Benjamin Herrenschmidt | ac171c4 | 2006-02-08 16:42:51 +1100 | [diff] [blame^] | 1 | /* |
| 2 | * Windfarm PowerMac thermal control. |
| 3 | * Control loops for machines with SMU and PPC970MP processors. |
| 4 | * |
| 5 | * Copyright (C) 2005 Paul Mackerras, IBM Corp. <paulus@samba.org> |
| 6 | * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corp. |
| 7 | * |
| 8 | * Use and redistribute under the terms of the GNU GPL v2. |
| 9 | */ |
| 10 | #include <linux/types.h> |
| 11 | #include <linux/errno.h> |
| 12 | #include <linux/kernel.h> |
| 13 | #include <linux/device.h> |
| 14 | #include <linux/platform_device.h> |
| 15 | #include <linux/reboot.h> |
| 16 | #include <asm/prom.h> |
| 17 | #include <asm/smu.h> |
| 18 | |
| 19 | #include "windfarm.h" |
| 20 | #include "windfarm_pid.h" |
| 21 | |
| 22 | #define VERSION "0.2" |
| 23 | |
| 24 | #define DEBUG |
| 25 | #undef LOTSA_DEBUG |
| 26 | |
| 27 | #ifdef DEBUG |
| 28 | #define DBG(args...) printk(args) |
| 29 | #else |
| 30 | #define DBG(args...) do { } while(0) |
| 31 | #endif |
| 32 | |
| 33 | #ifdef LOTSA_DEBUG |
| 34 | #define DBG_LOTS(args...) printk(args) |
| 35 | #else |
| 36 | #define DBG_LOTS(args...) do { } while(0) |
| 37 | #endif |
| 38 | |
| 39 | /* define this to force CPU overtemp to 60 degree, useful for testing |
| 40 | * the overtemp code |
| 41 | */ |
| 42 | #undef HACKED_OVERTEMP |
| 43 | |
| 44 | /* We currently only handle 2 chips, 4 cores... */ |
| 45 | #define NR_CHIPS 2 |
| 46 | #define NR_CORES 4 |
| 47 | #define NR_CPU_FANS 3 * NR_CHIPS |
| 48 | |
| 49 | /* Controls and sensors */ |
| 50 | static struct wf_sensor *sens_cpu_temp[NR_CORES]; |
| 51 | static struct wf_sensor *sens_cpu_power[NR_CORES]; |
| 52 | static struct wf_sensor *hd_temp; |
| 53 | static struct wf_sensor *slots_power; |
| 54 | static struct wf_sensor *u4_temp; |
| 55 | |
| 56 | static struct wf_control *cpu_fans[NR_CPU_FANS]; |
| 57 | static char *cpu_fan_names[NR_CPU_FANS] = { |
| 58 | "cpu-rear-fan-0", |
| 59 | "cpu-rear-fan-1", |
| 60 | "cpu-front-fan-0", |
| 61 | "cpu-front-fan-1", |
| 62 | "cpu-pump-0", |
| 63 | "cpu-pump-1", |
| 64 | }; |
| 65 | static struct wf_control *cpufreq_clamp; |
| 66 | |
| 67 | /* Second pump isn't required (and isn't actually present) */ |
| 68 | #define CPU_FANS_REQD (NR_CPU_FANS - 2) |
| 69 | #define FIRST_PUMP 4 |
| 70 | #define LAST_PUMP 5 |
| 71 | |
| 72 | /* We keep a temperature history for average calculation of 180s */ |
| 73 | #define CPU_TEMP_HIST_SIZE 180 |
| 74 | |
| 75 | /* Scale factor for fan speed, *100 */ |
| 76 | static int cpu_fan_scale[NR_CPU_FANS] = { |
| 77 | 100, |
| 78 | 100, |
| 79 | 97, /* inlet fans run at 97% of exhaust fan */ |
| 80 | 97, |
| 81 | 100, /* updated later */ |
| 82 | 100, /* updated later */ |
| 83 | }; |
| 84 | |
| 85 | static struct wf_control *backside_fan; |
| 86 | static struct wf_control *slots_fan; |
| 87 | static struct wf_control *drive_bay_fan; |
| 88 | |
| 89 | /* PID loop state */ |
| 90 | static struct wf_cpu_pid_state cpu_pid[NR_CORES]; |
| 91 | static u32 cpu_thist[CPU_TEMP_HIST_SIZE]; |
| 92 | static int cpu_thist_pt; |
| 93 | static s64 cpu_thist_total; |
| 94 | static s32 cpu_all_tmax = 100 << 16; |
| 95 | static int cpu_last_target; |
| 96 | static struct wf_pid_state backside_pid; |
| 97 | static int backside_tick; |
| 98 | static struct wf_pid_state slots_pid; |
| 99 | static int slots_started; |
| 100 | static struct wf_pid_state drive_bay_pid; |
| 101 | static int drive_bay_tick; |
| 102 | |
| 103 | static int nr_cores; |
| 104 | static int have_all_controls; |
| 105 | static int have_all_sensors; |
| 106 | static int started; |
| 107 | |
| 108 | static int failure_state; |
| 109 | #define FAILURE_SENSOR 1 |
| 110 | #define FAILURE_FAN 2 |
| 111 | #define FAILURE_PERM 4 |
| 112 | #define FAILURE_LOW_OVERTEMP 8 |
| 113 | #define FAILURE_HIGH_OVERTEMP 16 |
| 114 | |
| 115 | /* Overtemp values */ |
| 116 | #define LOW_OVER_AVERAGE 0 |
| 117 | #define LOW_OVER_IMMEDIATE (10 << 16) |
| 118 | #define LOW_OVER_CLEAR ((-10) << 16) |
| 119 | #define HIGH_OVER_IMMEDIATE (14 << 16) |
| 120 | #define HIGH_OVER_AVERAGE (10 << 16) |
| 121 | #define HIGH_OVER_IMMEDIATE (14 << 16) |
| 122 | |
| 123 | |
| 124 | /* Implementation... */ |
| 125 | static int create_cpu_loop(int cpu) |
| 126 | { |
| 127 | int chip = cpu / 2; |
| 128 | int core = cpu & 1; |
| 129 | struct smu_sdbp_header *hdr; |
| 130 | struct smu_sdbp_cpupiddata *piddata; |
| 131 | struct wf_cpu_pid_param pid; |
| 132 | struct wf_control *main_fan = cpu_fans[0]; |
| 133 | s32 tmax; |
| 134 | int fmin; |
| 135 | |
| 136 | /* Get PID params from the appropriate SAT */ |
| 137 | hdr = smu_sat_get_sdb_partition(chip, 0xC8 + core, NULL); |
| 138 | if (hdr == NULL) { |
| 139 | printk(KERN_WARNING"windfarm: can't get CPU PID fan config\n"); |
| 140 | return -EINVAL; |
| 141 | } |
| 142 | piddata = (struct smu_sdbp_cpupiddata *)&hdr[1]; |
| 143 | |
| 144 | /* Get FVT params to get Tmax; if not found, assume default */ |
| 145 | hdr = smu_sat_get_sdb_partition(chip, 0xC4 + core, NULL); |
| 146 | if (hdr) { |
| 147 | struct smu_sdbp_fvt *fvt = (struct smu_sdbp_fvt *)&hdr[1]; |
| 148 | tmax = fvt->maxtemp << 16; |
| 149 | } else |
| 150 | tmax = 95 << 16; /* default to 95 degrees C */ |
| 151 | |
| 152 | /* We keep a global tmax for overtemp calculations */ |
| 153 | if (tmax < cpu_all_tmax) |
| 154 | cpu_all_tmax = tmax; |
| 155 | |
| 156 | /* |
| 157 | * Darwin has a minimum fan speed of 1000 rpm for the 4-way and |
| 158 | * 515 for the 2-way. That appears to be overkill, so for now, |
| 159 | * impose a minimum of 750 or 515. |
| 160 | */ |
| 161 | fmin = (nr_cores > 2) ? 750 : 515; |
| 162 | |
| 163 | /* Initialize PID loop */ |
| 164 | pid.interval = 1; /* seconds */ |
| 165 | pid.history_len = piddata->history_len; |
| 166 | pid.gd = piddata->gd; |
| 167 | pid.gp = piddata->gp; |
| 168 | pid.gr = piddata->gr / piddata->history_len; |
| 169 | pid.pmaxadj = (piddata->max_power << 16) - (piddata->power_adj << 8); |
| 170 | pid.ttarget = tmax - (piddata->target_temp_delta << 16); |
| 171 | pid.tmax = tmax; |
| 172 | pid.min = main_fan->ops->get_min(main_fan); |
| 173 | pid.max = main_fan->ops->get_max(main_fan); |
| 174 | if (pid.min < fmin) |
| 175 | pid.min = fmin; |
| 176 | |
| 177 | wf_cpu_pid_init(&cpu_pid[cpu], &pid); |
| 178 | return 0; |
| 179 | } |
| 180 | |
| 181 | static void cpu_max_all_fans(void) |
| 182 | { |
| 183 | int i; |
| 184 | |
| 185 | /* We max all CPU fans in case of a sensor error. We also do the |
| 186 | * cpufreq clamping now, even if it's supposedly done later by the |
| 187 | * generic code anyway, we do it earlier here to react faster |
| 188 | */ |
| 189 | if (cpufreq_clamp) |
| 190 | wf_control_set_max(cpufreq_clamp); |
| 191 | for (i = 0; i < NR_CPU_FANS; ++i) |
| 192 | if (cpu_fans[i]) |
| 193 | wf_control_set_max(cpu_fans[i]); |
| 194 | } |
| 195 | |
| 196 | static int cpu_check_overtemp(s32 temp) |
| 197 | { |
| 198 | int new_state = 0; |
| 199 | s32 t_avg, t_old; |
| 200 | |
| 201 | /* First check for immediate overtemps */ |
| 202 | if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) { |
| 203 | new_state |= FAILURE_LOW_OVERTEMP; |
| 204 | if ((failure_state & FAILURE_LOW_OVERTEMP) == 0) |
| 205 | printk(KERN_ERR "windfarm: Overtemp due to immediate CPU" |
| 206 | " temperature !\n"); |
| 207 | } |
| 208 | if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) { |
| 209 | new_state |= FAILURE_HIGH_OVERTEMP; |
| 210 | if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0) |
| 211 | printk(KERN_ERR "windfarm: Critical overtemp due to" |
| 212 | " immediate CPU temperature !\n"); |
| 213 | } |
| 214 | |
| 215 | /* We calculate a history of max temperatures and use that for the |
| 216 | * overtemp management |
| 217 | */ |
| 218 | t_old = cpu_thist[cpu_thist_pt]; |
| 219 | cpu_thist[cpu_thist_pt] = temp; |
| 220 | cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE; |
| 221 | cpu_thist_total -= t_old; |
| 222 | cpu_thist_total += temp; |
| 223 | t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE; |
| 224 | |
| 225 | DBG_LOTS("t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n", |
| 226 | FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp)); |
| 227 | |
| 228 | /* Now check for average overtemps */ |
| 229 | if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) { |
| 230 | new_state |= FAILURE_LOW_OVERTEMP; |
| 231 | if ((failure_state & FAILURE_LOW_OVERTEMP) == 0) |
| 232 | printk(KERN_ERR "windfarm: Overtemp due to average CPU" |
| 233 | " temperature !\n"); |
| 234 | } |
| 235 | if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) { |
| 236 | new_state |= FAILURE_HIGH_OVERTEMP; |
| 237 | if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0) |
| 238 | printk(KERN_ERR "windfarm: Critical overtemp due to" |
| 239 | " average CPU temperature !\n"); |
| 240 | } |
| 241 | |
| 242 | /* Now handle overtemp conditions. We don't currently use the windfarm |
| 243 | * overtemp handling core as it's not fully suited to the needs of those |
| 244 | * new machine. This will be fixed later. |
| 245 | */ |
| 246 | if (new_state) { |
| 247 | /* High overtemp -> immediate shutdown */ |
| 248 | if (new_state & FAILURE_HIGH_OVERTEMP) |
| 249 | machine_power_off(); |
| 250 | if ((failure_state & new_state) != new_state) |
| 251 | cpu_max_all_fans(); |
| 252 | failure_state |= new_state; |
| 253 | } else if ((failure_state & FAILURE_LOW_OVERTEMP) && |
| 254 | (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) { |
| 255 | printk(KERN_ERR "windfarm: Overtemp condition cleared !\n"); |
| 256 | failure_state &= ~FAILURE_LOW_OVERTEMP; |
| 257 | } |
| 258 | |
| 259 | return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP); |
| 260 | } |
| 261 | |
| 262 | static void cpu_fans_tick(void) |
| 263 | { |
| 264 | int err, cpu; |
| 265 | s32 greatest_delta = 0; |
| 266 | s32 temp, power, t_max = 0; |
| 267 | int i, t, target = 0; |
| 268 | struct wf_sensor *sr; |
| 269 | struct wf_control *ct; |
| 270 | struct wf_cpu_pid_state *sp; |
| 271 | |
| 272 | DBG_LOTS(KERN_DEBUG); |
| 273 | for (cpu = 0; cpu < nr_cores; ++cpu) { |
| 274 | /* Get CPU core temperature */ |
| 275 | sr = sens_cpu_temp[cpu]; |
| 276 | err = sr->ops->get_value(sr, &temp); |
| 277 | if (err) { |
| 278 | DBG("\n"); |
| 279 | printk(KERN_WARNING "windfarm: CPU %d temperature " |
| 280 | "sensor error %d\n", cpu, err); |
| 281 | failure_state |= FAILURE_SENSOR; |
| 282 | cpu_max_all_fans(); |
| 283 | return; |
| 284 | } |
| 285 | |
| 286 | /* Keep track of highest temp */ |
| 287 | t_max = max(t_max, temp); |
| 288 | |
| 289 | /* Get CPU power */ |
| 290 | sr = sens_cpu_power[cpu]; |
| 291 | err = sr->ops->get_value(sr, &power); |
| 292 | if (err) { |
| 293 | DBG("\n"); |
| 294 | printk(KERN_WARNING "windfarm: CPU %d power " |
| 295 | "sensor error %d\n", cpu, err); |
| 296 | failure_state |= FAILURE_SENSOR; |
| 297 | cpu_max_all_fans(); |
| 298 | return; |
| 299 | } |
| 300 | |
| 301 | /* Run PID */ |
| 302 | sp = &cpu_pid[cpu]; |
| 303 | t = wf_cpu_pid_run(sp, power, temp); |
| 304 | |
| 305 | if (cpu == 0 || sp->last_delta > greatest_delta) { |
| 306 | greatest_delta = sp->last_delta; |
| 307 | target = t; |
| 308 | } |
| 309 | DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ", |
| 310 | cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp)); |
| 311 | } |
| 312 | DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max)); |
| 313 | |
| 314 | /* Darwin limits decrease to 20 per iteration */ |
| 315 | if (target < (cpu_last_target - 20)) |
| 316 | target = cpu_last_target - 20; |
| 317 | cpu_last_target = target; |
| 318 | for (cpu = 0; cpu < nr_cores; ++cpu) |
| 319 | cpu_pid[cpu].target = target; |
| 320 | |
| 321 | /* Handle possible overtemps */ |
| 322 | if (cpu_check_overtemp(t_max)) |
| 323 | return; |
| 324 | |
| 325 | /* Set fans */ |
| 326 | for (i = 0; i < NR_CPU_FANS; ++i) { |
| 327 | ct = cpu_fans[i]; |
| 328 | if (ct == NULL) |
| 329 | continue; |
| 330 | err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100); |
| 331 | if (err) { |
| 332 | printk(KERN_WARNING "windfarm: fan %s reports " |
| 333 | "error %d\n", ct->name, err); |
| 334 | failure_state |= FAILURE_FAN; |
| 335 | break; |
| 336 | } |
| 337 | } |
| 338 | } |
| 339 | |
| 340 | /* Backside/U4 fan */ |
| 341 | static struct wf_pid_param backside_param = { |
| 342 | .interval = 5, |
| 343 | .history_len = 2, |
| 344 | .gd = 48 << 20, |
| 345 | .gp = 5 << 20, |
| 346 | .gr = 0, |
| 347 | .itarget = 64 << 16, |
| 348 | .additive = 1, |
| 349 | }; |
| 350 | |
| 351 | static void backside_fan_tick(void) |
| 352 | { |
| 353 | s32 temp; |
| 354 | int speed; |
| 355 | int err; |
| 356 | |
| 357 | if (!backside_fan || !u4_temp) |
| 358 | return; |
| 359 | if (!backside_tick) { |
| 360 | /* first time; initialize things */ |
| 361 | backside_param.min = backside_fan->ops->get_min(backside_fan); |
| 362 | backside_param.max = backside_fan->ops->get_max(backside_fan); |
| 363 | wf_pid_init(&backside_pid, &backside_param); |
| 364 | backside_tick = 1; |
| 365 | } |
| 366 | if (--backside_tick > 0) |
| 367 | return; |
| 368 | backside_tick = backside_pid.param.interval; |
| 369 | |
| 370 | err = u4_temp->ops->get_value(u4_temp, &temp); |
| 371 | if (err) { |
| 372 | printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n", |
| 373 | err); |
| 374 | failure_state |= FAILURE_SENSOR; |
| 375 | wf_control_set_max(backside_fan); |
| 376 | return; |
| 377 | } |
| 378 | speed = wf_pid_run(&backside_pid, temp); |
| 379 | DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n", |
| 380 | FIX32TOPRINT(temp), speed); |
| 381 | |
| 382 | err = backside_fan->ops->set_value(backside_fan, speed); |
| 383 | if (err) { |
| 384 | printk(KERN_WARNING "windfarm: backside fan error %d\n", err); |
| 385 | failure_state |= FAILURE_FAN; |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | /* Drive bay fan */ |
| 390 | static struct wf_pid_param drive_bay_prm = { |
| 391 | .interval = 5, |
| 392 | .history_len = 2, |
| 393 | .gd = 30 << 20, |
| 394 | .gp = 5 << 20, |
| 395 | .gr = 0, |
| 396 | .itarget = 40 << 16, |
| 397 | .additive = 1, |
| 398 | }; |
| 399 | |
| 400 | static void drive_bay_fan_tick(void) |
| 401 | { |
| 402 | s32 temp; |
| 403 | int speed; |
| 404 | int err; |
| 405 | |
| 406 | if (!drive_bay_fan || !hd_temp) |
| 407 | return; |
| 408 | if (!drive_bay_tick) { |
| 409 | /* first time; initialize things */ |
| 410 | drive_bay_prm.min = drive_bay_fan->ops->get_min(drive_bay_fan); |
| 411 | drive_bay_prm.max = drive_bay_fan->ops->get_max(drive_bay_fan); |
| 412 | wf_pid_init(&drive_bay_pid, &drive_bay_prm); |
| 413 | drive_bay_tick = 1; |
| 414 | } |
| 415 | if (--drive_bay_tick > 0) |
| 416 | return; |
| 417 | drive_bay_tick = drive_bay_pid.param.interval; |
| 418 | |
| 419 | err = hd_temp->ops->get_value(hd_temp, &temp); |
| 420 | if (err) { |
| 421 | printk(KERN_WARNING "windfarm: drive bay temp sensor " |
| 422 | "error %d\n", err); |
| 423 | failure_state |= FAILURE_SENSOR; |
| 424 | wf_control_set_max(drive_bay_fan); |
| 425 | return; |
| 426 | } |
| 427 | speed = wf_pid_run(&drive_bay_pid, temp); |
| 428 | DBG_LOTS("drive_bay PID temp=%d.%.3d speed=%d\n", |
| 429 | FIX32TOPRINT(temp), speed); |
| 430 | |
| 431 | err = drive_bay_fan->ops->set_value(drive_bay_fan, speed); |
| 432 | if (err) { |
| 433 | printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err); |
| 434 | failure_state |= FAILURE_FAN; |
| 435 | } |
| 436 | } |
| 437 | |
| 438 | /* PCI slots area fan */ |
| 439 | /* This makes the fan speed proportional to the power consumed */ |
| 440 | static struct wf_pid_param slots_param = { |
| 441 | .interval = 1, |
| 442 | .history_len = 2, |
| 443 | .gd = 0, |
| 444 | .gp = 0, |
| 445 | .gr = 0x1277952, |
| 446 | .itarget = 0, |
| 447 | .min = 1560, |
| 448 | .max = 3510, |
| 449 | }; |
| 450 | |
| 451 | static void slots_fan_tick(void) |
| 452 | { |
| 453 | s32 power; |
| 454 | int speed; |
| 455 | int err; |
| 456 | |
| 457 | if (!slots_fan || !slots_power) |
| 458 | return; |
| 459 | if (!slots_started) { |
| 460 | /* first time; initialize things */ |
| 461 | wf_pid_init(&slots_pid, &slots_param); |
| 462 | slots_started = 1; |
| 463 | } |
| 464 | |
| 465 | err = slots_power->ops->get_value(slots_power, &power); |
| 466 | if (err) { |
| 467 | printk(KERN_WARNING "windfarm: slots power sensor error %d\n", |
| 468 | err); |
| 469 | failure_state |= FAILURE_SENSOR; |
| 470 | wf_control_set_max(slots_fan); |
| 471 | return; |
| 472 | } |
| 473 | speed = wf_pid_run(&slots_pid, power); |
| 474 | DBG_LOTS("slots PID power=%d.%.3d speed=%d\n", |
| 475 | FIX32TOPRINT(power), speed); |
| 476 | |
| 477 | err = slots_fan->ops->set_value(slots_fan, speed); |
| 478 | if (err) { |
| 479 | printk(KERN_WARNING "windfarm: slots fan error %d\n", err); |
| 480 | failure_state |= FAILURE_FAN; |
| 481 | } |
| 482 | } |
| 483 | |
| 484 | static void set_fail_state(void) |
| 485 | { |
| 486 | int i; |
| 487 | |
| 488 | if (cpufreq_clamp) |
| 489 | wf_control_set_max(cpufreq_clamp); |
| 490 | for (i = 0; i < NR_CPU_FANS; ++i) |
| 491 | if (cpu_fans[i]) |
| 492 | wf_control_set_max(cpu_fans[i]); |
| 493 | if (backside_fan) |
| 494 | wf_control_set_max(backside_fan); |
| 495 | if (slots_fan) |
| 496 | wf_control_set_max(slots_fan); |
| 497 | if (drive_bay_fan) |
| 498 | wf_control_set_max(drive_bay_fan); |
| 499 | } |
| 500 | |
| 501 | static void pm112_tick(void) |
| 502 | { |
| 503 | int i, last_failure; |
| 504 | |
| 505 | if (!started) { |
| 506 | started = 1; |
| 507 | for (i = 0; i < nr_cores; ++i) { |
| 508 | if (create_cpu_loop(i) < 0) { |
| 509 | failure_state = FAILURE_PERM; |
| 510 | set_fail_state(); |
| 511 | break; |
| 512 | } |
| 513 | } |
| 514 | DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax)); |
| 515 | |
| 516 | #ifdef HACKED_OVERTEMP |
| 517 | cpu_all_tmax = 60 << 16; |
| 518 | #endif |
| 519 | } |
| 520 | |
| 521 | /* Permanent failure, bail out */ |
| 522 | if (failure_state & FAILURE_PERM) |
| 523 | return; |
| 524 | /* Clear all failure bits except low overtemp which will be eventually |
| 525 | * cleared by the control loop itself |
| 526 | */ |
| 527 | last_failure = failure_state; |
| 528 | failure_state &= FAILURE_LOW_OVERTEMP; |
| 529 | cpu_fans_tick(); |
| 530 | backside_fan_tick(); |
| 531 | slots_fan_tick(); |
| 532 | drive_bay_fan_tick(); |
| 533 | |
| 534 | DBG_LOTS("last_failure: 0x%x, failure_state: %x\n", |
| 535 | last_failure, failure_state); |
| 536 | |
| 537 | /* Check for failures. Any failure causes cpufreq clamping */ |
| 538 | if (failure_state && last_failure == 0 && cpufreq_clamp) |
| 539 | wf_control_set_max(cpufreq_clamp); |
| 540 | if (failure_state == 0 && last_failure && cpufreq_clamp) |
| 541 | wf_control_set_min(cpufreq_clamp); |
| 542 | |
| 543 | /* That's it for now, we might want to deal with other failures |
| 544 | * differently in the future though |
| 545 | */ |
| 546 | } |
| 547 | |
| 548 | static void pm112_new_control(struct wf_control *ct) |
| 549 | { |
| 550 | int i, max_exhaust; |
| 551 | |
| 552 | if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) { |
| 553 | if (wf_get_control(ct) == 0) |
| 554 | cpufreq_clamp = ct; |
| 555 | } |
| 556 | |
| 557 | for (i = 0; i < NR_CPU_FANS; ++i) { |
| 558 | if (!strcmp(ct->name, cpu_fan_names[i])) { |
| 559 | if (cpu_fans[i] == NULL && wf_get_control(ct) == 0) |
| 560 | cpu_fans[i] = ct; |
| 561 | break; |
| 562 | } |
| 563 | } |
| 564 | if (i >= NR_CPU_FANS) { |
| 565 | /* not a CPU fan, try the others */ |
| 566 | if (!strcmp(ct->name, "backside-fan")) { |
| 567 | if (backside_fan == NULL && wf_get_control(ct) == 0) |
| 568 | backside_fan = ct; |
| 569 | } else if (!strcmp(ct->name, "slots-fan")) { |
| 570 | if (slots_fan == NULL && wf_get_control(ct) == 0) |
| 571 | slots_fan = ct; |
| 572 | } else if (!strcmp(ct->name, "drive-bay-fan")) { |
| 573 | if (drive_bay_fan == NULL && wf_get_control(ct) == 0) |
| 574 | drive_bay_fan = ct; |
| 575 | } |
| 576 | return; |
| 577 | } |
| 578 | |
| 579 | for (i = 0; i < CPU_FANS_REQD; ++i) |
| 580 | if (cpu_fans[i] == NULL) |
| 581 | return; |
| 582 | |
| 583 | /* work out pump scaling factors */ |
| 584 | max_exhaust = cpu_fans[0]->ops->get_max(cpu_fans[0]); |
| 585 | for (i = FIRST_PUMP; i <= LAST_PUMP; ++i) |
| 586 | if ((ct = cpu_fans[i]) != NULL) |
| 587 | cpu_fan_scale[i] = |
| 588 | ct->ops->get_max(ct) * 100 / max_exhaust; |
| 589 | |
| 590 | have_all_controls = 1; |
| 591 | } |
| 592 | |
| 593 | static void pm112_new_sensor(struct wf_sensor *sr) |
| 594 | { |
| 595 | unsigned int i; |
| 596 | |
| 597 | if (have_all_sensors) |
| 598 | return; |
| 599 | if (!strncmp(sr->name, "cpu-temp-", 9)) { |
| 600 | i = sr->name[9] - '0'; |
| 601 | if (sr->name[10] == 0 && i < NR_CORES && |
| 602 | sens_cpu_temp[i] == NULL && wf_get_sensor(sr) == 0) |
| 603 | sens_cpu_temp[i] = sr; |
| 604 | |
| 605 | } else if (!strncmp(sr->name, "cpu-power-", 10)) { |
| 606 | i = sr->name[10] - '0'; |
| 607 | if (sr->name[11] == 0 && i < NR_CORES && |
| 608 | sens_cpu_power[i] == NULL && wf_get_sensor(sr) == 0) |
| 609 | sens_cpu_power[i] = sr; |
| 610 | } else if (!strcmp(sr->name, "hd-temp")) { |
| 611 | if (hd_temp == NULL && wf_get_sensor(sr) == 0) |
| 612 | hd_temp = sr; |
| 613 | } else if (!strcmp(sr->name, "slots-power")) { |
| 614 | if (slots_power == NULL && wf_get_sensor(sr) == 0) |
| 615 | slots_power = sr; |
| 616 | } else if (!strcmp(sr->name, "u4-temp")) { |
| 617 | if (u4_temp == NULL && wf_get_sensor(sr) == 0) |
| 618 | u4_temp = sr; |
| 619 | } else |
| 620 | return; |
| 621 | |
| 622 | /* check if we have all the sensors we need */ |
| 623 | for (i = 0; i < nr_cores; ++i) |
| 624 | if (sens_cpu_temp[i] == NULL || sens_cpu_power[i] == NULL) |
| 625 | return; |
| 626 | |
| 627 | have_all_sensors = 1; |
| 628 | } |
| 629 | |
| 630 | static int pm112_wf_notify(struct notifier_block *self, |
| 631 | unsigned long event, void *data) |
| 632 | { |
| 633 | switch (event) { |
| 634 | case WF_EVENT_NEW_SENSOR: |
| 635 | pm112_new_sensor(data); |
| 636 | break; |
| 637 | case WF_EVENT_NEW_CONTROL: |
| 638 | pm112_new_control(data); |
| 639 | break; |
| 640 | case WF_EVENT_TICK: |
| 641 | if (have_all_controls && have_all_sensors) |
| 642 | pm112_tick(); |
| 643 | } |
| 644 | return 0; |
| 645 | } |
| 646 | |
| 647 | static struct notifier_block pm112_events = { |
| 648 | .notifier_call = pm112_wf_notify, |
| 649 | }; |
| 650 | |
| 651 | static int wf_pm112_probe(struct device *dev) |
| 652 | { |
| 653 | wf_register_client(&pm112_events); |
| 654 | return 0; |
| 655 | } |
| 656 | |
| 657 | static int wf_pm112_remove(struct device *dev) |
| 658 | { |
| 659 | wf_unregister_client(&pm112_events); |
| 660 | /* should release all sensors and controls */ |
| 661 | return 0; |
| 662 | } |
| 663 | |
| 664 | static struct device_driver wf_pm112_driver = { |
| 665 | .name = "windfarm", |
| 666 | .bus = &platform_bus_type, |
| 667 | .probe = wf_pm112_probe, |
| 668 | .remove = wf_pm112_remove, |
| 669 | }; |
| 670 | |
| 671 | static int __init wf_pm112_init(void) |
| 672 | { |
| 673 | struct device_node *cpu; |
| 674 | |
| 675 | if (!machine_is_compatible("PowerMac11,2")) |
| 676 | return -ENODEV; |
| 677 | |
| 678 | /* Count the number of CPU cores */ |
| 679 | nr_cores = 0; |
| 680 | for (cpu = NULL; (cpu = of_find_node_by_type(cpu, "cpu")) != NULL; ) |
| 681 | ++nr_cores; |
| 682 | |
| 683 | printk(KERN_INFO "windfarm: initializing for dual-core desktop G5\n"); |
| 684 | driver_register(&wf_pm112_driver); |
| 685 | return 0; |
| 686 | } |
| 687 | |
| 688 | static void __exit wf_pm112_exit(void) |
| 689 | { |
| 690 | driver_unregister(&wf_pm112_driver); |
| 691 | } |
| 692 | |
| 693 | module_init(wf_pm112_init); |
| 694 | module_exit(wf_pm112_exit); |
| 695 | |
| 696 | MODULE_AUTHOR("Paul Mackerras <paulus@samba.org>"); |
| 697 | MODULE_DESCRIPTION("Thermal control for PowerMac11,2"); |
| 698 | MODULE_LICENSE("GPL"); |