 | #include <linux/spinlock.h> |
| 71 | #include <linux/slab.h> |
| 72 | |
| 73 | #include "dmaengine.h" |
| 74 | #include "fsl_raid.h" |
| 75 | |
| 76 | #define FSL_RE_MAX_XOR_SRCS 16 |
| 77 | #define FSL_RE_MAX_PQ_SRCS 16 |
| 78 | #define FSL_RE_MIN_DESCS 256 |
| 79 | #define FSL_RE_MAX_DESCS (4 * FSL_RE_MIN_DESCS) |
| 80 | #define FSL_RE_FRAME_FORMAT 0x1 |
| 81 | #define FSL_RE_MAX_DATA_LEN (1024*1024) |
| 82 | |
| 83 | #define to_fsl_re_dma_desc(tx) container_of(tx, struct fsl_re_desc, async_tx) |
| 84 | |
| 85 | /* Add descriptors into per chan software queue - submit_q */ |
| 86 | static dma_cookie_t fsl_re_tx_submit(struct dma_async_tx_descriptor *tx) |
| 87 | { |
| 88 | struct fsl_re_desc *desc; |
| 89 | struct fsl_re_chan *re_chan; |
| 90 | dma_cookie_t cookie; |
| 91 | unsigned long flags; |
| 92 | |
| 93 | desc = to_fsl_re_dma_desc(tx); |
| 94 | re_chan = container_of(tx->chan, struct fsl_re_chan, chan); |
| 95 | |
| 96 | spin_lock_irqsave(&re_chan->desc_lock, flags); |
| 97 | cookie = dma_cookie_assign(tx); |
| 98 | list_add_tail(&desc->node, &re_chan->submit_q); |
| 99 | spin_unlock_irqrestore(&re_chan->desc_lock, flags); |
| 100 | |
| 101 | return cookie; |
| 102 | } |
| 103 | |
| 104 | /* Copy descriptor from per chan software queue into hardware job ring */ |
| 105 | static void fsl_re_issue_pending(struct dma_chan *chan) |
| 106 | { |
| 107 | struct fsl_re_chan *re_chan; |
| 108 | int avail; |
| 109 | struct fsl_re_desc *desc, *_desc; |
| 110 | unsigned long flags; |
| 111 | |
| 112 | re_chan = container_of(chan, struct fsl_re_chan, chan); |
| 113 | |
| 114 | spin_lock_irqsave(&re_chan->desc_lock, flags); |
| 115 | avail = FSL_RE_SLOT_AVAIL( |
| 116 | in_be32(&re_chan->jrregs->inbring_slot_avail)); |
| 117 | |
| 118 | list_for_each_entry_safe(desc, _desc, &re_chan->submit_q, node) { |
| 119 | if (!avail) |
| 120 | break; |
| 121 | |
| 122 | list_move_tail(&desc->node, &re_chan->active_q); |
| 123 | |
| 124 | memcpy(&re_chan->inb_ring_virt_addr[re_chan->inb_count], |
| 125 | &desc->hwdesc, sizeof(struct fsl_re_hw_desc)); |
| 126 | |
| 127 | re_chan->inb_count = (re_chan->inb_count + 1) & |
| 128 | FSL_RE_RING_SIZE_MASK; |
| 129 | out_be32(&re_chan->jrregs->inbring_add_job, FSL_RE_ADD_JOB(1)); |
| 130 | avail--; |
| 131 | } |
| 132 | spin_unlock_irqrestore(&re_chan->desc_lock, flags); |
| 133 | } |
| 134 | |
| 135 | static void fsl_re_desc_done(struct fsl_re_desc *desc) |
| 136 | { |
| 137 | dma_async_tx_callback callback; |
| 138 | void *callback_param; |
| 139 | |
| 140 | dma_cookie_complete(&desc->async_tx); |
| 141 | |
| 142 | callback = desc->async_tx.callback; |
| 143 | callback_param = desc->async_tx.callback_param; |
| 144 | if (callback) |
| 145 | callback(callback_param); |
| 146 | |
| 147 | dma_descriptor_unmap(&desc->async_tx); |
| 148 | } |
| 149 | |
| 150 | static void fsl_re_cleanup_descs(struct fsl_re_chan *re_chan) |
| 151 | { |
| 152 | struct fsl_re_desc *desc, *_desc; |
| 153 | unsigned long flags; |
| 154 | |
| 155 | spin_lock_irqsave(&re_chan->desc_lock, flags); |
| 156 | list_for_each_entry_safe(desc, _desc, &re_chan->ack_q, node) { |
| 157 | if (async_tx_test_ack(&desc->async_tx)) |
| 158 | list_move_tail(&desc->node, &re_chan->free_q); |
| 159 | } |
| 160 | spin_unlock_irqrestore(&re_chan->desc_lock, flags); |
| 161 | |
| 162 | fsl_re_issue_pending(&re_chan->chan); |
| 163 | } |
| 164 | |
| 165 | static void fsl_re_dequeue(unsigned long data) |
| 166 | { |
| 167 | struct fsl_re_chan *re_chan; |
| 168 | struct fsl_re_desc *desc, *_desc; |
| 169 | struct fsl_re_hw_desc *hwdesc; |
| 170 | unsigned long flags; |
| 171 | unsigned int count, oub_count; |
| 172 | int found; |
| 173 | |
| 174 | re_chan = dev_get_drvdata((struct device *)data); |
| 175 | |
| 176 | fsl_re_cleanup_descs(re_chan); |
| 177 | |
| 178 | spin_lock_irqsave(&re_chan->desc_lock, flags); |
| 179 | count = FSL_RE_SLOT_FULL(in_be32(&re_chan->jrregs->oubring_slot_full)); |
| 180 | while (count--) { |
| 181 | found = 0; |
| 182 | hwdesc = &re_chan->oub_ring_virt_addr[re_chan->oub_count]; |
| 183 | list_for_each_entry_safe(desc, _desc, &re_chan->active_q, |
| 184 | node) { |
| 185 | /* compare the hw dma addr to find the completed */ |
| 186 | if (desc->hwdesc.lbea32 == hwdesc->lbea32 && |
| 187 | desc->hwdesc.addr_low == hwdesc->addr_low) { |
| 188 | found = 1; |
| 189 | break; |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | if (found) { |
| 194 | fsl_re_desc_done(desc); |
| 195 | list_move_tail(&desc->node, &re_chan->ack_q); |
| 196 | } else { |
| 197 | dev_err(re_chan->dev, |
| 198 | "found hwdesc not in sw queue, discard it\n"); |
| 199 | } |
| 200 | |
| 201 | oub_count = (re_chan->oub_count + 1) & FSL_RE_RING_SIZE_MASK; |
| 202 | re_chan->oub_count = oub_count; |
| 203 | |
| 204 | out_be32(&re_chan->jrregs->oubring_job_rmvd, |
| 205 | FSL_RE_RMVD_JOB(1)); |
| 206 | } |
| 207 | spin_unlock_irqrestore(&re_chan->desc_lock, flags); |
| 208 | } |
| 209 | |
| 210 | /* Per Job Ring interrupt handler */ |
| 211 | static irqreturn_t fsl_re_isr(int irq, void *data) |
| 212 | { |
| 213 | struct fsl_re_chan *re_chan; |
| 214 | u32 irqstate, status; |
| 215 | |
| 216 | re_chan = dev_get_drvdata((struct device *)data); |
| 217 | |
| 218 | irqstate = in_be32(&re_chan->jrregs->jr_interrupt_status); |
| 219 | if (!irqstate) |
| 220 | return IRQ_NONE; |
| 221 | |
| 222 | /* |
| 223 | * There's no way in upper layer (read MD layer) to recover from |
| 224 | * error conditions except restart everything. In long term we |
| 225 | * need to do something more than just crashing |
| 226 | */ |
| 227 | if (irqstate & FSL_RE_ERROR) { |
| 228 | status = in_be32(&re_chan->jrregs->jr_status); |
| 229 | dev_err(re_chan->dev, "chan error irqstate: %x, status: %x\n", |
| 230 | irqstate, status); |
| 231 | } |
| 232 | |
| 233 | /* Clear interrupt */ |
| 234 | out_be32(&re_chan->jrregs->jr_interrupt_status, FSL_RE_CLR_INTR); |
| 235 | |
| 236 | tasklet_schedule(&re_chan->irqtask); |
| 237 | |
| 238 | return IRQ_HANDLED; |
| 239 | } |
| 240 | |
| 241 | static enum dma_status fsl_re_tx_status(struct dma_chan *chan, |
| 242 | dma_cookie_t cookie, |
| 243 | struct dma_tx_state *txstate) |
| 244 | { |
| 245 | return dma_cookie_status(chan, cookie, txstate); |
| 246 | } |
| 247 | |
| 248 | static void fill_cfd_frame(struct fsl_re_cmpnd_frame *cf, u8 index, |
| 249 | size_t length, dma_addr_t addr, bool final) |
| 250 | { |
| 251 | u32 efrl = length & FSL_RE_CF_LENGTH_MASK; |
| 252 | |
| 253 | efrl |= final << FSL_RE_CF_FINAL_SHIFT; |
| 254 | cf[index].efrl32 = efrl; |
| 255 | cf[index].addr_high = upper_32_bits(addr); |
| 256 | cf[index].addr_low = lower_32_bits(addr); |
| 257 | } |
| 258 | |
| 259 | static struct fsl_re_desc *fsl_re_init_desc(struct fsl_re_chan *re_chan, |
| 260 | struct fsl_re_desc *desc, |
| 261 | void *cf, dma_addr_t paddr) |
| 262 | { |
| 263 | desc->re_chan = re_chan; |
| 264 | desc->async_tx.tx_submit = fsl_re_tx_submit; |
| 265 | dma_async_tx_descriptor_init(&desc->async_tx, &re_chan->chan); |
| 266 | INIT_LIST_HEAD(&desc->node); |
| 267 | |
| 268 | desc->hwdesc.fmt32 = FSL_RE_FRAME_FORMAT << FSL_RE_HWDESC_FMT_SHIFT; |
| 269 | desc->hwdesc.lbea32 = upper_32_bits(paddr); |
| 270 | desc->hwdesc.addr_low = lower_32_bits(paddr); |
| 271 | desc->cf_addr = cf; |
| 272 | desc->cf_paddr = paddr; |
| 273 | |
| 274 | desc->cdb_addr = (void *)(cf + FSL_RE_CF_DESC_SIZE); |
| 275 | desc->cdb_paddr = paddr + FSL_RE_CF_DESC_SIZE; |
| 276 | |
| 277 | return desc; |
| 278 | } |
| 279 | |
| 280 | static struct fsl_re_desc *fsl_re_chan_alloc_desc(struct fsl_re_chan *re_chan, |
| 281 | unsigned long flags) |
| 282 | { |
| 283 | struct fsl_re_desc *desc = NULL; |
| 284 | void *cf; |
| 285 | dma_addr_t paddr; |
| 286 | unsigned long lock_flag; |
| 287 | |
| 288 | fsl_re_cleanup_descs(re_chan); |
| 289 | |
| 290 | spin_lock_irqsave(&re_chan->desc_lock, lock_flag); |
| 291 | if (!list_empty(&re_chan->free_q)) { |
| 292 | /* take one desc from free_q */ |
| 293 | desc = list_first_entry(&re_chan->free_q, |
| 294 | struct fsl_re_desc, node); |
| 295 | list_del(&desc->node); |
| 296 | |
| 297 | desc->async_tx.flags = flags; |
| 298 | } |
| 299 | spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag); |
| 300 | |
| 301 | if (!desc) { |
| 302 | desc = kzalloc(sizeof(*desc), GFP_NOWAIT); |
| 303 | if (!desc) |
| 304 | return NULL; |
| 305 | |
| 306 | cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_NOWAIT, |
| 307 | &paddr); |
| 308 | if (!cf) { |
| 309 | kfree(desc); |
| 310 | return NULL; |
| 311 | } |
| 312 | |
| 313 | desc = fsl_re_init_desc(re_chan, desc, cf, paddr); |
| 314 | desc->async_tx.flags = flags; |
| 315 | |
| 316 | spin_lock_irqsave(&re_chan->desc_lock, lock_flag); |
| 317 | re_chan->alloc_count++; |
| 318 | spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag); |
| 319 | } |
| 320 | |
| 321 | return desc; |
| 322 | } |
| 323 | |
| 324 | static struct dma_async_tx_descriptor *fsl_re_prep_dma_genq( |
| 325 | struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, |
| 326 | unsigned int src_cnt, const unsigned char *scf, size_t len, |
| 327 | unsigned long flags) |
| 328 | { |
| 329 | struct fsl_re_chan *re_chan; |
| 330 | struct fsl_re_desc *desc; |
| 331 | struct fsl_re_xor_cdb *xor; |
| 332 | struct fsl_re_cmpnd_frame *cf; |
| 333 | u32 cdb; |
| 334 | unsigned int i, j; |
| 335 | unsigned int save_src_cnt = src_cnt; |
| 336 | int cont_q = 0; |
| 337 | |
| 338 | re_chan = container_of(chan, struct fsl_re_chan, chan); |
| 339 | if (len > FSL_RE_MAX_DATA_LEN) { |
| 340 | dev_err(re_chan->dev, "genq tx length %lu, max length %d\n", |
| 341 | len, FSL_RE_MAX_DATA_LEN); |
| 342 | return NULL; |
| 343 | } |
| 344 | |
| 345 | desc = fsl_re_chan_alloc_desc(re_chan, flags); |
| 346 | if (desc <= 0) |
| 347 | return NULL; |
| 348 | |
| 349 | if (scf && (flags & DMA_PREP_CONTINUE)) { |
| 350 | cont_q = 1; |
| 351 | src_cnt += 1; |
| 352 | } |
| 353 | |
| 354 | /* Filling xor CDB */ |
| 355 | cdb = FSL_RE_XOR_OPCODE << FSL_RE_CDB_OPCODE_SHIFT; |
| 356 | cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT; |
| 357 | cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT; |
| 358 | cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT; |
| 359 | cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT; |
| 360 | xor = desc->cdb_addr; |
| 361 | xor->cdb32 = cdb; |
| 362 | |
| 363 | if (scf) { |
| 364 | /* compute q = src0*coef0^src1*coef1^..., * is GF(8) mult */ |
| 365 | for (i = 0; i < save_src_cnt; i++) |
| 366 | xor->gfm[i] = scf[i]; |
| 367 | if (cont_q) |
| 368 | xor->gfm[i++] = 1; |
| 369 | } else { |
| 370 | /* compute P, that is XOR all srcs */ |
| 371 | for (i = 0; i < src_cnt; i++) |
| 372 | xor->gfm[i] = 1; |
| 373 | } |
| 374 | |
| 375 | /* Filling frame 0 of compound frame descriptor with CDB */ |
| 376 | cf = desc->cf_addr; |
| 377 | fill_cfd_frame(cf, 0, sizeof(*xor), desc->cdb_paddr, 0); |
| 378 | |
| 379 | /* Fill CFD's 1st frame with dest buffer */ |
| 380 | fill_cfd_frame(cf, 1, len, dest, 0); |
| 381 | |
| 382 | /* Fill CFD's rest of the frames with source buffers */ |
| 383 | for (i = 2, j = 0; j < save_src_cnt; i++, j++) |
| 384 | fill_cfd_frame(cf, i, len, src[j], 0); |
| 385 | |
| 386 | if (cont_q) |
| 387 | fill_cfd_frame(cf, i++, len, dest, 0); |
| 388 | |
| 389 | /* Setting the final bit in the last source buffer frame in CFD */ |
| 390 | cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT; |
| 391 | |
| 392 | return &desc->async_tx; |
| 393 | } |
| 394 | |
| 395 | /* |
| 396 | * Prep function for P parity calculation.In RAID Engine terminology, |
| 397 | * XOR calculation is called GenQ calculation done through GenQ command |
| 398 | */ |
| 399 | static struct dma_async_tx_descriptor *fsl_re_prep_dma_xor( |
| 400 | struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, |
| 401 | unsigned int src_cnt, size_t len, unsigned long flags) |
| 402 | { |
| 403 | /* NULL let genq take all coef as 1 */ |
| 404 | return fsl_re_prep_dma_genq(chan, dest, src, src_cnt, NULL, len, flags); |
| 405 | } |
| 406 | |
| 407 | /* |
| 408 | * Prep function for P/Q parity calculation.In RAID Engine terminology, |
| 409 | * P/Q calculation is called GenQQ done through GenQQ command |
| 410 | */ |
| 411 | static struct dma_async_tx_descriptor *fsl_re_prep_dma_pq( |
| 412 | struct dma_chan *chan, dma_addr_t *dest, dma_addr_t *src, |
| 413 | unsigned int src_cnt, const unsigned char *scf, size_t len, |
| 414 | unsigned long flags) |
| 415 | { |
| 416 | struct fsl_re_chan *re_chan; |
| 417 | struct fsl_re_desc *desc; |
| 418 | struct fsl_re_pq_cdb *pq; |
| 419 | struct fsl_re_cmpnd_frame *cf; |
| 420 | u32 cdb; |
| 421 | u8 *p; |
| 422 | int gfmq_len, i, j; |
| 423 | unsigned int save_src_cnt = src_cnt; |
| 424 | |
| 425 | re_chan = container_of(chan, struct fsl_re_chan, chan); |
| 426 | if (len > FSL_RE_MAX_DATA_LEN) { |
| 427 | dev_err(re_chan->dev, "pq tx length is %lu, max length is %d\n", |
| 428 | len, FSL_RE_MAX_DATA_LEN); |
| 429 | return NULL; |
| 430 | } |
| 431 | |
| 432 | /* |
| 433 | * RE requires at least 2 sources, if given only one source, we pass the |
| 434 | * second source same as the first one. |
| 435 | * With only one source, generating P is meaningless, only generate Q. |
| 436 | */ |
| 437 | if (src_cnt == 1) { |
| 438 | struct dma_async_tx_descriptor *tx; |
| 439 | dma_addr_t dma_src[2]; |
| 440 | unsigned char coef[2]; |
| 441 | |
| 442 | dma_src[0] = *src; |
| 443 | coef[0] = *scf; |
| 444 | dma_src[1] = *src; |
| 445 | coef[1] = 0; |
| 446 | tx = fsl_re_prep_dma_genq(chan, dest[1], dma_src, 2, coef, len, |
| 447 | flags); |
| 448 | if (tx) |
| 449 | desc = to_fsl_re_dma_desc(tx); |
| 450 | |
| 451 | return tx; |
| 452 | } |
| 453 | |
| 454 | /* |
| 455 | * During RAID6 array creation, Linux's MD layer gets P and Q |
| 456 | * calculated separately in two steps. But our RAID Engine has |
| 457 | * the capability to calculate both P and Q with a single command |
| 458 | * Hence to merge well with MD layer, we need to provide a hook |
| 459 | * here and call re_jq_prep_dma_genq() function |
| 460 | */ |
| 461 | |
| 462 | if (flags & DMA_PREP_PQ_DISABLE_P) |
| 463 | return fsl_re_prep_dma_genq(chan, dest[1], src, src_cnt, |
| 464 | scf, len, flags); |
| 465 | |
| 466 | if (flags & DMA_PREP_CONTINUE) |
| 467 | src_cnt += 3; |
| 468 | |
| 469 | desc = fsl_re_chan_alloc_desc(re_chan, flags); |
| 470 | if (desc <= 0) |
| 471 | return NULL; |
| 472 | |
| 473 | /* Filling GenQQ CDB */ |
| 474 | cdb = FSL_RE_PQ_OPCODE << FSL_RE_CDB_OPCODE_SHIFT; |
| 475 | cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT; |
| 476 | cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT; |
| 477 | cdb |= FSL_RE_BUFFER_OUTPUT << FSL_RE_CDB_BUFFER_SHIFT; |
| 478 | cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT; |
| 479 | |
| 480 | pq = desc->cdb_addr; |
| 481 | pq->cdb32 = cdb; |
| 482 | |
| 483 | p = pq->gfm_q1; |
| 484 | /* Init gfm_q1[] */ |
| 485 | for (i = 0; i < src_cnt; i++) |
| 486 | p[i] = 1; |
| 487 | |
| 488 | /* Align gfm[] to 32bit */ |
| 489 | gfmq_len = ALIGN(src_cnt, 4); |
| 490 | |
| 491 | /* Init gfm_q2[] */ |
| 492 | p += gfmq_len; |
| 493 | for (i = 0; i < src_cnt; i++) |
| 494 | p[i] = scf[i]; |
| 495 | |
| 496 | /* Filling frame 0 of compound frame descriptor with CDB */ |
| 497 | cf = desc->cf_addr; |
| 498 | fill_cfd_frame(cf, 0, sizeof(struct fsl_re_pq_cdb), desc->cdb_paddr, 0); |
| 499 | |
| 500 | /* Fill CFD's 1st & 2nd frame with dest buffers */ |
| 501 | for (i = 1, j = 0; i < 3; i++, j++) |
| 502 | fill_cfd_frame(cf, i, len, dest[j], 0); |
| 503 | |
| 504 | /* Fill CFD's rest of the frames with source buffers */ |
| 505 | for (i = 3, j = 0; j < save_src_cnt; i++, j++) |
| 506 | fill_cfd_frame(cf, i, len, src[j], 0); |
| 507 | |
| 508 | /* PQ computation continuation */ |
| 509 | if (flags & DMA_PREP_CONTINUE) { |
| 510 | if (src_cnt - save_src_cnt == 3) { |
| 511 | p[save_src_cnt] = 0; |
| 512 | p[save_src_cnt + 1] = 0; |
| 513 | p[save_src_cnt + 2] = 1; |
| 514 | fill_cfd_frame(cf, i++, len, dest[0], 0); |
| 515 | fill_cfd_frame(cf, i++, len, dest[1], 0); |
| 516 | fill_cfd_frame(cf, i++, len, dest[1], 0); |
| 517 | } else { |
| 518 | dev_err(re_chan->dev, "PQ tx continuation error!\n"); |
| 519 | return NULL; |
| 520 | } |
| 521 | } |
| 522 | |
| 523 | /* Setting the final bit in the last source buffer frame in CFD */ |
| 524 | cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT; |
| 525 | |
| 526 | return &desc->async_tx; |
| 527 | } |
| 528 | |
| 529 | /* |
| 530 | * Prep function for memcpy. In RAID Engine, memcpy is done through MOVE |
| 531 | * command. Logic of this function will need to be modified once multipage |
| 532 | * support is added in Linux's MD/ASYNC Layer |
| 533 | */ |
| 534 | static struct dma_async_tx_descriptor *fsl_re_prep_dma_memcpy( |
| 535 | struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, |
| 536 | size_t len, unsigned long flags) |
| 537 | { |
| 538 | struct fsl_re_chan *re_chan; |
| 539 | struct fsl_re_desc *desc; |
| 540 | size_t length; |
| 541 | struct fsl_re_cmpnd_frame *cf; |
| 542 | struct fsl_re_move_cdb *move; |
| 543 | u32 cdb; |
| 544 | |
| 545 | re_chan = container_of(chan, struct fsl_re_chan, chan); |
| 546 | |
| 547 | if (len > FSL_RE_MAX_DATA_LEN) { |
| 548 | dev_err(re_chan->dev, "cp tx length is %lu, max length is %d\n", |
| 549 | len, FSL_RE_MAX_DATA_LEN); |
| 550 | return NULL; |
| 551 | } |
| 552 | |
| 553 | desc = fsl_re_chan_alloc_desc(re_chan, flags); |
| 554 | if (desc <= 0) |
| 555 | return NULL; |
| 556 | |
| 557 | /* Filling move CDB */ |
| 558 | cdb = FSL_RE_MOVE_OPCODE << FSL_RE_CDB_OPCODE_SHIFT; |
| 559 | cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT; |
| 560 | cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT; |
| 561 | cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT; |
| 562 | |
| 563 | move = desc->cdb_addr; |
| 564 | move->cdb32 = cdb; |
| 565 | |
| 566 | /* Filling frame 0 of CFD with move CDB */ |
| 567 | cf = desc->cf_addr; |
| 568 | fill_cfd_frame(cf, 0, sizeof(*move), desc->cdb_paddr, 0); |
| 569 | |
| 570 | length = min_t(size_t, len, FSL_RE_MAX_DATA_LEN); |
| 571 | |
| 572 | /* Fill CFD's 1st frame with dest buffer */ |
| 573 | fill_cfd_frame(cf, 1, length, dest, 0); |
| 574 | |
| 575 | /* Fill CFD's 2nd frame with src buffer */ |
| 576 | fill_cfd_frame(cf, 2, length, src, 1); |
| 577 | |
| 578 | return &desc->async_tx; |
| 579 | } |
| 580 | |
| 581 | static int fsl_re_alloc_chan_resources(struct dma_chan *chan) |
| 582 | { |
| 583 | struct fsl_re_chan *re_chan; |
| 584 | struct fsl_re_desc *desc; |
| 585 | void *cf; |
| 586 | dma_addr_t paddr; |
| 587 | int i; |
| 588 | |
| 589 | re_chan = container_of(chan, struct fsl_re_chan, chan); |
| 590 | for (i = 0; i < FSL_RE_MIN_DESCS; i++) { |
| 591 | desc = kzalloc(sizeof(*desc), GFP_KERNEL); |
| 592 | if (!desc) |
| 593 | break; |
| 594 | |
| 595 | cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_KERNEL, |
| 596 | &paddr); |
| 597 | if (!cf) { |
| 598 | kfree(desc); |
| 599 | break; |
| 600 | } |
| 601 | |
| 602 | INIT_LIST_HEAD(&desc->node); |
| 603 | fsl_re_init_desc(re_chan, desc, cf, paddr); |
| 604 | |
| 605 | list_add_tail(&desc->node, &re_chan->free_q); |
| 606 | re_chan->alloc_count++; |
| 607 | } |
| 608 | return re_chan->alloc_count; |
| 609 | } |
| 610 | |
| 611 | static void fsl_re_free_chan_resources(struct dma_chan *chan) |
| 612 | { |
| 613 | struct fsl_re_chan *re_chan; |
| 614 | struct fsl_re_desc *desc; |
| 615 | |
| 616 | re_chan = container_of(chan, struct fsl_re_chan, chan); |
| 617 | while (re_chan->alloc_count--) { |
| 618 | desc = list_first_entry(&re_chan->free_q, |
| 619 | struct fsl_re_desc, |
| 620 | node); |
| 621 | |
| 622 | list_del(&desc->node); |
| 623 | dma_pool_free(re_chan->re_dev->cf_desc_pool, desc->cf_addr, |
| 624 | desc->cf_paddr); |
| 625 | kfree(desc); |
| 626 | } |
| 627 | |
| 628 | if (!list_empty(&re_chan->free_q)) |
| 629 | dev_err(re_chan->dev, "chan resource cannot be cleaned!\n"); |
| 630 | } |
| 631 | |
| 632 | int fsl_re_chan_probe(struct platform_device *ofdev, |
| 633 | struct device_node *np, u8 q, u32 off) |
| 634 | { |
| 635 | struct device *dev, *chandev; |
| 636 | struct fsl_re_drv_private *re_priv; |
| 637 | struct fsl_re_chan *chan; |
| 638 | struct dma_device *dma_dev; |
| 639 | u32 ptr; |
| 640 | u32 status; |
| 641 | int ret = 0, rc; |
| 642 | struct platform_device *chan_ofdev; |
| 643 | |
| 644 | dev = &ofdev->dev; |
| 645 | re_priv = dev_get_drvdata(dev); |
| 646 | dma_dev = &re_priv->dma_dev; |
| 647 | |
| 648 | chan = devm_kzalloc(dev, sizeof(*chan), GFP_KERNEL); |
| 649 | if (!chan) |
| 650 | return -ENOMEM; |
| 651 | |
| 652 | /* create platform device for chan node */ |
| 653 | chan_ofdev = of_platform_device_create(np, NULL, dev); |
| 654 | if (!chan_ofdev) { |
| 655 | dev_err(dev, "Not able to create ofdev for jr %d\n", q); |
| 656 | ret = -EINVAL; |
| 657 | goto err_free; |
| 658 | } |
| 659 | |
| 660 | /* read reg property from dts */ |
| 661 | rc = of_property_read_u32(np, "reg", &ptr); |
| 662 | if (rc) { |
| 663 | dev_err(dev, "Reg property not found in jr %d\n", q); |
| 664 | ret = -ENODEV; |
| 665 | goto err_free; |
| 666 | } |
| 667 | |
| 668 | chan->jrregs = (struct fsl_re_chan_cfg *)((u8 *)re_priv->re_regs + |
| 669 | off + ptr); |
| 670 | |
| 671 | /* read irq property from dts */ |
| 672 | chan->irq = irq_of_parse_and_map(np, 0); |
| 673 | if (chan->irq == NO_IRQ) { |
| 674 | dev_err(dev, "No IRQ defined for JR %d\n", q); |
| 675 | ret = -ENODEV; |
| 676 | goto err_free; |
| 677 | } |
| 678 | |
| 679 | snprintf(chan->name, sizeof(chan->name), "re_jr%02d", q); |
| 680 | |
| 681 | chandev = &chan_ofdev->dev; |
| 682 | tasklet_init(&chan->irqtask, fsl_re_dequeue, (unsigned long)chandev); |
| 683 | |
| 684 | ret = request_irq(chan->irq, fsl_re_isr, 0, chan->name, chandev); |
| 685 | if (ret) { |
| 686 | dev_err(dev, "Unable to register interrupt for JR %d\n", q); |
| 687 | ret = -EINVAL; |
| 688 | goto err_free; |
| 689 | } |
| 690 | |
| 691 | re_priv->re_jrs[q] = chan; |
| 692 | chan->chan.device = dma_dev; |
| 693 | chan->chan.private = chan; |
| 694 | chan->dev = chandev; |
| 695 | chan->re_dev = re_priv; |
| 696 | |
| 697 | spin_lock_init(&chan->desc_lock); |
| 698 | INIT_LIST_HEAD(&chan->ack_q); |
| 699 | INIT_LIST_HEAD(&chan->active_q); |
| 700 | INIT_LIST_HEAD(&chan->submit_q); |
| 701 | INIT_LIST_HEAD(&chan->free_q); |
| 702 | |
| 703 | chan->inb_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool, |
| 704 | GFP_KERNEL, &chan->inb_phys_addr); |
| 705 | if (!chan->inb_ring_virt_addr) { |
| 706 | dev_err(dev, "No dma memory for inb_ring_virt_addr\n"); |
| 707 | ret = -ENOMEM; |
| 708 | goto err_free; |
| 709 | } |
| 710 | |
| 711 | chan->oub_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool, |
| 712 | GFP_KERNEL, &chan->oub_phys_addr); |
| 713 | if (!chan->oub_ring_virt_addr) { |
| 714 | dev_err(dev, "No dma memory for oub_ring_virt_addr\n"); |
| 715 | ret = -ENOMEM; |
| 716 | goto err_free_1; |
| 717 | } |
| 718 | |
| 719 | /* Program the Inbound/Outbound ring base addresses and size */ |
| 720 | out_be32(&chan->jrregs->inbring_base_h, |
| 721 | chan->inb_phys_addr & FSL_RE_ADDR_BIT_MASK); |
| 722 | out_be32(&chan->jrregs->oubring_base_h, |
| 723 | chan->oub_phys_addr & FSL_RE_ADDR_BIT_MASK); |
| 724 | out_be32(&chan->jrregs->inbring_base_l, |
| 725 | chan->inb_phys_addr >> FSL_RE_ADDR_BIT_SHIFT); |
| 726 | out_be32(&chan->jrregs->oubring_base_l, |
| 727 | chan->oub_phys_addr >> FSL_RE_ADDR_BIT_SHIFT); |
| 728 | out_be32(&chan->jrregs->inbring_size, |
| 729 | FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT); |
| 730 | out_be32(&chan->jrregs->oubring_size, |
| 731 | FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT); |
| 732 | |
| 733 | /* Read LIODN value from u-boot */ |
| 734 | status = in_be32(&chan->jrregs->jr_config_1) & FSL_RE_REG_LIODN_MASK; |
| 735 | |
| 736 | /* Program the CFG reg */ |
| 737 | out_be32(&chan->jrregs->jr_config_1, |
| 738 | FSL_RE_CFG1_CBSI | FSL_RE_CFG1_CBS0 | status); |
| 739 | |
| 740 | dev_set_drvdata(chandev, chan); |
| 741 | |
| 742 | /* Enable RE/CHAN */ |
| 743 | out_be32(&chan->jrregs->jr_command, FSL_RE_ENABLE); |
| 744 | |
| 745 | return 0; |
| 746 | |
| 747 | err_free_1: |
| 748 | dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr, |
| 749 | chan->inb_phys_addr); |
| 750 | err_free: |
| 751 | return ret; |
| 752 | } |
| 753 | |
| 754 | /* Probe function for RAID Engine */ |
| 755 | static int fsl_re_probe(struct platform_device *ofdev) |
| 756 | { |
| 757 | struct fsl_re_drv_private *re_priv; |
| 758 | struct device_node *np; |
| 759 | struct device_node *child; |
| 760 | u32 off; |
| 761 | u8 ridx = 0; |
| 762 | struct dma_device *dma_dev; |
| 763 | struct resource *res; |
| 764 | int rc; |
| 765 | struct device *dev = &ofdev->dev; |
| 766 | |
| 767 | re_priv = devm_kzalloc(dev, sizeof(*re_priv), GFP_KERNEL); |
| 768 | if (!re_priv) |
| 769 | return -ENOMEM; |
| 770 | |
| 771 | res = platform_get_resource(ofdev, IORESOURCE_MEM, 0); |
| 772 | if (!res) |
| 773 | return -ENODEV; |
| 774 | |
| 775 | /* IOMAP the entire RAID Engine region */ |
| 776 | re_priv->re_regs = devm_ioremap(dev, res->start, resource_size(res)); |
| 777 | if (!re_priv->re_regs) |
| 778 | return -EBUSY; |
| 779 | |
| 780 | /* Program the RE mode */ |
| 781 | out_be32(&re_priv->re_regs->global_config, FSL_RE_NON_DPAA_MODE); |
| 782 | |
| 783 | /* Program Galois Field polynomial */ |
| 784 | out_be32(&re_priv->re_regs->galois_field_config, FSL_RE_GFM_POLY); |
| 785 | |
| 786 | dev_info(dev, "version %x, mode %x, gfp %x\n", |
| 787 | in_be32(&re_priv->re_regs->re_version_id), |
| 788 | in_be32(&re_priv->re_regs->global_config), |
| 789 | in_be32(&re_priv->re_regs->galois_field_config)); |
| 790 | |
| 791 | dma_dev = &re_priv->dma_dev; |
| 792 | dma_dev->dev = dev; |
| 793 | INIT_LIST_HEAD(&dma_dev->channels); |
| 794 | dma_set_mask(dev, DMA_BIT_MASK(40)); |
| 795 | |
| 796 | dma_dev->device_alloc_chan_resources = fsl_re_alloc_chan_resources; |
| 797 | dma_dev->device_tx_status = fsl_re_tx_status; |
| 798 | dma_dev->device_issue_pending = fsl_re_issue_pending; |
| 799 | |
| 800 | dma_dev->max_xor = FSL_RE_MAX_XOR_SRCS; |
| 801 | dma_dev->device_prep_dma_xor = fsl_re_prep_dma_xor; |
| 802 | dma_cap_set(DMA_XOR, dma_dev->cap_mask); |
| 803 | |
| 804 | dma_dev->max_pq = FSL_RE_MAX_PQ_SRCS; |
| 805 | dma_dev->device_prep_dma_pq = fsl_re_prep_dma_pq; |
| 806 | dma_cap_set(DMA_PQ, dma_dev->cap_mask); |
| 807 | |
| 808 | dma_dev->device_prep_dma_memcpy = fsl_re_prep_dma_memcpy; |
| 809 | dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask); |
| 810 | |
| 811 | dma_dev->device_free_chan_resources = fsl_re_free_chan_resources; |
| 812 | |
| 813 | re_priv->total_chans = 0; |
| 814 | |
| 815 | re_priv->cf_desc_pool = dmam_pool_create("fsl_re_cf_desc_pool", dev, |
| 816 | FSL_RE_CF_CDB_SIZE, |
| 817 | FSL_RE_CF_CDB_ALIGN, 0); |
| 818 | |
| 819 | if (!re_priv->cf_desc_pool) { |
| 820 | dev_err(dev, "No memory for fsl re_cf desc pool\n"); |
| 821 | return -ENOMEM; |
| 822 | } |
| 823 | |
| 824 | re_priv->hw_desc_pool = dmam_pool_create("fsl_re_hw_desc_pool", dev, |
| 825 | sizeof(struct fsl_re_hw_desc) * FSL_RE_RING_SIZE, |
| 826 | FSL_RE_FRAME_ALIGN, 0); |
| 827 | if (!re_priv->hw_desc_pool) { |
| 828 | dev_err(dev, "No memory for fsl re_hw desc pool\n"); |
| 829 | return -ENOMEM; |
| 830 | } |
| 831 | |
| 832 | dev_set_drvdata(dev, re_priv); |
| 833 | |
| 834 | /* Parse Device tree to find out the total number of JQs present */ |
| 835 | for_each_compatible_node(np, NULL, "fsl,raideng-v1.0-job-queue") { |
| 836 | rc = of_property_read_u32(np, "reg", &off); |
| 837 | if (rc) { |
| 838 | dev_err(dev, "Reg property not found in JQ node\n"); |
| 839 | return -ENODEV; |
| 840 | } |
| 841 | /* Find out the Job Rings present under each JQ */ |
| 842 | for_each_child_of_node(np, child) { |
| 843 | rc = of_device_is_compatible(child, |
| 844 | "fsl,raideng-v1.0-job-ring"); |
| 845 | if (rc) { |
| 846 | fsl_re_chan_probe(ofdev, child, ridx++, off); |
| 847 | re_priv->total_chans++; |
| 848 | } |
| 849 | } |
| 850 | } |
| 851 | |
| 852 | dma_async_device_register(dma_dev); |
| 853 | |
| 854 | return 0; |
| 855 | } |
| 856 | |
| 857 | static void fsl_re_remove_chan(struct fsl_re_chan *chan) |
| 858 | { |
| 859 | dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr, |
| 860 | chan->inb_phys_addr); |
| 861 | |
| 862 | dma_pool_free(chan->re_dev->hw_desc_pool, chan->oub_ring_virt_addr, |
| 863 | chan->oub_phys_addr); |
| 864 | } |
| 865 | |
| 866 | static int fsl_re_remove(struct platform_device *ofdev) |
| 867 | { |
| 868 | struct fsl_re_drv_private *re_priv; |
| 869 | struct device *dev; |
| 870 | int i; |
| 871 | |
| 872 | dev = &ofdev->dev; |
| 873 | re_priv = dev_get_drvdata(dev); |
| 874 | |
| 875 | /* Cleanup chan related memory areas */ |
| 876 | for (i = 0; i < re_priv->total_chans; i++) |
| 877 | fsl_re_remove_chan(re_priv->re_jrs[i]); |
| 878 | |
| 879 | /* Unregister the driver */ |
| 880 | dma_async_device_unregister(&re_priv->dma_dev); |
| 881 | |
| 882 | return 0; |
| 883 | } |
| 884 | |
| 885 | static struct of_device_id fsl_re_ids[] = { |
| 886 | { .compatible = "fsl,raideng-v1.0", }, |
| 887 | {} |
| 888 | }; |
| 889 | |
| 890 | static struct platform_driver fsl_re_driver = { |
| 891 | .driver = { |
| 892 | .name = "fsl-raideng", |
| 893 | .owner = THIS_MODULE, |
| 894 | .of_match_table = fsl_re_ids, |
| 895 | }, |
| 896 | .probe = fsl_re_probe, |
| 897 | .remove = fsl_re_remove, |
| 898 | }; |
| 899 | |
| 900 | module_platform_driver(fsl_re_driver); |
| 901 | |
| 902 | MODULE_AUTHOR("Harninder Rai <harninder.rai@freescale.com>"); |
| 903 | MODULE_LICENSE("GPL v2"); |
| 904 | MODULE_DESCRIPTION("Freescale RAID Engine Device Driver"); |