Thomas Gleixner | 660662f | 2019-05-24 12:04:10 +0200 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2 | /* |
| 3 | * Linux/PA-RISC Project (http://www.parisc-linux.org/) |
| 4 | * |
| 5 | * Floating-point emulation code |
| 6 | * Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 7 | */ |
| 8 | /* |
| 9 | * BEGIN_DESC |
| 10 | * |
| 11 | * File: |
| 12 | * @(#) pa/spmath/fmpyfadd.c $Revision: 1.1 $ |
| 13 | * |
| 14 | * Purpose: |
| 15 | * Double Floating-point Multiply Fused Add |
| 16 | * Double Floating-point Multiply Negate Fused Add |
| 17 | * Single Floating-point Multiply Fused Add |
| 18 | * Single Floating-point Multiply Negate Fused Add |
| 19 | * |
| 20 | * External Interfaces: |
| 21 | * dbl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr) |
| 22 | * dbl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) |
| 23 | * sgl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr) |
| 24 | * sgl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) |
| 25 | * |
| 26 | * Internal Interfaces: |
| 27 | * |
| 28 | * Theory: |
| 29 | * <<please update with a overview of the operation of this file>> |
| 30 | * |
| 31 | * END_DESC |
| 32 | */ |
| 33 | |
| 34 | |
| 35 | #include "float.h" |
| 36 | #include "sgl_float.h" |
| 37 | #include "dbl_float.h" |
| 38 | |
| 39 | |
| 40 | /* |
| 41 | * Double Floating-point Multiply Fused Add |
| 42 | */ |
| 43 | |
| 44 | int |
| 45 | dbl_fmpyfadd( |
| 46 | dbl_floating_point *src1ptr, |
| 47 | dbl_floating_point *src2ptr, |
| 48 | dbl_floating_point *src3ptr, |
| 49 | unsigned int *status, |
| 50 | dbl_floating_point *dstptr) |
| 51 | { |
| 52 | unsigned int opnd1p1, opnd1p2, opnd2p1, opnd2p2, opnd3p1, opnd3p2; |
| 53 | register unsigned int tmpresp1, tmpresp2, tmpresp3, tmpresp4; |
| 54 | unsigned int rightp1, rightp2, rightp3, rightp4; |
| 55 | unsigned int resultp1, resultp2 = 0, resultp3 = 0, resultp4 = 0; |
| 56 | register int mpy_exponent, add_exponent, count; |
| 57 | boolean inexact = FALSE, is_tiny = FALSE; |
| 58 | |
| 59 | unsigned int signlessleft1, signlessright1, save; |
| 60 | register int result_exponent, diff_exponent; |
| 61 | int sign_save, jumpsize; |
| 62 | |
| 63 | Dbl_copyfromptr(src1ptr,opnd1p1,opnd1p2); |
| 64 | Dbl_copyfromptr(src2ptr,opnd2p1,opnd2p2); |
| 65 | Dbl_copyfromptr(src3ptr,opnd3p1,opnd3p2); |
| 66 | |
| 67 | /* |
| 68 | * set sign bit of result of multiply |
| 69 | */ |
| 70 | if (Dbl_sign(opnd1p1) ^ Dbl_sign(opnd2p1)) |
| 71 | Dbl_setnegativezerop1(resultp1); |
| 72 | else Dbl_setzerop1(resultp1); |
| 73 | |
| 74 | /* |
| 75 | * Generate multiply exponent |
| 76 | */ |
| 77 | mpy_exponent = Dbl_exponent(opnd1p1) + Dbl_exponent(opnd2p1) - DBL_BIAS; |
| 78 | |
| 79 | /* |
| 80 | * check first operand for NaN's or infinity |
| 81 | */ |
| 82 | if (Dbl_isinfinity_exponent(opnd1p1)) { |
| 83 | if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { |
| 84 | if (Dbl_isnotnan(opnd2p1,opnd2p2) && |
| 85 | Dbl_isnotnan(opnd3p1,opnd3p2)) { |
| 86 | if (Dbl_iszero_exponentmantissa(opnd2p1,opnd2p2)) { |
| 87 | /* |
| 88 | * invalid since operands are infinity |
| 89 | * and zero |
| 90 | */ |
| 91 | if (Is_invalidtrap_enabled()) |
| 92 | return(OPC_2E_INVALIDEXCEPTION); |
| 93 | Set_invalidflag(); |
| 94 | Dbl_makequietnan(resultp1,resultp2); |
| 95 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 96 | return(NOEXCEPTION); |
| 97 | } |
| 98 | /* |
| 99 | * Check third operand for infinity with a |
| 100 | * sign opposite of the multiply result |
| 101 | */ |
| 102 | if (Dbl_isinfinity(opnd3p1,opnd3p2) && |
| 103 | (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { |
| 104 | /* |
| 105 | * invalid since attempting a magnitude |
| 106 | * subtraction of infinities |
| 107 | */ |
| 108 | if (Is_invalidtrap_enabled()) |
| 109 | return(OPC_2E_INVALIDEXCEPTION); |
| 110 | Set_invalidflag(); |
| 111 | Dbl_makequietnan(resultp1,resultp2); |
| 112 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 113 | return(NOEXCEPTION); |
| 114 | } |
| 115 | |
| 116 | /* |
| 117 | * return infinity |
| 118 | */ |
| 119 | Dbl_setinfinity_exponentmantissa(resultp1,resultp2); |
| 120 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 121 | return(NOEXCEPTION); |
| 122 | } |
| 123 | } |
| 124 | else { |
| 125 | /* |
| 126 | * is NaN; signaling or quiet? |
| 127 | */ |
| 128 | if (Dbl_isone_signaling(opnd1p1)) { |
| 129 | /* trap if INVALIDTRAP enabled */ |
| 130 | if (Is_invalidtrap_enabled()) |
| 131 | return(OPC_2E_INVALIDEXCEPTION); |
| 132 | /* make NaN quiet */ |
| 133 | Set_invalidflag(); |
| 134 | Dbl_set_quiet(opnd1p1); |
| 135 | } |
| 136 | /* |
| 137 | * is second operand a signaling NaN? |
| 138 | */ |
| 139 | else if (Dbl_is_signalingnan(opnd2p1)) { |
| 140 | /* trap if INVALIDTRAP enabled */ |
| 141 | if (Is_invalidtrap_enabled()) |
| 142 | return(OPC_2E_INVALIDEXCEPTION); |
| 143 | /* make NaN quiet */ |
| 144 | Set_invalidflag(); |
| 145 | Dbl_set_quiet(opnd2p1); |
| 146 | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); |
| 147 | return(NOEXCEPTION); |
| 148 | } |
| 149 | /* |
| 150 | * is third operand a signaling NaN? |
| 151 | */ |
| 152 | else if (Dbl_is_signalingnan(opnd3p1)) { |
| 153 | /* trap if INVALIDTRAP enabled */ |
| 154 | if (Is_invalidtrap_enabled()) |
| 155 | return(OPC_2E_INVALIDEXCEPTION); |
| 156 | /* make NaN quiet */ |
| 157 | Set_invalidflag(); |
| 158 | Dbl_set_quiet(opnd3p1); |
| 159 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 160 | return(NOEXCEPTION); |
| 161 | } |
| 162 | /* |
| 163 | * return quiet NaN |
| 164 | */ |
| 165 | Dbl_copytoptr(opnd1p1,opnd1p2,dstptr); |
| 166 | return(NOEXCEPTION); |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | /* |
| 171 | * check second operand for NaN's or infinity |
| 172 | */ |
| 173 | if (Dbl_isinfinity_exponent(opnd2p1)) { |
| 174 | if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { |
| 175 | if (Dbl_isnotnan(opnd3p1,opnd3p2)) { |
| 176 | if (Dbl_iszero_exponentmantissa(opnd1p1,opnd1p2)) { |
| 177 | /* |
| 178 | * invalid since multiply operands are |
| 179 | * zero & infinity |
| 180 | */ |
| 181 | if (Is_invalidtrap_enabled()) |
| 182 | return(OPC_2E_INVALIDEXCEPTION); |
| 183 | Set_invalidflag(); |
| 184 | Dbl_makequietnan(opnd2p1,opnd2p2); |
| 185 | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); |
| 186 | return(NOEXCEPTION); |
| 187 | } |
| 188 | |
| 189 | /* |
| 190 | * Check third operand for infinity with a |
| 191 | * sign opposite of the multiply result |
| 192 | */ |
| 193 | if (Dbl_isinfinity(opnd3p1,opnd3p2) && |
| 194 | (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { |
| 195 | /* |
| 196 | * invalid since attempting a magnitude |
| 197 | * subtraction of infinities |
| 198 | */ |
| 199 | if (Is_invalidtrap_enabled()) |
| 200 | return(OPC_2E_INVALIDEXCEPTION); |
| 201 | Set_invalidflag(); |
| 202 | Dbl_makequietnan(resultp1,resultp2); |
| 203 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 204 | return(NOEXCEPTION); |
| 205 | } |
| 206 | |
| 207 | /* |
| 208 | * return infinity |
| 209 | */ |
| 210 | Dbl_setinfinity_exponentmantissa(resultp1,resultp2); |
| 211 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 212 | return(NOEXCEPTION); |
| 213 | } |
| 214 | } |
| 215 | else { |
| 216 | /* |
| 217 | * is NaN; signaling or quiet? |
| 218 | */ |
| 219 | if (Dbl_isone_signaling(opnd2p1)) { |
| 220 | /* trap if INVALIDTRAP enabled */ |
| 221 | if (Is_invalidtrap_enabled()) |
| 222 | return(OPC_2E_INVALIDEXCEPTION); |
| 223 | /* make NaN quiet */ |
| 224 | Set_invalidflag(); |
| 225 | Dbl_set_quiet(opnd2p1); |
| 226 | } |
| 227 | /* |
| 228 | * is third operand a signaling NaN? |
| 229 | */ |
| 230 | else if (Dbl_is_signalingnan(opnd3p1)) { |
| 231 | /* trap if INVALIDTRAP enabled */ |
| 232 | if (Is_invalidtrap_enabled()) |
| 233 | return(OPC_2E_INVALIDEXCEPTION); |
| 234 | /* make NaN quiet */ |
| 235 | Set_invalidflag(); |
| 236 | Dbl_set_quiet(opnd3p1); |
| 237 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 238 | return(NOEXCEPTION); |
| 239 | } |
| 240 | /* |
| 241 | * return quiet NaN |
| 242 | */ |
| 243 | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); |
| 244 | return(NOEXCEPTION); |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | /* |
| 249 | * check third operand for NaN's or infinity |
| 250 | */ |
| 251 | if (Dbl_isinfinity_exponent(opnd3p1)) { |
| 252 | if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { |
| 253 | /* return infinity */ |
| 254 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 255 | return(NOEXCEPTION); |
| 256 | } else { |
| 257 | /* |
| 258 | * is NaN; signaling or quiet? |
| 259 | */ |
| 260 | if (Dbl_isone_signaling(opnd3p1)) { |
| 261 | /* trap if INVALIDTRAP enabled */ |
| 262 | if (Is_invalidtrap_enabled()) |
| 263 | return(OPC_2E_INVALIDEXCEPTION); |
| 264 | /* make NaN quiet */ |
| 265 | Set_invalidflag(); |
| 266 | Dbl_set_quiet(opnd3p1); |
| 267 | } |
| 268 | /* |
| 269 | * return quiet NaN |
| 270 | */ |
| 271 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 272 | return(NOEXCEPTION); |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | /* |
| 277 | * Generate multiply mantissa |
| 278 | */ |
| 279 | if (Dbl_isnotzero_exponent(opnd1p1)) { |
| 280 | /* set hidden bit */ |
| 281 | Dbl_clear_signexponent_set_hidden(opnd1p1); |
| 282 | } |
| 283 | else { |
| 284 | /* check for zero */ |
| 285 | if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { |
| 286 | /* |
| 287 | * Perform the add opnd3 with zero here. |
| 288 | */ |
| 289 | if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { |
| 290 | if (Is_rounding_mode(ROUNDMINUS)) { |
| 291 | Dbl_or_signs(opnd3p1,resultp1); |
| 292 | } else { |
| 293 | Dbl_and_signs(opnd3p1,resultp1); |
| 294 | } |
| 295 | } |
| 296 | /* |
| 297 | * Now let's check for trapped underflow case. |
| 298 | */ |
| 299 | else if (Dbl_iszero_exponent(opnd3p1) && |
| 300 | Is_underflowtrap_enabled()) { |
| 301 | /* need to normalize results mantissa */ |
| 302 | sign_save = Dbl_signextendedsign(opnd3p1); |
| 303 | result_exponent = 0; |
| 304 | Dbl_leftshiftby1(opnd3p1,opnd3p2); |
| 305 | Dbl_normalize(opnd3p1,opnd3p2,result_exponent); |
| 306 | Dbl_set_sign(opnd3p1,/*using*/sign_save); |
| 307 | Dbl_setwrapped_exponent(opnd3p1,result_exponent, |
| 308 | unfl); |
| 309 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 310 | /* inexact = FALSE */ |
| 311 | return(OPC_2E_UNDERFLOWEXCEPTION); |
| 312 | } |
| 313 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 314 | return(NOEXCEPTION); |
| 315 | } |
| 316 | /* is denormalized, adjust exponent */ |
| 317 | Dbl_clear_signexponent(opnd1p1); |
| 318 | Dbl_leftshiftby1(opnd1p1,opnd1p2); |
| 319 | Dbl_normalize(opnd1p1,opnd1p2,mpy_exponent); |
| 320 | } |
| 321 | /* opnd2 needs to have hidden bit set with msb in hidden bit */ |
| 322 | if (Dbl_isnotzero_exponent(opnd2p1)) { |
| 323 | Dbl_clear_signexponent_set_hidden(opnd2p1); |
| 324 | } |
| 325 | else { |
| 326 | /* check for zero */ |
| 327 | if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { |
| 328 | /* |
| 329 | * Perform the add opnd3 with zero here. |
| 330 | */ |
| 331 | if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { |
| 332 | if (Is_rounding_mode(ROUNDMINUS)) { |
| 333 | Dbl_or_signs(opnd3p1,resultp1); |
| 334 | } else { |
| 335 | Dbl_and_signs(opnd3p1,resultp1); |
| 336 | } |
| 337 | } |
| 338 | /* |
| 339 | * Now let's check for trapped underflow case. |
| 340 | */ |
| 341 | else if (Dbl_iszero_exponent(opnd3p1) && |
| 342 | Is_underflowtrap_enabled()) { |
| 343 | /* need to normalize results mantissa */ |
| 344 | sign_save = Dbl_signextendedsign(opnd3p1); |
| 345 | result_exponent = 0; |
| 346 | Dbl_leftshiftby1(opnd3p1,opnd3p2); |
| 347 | Dbl_normalize(opnd3p1,opnd3p2,result_exponent); |
| 348 | Dbl_set_sign(opnd3p1,/*using*/sign_save); |
| 349 | Dbl_setwrapped_exponent(opnd3p1,result_exponent, |
| 350 | unfl); |
| 351 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 352 | /* inexact = FALSE */ |
| 353 | return(OPC_2E_UNDERFLOWEXCEPTION); |
| 354 | } |
| 355 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 356 | return(NOEXCEPTION); |
| 357 | } |
| 358 | /* is denormalized; want to normalize */ |
| 359 | Dbl_clear_signexponent(opnd2p1); |
| 360 | Dbl_leftshiftby1(opnd2p1,opnd2p2); |
| 361 | Dbl_normalize(opnd2p1,opnd2p2,mpy_exponent); |
| 362 | } |
| 363 | |
| 364 | /* Multiply the first two source mantissas together */ |
| 365 | |
| 366 | /* |
| 367 | * The intermediate result will be kept in tmpres, |
| 368 | * which needs enough room for 106 bits of mantissa, |
| 369 | * so lets call it a Double extended. |
| 370 | */ |
| 371 | Dblext_setzero(tmpresp1,tmpresp2,tmpresp3,tmpresp4); |
| 372 | |
| 373 | /* |
| 374 | * Four bits at a time are inspected in each loop, and a |
| 375 | * simple shift and add multiply algorithm is used. |
| 376 | */ |
| 377 | for (count = DBL_P-1; count >= 0; count -= 4) { |
| 378 | Dblext_rightshiftby4(tmpresp1,tmpresp2,tmpresp3,tmpresp4); |
| 379 | if (Dbit28p2(opnd1p2)) { |
| 380 | /* Fourword_add should be an ADD followed by 3 ADDC's */ |
| 381 | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, |
| 382 | opnd2p1<<3 | opnd2p2>>29, opnd2p2<<3, 0, 0); |
| 383 | } |
| 384 | if (Dbit29p2(opnd1p2)) { |
| 385 | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, |
| 386 | opnd2p1<<2 | opnd2p2>>30, opnd2p2<<2, 0, 0); |
| 387 | } |
| 388 | if (Dbit30p2(opnd1p2)) { |
| 389 | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, |
| 390 | opnd2p1<<1 | opnd2p2>>31, opnd2p2<<1, 0, 0); |
| 391 | } |
| 392 | if (Dbit31p2(opnd1p2)) { |
| 393 | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, |
| 394 | opnd2p1, opnd2p2, 0, 0); |
| 395 | } |
| 396 | Dbl_rightshiftby4(opnd1p1,opnd1p2); |
| 397 | } |
| 398 | if (Is_dexthiddenoverflow(tmpresp1)) { |
| 399 | /* result mantissa >= 2 (mantissa overflow) */ |
| 400 | mpy_exponent++; |
| 401 | Dblext_rightshiftby1(tmpresp1,tmpresp2,tmpresp3,tmpresp4); |
| 402 | } |
| 403 | |
| 404 | /* |
| 405 | * Restore the sign of the mpy result which was saved in resultp1. |
| 406 | * The exponent will continue to be kept in mpy_exponent. |
| 407 | */ |
| 408 | Dblext_set_sign(tmpresp1,Dbl_sign(resultp1)); |
| 409 | |
| 410 | /* |
| 411 | * No rounding is required, since the result of the multiply |
| 412 | * is exact in the extended format. |
| 413 | */ |
| 414 | |
| 415 | /* |
| 416 | * Now we are ready to perform the add portion of the operation. |
| 417 | * |
| 418 | * The exponents need to be kept as integers for now, since the |
| 419 | * multiply result might not fit into the exponent field. We |
| 420 | * can't overflow or underflow because of this yet, since the |
| 421 | * add could bring the final result back into range. |
| 422 | */ |
| 423 | add_exponent = Dbl_exponent(opnd3p1); |
| 424 | |
| 425 | /* |
| 426 | * Check for denormalized or zero add operand. |
| 427 | */ |
| 428 | if (add_exponent == 0) { |
| 429 | /* check for zero */ |
| 430 | if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { |
| 431 | /* right is zero */ |
| 432 | /* Left can't be zero and must be result. |
| 433 | * |
| 434 | * The final result is now in tmpres and mpy_exponent, |
| 435 | * and needs to be rounded and squeezed back into |
| 436 | * double precision format from double extended. |
| 437 | */ |
| 438 | result_exponent = mpy_exponent; |
| 439 | Dblext_copy(tmpresp1,tmpresp2,tmpresp3,tmpresp4, |
| 440 | resultp1,resultp2,resultp3,resultp4); |
| 441 | sign_save = Dbl_signextendedsign(resultp1);/*save sign*/ |
| 442 | goto round; |
| 443 | } |
| 444 | |
| 445 | /* |
| 446 | * Neither are zeroes. |
| 447 | * Adjust exponent and normalize add operand. |
| 448 | */ |
| 449 | sign_save = Dbl_signextendedsign(opnd3p1); /* save sign */ |
| 450 | Dbl_clear_signexponent(opnd3p1); |
| 451 | Dbl_leftshiftby1(opnd3p1,opnd3p2); |
| 452 | Dbl_normalize(opnd3p1,opnd3p2,add_exponent); |
| 453 | Dbl_set_sign(opnd3p1,sign_save); /* restore sign */ |
| 454 | } else { |
| 455 | Dbl_clear_exponent_set_hidden(opnd3p1); |
| 456 | } |
| 457 | /* |
| 458 | * Copy opnd3 to the double extended variable called right. |
| 459 | */ |
| 460 | Dbl_copyto_dblext(opnd3p1,opnd3p2,rightp1,rightp2,rightp3,rightp4); |
| 461 | |
| 462 | /* |
| 463 | * A zero "save" helps discover equal operands (for later), |
| 464 | * and is used in swapping operands (if needed). |
| 465 | */ |
| 466 | Dblext_xortointp1(tmpresp1,rightp1,/*to*/save); |
| 467 | |
| 468 | /* |
| 469 | * Compare magnitude of operands. |
| 470 | */ |
| 471 | Dblext_copytoint_exponentmantissap1(tmpresp1,signlessleft1); |
| 472 | Dblext_copytoint_exponentmantissap1(rightp1,signlessright1); |
| 473 | if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && |
| 474 | Dblext_ismagnitudeless(tmpresp2,rightp2,signlessleft1,signlessright1)){ |
| 475 | /* |
| 476 | * Set the left operand to the larger one by XOR swap. |
| 477 | * First finish the first word "save". |
| 478 | */ |
| 479 | Dblext_xorfromintp1(save,rightp1,/*to*/rightp1); |
| 480 | Dblext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); |
| 481 | Dblext_swap_lower(tmpresp2,tmpresp3,tmpresp4, |
| 482 | rightp2,rightp3,rightp4); |
| 483 | /* also setup exponents used in rest of routine */ |
| 484 | diff_exponent = add_exponent - mpy_exponent; |
| 485 | result_exponent = add_exponent; |
| 486 | } else { |
| 487 | /* also setup exponents used in rest of routine */ |
| 488 | diff_exponent = mpy_exponent - add_exponent; |
| 489 | result_exponent = mpy_exponent; |
| 490 | } |
| 491 | /* Invariant: left is not smaller than right. */ |
| 492 | |
| 493 | /* |
| 494 | * Special case alignment of operands that would force alignment |
| 495 | * beyond the extent of the extension. A further optimization |
| 496 | * could special case this but only reduces the path length for |
| 497 | * this infrequent case. |
| 498 | */ |
| 499 | if (diff_exponent > DBLEXT_THRESHOLD) { |
| 500 | diff_exponent = DBLEXT_THRESHOLD; |
| 501 | } |
| 502 | |
| 503 | /* Align right operand by shifting it to the right */ |
| 504 | Dblext_clear_sign(rightp1); |
| 505 | Dblext_right_align(rightp1,rightp2,rightp3,rightp4, |
| 506 | /*shifted by*/diff_exponent); |
| 507 | |
| 508 | /* Treat sum and difference of the operands separately. */ |
| 509 | if ((int)save < 0) { |
| 510 | /* |
| 511 | * Difference of the two operands. Overflow can occur if the |
| 512 | * multiply overflowed. A borrow can occur out of the hidden |
| 513 | * bit and force a post normalization phase. |
| 514 | */ |
| 515 | Dblext_subtract(tmpresp1,tmpresp2,tmpresp3,tmpresp4, |
| 516 | rightp1,rightp2,rightp3,rightp4, |
| 517 | resultp1,resultp2,resultp3,resultp4); |
| 518 | sign_save = Dbl_signextendedsign(resultp1); |
| 519 | if (Dbl_iszero_hidden(resultp1)) { |
| 520 | /* Handle normalization */ |
Lucas De Marchi | 25985ed | 2011-03-30 22:57:33 -0300 | [diff] [blame] | 521 | /* A straightforward algorithm would now shift the |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 522 | * result and extension left until the hidden bit |
| 523 | * becomes one. Not all of the extension bits need |
| 524 | * participate in the shift. Only the two most |
| 525 | * significant bits (round and guard) are needed. |
| 526 | * If only a single shift is needed then the guard |
| 527 | * bit becomes a significant low order bit and the |
| 528 | * extension must participate in the rounding. |
| 529 | * If more than a single shift is needed, then all |
| 530 | * bits to the right of the guard bit are zeros, |
| 531 | * and the guard bit may or may not be zero. */ |
| 532 | Dblext_leftshiftby1(resultp1,resultp2,resultp3, |
| 533 | resultp4); |
| 534 | |
| 535 | /* Need to check for a zero result. The sign and |
| 536 | * exponent fields have already been zeroed. The more |
| 537 | * efficient test of the full object can be used. |
| 538 | */ |
| 539 | if(Dblext_iszero(resultp1,resultp2,resultp3,resultp4)){ |
| 540 | /* Must have been "x-x" or "x+(-x)". */ |
| 541 | if (Is_rounding_mode(ROUNDMINUS)) |
| 542 | Dbl_setone_sign(resultp1); |
| 543 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 544 | return(NOEXCEPTION); |
| 545 | } |
| 546 | result_exponent--; |
| 547 | |
| 548 | /* Look to see if normalization is finished. */ |
| 549 | if (Dbl_isone_hidden(resultp1)) { |
| 550 | /* No further normalization is needed */ |
| 551 | goto round; |
| 552 | } |
| 553 | |
| 554 | /* Discover first one bit to determine shift amount. |
| 555 | * Use a modified binary search. We have already |
| 556 | * shifted the result one position right and still |
| 557 | * not found a one so the remainder of the extension |
| 558 | * must be zero and simplifies rounding. */ |
| 559 | /* Scan bytes */ |
| 560 | while (Dbl_iszero_hiddenhigh7mantissa(resultp1)) { |
| 561 | Dblext_leftshiftby8(resultp1,resultp2,resultp3,resultp4); |
| 562 | result_exponent -= 8; |
| 563 | } |
| 564 | /* Now narrow it down to the nibble */ |
| 565 | if (Dbl_iszero_hiddenhigh3mantissa(resultp1)) { |
| 566 | /* The lower nibble contains the |
| 567 | * normalizing one */ |
| 568 | Dblext_leftshiftby4(resultp1,resultp2,resultp3,resultp4); |
| 569 | result_exponent -= 4; |
| 570 | } |
| 571 | /* Select case where first bit is set (already |
| 572 | * normalized) otherwise select the proper shift. */ |
| 573 | jumpsize = Dbl_hiddenhigh3mantissa(resultp1); |
| 574 | if (jumpsize <= 7) switch(jumpsize) { |
| 575 | case 1: |
| 576 | Dblext_leftshiftby3(resultp1,resultp2,resultp3, |
| 577 | resultp4); |
| 578 | result_exponent -= 3; |
| 579 | break; |
| 580 | case 2: |
| 581 | case 3: |
| 582 | Dblext_leftshiftby2(resultp1,resultp2,resultp3, |
| 583 | resultp4); |
| 584 | result_exponent -= 2; |
| 585 | break; |
| 586 | case 4: |
| 587 | case 5: |
| 588 | case 6: |
| 589 | case 7: |
| 590 | Dblext_leftshiftby1(resultp1,resultp2,resultp3, |
| 591 | resultp4); |
| 592 | result_exponent -= 1; |
| 593 | break; |
| 594 | } |
| 595 | } /* end if (hidden...)... */ |
| 596 | /* Fall through and round */ |
| 597 | } /* end if (save < 0)... */ |
| 598 | else { |
| 599 | /* Add magnitudes */ |
| 600 | Dblext_addition(tmpresp1,tmpresp2,tmpresp3,tmpresp4, |
| 601 | rightp1,rightp2,rightp3,rightp4, |
| 602 | /*to*/resultp1,resultp2,resultp3,resultp4); |
| 603 | sign_save = Dbl_signextendedsign(resultp1); |
| 604 | if (Dbl_isone_hiddenoverflow(resultp1)) { |
| 605 | /* Prenormalization required. */ |
| 606 | Dblext_arithrightshiftby1(resultp1,resultp2,resultp3, |
| 607 | resultp4); |
| 608 | result_exponent++; |
| 609 | } /* end if hiddenoverflow... */ |
| 610 | } /* end else ...add magnitudes... */ |
| 611 | |
| 612 | /* Round the result. If the extension and lower two words are |
| 613 | * all zeros, then the result is exact. Otherwise round in the |
| 614 | * correct direction. Underflow is possible. If a postnormalization |
| 615 | * is necessary, then the mantissa is all zeros so no shift is needed. |
| 616 | */ |
| 617 | round: |
| 618 | if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { |
| 619 | Dblext_denormalize(resultp1,resultp2,resultp3,resultp4, |
| 620 | result_exponent,is_tiny); |
| 621 | } |
| 622 | Dbl_set_sign(resultp1,/*using*/sign_save); |
| 623 | if (Dblext_isnotzero_mantissap3(resultp3) || |
| 624 | Dblext_isnotzero_mantissap4(resultp4)) { |
| 625 | inexact = TRUE; |
| 626 | switch(Rounding_mode()) { |
| 627 | case ROUNDNEAREST: /* The default. */ |
| 628 | if (Dblext_isone_highp3(resultp3)) { |
| 629 | /* at least 1/2 ulp */ |
| 630 | if (Dblext_isnotzero_low31p3(resultp3) || |
| 631 | Dblext_isnotzero_mantissap4(resultp4) || |
| 632 | Dblext_isone_lowp2(resultp2)) { |
| 633 | /* either exactly half way and odd or |
| 634 | * more than 1/2ulp */ |
| 635 | Dbl_increment(resultp1,resultp2); |
| 636 | } |
| 637 | } |
| 638 | break; |
| 639 | |
| 640 | case ROUNDPLUS: |
| 641 | if (Dbl_iszero_sign(resultp1)) { |
| 642 | /* Round up positive results */ |
| 643 | Dbl_increment(resultp1,resultp2); |
| 644 | } |
| 645 | break; |
| 646 | |
| 647 | case ROUNDMINUS: |
| 648 | if (Dbl_isone_sign(resultp1)) { |
| 649 | /* Round down negative results */ |
| 650 | Dbl_increment(resultp1,resultp2); |
| 651 | } |
| 652 | |
| 653 | case ROUNDZERO:; |
| 654 | /* truncate is simple */ |
| 655 | } /* end switch... */ |
| 656 | if (Dbl_isone_hiddenoverflow(resultp1)) result_exponent++; |
| 657 | } |
| 658 | if (result_exponent >= DBL_INFINITY_EXPONENT) { |
| 659 | /* trap if OVERFLOWTRAP enabled */ |
| 660 | if (Is_overflowtrap_enabled()) { |
| 661 | /* |
| 662 | * Adjust bias of result |
| 663 | */ |
| 664 | Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl); |
| 665 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 666 | if (inexact) |
| 667 | if (Is_inexacttrap_enabled()) |
| 668 | return (OPC_2E_OVERFLOWEXCEPTION | |
| 669 | OPC_2E_INEXACTEXCEPTION); |
| 670 | else Set_inexactflag(); |
| 671 | return (OPC_2E_OVERFLOWEXCEPTION); |
| 672 | } |
| 673 | inexact = TRUE; |
| 674 | Set_overflowflag(); |
| 675 | /* set result to infinity or largest number */ |
| 676 | Dbl_setoverflow(resultp1,resultp2); |
| 677 | |
| 678 | } else if (result_exponent <= 0) { /* underflow case */ |
| 679 | if (Is_underflowtrap_enabled()) { |
| 680 | /* |
| 681 | * Adjust bias of result |
| 682 | */ |
| 683 | Dbl_setwrapped_exponent(resultp1,result_exponent,unfl); |
| 684 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 685 | if (inexact) |
| 686 | if (Is_inexacttrap_enabled()) |
| 687 | return (OPC_2E_UNDERFLOWEXCEPTION | |
| 688 | OPC_2E_INEXACTEXCEPTION); |
| 689 | else Set_inexactflag(); |
| 690 | return(OPC_2E_UNDERFLOWEXCEPTION); |
| 691 | } |
| 692 | else if (inexact && is_tiny) Set_underflowflag(); |
| 693 | } |
| 694 | else Dbl_set_exponent(resultp1,result_exponent); |
| 695 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 696 | if (inexact) |
| 697 | if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); |
| 698 | else Set_inexactflag(); |
| 699 | return(NOEXCEPTION); |
| 700 | } |
| 701 | |
| 702 | /* |
| 703 | * Double Floating-point Multiply Negate Fused Add |
| 704 | */ |
| 705 | |
| 706 | dbl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) |
| 707 | |
| 708 | dbl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr; |
| 709 | unsigned int *status; |
| 710 | { |
| 711 | unsigned int opnd1p1, opnd1p2, opnd2p1, opnd2p2, opnd3p1, opnd3p2; |
| 712 | register unsigned int tmpresp1, tmpresp2, tmpresp3, tmpresp4; |
| 713 | unsigned int rightp1, rightp2, rightp3, rightp4; |
| 714 | unsigned int resultp1, resultp2 = 0, resultp3 = 0, resultp4 = 0; |
| 715 | register int mpy_exponent, add_exponent, count; |
| 716 | boolean inexact = FALSE, is_tiny = FALSE; |
| 717 | |
| 718 | unsigned int signlessleft1, signlessright1, save; |
| 719 | register int result_exponent, diff_exponent; |
| 720 | int sign_save, jumpsize; |
| 721 | |
| 722 | Dbl_copyfromptr(src1ptr,opnd1p1,opnd1p2); |
| 723 | Dbl_copyfromptr(src2ptr,opnd2p1,opnd2p2); |
| 724 | Dbl_copyfromptr(src3ptr,opnd3p1,opnd3p2); |
| 725 | |
| 726 | /* |
| 727 | * set sign bit of result of multiply |
| 728 | */ |
| 729 | if (Dbl_sign(opnd1p1) ^ Dbl_sign(opnd2p1)) |
| 730 | Dbl_setzerop1(resultp1); |
| 731 | else |
| 732 | Dbl_setnegativezerop1(resultp1); |
| 733 | |
| 734 | /* |
| 735 | * Generate multiply exponent |
| 736 | */ |
| 737 | mpy_exponent = Dbl_exponent(opnd1p1) + Dbl_exponent(opnd2p1) - DBL_BIAS; |
| 738 | |
| 739 | /* |
| 740 | * check first operand for NaN's or infinity |
| 741 | */ |
| 742 | if (Dbl_isinfinity_exponent(opnd1p1)) { |
| 743 | if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { |
| 744 | if (Dbl_isnotnan(opnd2p1,opnd2p2) && |
| 745 | Dbl_isnotnan(opnd3p1,opnd3p2)) { |
| 746 | if (Dbl_iszero_exponentmantissa(opnd2p1,opnd2p2)) { |
| 747 | /* |
| 748 | * invalid since operands are infinity |
| 749 | * and zero |
| 750 | */ |
| 751 | if (Is_invalidtrap_enabled()) |
| 752 | return(OPC_2E_INVALIDEXCEPTION); |
| 753 | Set_invalidflag(); |
| 754 | Dbl_makequietnan(resultp1,resultp2); |
| 755 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 756 | return(NOEXCEPTION); |
| 757 | } |
| 758 | /* |
| 759 | * Check third operand for infinity with a |
| 760 | * sign opposite of the multiply result |
| 761 | */ |
| 762 | if (Dbl_isinfinity(opnd3p1,opnd3p2) && |
| 763 | (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { |
| 764 | /* |
| 765 | * invalid since attempting a magnitude |
| 766 | * subtraction of infinities |
| 767 | */ |
| 768 | if (Is_invalidtrap_enabled()) |
| 769 | return(OPC_2E_INVALIDEXCEPTION); |
| 770 | Set_invalidflag(); |
| 771 | Dbl_makequietnan(resultp1,resultp2); |
| 772 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 773 | return(NOEXCEPTION); |
| 774 | } |
| 775 | |
| 776 | /* |
| 777 | * return infinity |
| 778 | */ |
| 779 | Dbl_setinfinity_exponentmantissa(resultp1,resultp2); |
| 780 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 781 | return(NOEXCEPTION); |
| 782 | } |
| 783 | } |
| 784 | else { |
| 785 | /* |
| 786 | * is NaN; signaling or quiet? |
| 787 | */ |
| 788 | if (Dbl_isone_signaling(opnd1p1)) { |
| 789 | /* trap if INVALIDTRAP enabled */ |
| 790 | if (Is_invalidtrap_enabled()) |
| 791 | return(OPC_2E_INVALIDEXCEPTION); |
| 792 | /* make NaN quiet */ |
| 793 | Set_invalidflag(); |
| 794 | Dbl_set_quiet(opnd1p1); |
| 795 | } |
| 796 | /* |
| 797 | * is second operand a signaling NaN? |
| 798 | */ |
| 799 | else if (Dbl_is_signalingnan(opnd2p1)) { |
| 800 | /* trap if INVALIDTRAP enabled */ |
| 801 | if (Is_invalidtrap_enabled()) |
| 802 | return(OPC_2E_INVALIDEXCEPTION); |
| 803 | /* make NaN quiet */ |
| 804 | Set_invalidflag(); |
| 805 | Dbl_set_quiet(opnd2p1); |
| 806 | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); |
| 807 | return(NOEXCEPTION); |
| 808 | } |
| 809 | /* |
| 810 | * is third operand a signaling NaN? |
| 811 | */ |
| 812 | else if (Dbl_is_signalingnan(opnd3p1)) { |
| 813 | /* trap if INVALIDTRAP enabled */ |
| 814 | if (Is_invalidtrap_enabled()) |
| 815 | return(OPC_2E_INVALIDEXCEPTION); |
| 816 | /* make NaN quiet */ |
| 817 | Set_invalidflag(); |
| 818 | Dbl_set_quiet(opnd3p1); |
| 819 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 820 | return(NOEXCEPTION); |
| 821 | } |
| 822 | /* |
| 823 | * return quiet NaN |
| 824 | */ |
| 825 | Dbl_copytoptr(opnd1p1,opnd1p2,dstptr); |
| 826 | return(NOEXCEPTION); |
| 827 | } |
| 828 | } |
| 829 | |
| 830 | /* |
| 831 | * check second operand for NaN's or infinity |
| 832 | */ |
| 833 | if (Dbl_isinfinity_exponent(opnd2p1)) { |
| 834 | if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { |
| 835 | if (Dbl_isnotnan(opnd3p1,opnd3p2)) { |
| 836 | if (Dbl_iszero_exponentmantissa(opnd1p1,opnd1p2)) { |
| 837 | /* |
| 838 | * invalid since multiply operands are |
| 839 | * zero & infinity |
| 840 | */ |
| 841 | if (Is_invalidtrap_enabled()) |
| 842 | return(OPC_2E_INVALIDEXCEPTION); |
| 843 | Set_invalidflag(); |
| 844 | Dbl_makequietnan(opnd2p1,opnd2p2); |
| 845 | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); |
| 846 | return(NOEXCEPTION); |
| 847 | } |
| 848 | |
| 849 | /* |
| 850 | * Check third operand for infinity with a |
| 851 | * sign opposite of the multiply result |
| 852 | */ |
| 853 | if (Dbl_isinfinity(opnd3p1,opnd3p2) && |
| 854 | (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { |
| 855 | /* |
| 856 | * invalid since attempting a magnitude |
| 857 | * subtraction of infinities |
| 858 | */ |
| 859 | if (Is_invalidtrap_enabled()) |
| 860 | return(OPC_2E_INVALIDEXCEPTION); |
| 861 | Set_invalidflag(); |
| 862 | Dbl_makequietnan(resultp1,resultp2); |
| 863 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 864 | return(NOEXCEPTION); |
| 865 | } |
| 866 | |
| 867 | /* |
| 868 | * return infinity |
| 869 | */ |
| 870 | Dbl_setinfinity_exponentmantissa(resultp1,resultp2); |
| 871 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 872 | return(NOEXCEPTION); |
| 873 | } |
| 874 | } |
| 875 | else { |
| 876 | /* |
| 877 | * is NaN; signaling or quiet? |
| 878 | */ |
| 879 | if (Dbl_isone_signaling(opnd2p1)) { |
| 880 | /* trap if INVALIDTRAP enabled */ |
| 881 | if (Is_invalidtrap_enabled()) |
| 882 | return(OPC_2E_INVALIDEXCEPTION); |
| 883 | /* make NaN quiet */ |
| 884 | Set_invalidflag(); |
| 885 | Dbl_set_quiet(opnd2p1); |
| 886 | } |
| 887 | /* |
| 888 | * is third operand a signaling NaN? |
| 889 | */ |
| 890 | else if (Dbl_is_signalingnan(opnd3p1)) { |
| 891 | /* trap if INVALIDTRAP enabled */ |
| 892 | if (Is_invalidtrap_enabled()) |
| 893 | return(OPC_2E_INVALIDEXCEPTION); |
| 894 | /* make NaN quiet */ |
| 895 | Set_invalidflag(); |
| 896 | Dbl_set_quiet(opnd3p1); |
| 897 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 898 | return(NOEXCEPTION); |
| 899 | } |
| 900 | /* |
| 901 | * return quiet NaN |
| 902 | */ |
| 903 | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); |
| 904 | return(NOEXCEPTION); |
| 905 | } |
| 906 | } |
| 907 | |
| 908 | /* |
| 909 | * check third operand for NaN's or infinity |
| 910 | */ |
| 911 | if (Dbl_isinfinity_exponent(opnd3p1)) { |
| 912 | if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { |
| 913 | /* return infinity */ |
| 914 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 915 | return(NOEXCEPTION); |
| 916 | } else { |
| 917 | /* |
| 918 | * is NaN; signaling or quiet? |
| 919 | */ |
| 920 | if (Dbl_isone_signaling(opnd3p1)) { |
| 921 | /* trap if INVALIDTRAP enabled */ |
| 922 | if (Is_invalidtrap_enabled()) |
| 923 | return(OPC_2E_INVALIDEXCEPTION); |
| 924 | /* make NaN quiet */ |
| 925 | Set_invalidflag(); |
| 926 | Dbl_set_quiet(opnd3p1); |
| 927 | } |
| 928 | /* |
| 929 | * return quiet NaN |
| 930 | */ |
| 931 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 932 | return(NOEXCEPTION); |
| 933 | } |
| 934 | } |
| 935 | |
| 936 | /* |
| 937 | * Generate multiply mantissa |
| 938 | */ |
| 939 | if (Dbl_isnotzero_exponent(opnd1p1)) { |
| 940 | /* set hidden bit */ |
| 941 | Dbl_clear_signexponent_set_hidden(opnd1p1); |
| 942 | } |
| 943 | else { |
| 944 | /* check for zero */ |
| 945 | if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { |
| 946 | /* |
| 947 | * Perform the add opnd3 with zero here. |
| 948 | */ |
| 949 | if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { |
| 950 | if (Is_rounding_mode(ROUNDMINUS)) { |
| 951 | Dbl_or_signs(opnd3p1,resultp1); |
| 952 | } else { |
| 953 | Dbl_and_signs(opnd3p1,resultp1); |
| 954 | } |
| 955 | } |
| 956 | /* |
| 957 | * Now let's check for trapped underflow case. |
| 958 | */ |
| 959 | else if (Dbl_iszero_exponent(opnd3p1) && |
| 960 | Is_underflowtrap_enabled()) { |
| 961 | /* need to normalize results mantissa */ |
| 962 | sign_save = Dbl_signextendedsign(opnd3p1); |
| 963 | result_exponent = 0; |
| 964 | Dbl_leftshiftby1(opnd3p1,opnd3p2); |
| 965 | Dbl_normalize(opnd3p1,opnd3p2,result_exponent); |
| 966 | Dbl_set_sign(opnd3p1,/*using*/sign_save); |
| 967 | Dbl_setwrapped_exponent(opnd3p1,result_exponent, |
| 968 | unfl); |
| 969 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 970 | /* inexact = FALSE */ |
| 971 | return(OPC_2E_UNDERFLOWEXCEPTION); |
| 972 | } |
| 973 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 974 | return(NOEXCEPTION); |
| 975 | } |
| 976 | /* is denormalized, adjust exponent */ |
| 977 | Dbl_clear_signexponent(opnd1p1); |
| 978 | Dbl_leftshiftby1(opnd1p1,opnd1p2); |
| 979 | Dbl_normalize(opnd1p1,opnd1p2,mpy_exponent); |
| 980 | } |
| 981 | /* opnd2 needs to have hidden bit set with msb in hidden bit */ |
| 982 | if (Dbl_isnotzero_exponent(opnd2p1)) { |
| 983 | Dbl_clear_signexponent_set_hidden(opnd2p1); |
| 984 | } |
| 985 | else { |
| 986 | /* check for zero */ |
| 987 | if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { |
| 988 | /* |
| 989 | * Perform the add opnd3 with zero here. |
| 990 | */ |
| 991 | if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { |
| 992 | if (Is_rounding_mode(ROUNDMINUS)) { |
| 993 | Dbl_or_signs(opnd3p1,resultp1); |
| 994 | } else { |
| 995 | Dbl_and_signs(opnd3p1,resultp1); |
| 996 | } |
| 997 | } |
| 998 | /* |
| 999 | * Now let's check for trapped underflow case. |
| 1000 | */ |
| 1001 | else if (Dbl_iszero_exponent(opnd3p1) && |
| 1002 | Is_underflowtrap_enabled()) { |
| 1003 | /* need to normalize results mantissa */ |
| 1004 | sign_save = Dbl_signextendedsign(opnd3p1); |
| 1005 | result_exponent = 0; |
| 1006 | Dbl_leftshiftby1(opnd3p1,opnd3p2); |
| 1007 | Dbl_normalize(opnd3p1,opnd3p2,result_exponent); |
| 1008 | Dbl_set_sign(opnd3p1,/*using*/sign_save); |
| 1009 | Dbl_setwrapped_exponent(opnd3p1,result_exponent, |
| 1010 | unfl); |
| 1011 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 1012 | /* inexact = FALSE */ |
| 1013 | return(OPC_2E_UNDERFLOWEXCEPTION); |
| 1014 | } |
| 1015 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 1016 | return(NOEXCEPTION); |
| 1017 | } |
| 1018 | /* is denormalized; want to normalize */ |
| 1019 | Dbl_clear_signexponent(opnd2p1); |
| 1020 | Dbl_leftshiftby1(opnd2p1,opnd2p2); |
| 1021 | Dbl_normalize(opnd2p1,opnd2p2,mpy_exponent); |
| 1022 | } |
| 1023 | |
| 1024 | /* Multiply the first two source mantissas together */ |
| 1025 | |
| 1026 | /* |
| 1027 | * The intermediate result will be kept in tmpres, |
| 1028 | * which needs enough room for 106 bits of mantissa, |
| 1029 | * so lets call it a Double extended. |
| 1030 | */ |
| 1031 | Dblext_setzero(tmpresp1,tmpresp2,tmpresp3,tmpresp4); |
| 1032 | |
| 1033 | /* |
| 1034 | * Four bits at a time are inspected in each loop, and a |
| 1035 | * simple shift and add multiply algorithm is used. |
| 1036 | */ |
| 1037 | for (count = DBL_P-1; count >= 0; count -= 4) { |
| 1038 | Dblext_rightshiftby4(tmpresp1,tmpresp2,tmpresp3,tmpresp4); |
| 1039 | if (Dbit28p2(opnd1p2)) { |
| 1040 | /* Fourword_add should be an ADD followed by 3 ADDC's */ |
| 1041 | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, |
| 1042 | opnd2p1<<3 | opnd2p2>>29, opnd2p2<<3, 0, 0); |
| 1043 | } |
| 1044 | if (Dbit29p2(opnd1p2)) { |
| 1045 | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, |
| 1046 | opnd2p1<<2 | opnd2p2>>30, opnd2p2<<2, 0, 0); |
| 1047 | } |
| 1048 | if (Dbit30p2(opnd1p2)) { |
| 1049 | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, |
| 1050 | opnd2p1<<1 | opnd2p2>>31, opnd2p2<<1, 0, 0); |
| 1051 | } |
| 1052 | if (Dbit31p2(opnd1p2)) { |
| 1053 | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, |
| 1054 | opnd2p1, opnd2p2, 0, 0); |
| 1055 | } |
| 1056 | Dbl_rightshiftby4(opnd1p1,opnd1p2); |
| 1057 | } |
| 1058 | if (Is_dexthiddenoverflow(tmpresp1)) { |
| 1059 | /* result mantissa >= 2 (mantissa overflow) */ |
| 1060 | mpy_exponent++; |
| 1061 | Dblext_rightshiftby1(tmpresp1,tmpresp2,tmpresp3,tmpresp4); |
| 1062 | } |
| 1063 | |
| 1064 | /* |
| 1065 | * Restore the sign of the mpy result which was saved in resultp1. |
| 1066 | * The exponent will continue to be kept in mpy_exponent. |
| 1067 | */ |
| 1068 | Dblext_set_sign(tmpresp1,Dbl_sign(resultp1)); |
| 1069 | |
| 1070 | /* |
| 1071 | * No rounding is required, since the result of the multiply |
| 1072 | * is exact in the extended format. |
| 1073 | */ |
| 1074 | |
| 1075 | /* |
| 1076 | * Now we are ready to perform the add portion of the operation. |
| 1077 | * |
| 1078 | * The exponents need to be kept as integers for now, since the |
| 1079 | * multiply result might not fit into the exponent field. We |
| 1080 | * can't overflow or underflow because of this yet, since the |
| 1081 | * add could bring the final result back into range. |
| 1082 | */ |
| 1083 | add_exponent = Dbl_exponent(opnd3p1); |
| 1084 | |
| 1085 | /* |
| 1086 | * Check for denormalized or zero add operand. |
| 1087 | */ |
| 1088 | if (add_exponent == 0) { |
| 1089 | /* check for zero */ |
| 1090 | if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { |
| 1091 | /* right is zero */ |
| 1092 | /* Left can't be zero and must be result. |
| 1093 | * |
| 1094 | * The final result is now in tmpres and mpy_exponent, |
| 1095 | * and needs to be rounded and squeezed back into |
| 1096 | * double precision format from double extended. |
| 1097 | */ |
| 1098 | result_exponent = mpy_exponent; |
| 1099 | Dblext_copy(tmpresp1,tmpresp2,tmpresp3,tmpresp4, |
| 1100 | resultp1,resultp2,resultp3,resultp4); |
| 1101 | sign_save = Dbl_signextendedsign(resultp1);/*save sign*/ |
| 1102 | goto round; |
| 1103 | } |
| 1104 | |
| 1105 | /* |
| 1106 | * Neither are zeroes. |
| 1107 | * Adjust exponent and normalize add operand. |
| 1108 | */ |
| 1109 | sign_save = Dbl_signextendedsign(opnd3p1); /* save sign */ |
| 1110 | Dbl_clear_signexponent(opnd3p1); |
| 1111 | Dbl_leftshiftby1(opnd3p1,opnd3p2); |
| 1112 | Dbl_normalize(opnd3p1,opnd3p2,add_exponent); |
| 1113 | Dbl_set_sign(opnd3p1,sign_save); /* restore sign */ |
| 1114 | } else { |
| 1115 | Dbl_clear_exponent_set_hidden(opnd3p1); |
| 1116 | } |
| 1117 | /* |
| 1118 | * Copy opnd3 to the double extended variable called right. |
| 1119 | */ |
| 1120 | Dbl_copyto_dblext(opnd3p1,opnd3p2,rightp1,rightp2,rightp3,rightp4); |
| 1121 | |
| 1122 | /* |
| 1123 | * A zero "save" helps discover equal operands (for later), |
| 1124 | * and is used in swapping operands (if needed). |
| 1125 | */ |
| 1126 | Dblext_xortointp1(tmpresp1,rightp1,/*to*/save); |
| 1127 | |
| 1128 | /* |
| 1129 | * Compare magnitude of operands. |
| 1130 | */ |
| 1131 | Dblext_copytoint_exponentmantissap1(tmpresp1,signlessleft1); |
| 1132 | Dblext_copytoint_exponentmantissap1(rightp1,signlessright1); |
| 1133 | if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && |
| 1134 | Dblext_ismagnitudeless(tmpresp2,rightp2,signlessleft1,signlessright1)){ |
| 1135 | /* |
| 1136 | * Set the left operand to the larger one by XOR swap. |
| 1137 | * First finish the first word "save". |
| 1138 | */ |
| 1139 | Dblext_xorfromintp1(save,rightp1,/*to*/rightp1); |
| 1140 | Dblext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); |
| 1141 | Dblext_swap_lower(tmpresp2,tmpresp3,tmpresp4, |
| 1142 | rightp2,rightp3,rightp4); |
| 1143 | /* also setup exponents used in rest of routine */ |
| 1144 | diff_exponent = add_exponent - mpy_exponent; |
| 1145 | result_exponent = add_exponent; |
| 1146 | } else { |
| 1147 | /* also setup exponents used in rest of routine */ |
| 1148 | diff_exponent = mpy_exponent - add_exponent; |
| 1149 | result_exponent = mpy_exponent; |
| 1150 | } |
| 1151 | /* Invariant: left is not smaller than right. */ |
| 1152 | |
| 1153 | /* |
| 1154 | * Special case alignment of operands that would force alignment |
| 1155 | * beyond the extent of the extension. A further optimization |
| 1156 | * could special case this but only reduces the path length for |
| 1157 | * this infrequent case. |
| 1158 | */ |
| 1159 | if (diff_exponent > DBLEXT_THRESHOLD) { |
| 1160 | diff_exponent = DBLEXT_THRESHOLD; |
| 1161 | } |
| 1162 | |
| 1163 | /* Align right operand by shifting it to the right */ |
| 1164 | Dblext_clear_sign(rightp1); |
| 1165 | Dblext_right_align(rightp1,rightp2,rightp3,rightp4, |
| 1166 | /*shifted by*/diff_exponent); |
| 1167 | |
| 1168 | /* Treat sum and difference of the operands separately. */ |
| 1169 | if ((int)save < 0) { |
| 1170 | /* |
| 1171 | * Difference of the two operands. Overflow can occur if the |
| 1172 | * multiply overflowed. A borrow can occur out of the hidden |
| 1173 | * bit and force a post normalization phase. |
| 1174 | */ |
| 1175 | Dblext_subtract(tmpresp1,tmpresp2,tmpresp3,tmpresp4, |
| 1176 | rightp1,rightp2,rightp3,rightp4, |
| 1177 | resultp1,resultp2,resultp3,resultp4); |
| 1178 | sign_save = Dbl_signextendedsign(resultp1); |
| 1179 | if (Dbl_iszero_hidden(resultp1)) { |
| 1180 | /* Handle normalization */ |
Lucas De Marchi | 25985ed | 2011-03-30 22:57:33 -0300 | [diff] [blame] | 1181 | /* A straightforward algorithm would now shift the |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1182 | * result and extension left until the hidden bit |
| 1183 | * becomes one. Not all of the extension bits need |
| 1184 | * participate in the shift. Only the two most |
| 1185 | * significant bits (round and guard) are needed. |
| 1186 | * If only a single shift is needed then the guard |
| 1187 | * bit becomes a significant low order bit and the |
| 1188 | * extension must participate in the rounding. |
| 1189 | * If more than a single shift is needed, then all |
| 1190 | * bits to the right of the guard bit are zeros, |
| 1191 | * and the guard bit may or may not be zero. */ |
| 1192 | Dblext_leftshiftby1(resultp1,resultp2,resultp3, |
| 1193 | resultp4); |
| 1194 | |
| 1195 | /* Need to check for a zero result. The sign and |
| 1196 | * exponent fields have already been zeroed. The more |
| 1197 | * efficient test of the full object can be used. |
| 1198 | */ |
| 1199 | if (Dblext_iszero(resultp1,resultp2,resultp3,resultp4)) { |
| 1200 | /* Must have been "x-x" or "x+(-x)". */ |
| 1201 | if (Is_rounding_mode(ROUNDMINUS)) |
| 1202 | Dbl_setone_sign(resultp1); |
| 1203 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 1204 | return(NOEXCEPTION); |
| 1205 | } |
| 1206 | result_exponent--; |
| 1207 | |
| 1208 | /* Look to see if normalization is finished. */ |
| 1209 | if (Dbl_isone_hidden(resultp1)) { |
| 1210 | /* No further normalization is needed */ |
| 1211 | goto round; |
| 1212 | } |
| 1213 | |
| 1214 | /* Discover first one bit to determine shift amount. |
| 1215 | * Use a modified binary search. We have already |
| 1216 | * shifted the result one position right and still |
| 1217 | * not found a one so the remainder of the extension |
| 1218 | * must be zero and simplifies rounding. */ |
| 1219 | /* Scan bytes */ |
| 1220 | while (Dbl_iszero_hiddenhigh7mantissa(resultp1)) { |
| 1221 | Dblext_leftshiftby8(resultp1,resultp2,resultp3,resultp4); |
| 1222 | result_exponent -= 8; |
| 1223 | } |
| 1224 | /* Now narrow it down to the nibble */ |
| 1225 | if (Dbl_iszero_hiddenhigh3mantissa(resultp1)) { |
| 1226 | /* The lower nibble contains the |
| 1227 | * normalizing one */ |
| 1228 | Dblext_leftshiftby4(resultp1,resultp2,resultp3,resultp4); |
| 1229 | result_exponent -= 4; |
| 1230 | } |
| 1231 | /* Select case where first bit is set (already |
| 1232 | * normalized) otherwise select the proper shift. */ |
| 1233 | jumpsize = Dbl_hiddenhigh3mantissa(resultp1); |
| 1234 | if (jumpsize <= 7) switch(jumpsize) { |
| 1235 | case 1: |
| 1236 | Dblext_leftshiftby3(resultp1,resultp2,resultp3, |
| 1237 | resultp4); |
| 1238 | result_exponent -= 3; |
| 1239 | break; |
| 1240 | case 2: |
| 1241 | case 3: |
| 1242 | Dblext_leftshiftby2(resultp1,resultp2,resultp3, |
| 1243 | resultp4); |
| 1244 | result_exponent -= 2; |
| 1245 | break; |
| 1246 | case 4: |
| 1247 | case 5: |
| 1248 | case 6: |
| 1249 | case 7: |
| 1250 | Dblext_leftshiftby1(resultp1,resultp2,resultp3, |
| 1251 | resultp4); |
| 1252 | result_exponent -= 1; |
| 1253 | break; |
| 1254 | } |
| 1255 | } /* end if (hidden...)... */ |
| 1256 | /* Fall through and round */ |
| 1257 | } /* end if (save < 0)... */ |
| 1258 | else { |
| 1259 | /* Add magnitudes */ |
| 1260 | Dblext_addition(tmpresp1,tmpresp2,tmpresp3,tmpresp4, |
| 1261 | rightp1,rightp2,rightp3,rightp4, |
| 1262 | /*to*/resultp1,resultp2,resultp3,resultp4); |
| 1263 | sign_save = Dbl_signextendedsign(resultp1); |
| 1264 | if (Dbl_isone_hiddenoverflow(resultp1)) { |
| 1265 | /* Prenormalization required. */ |
| 1266 | Dblext_arithrightshiftby1(resultp1,resultp2,resultp3, |
| 1267 | resultp4); |
| 1268 | result_exponent++; |
| 1269 | } /* end if hiddenoverflow... */ |
| 1270 | } /* end else ...add magnitudes... */ |
| 1271 | |
| 1272 | /* Round the result. If the extension and lower two words are |
| 1273 | * all zeros, then the result is exact. Otherwise round in the |
| 1274 | * correct direction. Underflow is possible. If a postnormalization |
| 1275 | * is necessary, then the mantissa is all zeros so no shift is needed. |
| 1276 | */ |
| 1277 | round: |
| 1278 | if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { |
| 1279 | Dblext_denormalize(resultp1,resultp2,resultp3,resultp4, |
| 1280 | result_exponent,is_tiny); |
| 1281 | } |
| 1282 | Dbl_set_sign(resultp1,/*using*/sign_save); |
| 1283 | if (Dblext_isnotzero_mantissap3(resultp3) || |
| 1284 | Dblext_isnotzero_mantissap4(resultp4)) { |
| 1285 | inexact = TRUE; |
| 1286 | switch(Rounding_mode()) { |
| 1287 | case ROUNDNEAREST: /* The default. */ |
| 1288 | if (Dblext_isone_highp3(resultp3)) { |
| 1289 | /* at least 1/2 ulp */ |
| 1290 | if (Dblext_isnotzero_low31p3(resultp3) || |
| 1291 | Dblext_isnotzero_mantissap4(resultp4) || |
| 1292 | Dblext_isone_lowp2(resultp2)) { |
| 1293 | /* either exactly half way and odd or |
| 1294 | * more than 1/2ulp */ |
| 1295 | Dbl_increment(resultp1,resultp2); |
| 1296 | } |
| 1297 | } |
| 1298 | break; |
| 1299 | |
| 1300 | case ROUNDPLUS: |
| 1301 | if (Dbl_iszero_sign(resultp1)) { |
| 1302 | /* Round up positive results */ |
| 1303 | Dbl_increment(resultp1,resultp2); |
| 1304 | } |
| 1305 | break; |
| 1306 | |
| 1307 | case ROUNDMINUS: |
| 1308 | if (Dbl_isone_sign(resultp1)) { |
| 1309 | /* Round down negative results */ |
| 1310 | Dbl_increment(resultp1,resultp2); |
| 1311 | } |
| 1312 | |
| 1313 | case ROUNDZERO:; |
| 1314 | /* truncate is simple */ |
| 1315 | } /* end switch... */ |
| 1316 | if (Dbl_isone_hiddenoverflow(resultp1)) result_exponent++; |
| 1317 | } |
| 1318 | if (result_exponent >= DBL_INFINITY_EXPONENT) { |
| 1319 | /* Overflow */ |
| 1320 | if (Is_overflowtrap_enabled()) { |
| 1321 | /* |
| 1322 | * Adjust bias of result |
| 1323 | */ |
| 1324 | Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl); |
| 1325 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 1326 | if (inexact) |
| 1327 | if (Is_inexacttrap_enabled()) |
| 1328 | return (OPC_2E_OVERFLOWEXCEPTION | |
| 1329 | OPC_2E_INEXACTEXCEPTION); |
| 1330 | else Set_inexactflag(); |
| 1331 | return (OPC_2E_OVERFLOWEXCEPTION); |
| 1332 | } |
| 1333 | inexact = TRUE; |
| 1334 | Set_overflowflag(); |
| 1335 | Dbl_setoverflow(resultp1,resultp2); |
| 1336 | } else if (result_exponent <= 0) { /* underflow case */ |
| 1337 | if (Is_underflowtrap_enabled()) { |
| 1338 | /* |
| 1339 | * Adjust bias of result |
| 1340 | */ |
| 1341 | Dbl_setwrapped_exponent(resultp1,result_exponent,unfl); |
| 1342 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 1343 | if (inexact) |
| 1344 | if (Is_inexacttrap_enabled()) |
| 1345 | return (OPC_2E_UNDERFLOWEXCEPTION | |
| 1346 | OPC_2E_INEXACTEXCEPTION); |
| 1347 | else Set_inexactflag(); |
| 1348 | return(OPC_2E_UNDERFLOWEXCEPTION); |
| 1349 | } |
| 1350 | else if (inexact && is_tiny) Set_underflowflag(); |
| 1351 | } |
| 1352 | else Dbl_set_exponent(resultp1,result_exponent); |
| 1353 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 1354 | if (inexact) |
| 1355 | if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); |
| 1356 | else Set_inexactflag(); |
| 1357 | return(NOEXCEPTION); |
| 1358 | } |
| 1359 | |
| 1360 | /* |
| 1361 | * Single Floating-point Multiply Fused Add |
| 1362 | */ |
| 1363 | |
| 1364 | sgl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr) |
| 1365 | |
| 1366 | sgl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr; |
| 1367 | unsigned int *status; |
| 1368 | { |
| 1369 | unsigned int opnd1, opnd2, opnd3; |
| 1370 | register unsigned int tmpresp1, tmpresp2; |
| 1371 | unsigned int rightp1, rightp2; |
| 1372 | unsigned int resultp1, resultp2 = 0; |
| 1373 | register int mpy_exponent, add_exponent, count; |
| 1374 | boolean inexact = FALSE, is_tiny = FALSE; |
| 1375 | |
| 1376 | unsigned int signlessleft1, signlessright1, save; |
| 1377 | register int result_exponent, diff_exponent; |
| 1378 | int sign_save, jumpsize; |
| 1379 | |
| 1380 | Sgl_copyfromptr(src1ptr,opnd1); |
| 1381 | Sgl_copyfromptr(src2ptr,opnd2); |
| 1382 | Sgl_copyfromptr(src3ptr,opnd3); |
| 1383 | |
| 1384 | /* |
| 1385 | * set sign bit of result of multiply |
| 1386 | */ |
| 1387 | if (Sgl_sign(opnd1) ^ Sgl_sign(opnd2)) |
| 1388 | Sgl_setnegativezero(resultp1); |
| 1389 | else Sgl_setzero(resultp1); |
| 1390 | |
| 1391 | /* |
| 1392 | * Generate multiply exponent |
| 1393 | */ |
| 1394 | mpy_exponent = Sgl_exponent(opnd1) + Sgl_exponent(opnd2) - SGL_BIAS; |
| 1395 | |
| 1396 | /* |
| 1397 | * check first operand for NaN's or infinity |
| 1398 | */ |
| 1399 | if (Sgl_isinfinity_exponent(opnd1)) { |
| 1400 | if (Sgl_iszero_mantissa(opnd1)) { |
| 1401 | if (Sgl_isnotnan(opnd2) && Sgl_isnotnan(opnd3)) { |
| 1402 | if (Sgl_iszero_exponentmantissa(opnd2)) { |
| 1403 | /* |
| 1404 | * invalid since operands are infinity |
| 1405 | * and zero |
| 1406 | */ |
| 1407 | if (Is_invalidtrap_enabled()) |
| 1408 | return(OPC_2E_INVALIDEXCEPTION); |
| 1409 | Set_invalidflag(); |
| 1410 | Sgl_makequietnan(resultp1); |
| 1411 | Sgl_copytoptr(resultp1,dstptr); |
| 1412 | return(NOEXCEPTION); |
| 1413 | } |
| 1414 | /* |
| 1415 | * Check third operand for infinity with a |
| 1416 | * sign opposite of the multiply result |
| 1417 | */ |
| 1418 | if (Sgl_isinfinity(opnd3) && |
| 1419 | (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { |
| 1420 | /* |
| 1421 | * invalid since attempting a magnitude |
| 1422 | * subtraction of infinities |
| 1423 | */ |
| 1424 | if (Is_invalidtrap_enabled()) |
| 1425 | return(OPC_2E_INVALIDEXCEPTION); |
| 1426 | Set_invalidflag(); |
| 1427 | Sgl_makequietnan(resultp1); |
| 1428 | Sgl_copytoptr(resultp1,dstptr); |
| 1429 | return(NOEXCEPTION); |
| 1430 | } |
| 1431 | |
| 1432 | /* |
| 1433 | * return infinity |
| 1434 | */ |
| 1435 | Sgl_setinfinity_exponentmantissa(resultp1); |
| 1436 | Sgl_copytoptr(resultp1,dstptr); |
| 1437 | return(NOEXCEPTION); |
| 1438 | } |
| 1439 | } |
| 1440 | else { |
| 1441 | /* |
| 1442 | * is NaN; signaling or quiet? |
| 1443 | */ |
| 1444 | if (Sgl_isone_signaling(opnd1)) { |
| 1445 | /* trap if INVALIDTRAP enabled */ |
| 1446 | if (Is_invalidtrap_enabled()) |
| 1447 | return(OPC_2E_INVALIDEXCEPTION); |
| 1448 | /* make NaN quiet */ |
| 1449 | Set_invalidflag(); |
| 1450 | Sgl_set_quiet(opnd1); |
| 1451 | } |
| 1452 | /* |
| 1453 | * is second operand a signaling NaN? |
| 1454 | */ |
| 1455 | else if (Sgl_is_signalingnan(opnd2)) { |
| 1456 | /* trap if INVALIDTRAP enabled */ |
| 1457 | if (Is_invalidtrap_enabled()) |
| 1458 | return(OPC_2E_INVALIDEXCEPTION); |
| 1459 | /* make NaN quiet */ |
| 1460 | Set_invalidflag(); |
| 1461 | Sgl_set_quiet(opnd2); |
| 1462 | Sgl_copytoptr(opnd2,dstptr); |
| 1463 | return(NOEXCEPTION); |
| 1464 | } |
| 1465 | /* |
| 1466 | * is third operand a signaling NaN? |
| 1467 | */ |
| 1468 | else if (Sgl_is_signalingnan(opnd3)) { |
| 1469 | /* trap if INVALIDTRAP enabled */ |
| 1470 | if (Is_invalidtrap_enabled()) |
| 1471 | return(OPC_2E_INVALIDEXCEPTION); |
| 1472 | /* make NaN quiet */ |
| 1473 | Set_invalidflag(); |
| 1474 | Sgl_set_quiet(opnd3); |
| 1475 | Sgl_copytoptr(opnd3,dstptr); |
| 1476 | return(NOEXCEPTION); |
| 1477 | } |
| 1478 | /* |
| 1479 | * return quiet NaN |
| 1480 | */ |
| 1481 | Sgl_copytoptr(opnd1,dstptr); |
| 1482 | return(NOEXCEPTION); |
| 1483 | } |
| 1484 | } |
| 1485 | |
| 1486 | /* |
| 1487 | * check second operand for NaN's or infinity |
| 1488 | */ |
| 1489 | if (Sgl_isinfinity_exponent(opnd2)) { |
| 1490 | if (Sgl_iszero_mantissa(opnd2)) { |
| 1491 | if (Sgl_isnotnan(opnd3)) { |
| 1492 | if (Sgl_iszero_exponentmantissa(opnd1)) { |
| 1493 | /* |
| 1494 | * invalid since multiply operands are |
| 1495 | * zero & infinity |
| 1496 | */ |
| 1497 | if (Is_invalidtrap_enabled()) |
| 1498 | return(OPC_2E_INVALIDEXCEPTION); |
| 1499 | Set_invalidflag(); |
| 1500 | Sgl_makequietnan(opnd2); |
| 1501 | Sgl_copytoptr(opnd2,dstptr); |
| 1502 | return(NOEXCEPTION); |
| 1503 | } |
| 1504 | |
| 1505 | /* |
| 1506 | * Check third operand for infinity with a |
| 1507 | * sign opposite of the multiply result |
| 1508 | */ |
| 1509 | if (Sgl_isinfinity(opnd3) && |
| 1510 | (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { |
| 1511 | /* |
| 1512 | * invalid since attempting a magnitude |
| 1513 | * subtraction of infinities |
| 1514 | */ |
| 1515 | if (Is_invalidtrap_enabled()) |
| 1516 | return(OPC_2E_INVALIDEXCEPTION); |
| 1517 | Set_invalidflag(); |
| 1518 | Sgl_makequietnan(resultp1); |
| 1519 | Sgl_copytoptr(resultp1,dstptr); |
| 1520 | return(NOEXCEPTION); |
| 1521 | } |
| 1522 | |
| 1523 | /* |
| 1524 | * return infinity |
| 1525 | */ |
| 1526 | Sgl_setinfinity_exponentmantissa(resultp1); |
| 1527 | Sgl_copytoptr(resultp1,dstptr); |
| 1528 | return(NOEXCEPTION); |
| 1529 | } |
| 1530 | } |
| 1531 | else { |
| 1532 | /* |
| 1533 | * is NaN; signaling or quiet? |
| 1534 | */ |
| 1535 | if (Sgl_isone_signaling(opnd2)) { |
| 1536 | /* trap if INVALIDTRAP enabled */ |
| 1537 | if (Is_invalidtrap_enabled()) |
| 1538 | return(OPC_2E_INVALIDEXCEPTION); |
| 1539 | /* make NaN quiet */ |
| 1540 | Set_invalidflag(); |
| 1541 | Sgl_set_quiet(opnd2); |
| 1542 | } |
| 1543 | /* |
| 1544 | * is third operand a signaling NaN? |
| 1545 | */ |
| 1546 | else if (Sgl_is_signalingnan(opnd3)) { |
| 1547 | /* trap if INVALIDTRAP enabled */ |
| 1548 | if (Is_invalidtrap_enabled()) |
| 1549 | return(OPC_2E_INVALIDEXCEPTION); |
| 1550 | /* make NaN quiet */ |
| 1551 | Set_invalidflag(); |
| 1552 | Sgl_set_quiet(opnd3); |
| 1553 | Sgl_copytoptr(opnd3,dstptr); |
| 1554 | return(NOEXCEPTION); |
| 1555 | } |
| 1556 | /* |
| 1557 | * return quiet NaN |
| 1558 | */ |
| 1559 | Sgl_copytoptr(opnd2,dstptr); |
| 1560 | return(NOEXCEPTION); |
| 1561 | } |
| 1562 | } |
| 1563 | |
| 1564 | /* |
| 1565 | * check third operand for NaN's or infinity |
| 1566 | */ |
| 1567 | if (Sgl_isinfinity_exponent(opnd3)) { |
| 1568 | if (Sgl_iszero_mantissa(opnd3)) { |
| 1569 | /* return infinity */ |
| 1570 | Sgl_copytoptr(opnd3,dstptr); |
| 1571 | return(NOEXCEPTION); |
| 1572 | } else { |
| 1573 | /* |
| 1574 | * is NaN; signaling or quiet? |
| 1575 | */ |
| 1576 | if (Sgl_isone_signaling(opnd3)) { |
| 1577 | /* trap if INVALIDTRAP enabled */ |
| 1578 | if (Is_invalidtrap_enabled()) |
| 1579 | return(OPC_2E_INVALIDEXCEPTION); |
| 1580 | /* make NaN quiet */ |
| 1581 | Set_invalidflag(); |
| 1582 | Sgl_set_quiet(opnd3); |
| 1583 | } |
| 1584 | /* |
| 1585 | * return quiet NaN |
| 1586 | */ |
| 1587 | Sgl_copytoptr(opnd3,dstptr); |
| 1588 | return(NOEXCEPTION); |
| 1589 | } |
| 1590 | } |
| 1591 | |
| 1592 | /* |
| 1593 | * Generate multiply mantissa |
| 1594 | */ |
| 1595 | if (Sgl_isnotzero_exponent(opnd1)) { |
| 1596 | /* set hidden bit */ |
| 1597 | Sgl_clear_signexponent_set_hidden(opnd1); |
| 1598 | } |
| 1599 | else { |
| 1600 | /* check for zero */ |
| 1601 | if (Sgl_iszero_mantissa(opnd1)) { |
| 1602 | /* |
| 1603 | * Perform the add opnd3 with zero here. |
| 1604 | */ |
| 1605 | if (Sgl_iszero_exponentmantissa(opnd3)) { |
| 1606 | if (Is_rounding_mode(ROUNDMINUS)) { |
| 1607 | Sgl_or_signs(opnd3,resultp1); |
| 1608 | } else { |
| 1609 | Sgl_and_signs(opnd3,resultp1); |
| 1610 | } |
| 1611 | } |
| 1612 | /* |
| 1613 | * Now let's check for trapped underflow case. |
| 1614 | */ |
| 1615 | else if (Sgl_iszero_exponent(opnd3) && |
| 1616 | Is_underflowtrap_enabled()) { |
| 1617 | /* need to normalize results mantissa */ |
| 1618 | sign_save = Sgl_signextendedsign(opnd3); |
| 1619 | result_exponent = 0; |
| 1620 | Sgl_leftshiftby1(opnd3); |
| 1621 | Sgl_normalize(opnd3,result_exponent); |
| 1622 | Sgl_set_sign(opnd3,/*using*/sign_save); |
| 1623 | Sgl_setwrapped_exponent(opnd3,result_exponent, |
| 1624 | unfl); |
| 1625 | Sgl_copytoptr(opnd3,dstptr); |
| 1626 | /* inexact = FALSE */ |
| 1627 | return(OPC_2E_UNDERFLOWEXCEPTION); |
| 1628 | } |
| 1629 | Sgl_copytoptr(opnd3,dstptr); |
| 1630 | return(NOEXCEPTION); |
| 1631 | } |
| 1632 | /* is denormalized, adjust exponent */ |
| 1633 | Sgl_clear_signexponent(opnd1); |
| 1634 | Sgl_leftshiftby1(opnd1); |
| 1635 | Sgl_normalize(opnd1,mpy_exponent); |
| 1636 | } |
| 1637 | /* opnd2 needs to have hidden bit set with msb in hidden bit */ |
| 1638 | if (Sgl_isnotzero_exponent(opnd2)) { |
| 1639 | Sgl_clear_signexponent_set_hidden(opnd2); |
| 1640 | } |
| 1641 | else { |
| 1642 | /* check for zero */ |
| 1643 | if (Sgl_iszero_mantissa(opnd2)) { |
| 1644 | /* |
| 1645 | * Perform the add opnd3 with zero here. |
| 1646 | */ |
| 1647 | if (Sgl_iszero_exponentmantissa(opnd3)) { |
| 1648 | if (Is_rounding_mode(ROUNDMINUS)) { |
| 1649 | Sgl_or_signs(opnd3,resultp1); |
| 1650 | } else { |
| 1651 | Sgl_and_signs(opnd3,resultp1); |
| 1652 | } |
| 1653 | } |
| 1654 | /* |
| 1655 | * Now let's check for trapped underflow case. |
| 1656 | */ |
| 1657 | else if (Sgl_iszero_exponent(opnd3) && |
| 1658 | Is_underflowtrap_enabled()) { |
| 1659 | /* need to normalize results mantissa */ |
| 1660 | sign_save = Sgl_signextendedsign(opnd3); |
| 1661 | result_exponent = 0; |
| 1662 | Sgl_leftshiftby1(opnd3); |
| 1663 | Sgl_normalize(opnd3,result_exponent); |
| 1664 | Sgl_set_sign(opnd3,/*using*/sign_save); |
| 1665 | Sgl_setwrapped_exponent(opnd3,result_exponent, |
| 1666 | unfl); |
| 1667 | Sgl_copytoptr(opnd3,dstptr); |
| 1668 | /* inexact = FALSE */ |
| 1669 | return(OPC_2E_UNDERFLOWEXCEPTION); |
| 1670 | } |
| 1671 | Sgl_copytoptr(opnd3,dstptr); |
| 1672 | return(NOEXCEPTION); |
| 1673 | } |
| 1674 | /* is denormalized; want to normalize */ |
| 1675 | Sgl_clear_signexponent(opnd2); |
| 1676 | Sgl_leftshiftby1(opnd2); |
| 1677 | Sgl_normalize(opnd2,mpy_exponent); |
| 1678 | } |
| 1679 | |
| 1680 | /* Multiply the first two source mantissas together */ |
| 1681 | |
| 1682 | /* |
| 1683 | * The intermediate result will be kept in tmpres, |
| 1684 | * which needs enough room for 106 bits of mantissa, |
| 1685 | * so lets call it a Double extended. |
| 1686 | */ |
| 1687 | Sglext_setzero(tmpresp1,tmpresp2); |
| 1688 | |
| 1689 | /* |
| 1690 | * Four bits at a time are inspected in each loop, and a |
| 1691 | * simple shift and add multiply algorithm is used. |
| 1692 | */ |
| 1693 | for (count = SGL_P-1; count >= 0; count -= 4) { |
| 1694 | Sglext_rightshiftby4(tmpresp1,tmpresp2); |
| 1695 | if (Sbit28(opnd1)) { |
| 1696 | /* Twoword_add should be an ADD followed by 2 ADDC's */ |
| 1697 | Twoword_add(tmpresp1, tmpresp2, opnd2<<3, 0); |
| 1698 | } |
| 1699 | if (Sbit29(opnd1)) { |
| 1700 | Twoword_add(tmpresp1, tmpresp2, opnd2<<2, 0); |
| 1701 | } |
| 1702 | if (Sbit30(opnd1)) { |
| 1703 | Twoword_add(tmpresp1, tmpresp2, opnd2<<1, 0); |
| 1704 | } |
| 1705 | if (Sbit31(opnd1)) { |
| 1706 | Twoword_add(tmpresp1, tmpresp2, opnd2, 0); |
| 1707 | } |
| 1708 | Sgl_rightshiftby4(opnd1); |
| 1709 | } |
| 1710 | if (Is_sexthiddenoverflow(tmpresp1)) { |
| 1711 | /* result mantissa >= 2 (mantissa overflow) */ |
| 1712 | mpy_exponent++; |
| 1713 | Sglext_rightshiftby4(tmpresp1,tmpresp2); |
| 1714 | } else { |
| 1715 | Sglext_rightshiftby3(tmpresp1,tmpresp2); |
| 1716 | } |
| 1717 | |
| 1718 | /* |
| 1719 | * Restore the sign of the mpy result which was saved in resultp1. |
| 1720 | * The exponent will continue to be kept in mpy_exponent. |
| 1721 | */ |
| 1722 | Sglext_set_sign(tmpresp1,Sgl_sign(resultp1)); |
| 1723 | |
| 1724 | /* |
| 1725 | * No rounding is required, since the result of the multiply |
| 1726 | * is exact in the extended format. |
| 1727 | */ |
| 1728 | |
| 1729 | /* |
| 1730 | * Now we are ready to perform the add portion of the operation. |
| 1731 | * |
| 1732 | * The exponents need to be kept as integers for now, since the |
| 1733 | * multiply result might not fit into the exponent field. We |
| 1734 | * can't overflow or underflow because of this yet, since the |
| 1735 | * add could bring the final result back into range. |
| 1736 | */ |
| 1737 | add_exponent = Sgl_exponent(opnd3); |
| 1738 | |
| 1739 | /* |
| 1740 | * Check for denormalized or zero add operand. |
| 1741 | */ |
| 1742 | if (add_exponent == 0) { |
| 1743 | /* check for zero */ |
| 1744 | if (Sgl_iszero_mantissa(opnd3)) { |
| 1745 | /* right is zero */ |
| 1746 | /* Left can't be zero and must be result. |
| 1747 | * |
| 1748 | * The final result is now in tmpres and mpy_exponent, |
| 1749 | * and needs to be rounded and squeezed back into |
| 1750 | * double precision format from double extended. |
| 1751 | */ |
| 1752 | result_exponent = mpy_exponent; |
| 1753 | Sglext_copy(tmpresp1,tmpresp2,resultp1,resultp2); |
| 1754 | sign_save = Sgl_signextendedsign(resultp1);/*save sign*/ |
| 1755 | goto round; |
| 1756 | } |
| 1757 | |
| 1758 | /* |
| 1759 | * Neither are zeroes. |
| 1760 | * Adjust exponent and normalize add operand. |
| 1761 | */ |
| 1762 | sign_save = Sgl_signextendedsign(opnd3); /* save sign */ |
| 1763 | Sgl_clear_signexponent(opnd3); |
| 1764 | Sgl_leftshiftby1(opnd3); |
| 1765 | Sgl_normalize(opnd3,add_exponent); |
| 1766 | Sgl_set_sign(opnd3,sign_save); /* restore sign */ |
| 1767 | } else { |
| 1768 | Sgl_clear_exponent_set_hidden(opnd3); |
| 1769 | } |
| 1770 | /* |
| 1771 | * Copy opnd3 to the double extended variable called right. |
| 1772 | */ |
| 1773 | Sgl_copyto_sglext(opnd3,rightp1,rightp2); |
| 1774 | |
| 1775 | /* |
| 1776 | * A zero "save" helps discover equal operands (for later), |
| 1777 | * and is used in swapping operands (if needed). |
| 1778 | */ |
| 1779 | Sglext_xortointp1(tmpresp1,rightp1,/*to*/save); |
| 1780 | |
| 1781 | /* |
| 1782 | * Compare magnitude of operands. |
| 1783 | */ |
| 1784 | Sglext_copytoint_exponentmantissa(tmpresp1,signlessleft1); |
| 1785 | Sglext_copytoint_exponentmantissa(rightp1,signlessright1); |
| 1786 | if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && |
| 1787 | Sglext_ismagnitudeless(signlessleft1,signlessright1)) { |
| 1788 | /* |
| 1789 | * Set the left operand to the larger one by XOR swap. |
| 1790 | * First finish the first word "save". |
| 1791 | */ |
| 1792 | Sglext_xorfromintp1(save,rightp1,/*to*/rightp1); |
| 1793 | Sglext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); |
| 1794 | Sglext_swap_lower(tmpresp2,rightp2); |
| 1795 | /* also setup exponents used in rest of routine */ |
| 1796 | diff_exponent = add_exponent - mpy_exponent; |
| 1797 | result_exponent = add_exponent; |
| 1798 | } else { |
| 1799 | /* also setup exponents used in rest of routine */ |
| 1800 | diff_exponent = mpy_exponent - add_exponent; |
| 1801 | result_exponent = mpy_exponent; |
| 1802 | } |
| 1803 | /* Invariant: left is not smaller than right. */ |
| 1804 | |
| 1805 | /* |
| 1806 | * Special case alignment of operands that would force alignment |
| 1807 | * beyond the extent of the extension. A further optimization |
| 1808 | * could special case this but only reduces the path length for |
| 1809 | * this infrequent case. |
| 1810 | */ |
| 1811 | if (diff_exponent > SGLEXT_THRESHOLD) { |
| 1812 | diff_exponent = SGLEXT_THRESHOLD; |
| 1813 | } |
| 1814 | |
| 1815 | /* Align right operand by shifting it to the right */ |
| 1816 | Sglext_clear_sign(rightp1); |
| 1817 | Sglext_right_align(rightp1,rightp2,/*shifted by*/diff_exponent); |
| 1818 | |
| 1819 | /* Treat sum and difference of the operands separately. */ |
| 1820 | if ((int)save < 0) { |
| 1821 | /* |
| 1822 | * Difference of the two operands. Overflow can occur if the |
| 1823 | * multiply overflowed. A borrow can occur out of the hidden |
| 1824 | * bit and force a post normalization phase. |
| 1825 | */ |
| 1826 | Sglext_subtract(tmpresp1,tmpresp2, rightp1,rightp2, |
| 1827 | resultp1,resultp2); |
| 1828 | sign_save = Sgl_signextendedsign(resultp1); |
| 1829 | if (Sgl_iszero_hidden(resultp1)) { |
| 1830 | /* Handle normalization */ |
Lucas De Marchi | 25985ed | 2011-03-30 22:57:33 -0300 | [diff] [blame] | 1831 | /* A straightforward algorithm would now shift the |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1832 | * result and extension left until the hidden bit |
| 1833 | * becomes one. Not all of the extension bits need |
| 1834 | * participate in the shift. Only the two most |
| 1835 | * significant bits (round and guard) are needed. |
| 1836 | * If only a single shift is needed then the guard |
| 1837 | * bit becomes a significant low order bit and the |
| 1838 | * extension must participate in the rounding. |
| 1839 | * If more than a single shift is needed, then all |
| 1840 | * bits to the right of the guard bit are zeros, |
| 1841 | * and the guard bit may or may not be zero. */ |
| 1842 | Sglext_leftshiftby1(resultp1,resultp2); |
| 1843 | |
| 1844 | /* Need to check for a zero result. The sign and |
| 1845 | * exponent fields have already been zeroed. The more |
| 1846 | * efficient test of the full object can be used. |
| 1847 | */ |
| 1848 | if (Sglext_iszero(resultp1,resultp2)) { |
| 1849 | /* Must have been "x-x" or "x+(-x)". */ |
| 1850 | if (Is_rounding_mode(ROUNDMINUS)) |
| 1851 | Sgl_setone_sign(resultp1); |
| 1852 | Sgl_copytoptr(resultp1,dstptr); |
| 1853 | return(NOEXCEPTION); |
| 1854 | } |
| 1855 | result_exponent--; |
| 1856 | |
| 1857 | /* Look to see if normalization is finished. */ |
| 1858 | if (Sgl_isone_hidden(resultp1)) { |
| 1859 | /* No further normalization is needed */ |
| 1860 | goto round; |
| 1861 | } |
| 1862 | |
| 1863 | /* Discover first one bit to determine shift amount. |
| 1864 | * Use a modified binary search. We have already |
| 1865 | * shifted the result one position right and still |
| 1866 | * not found a one so the remainder of the extension |
| 1867 | * must be zero and simplifies rounding. */ |
| 1868 | /* Scan bytes */ |
| 1869 | while (Sgl_iszero_hiddenhigh7mantissa(resultp1)) { |
| 1870 | Sglext_leftshiftby8(resultp1,resultp2); |
| 1871 | result_exponent -= 8; |
| 1872 | } |
| 1873 | /* Now narrow it down to the nibble */ |
| 1874 | if (Sgl_iszero_hiddenhigh3mantissa(resultp1)) { |
| 1875 | /* The lower nibble contains the |
| 1876 | * normalizing one */ |
| 1877 | Sglext_leftshiftby4(resultp1,resultp2); |
| 1878 | result_exponent -= 4; |
| 1879 | } |
| 1880 | /* Select case where first bit is set (already |
| 1881 | * normalized) otherwise select the proper shift. */ |
| 1882 | jumpsize = Sgl_hiddenhigh3mantissa(resultp1); |
| 1883 | if (jumpsize <= 7) switch(jumpsize) { |
| 1884 | case 1: |
| 1885 | Sglext_leftshiftby3(resultp1,resultp2); |
| 1886 | result_exponent -= 3; |
| 1887 | break; |
| 1888 | case 2: |
| 1889 | case 3: |
| 1890 | Sglext_leftshiftby2(resultp1,resultp2); |
| 1891 | result_exponent -= 2; |
| 1892 | break; |
| 1893 | case 4: |
| 1894 | case 5: |
| 1895 | case 6: |
| 1896 | case 7: |
| 1897 | Sglext_leftshiftby1(resultp1,resultp2); |
| 1898 | result_exponent -= 1; |
| 1899 | break; |
| 1900 | } |
| 1901 | } /* end if (hidden...)... */ |
| 1902 | /* Fall through and round */ |
| 1903 | } /* end if (save < 0)... */ |
| 1904 | else { |
| 1905 | /* Add magnitudes */ |
| 1906 | Sglext_addition(tmpresp1,tmpresp2, |
| 1907 | rightp1,rightp2, /*to*/resultp1,resultp2); |
| 1908 | sign_save = Sgl_signextendedsign(resultp1); |
| 1909 | if (Sgl_isone_hiddenoverflow(resultp1)) { |
| 1910 | /* Prenormalization required. */ |
| 1911 | Sglext_arithrightshiftby1(resultp1,resultp2); |
| 1912 | result_exponent++; |
| 1913 | } /* end if hiddenoverflow... */ |
| 1914 | } /* end else ...add magnitudes... */ |
| 1915 | |
| 1916 | /* Round the result. If the extension and lower two words are |
| 1917 | * all zeros, then the result is exact. Otherwise round in the |
| 1918 | * correct direction. Underflow is possible. If a postnormalization |
| 1919 | * is necessary, then the mantissa is all zeros so no shift is needed. |
| 1920 | */ |
| 1921 | round: |
| 1922 | if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { |
| 1923 | Sglext_denormalize(resultp1,resultp2,result_exponent,is_tiny); |
| 1924 | } |
| 1925 | Sgl_set_sign(resultp1,/*using*/sign_save); |
| 1926 | if (Sglext_isnotzero_mantissap2(resultp2)) { |
| 1927 | inexact = TRUE; |
| 1928 | switch(Rounding_mode()) { |
| 1929 | case ROUNDNEAREST: /* The default. */ |
| 1930 | if (Sglext_isone_highp2(resultp2)) { |
| 1931 | /* at least 1/2 ulp */ |
| 1932 | if (Sglext_isnotzero_low31p2(resultp2) || |
| 1933 | Sglext_isone_lowp1(resultp1)) { |
| 1934 | /* either exactly half way and odd or |
| 1935 | * more than 1/2ulp */ |
| 1936 | Sgl_increment(resultp1); |
| 1937 | } |
| 1938 | } |
| 1939 | break; |
| 1940 | |
| 1941 | case ROUNDPLUS: |
| 1942 | if (Sgl_iszero_sign(resultp1)) { |
| 1943 | /* Round up positive results */ |
| 1944 | Sgl_increment(resultp1); |
| 1945 | } |
| 1946 | break; |
| 1947 | |
| 1948 | case ROUNDMINUS: |
| 1949 | if (Sgl_isone_sign(resultp1)) { |
| 1950 | /* Round down negative results */ |
| 1951 | Sgl_increment(resultp1); |
| 1952 | } |
| 1953 | |
| 1954 | case ROUNDZERO:; |
| 1955 | /* truncate is simple */ |
| 1956 | } /* end switch... */ |
| 1957 | if (Sgl_isone_hiddenoverflow(resultp1)) result_exponent++; |
| 1958 | } |
| 1959 | if (result_exponent >= SGL_INFINITY_EXPONENT) { |
| 1960 | /* Overflow */ |
| 1961 | if (Is_overflowtrap_enabled()) { |
| 1962 | /* |
| 1963 | * Adjust bias of result |
| 1964 | */ |
| 1965 | Sgl_setwrapped_exponent(resultp1,result_exponent,ovfl); |
| 1966 | Sgl_copytoptr(resultp1,dstptr); |
| 1967 | if (inexact) |
| 1968 | if (Is_inexacttrap_enabled()) |
| 1969 | return (OPC_2E_OVERFLOWEXCEPTION | |
| 1970 | OPC_2E_INEXACTEXCEPTION); |
| 1971 | else Set_inexactflag(); |
| 1972 | return (OPC_2E_OVERFLOWEXCEPTION); |
| 1973 | } |
| 1974 | inexact = TRUE; |
| 1975 | Set_overflowflag(); |
| 1976 | Sgl_setoverflow(resultp1); |
| 1977 | } else if (result_exponent <= 0) { /* underflow case */ |
| 1978 | if (Is_underflowtrap_enabled()) { |
| 1979 | /* |
| 1980 | * Adjust bias of result |
| 1981 | */ |
| 1982 | Sgl_setwrapped_exponent(resultp1,result_exponent,unfl); |
| 1983 | Sgl_copytoptr(resultp1,dstptr); |
| 1984 | if (inexact) |
| 1985 | if (Is_inexacttrap_enabled()) |
| 1986 | return (OPC_2E_UNDERFLOWEXCEPTION | |
| 1987 | OPC_2E_INEXACTEXCEPTION); |
| 1988 | else Set_inexactflag(); |
| 1989 | return(OPC_2E_UNDERFLOWEXCEPTION); |
| 1990 | } |
| 1991 | else if (inexact && is_tiny) Set_underflowflag(); |
| 1992 | } |
| 1993 | else Sgl_set_exponent(resultp1,result_exponent); |
| 1994 | Sgl_copytoptr(resultp1,dstptr); |
| 1995 | if (inexact) |
| 1996 | if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); |
| 1997 | else Set_inexactflag(); |
| 1998 | return(NOEXCEPTION); |
| 1999 | } |
| 2000 | |
| 2001 | /* |
| 2002 | * Single Floating-point Multiply Negate Fused Add |
| 2003 | */ |
| 2004 | |
| 2005 | sgl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) |
| 2006 | |
| 2007 | sgl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr; |
| 2008 | unsigned int *status; |
| 2009 | { |
| 2010 | unsigned int opnd1, opnd2, opnd3; |
| 2011 | register unsigned int tmpresp1, tmpresp2; |
| 2012 | unsigned int rightp1, rightp2; |
| 2013 | unsigned int resultp1, resultp2 = 0; |
| 2014 | register int mpy_exponent, add_exponent, count; |
| 2015 | boolean inexact = FALSE, is_tiny = FALSE; |
| 2016 | |
| 2017 | unsigned int signlessleft1, signlessright1, save; |
| 2018 | register int result_exponent, diff_exponent; |
| 2019 | int sign_save, jumpsize; |
| 2020 | |
| 2021 | Sgl_copyfromptr(src1ptr,opnd1); |
| 2022 | Sgl_copyfromptr(src2ptr,opnd2); |
| 2023 | Sgl_copyfromptr(src3ptr,opnd3); |
| 2024 | |
| 2025 | /* |
| 2026 | * set sign bit of result of multiply |
| 2027 | */ |
| 2028 | if (Sgl_sign(opnd1) ^ Sgl_sign(opnd2)) |
| 2029 | Sgl_setzero(resultp1); |
| 2030 | else |
| 2031 | Sgl_setnegativezero(resultp1); |
| 2032 | |
| 2033 | /* |
| 2034 | * Generate multiply exponent |
| 2035 | */ |
| 2036 | mpy_exponent = Sgl_exponent(opnd1) + Sgl_exponent(opnd2) - SGL_BIAS; |
| 2037 | |
| 2038 | /* |
| 2039 | * check first operand for NaN's or infinity |
| 2040 | */ |
| 2041 | if (Sgl_isinfinity_exponent(opnd1)) { |
| 2042 | if (Sgl_iszero_mantissa(opnd1)) { |
| 2043 | if (Sgl_isnotnan(opnd2) && Sgl_isnotnan(opnd3)) { |
| 2044 | if (Sgl_iszero_exponentmantissa(opnd2)) { |
| 2045 | /* |
| 2046 | * invalid since operands are infinity |
| 2047 | * and zero |
| 2048 | */ |
| 2049 | if (Is_invalidtrap_enabled()) |
| 2050 | return(OPC_2E_INVALIDEXCEPTION); |
| 2051 | Set_invalidflag(); |
| 2052 | Sgl_makequietnan(resultp1); |
| 2053 | Sgl_copytoptr(resultp1,dstptr); |
| 2054 | return(NOEXCEPTION); |
| 2055 | } |
| 2056 | /* |
| 2057 | * Check third operand for infinity with a |
| 2058 | * sign opposite of the multiply result |
| 2059 | */ |
| 2060 | if (Sgl_isinfinity(opnd3) && |
| 2061 | (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { |
| 2062 | /* |
| 2063 | * invalid since attempting a magnitude |
| 2064 | * subtraction of infinities |
| 2065 | */ |
| 2066 | if (Is_invalidtrap_enabled()) |
| 2067 | return(OPC_2E_INVALIDEXCEPTION); |
| 2068 | Set_invalidflag(); |
| 2069 | Sgl_makequietnan(resultp1); |
| 2070 | Sgl_copytoptr(resultp1,dstptr); |
| 2071 | return(NOEXCEPTION); |
| 2072 | } |
| 2073 | |
| 2074 | /* |
| 2075 | * return infinity |
| 2076 | */ |
| 2077 | Sgl_setinfinity_exponentmantissa(resultp1); |
| 2078 | Sgl_copytoptr(resultp1,dstptr); |
| 2079 | return(NOEXCEPTION); |
| 2080 | } |
| 2081 | } |
| 2082 | else { |
| 2083 | /* |
| 2084 | * is NaN; signaling or quiet? |
| 2085 | */ |
| 2086 | if (Sgl_isone_signaling(opnd1)) { |
| 2087 | /* trap if INVALIDTRAP enabled */ |
| 2088 | if (Is_invalidtrap_enabled()) |
| 2089 | return(OPC_2E_INVALIDEXCEPTION); |
| 2090 | /* make NaN quiet */ |
| 2091 | Set_invalidflag(); |
| 2092 | Sgl_set_quiet(opnd1); |
| 2093 | } |
| 2094 | /* |
| 2095 | * is second operand a signaling NaN? |
| 2096 | */ |
| 2097 | else if (Sgl_is_signalingnan(opnd2)) { |
| 2098 | /* trap if INVALIDTRAP enabled */ |
| 2099 | if (Is_invalidtrap_enabled()) |
| 2100 | return(OPC_2E_INVALIDEXCEPTION); |
| 2101 | /* make NaN quiet */ |
| 2102 | Set_invalidflag(); |
| 2103 | Sgl_set_quiet(opnd2); |
| 2104 | Sgl_copytoptr(opnd2,dstptr); |
| 2105 | return(NOEXCEPTION); |
| 2106 | } |
| 2107 | /* |
| 2108 | * is third operand a signaling NaN? |
| 2109 | */ |
| 2110 | else if (Sgl_is_signalingnan(opnd3)) { |
| 2111 | /* trap if INVALIDTRAP enabled */ |
| 2112 | if (Is_invalidtrap_enabled()) |
| 2113 | return(OPC_2E_INVALIDEXCEPTION); |
| 2114 | /* make NaN quiet */ |
| 2115 | Set_invalidflag(); |
| 2116 | Sgl_set_quiet(opnd3); |
| 2117 | Sgl_copytoptr(opnd3,dstptr); |
| 2118 | return(NOEXCEPTION); |
| 2119 | } |
| 2120 | /* |
| 2121 | * return quiet NaN |
| 2122 | */ |
| 2123 | Sgl_copytoptr(opnd1,dstptr); |
| 2124 | return(NOEXCEPTION); |
| 2125 | } |
| 2126 | } |
| 2127 | |
| 2128 | /* |
| 2129 | * check second operand for NaN's or infinity |
| 2130 | */ |
| 2131 | if (Sgl_isinfinity_exponent(opnd2)) { |
| 2132 | if (Sgl_iszero_mantissa(opnd2)) { |
| 2133 | if (Sgl_isnotnan(opnd3)) { |
| 2134 | if (Sgl_iszero_exponentmantissa(opnd1)) { |
| 2135 | /* |
| 2136 | * invalid since multiply operands are |
| 2137 | * zero & infinity |
| 2138 | */ |
| 2139 | if (Is_invalidtrap_enabled()) |
| 2140 | return(OPC_2E_INVALIDEXCEPTION); |
| 2141 | Set_invalidflag(); |
| 2142 | Sgl_makequietnan(opnd2); |
| 2143 | Sgl_copytoptr(opnd2,dstptr); |
| 2144 | return(NOEXCEPTION); |
| 2145 | } |
| 2146 | |
| 2147 | /* |
| 2148 | * Check third operand for infinity with a |
| 2149 | * sign opposite of the multiply result |
| 2150 | */ |
| 2151 | if (Sgl_isinfinity(opnd3) && |
| 2152 | (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { |
| 2153 | /* |
| 2154 | * invalid since attempting a magnitude |
| 2155 | * subtraction of infinities |
| 2156 | */ |
| 2157 | if (Is_invalidtrap_enabled()) |
| 2158 | return(OPC_2E_INVALIDEXCEPTION); |
| 2159 | Set_invalidflag(); |
| 2160 | Sgl_makequietnan(resultp1); |
| 2161 | Sgl_copytoptr(resultp1,dstptr); |
| 2162 | return(NOEXCEPTION); |
| 2163 | } |
| 2164 | |
| 2165 | /* |
| 2166 | * return infinity |
| 2167 | */ |
| 2168 | Sgl_setinfinity_exponentmantissa(resultp1); |
| 2169 | Sgl_copytoptr(resultp1,dstptr); |
| 2170 | return(NOEXCEPTION); |
| 2171 | } |
| 2172 | } |
| 2173 | else { |
| 2174 | /* |
| 2175 | * is NaN; signaling or quiet? |
| 2176 | */ |
| 2177 | if (Sgl_isone_signaling(opnd2)) { |
| 2178 | /* trap if INVALIDTRAP enabled */ |
| 2179 | if (Is_invalidtrap_enabled()) |
| 2180 | return(OPC_2E_INVALIDEXCEPTION); |
| 2181 | /* make NaN quiet */ |
| 2182 | Set_invalidflag(); |
| 2183 | Sgl_set_quiet(opnd2); |
| 2184 | } |
| 2185 | /* |
| 2186 | * is third operand a signaling NaN? |
| 2187 | */ |
| 2188 | else if (Sgl_is_signalingnan(opnd3)) { |
| 2189 | /* trap if INVALIDTRAP enabled */ |
| 2190 | if (Is_invalidtrap_enabled()) |
| 2191 | return(OPC_2E_INVALIDEXCEPTION); |
| 2192 | /* make NaN quiet */ |
| 2193 | Set_invalidflag(); |
| 2194 | Sgl_set_quiet(opnd3); |
| 2195 | Sgl_copytoptr(opnd3,dstptr); |
| 2196 | return(NOEXCEPTION); |
| 2197 | } |
| 2198 | /* |
| 2199 | * return quiet NaN |
| 2200 | */ |
| 2201 | Sgl_copytoptr(opnd2,dstptr); |
| 2202 | return(NOEXCEPTION); |
| 2203 | } |
| 2204 | } |
| 2205 | |
| 2206 | /* |
| 2207 | * check third operand for NaN's or infinity |
| 2208 | */ |
| 2209 | if (Sgl_isinfinity_exponent(opnd3)) { |
| 2210 | if (Sgl_iszero_mantissa(opnd3)) { |
| 2211 | /* return infinity */ |
| 2212 | Sgl_copytoptr(opnd3,dstptr); |
| 2213 | return(NOEXCEPTION); |
| 2214 | } else { |
| 2215 | /* |
| 2216 | * is NaN; signaling or quiet? |
| 2217 | */ |
| 2218 | if (Sgl_isone_signaling(opnd3)) { |
| 2219 | /* trap if INVALIDTRAP enabled */ |
| 2220 | if (Is_invalidtrap_enabled()) |
| 2221 | return(OPC_2E_INVALIDEXCEPTION); |
| 2222 | /* make NaN quiet */ |
| 2223 | Set_invalidflag(); |
| 2224 | Sgl_set_quiet(opnd3); |
| 2225 | } |
| 2226 | /* |
| 2227 | * return quiet NaN |
| 2228 | */ |
| 2229 | Sgl_copytoptr(opnd3,dstptr); |
| 2230 | return(NOEXCEPTION); |
| 2231 | } |
| 2232 | } |
| 2233 | |
| 2234 | /* |
| 2235 | * Generate multiply mantissa |
| 2236 | */ |
| 2237 | if (Sgl_isnotzero_exponent(opnd1)) { |
| 2238 | /* set hidden bit */ |
| 2239 | Sgl_clear_signexponent_set_hidden(opnd1); |
| 2240 | } |
| 2241 | else { |
| 2242 | /* check for zero */ |
| 2243 | if (Sgl_iszero_mantissa(opnd1)) { |
| 2244 | /* |
| 2245 | * Perform the add opnd3 with zero here. |
| 2246 | */ |
| 2247 | if (Sgl_iszero_exponentmantissa(opnd3)) { |
| 2248 | if (Is_rounding_mode(ROUNDMINUS)) { |
| 2249 | Sgl_or_signs(opnd3,resultp1); |
| 2250 | } else { |
| 2251 | Sgl_and_signs(opnd3,resultp1); |
| 2252 | } |
| 2253 | } |
| 2254 | /* |
| 2255 | * Now let's check for trapped underflow case. |
| 2256 | */ |
| 2257 | else if (Sgl_iszero_exponent(opnd3) && |
| 2258 | Is_underflowtrap_enabled()) { |
| 2259 | /* need to normalize results mantissa */ |
| 2260 | sign_save = Sgl_signextendedsign(opnd3); |
| 2261 | result_exponent = 0; |
| 2262 | Sgl_leftshiftby1(opnd3); |
| 2263 | Sgl_normalize(opnd3,result_exponent); |
| 2264 | Sgl_set_sign(opnd3,/*using*/sign_save); |
| 2265 | Sgl_setwrapped_exponent(opnd3,result_exponent, |
| 2266 | unfl); |
| 2267 | Sgl_copytoptr(opnd3,dstptr); |
| 2268 | /* inexact = FALSE */ |
| 2269 | return(OPC_2E_UNDERFLOWEXCEPTION); |
| 2270 | } |
| 2271 | Sgl_copytoptr(opnd3,dstptr); |
| 2272 | return(NOEXCEPTION); |
| 2273 | } |
| 2274 | /* is denormalized, adjust exponent */ |
| 2275 | Sgl_clear_signexponent(opnd1); |
| 2276 | Sgl_leftshiftby1(opnd1); |
| 2277 | Sgl_normalize(opnd1,mpy_exponent); |
| 2278 | } |
| 2279 | /* opnd2 needs to have hidden bit set with msb in hidden bit */ |
| 2280 | if (Sgl_isnotzero_exponent(opnd2)) { |
| 2281 | Sgl_clear_signexponent_set_hidden(opnd2); |
| 2282 | } |
| 2283 | else { |
| 2284 | /* check for zero */ |
| 2285 | if (Sgl_iszero_mantissa(opnd2)) { |
| 2286 | /* |
| 2287 | * Perform the add opnd3 with zero here. |
| 2288 | */ |
| 2289 | if (Sgl_iszero_exponentmantissa(opnd3)) { |
| 2290 | if (Is_rounding_mode(ROUNDMINUS)) { |
| 2291 | Sgl_or_signs(opnd3,resultp1); |
| 2292 | } else { |
| 2293 | Sgl_and_signs(opnd3,resultp1); |
| 2294 | } |
| 2295 | } |
| 2296 | /* |
| 2297 | * Now let's check for trapped underflow case. |
| 2298 | */ |
| 2299 | else if (Sgl_iszero_exponent(opnd3) && |
| 2300 | Is_underflowtrap_enabled()) { |
| 2301 | /* need to normalize results mantissa */ |
| 2302 | sign_save = Sgl_signextendedsign(opnd3); |
| 2303 | result_exponent = 0; |
| 2304 | Sgl_leftshiftby1(opnd3); |
| 2305 | Sgl_normalize(opnd3,result_exponent); |
| 2306 | Sgl_set_sign(opnd3,/*using*/sign_save); |
| 2307 | Sgl_setwrapped_exponent(opnd3,result_exponent, |
| 2308 | unfl); |
| 2309 | Sgl_copytoptr(opnd3,dstptr); |
| 2310 | /* inexact = FALSE */ |
| 2311 | return(OPC_2E_UNDERFLOWEXCEPTION); |
| 2312 | } |
| 2313 | Sgl_copytoptr(opnd3,dstptr); |
| 2314 | return(NOEXCEPTION); |
| 2315 | } |
| 2316 | /* is denormalized; want to normalize */ |
| 2317 | Sgl_clear_signexponent(opnd2); |
| 2318 | Sgl_leftshiftby1(opnd2); |
| 2319 | Sgl_normalize(opnd2,mpy_exponent); |
| 2320 | } |
| 2321 | |
| 2322 | /* Multiply the first two source mantissas together */ |
| 2323 | |
| 2324 | /* |
| 2325 | * The intermediate result will be kept in tmpres, |
| 2326 | * which needs enough room for 106 bits of mantissa, |
| 2327 | * so lets call it a Double extended. |
| 2328 | */ |
| 2329 | Sglext_setzero(tmpresp1,tmpresp2); |
| 2330 | |
| 2331 | /* |
| 2332 | * Four bits at a time are inspected in each loop, and a |
| 2333 | * simple shift and add multiply algorithm is used. |
| 2334 | */ |
| 2335 | for (count = SGL_P-1; count >= 0; count -= 4) { |
| 2336 | Sglext_rightshiftby4(tmpresp1,tmpresp2); |
| 2337 | if (Sbit28(opnd1)) { |
| 2338 | /* Twoword_add should be an ADD followed by 2 ADDC's */ |
| 2339 | Twoword_add(tmpresp1, tmpresp2, opnd2<<3, 0); |
| 2340 | } |
| 2341 | if (Sbit29(opnd1)) { |
| 2342 | Twoword_add(tmpresp1, tmpresp2, opnd2<<2, 0); |
| 2343 | } |
| 2344 | if (Sbit30(opnd1)) { |
| 2345 | Twoword_add(tmpresp1, tmpresp2, opnd2<<1, 0); |
| 2346 | } |
| 2347 | if (Sbit31(opnd1)) { |
| 2348 | Twoword_add(tmpresp1, tmpresp2, opnd2, 0); |
| 2349 | } |
| 2350 | Sgl_rightshiftby4(opnd1); |
| 2351 | } |
| 2352 | if (Is_sexthiddenoverflow(tmpresp1)) { |
| 2353 | /* result mantissa >= 2 (mantissa overflow) */ |
| 2354 | mpy_exponent++; |
| 2355 | Sglext_rightshiftby4(tmpresp1,tmpresp2); |
| 2356 | } else { |
| 2357 | Sglext_rightshiftby3(tmpresp1,tmpresp2); |
| 2358 | } |
| 2359 | |
| 2360 | /* |
| 2361 | * Restore the sign of the mpy result which was saved in resultp1. |
| 2362 | * The exponent will continue to be kept in mpy_exponent. |
| 2363 | */ |
| 2364 | Sglext_set_sign(tmpresp1,Sgl_sign(resultp1)); |
| 2365 | |
| 2366 | /* |
| 2367 | * No rounding is required, since the result of the multiply |
| 2368 | * is exact in the extended format. |
| 2369 | */ |
| 2370 | |
| 2371 | /* |
| 2372 | * Now we are ready to perform the add portion of the operation. |
| 2373 | * |
| 2374 | * The exponents need to be kept as integers for now, since the |
| 2375 | * multiply result might not fit into the exponent field. We |
| 2376 | * can't overflow or underflow because of this yet, since the |
| 2377 | * add could bring the final result back into range. |
| 2378 | */ |
| 2379 | add_exponent = Sgl_exponent(opnd3); |
| 2380 | |
| 2381 | /* |
| 2382 | * Check for denormalized or zero add operand. |
| 2383 | */ |
| 2384 | if (add_exponent == 0) { |
| 2385 | /* check for zero */ |
| 2386 | if (Sgl_iszero_mantissa(opnd3)) { |
| 2387 | /* right is zero */ |
| 2388 | /* Left can't be zero and must be result. |
| 2389 | * |
| 2390 | * The final result is now in tmpres and mpy_exponent, |
| 2391 | * and needs to be rounded and squeezed back into |
| 2392 | * double precision format from double extended. |
| 2393 | */ |
| 2394 | result_exponent = mpy_exponent; |
| 2395 | Sglext_copy(tmpresp1,tmpresp2,resultp1,resultp2); |
| 2396 | sign_save = Sgl_signextendedsign(resultp1);/*save sign*/ |
| 2397 | goto round; |
| 2398 | } |
| 2399 | |
| 2400 | /* |
| 2401 | * Neither are zeroes. |
| 2402 | * Adjust exponent and normalize add operand. |
| 2403 | */ |
| 2404 | sign_save = Sgl_signextendedsign(opnd3); /* save sign */ |
| 2405 | Sgl_clear_signexponent(opnd3); |
| 2406 | Sgl_leftshiftby1(opnd3); |
| 2407 | Sgl_normalize(opnd3,add_exponent); |
| 2408 | Sgl_set_sign(opnd3,sign_save); /* restore sign */ |
| 2409 | } else { |
| 2410 | Sgl_clear_exponent_set_hidden(opnd3); |
| 2411 | } |
| 2412 | /* |
| 2413 | * Copy opnd3 to the double extended variable called right. |
| 2414 | */ |
| 2415 | Sgl_copyto_sglext(opnd3,rightp1,rightp2); |
| 2416 | |
| 2417 | /* |
| 2418 | * A zero "save" helps discover equal operands (for later), |
| 2419 | * and is used in swapping operands (if needed). |
| 2420 | */ |
| 2421 | Sglext_xortointp1(tmpresp1,rightp1,/*to*/save); |
| 2422 | |
| 2423 | /* |
| 2424 | * Compare magnitude of operands. |
| 2425 | */ |
| 2426 | Sglext_copytoint_exponentmantissa(tmpresp1,signlessleft1); |
| 2427 | Sglext_copytoint_exponentmantissa(rightp1,signlessright1); |
| 2428 | if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && |
| 2429 | Sglext_ismagnitudeless(signlessleft1,signlessright1)) { |
| 2430 | /* |
| 2431 | * Set the left operand to the larger one by XOR swap. |
| 2432 | * First finish the first word "save". |
| 2433 | */ |
| 2434 | Sglext_xorfromintp1(save,rightp1,/*to*/rightp1); |
| 2435 | Sglext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); |
| 2436 | Sglext_swap_lower(tmpresp2,rightp2); |
| 2437 | /* also setup exponents used in rest of routine */ |
| 2438 | diff_exponent = add_exponent - mpy_exponent; |
| 2439 | result_exponent = add_exponent; |
| 2440 | } else { |
| 2441 | /* also setup exponents used in rest of routine */ |
| 2442 | diff_exponent = mpy_exponent - add_exponent; |
| 2443 | result_exponent = mpy_exponent; |
| 2444 | } |
| 2445 | /* Invariant: left is not smaller than right. */ |
| 2446 | |
| 2447 | /* |
| 2448 | * Special case alignment of operands that would force alignment |
| 2449 | * beyond the extent of the extension. A further optimization |
| 2450 | * could special case this but only reduces the path length for |
| 2451 | * this infrequent case. |
| 2452 | */ |
| 2453 | if (diff_exponent > SGLEXT_THRESHOLD) { |
| 2454 | diff_exponent = SGLEXT_THRESHOLD; |
| 2455 | } |
| 2456 | |
| 2457 | /* Align right operand by shifting it to the right */ |
| 2458 | Sglext_clear_sign(rightp1); |
| 2459 | Sglext_right_align(rightp1,rightp2,/*shifted by*/diff_exponent); |
| 2460 | |
| 2461 | /* Treat sum and difference of the operands separately. */ |
| 2462 | if ((int)save < 0) { |
| 2463 | /* |
| 2464 | * Difference of the two operands. Overflow can occur if the |
| 2465 | * multiply overflowed. A borrow can occur out of the hidden |
| 2466 | * bit and force a post normalization phase. |
| 2467 | */ |
| 2468 | Sglext_subtract(tmpresp1,tmpresp2, rightp1,rightp2, |
| 2469 | resultp1,resultp2); |
| 2470 | sign_save = Sgl_signextendedsign(resultp1); |
| 2471 | if (Sgl_iszero_hidden(resultp1)) { |
| 2472 | /* Handle normalization */ |
Lucas De Marchi | 25985ed | 2011-03-30 22:57:33 -0300 | [diff] [blame] | 2473 | /* A straightforward algorithm would now shift the |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2474 | * result and extension left until the hidden bit |
| 2475 | * becomes one. Not all of the extension bits need |
| 2476 | * participate in the shift. Only the two most |
| 2477 | * significant bits (round and guard) are needed. |
| 2478 | * If only a single shift is needed then the guard |
| 2479 | * bit becomes a significant low order bit and the |
| 2480 | * extension must participate in the rounding. |
| 2481 | * If more than a single shift is needed, then all |
| 2482 | * bits to the right of the guard bit are zeros, |
| 2483 | * and the guard bit may or may not be zero. */ |
| 2484 | Sglext_leftshiftby1(resultp1,resultp2); |
| 2485 | |
| 2486 | /* Need to check for a zero result. The sign and |
| 2487 | * exponent fields have already been zeroed. The more |
| 2488 | * efficient test of the full object can be used. |
| 2489 | */ |
| 2490 | if (Sglext_iszero(resultp1,resultp2)) { |
| 2491 | /* Must have been "x-x" or "x+(-x)". */ |
| 2492 | if (Is_rounding_mode(ROUNDMINUS)) |
| 2493 | Sgl_setone_sign(resultp1); |
| 2494 | Sgl_copytoptr(resultp1,dstptr); |
| 2495 | return(NOEXCEPTION); |
| 2496 | } |
| 2497 | result_exponent--; |
| 2498 | |
| 2499 | /* Look to see if normalization is finished. */ |
| 2500 | if (Sgl_isone_hidden(resultp1)) { |
| 2501 | /* No further normalization is needed */ |
| 2502 | goto round; |
| 2503 | } |
| 2504 | |
| 2505 | /* Discover first one bit to determine shift amount. |
| 2506 | * Use a modified binary search. We have already |
| 2507 | * shifted the result one position right and still |
| 2508 | * not found a one so the remainder of the extension |
| 2509 | * must be zero and simplifies rounding. */ |
| 2510 | /* Scan bytes */ |
| 2511 | while (Sgl_iszero_hiddenhigh7mantissa(resultp1)) { |
| 2512 | Sglext_leftshiftby8(resultp1,resultp2); |
| 2513 | result_exponent -= 8; |
| 2514 | } |
| 2515 | /* Now narrow it down to the nibble */ |
| 2516 | if (Sgl_iszero_hiddenhigh3mantissa(resultp1)) { |
| 2517 | /* The lower nibble contains the |
| 2518 | * normalizing one */ |
| 2519 | Sglext_leftshiftby4(resultp1,resultp2); |
| 2520 | result_exponent -= 4; |
| 2521 | } |
| 2522 | /* Select case where first bit is set (already |
| 2523 | * normalized) otherwise select the proper shift. */ |
| 2524 | jumpsize = Sgl_hiddenhigh3mantissa(resultp1); |
| 2525 | if (jumpsize <= 7) switch(jumpsize) { |
| 2526 | case 1: |
| 2527 | Sglext_leftshiftby3(resultp1,resultp2); |
| 2528 | result_exponent -= 3; |
| 2529 | break; |
| 2530 | case 2: |
| 2531 | case 3: |
| 2532 | Sglext_leftshiftby2(resultp1,resultp2); |
| 2533 | result_exponent -= 2; |
| 2534 | break; |
| 2535 | case 4: |
| 2536 | case 5: |
| 2537 | case 6: |
| 2538 | case 7: |
| 2539 | Sglext_leftshiftby1(resultp1,resultp2); |
| 2540 | result_exponent -= 1; |
| 2541 | break; |
| 2542 | } |
| 2543 | } /* end if (hidden...)... */ |
| 2544 | /* Fall through and round */ |
| 2545 | } /* end if (save < 0)... */ |
| 2546 | else { |
| 2547 | /* Add magnitudes */ |
| 2548 | Sglext_addition(tmpresp1,tmpresp2, |
| 2549 | rightp1,rightp2, /*to*/resultp1,resultp2); |
| 2550 | sign_save = Sgl_signextendedsign(resultp1); |
| 2551 | if (Sgl_isone_hiddenoverflow(resultp1)) { |
| 2552 | /* Prenormalization required. */ |
| 2553 | Sglext_arithrightshiftby1(resultp1,resultp2); |
| 2554 | result_exponent++; |
| 2555 | } /* end if hiddenoverflow... */ |
| 2556 | } /* end else ...add magnitudes... */ |
| 2557 | |
| 2558 | /* Round the result. If the extension and lower two words are |
| 2559 | * all zeros, then the result is exact. Otherwise round in the |
| 2560 | * correct direction. Underflow is possible. If a postnormalization |
| 2561 | * is necessary, then the mantissa is all zeros so no shift is needed. |
| 2562 | */ |
| 2563 | round: |
| 2564 | if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { |
| 2565 | Sglext_denormalize(resultp1,resultp2,result_exponent,is_tiny); |
| 2566 | } |
| 2567 | Sgl_set_sign(resultp1,/*using*/sign_save); |
| 2568 | if (Sglext_isnotzero_mantissap2(resultp2)) { |
| 2569 | inexact = TRUE; |
| 2570 | switch(Rounding_mode()) { |
| 2571 | case ROUNDNEAREST: /* The default. */ |
| 2572 | if (Sglext_isone_highp2(resultp2)) { |
| 2573 | /* at least 1/2 ulp */ |
| 2574 | if (Sglext_isnotzero_low31p2(resultp2) || |
| 2575 | Sglext_isone_lowp1(resultp1)) { |
| 2576 | /* either exactly half way and odd or |
| 2577 | * more than 1/2ulp */ |
| 2578 | Sgl_increment(resultp1); |
| 2579 | } |
| 2580 | } |
| 2581 | break; |
| 2582 | |
| 2583 | case ROUNDPLUS: |
| 2584 | if (Sgl_iszero_sign(resultp1)) { |
| 2585 | /* Round up positive results */ |
| 2586 | Sgl_increment(resultp1); |
| 2587 | } |
| 2588 | break; |
| 2589 | |
| 2590 | case ROUNDMINUS: |
| 2591 | if (Sgl_isone_sign(resultp1)) { |
| 2592 | /* Round down negative results */ |
| 2593 | Sgl_increment(resultp1); |
| 2594 | } |
| 2595 | |
| 2596 | case ROUNDZERO:; |
| 2597 | /* truncate is simple */ |
| 2598 | } /* end switch... */ |
| 2599 | if (Sgl_isone_hiddenoverflow(resultp1)) result_exponent++; |
| 2600 | } |
| 2601 | if (result_exponent >= SGL_INFINITY_EXPONENT) { |
| 2602 | /* Overflow */ |
| 2603 | if (Is_overflowtrap_enabled()) { |
| 2604 | /* |
| 2605 | * Adjust bias of result |
| 2606 | */ |
| 2607 | Sgl_setwrapped_exponent(resultp1,result_exponent,ovfl); |
| 2608 | Sgl_copytoptr(resultp1,dstptr); |
| 2609 | if (inexact) |
| 2610 | if (Is_inexacttrap_enabled()) |
| 2611 | return (OPC_2E_OVERFLOWEXCEPTION | |
| 2612 | OPC_2E_INEXACTEXCEPTION); |
| 2613 | else Set_inexactflag(); |
| 2614 | return (OPC_2E_OVERFLOWEXCEPTION); |
| 2615 | } |
| 2616 | inexact = TRUE; |
| 2617 | Set_overflowflag(); |
| 2618 | Sgl_setoverflow(resultp1); |
| 2619 | } else if (result_exponent <= 0) { /* underflow case */ |
| 2620 | if (Is_underflowtrap_enabled()) { |
| 2621 | /* |
| 2622 | * Adjust bias of result |
| 2623 | */ |
| 2624 | Sgl_setwrapped_exponent(resultp1,result_exponent,unfl); |
| 2625 | Sgl_copytoptr(resultp1,dstptr); |
| 2626 | if (inexact) |
| 2627 | if (Is_inexacttrap_enabled()) |
| 2628 | return (OPC_2E_UNDERFLOWEXCEPTION | |
| 2629 | OPC_2E_INEXACTEXCEPTION); |
| 2630 | else Set_inexactflag(); |
| 2631 | return(OPC_2E_UNDERFLOWEXCEPTION); |
| 2632 | } |
| 2633 | else if (inexact && is_tiny) Set_underflowflag(); |
| 2634 | } |
| 2635 | else Sgl_set_exponent(resultp1,result_exponent); |
| 2636 | Sgl_copytoptr(resultp1,dstptr); |
| 2637 | if (inexact) |
| 2638 | if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); |
| 2639 | else Set_inexactflag(); |
| 2640 | return(NOEXCEPTION); |
| 2641 | } |
| 2642 | |