Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <mitch@sfgoth.com> |
| 2 | * |
| 3 | * This program is free software; you can redistribute it and/or |
| 4 | * modify it under the terms of the GNU General Public License |
| 5 | * as published by the Free Software Foundation; either version |
| 6 | * 2 of the License, or (at your option) any later version. |
| 7 | * |
| 8 | * This driver supports ATM cards based on the Efficient "Lanai" |
| 9 | * chipset such as the Speedstream 3010 and the ENI-25p. The |
| 10 | * Speedstream 3060 is currently not supported since we don't |
| 11 | * have the code to drive the on-board Alcatel DSL chipset (yet). |
| 12 | * |
| 13 | * Thanks to Efficient for supporting this project with hardware, |
| 14 | * documentation, and by answering my questions. |
| 15 | * |
| 16 | * Things not working yet: |
| 17 | * |
| 18 | * o We don't support the Speedstream 3060 yet - this card has |
| 19 | * an on-board DSL modem chip by Alcatel and the driver will |
| 20 | * need some extra code added to handle it |
| 21 | * |
| 22 | * o Note that due to limitations of the Lanai only one VCC can be |
| 23 | * in CBR at once |
| 24 | * |
| 25 | * o We don't currently parse the EEPROM at all. The code is all |
| 26 | * there as per the spec, but it doesn't actually work. I think |
| 27 | * there may be some issues with the docs. Anyway, do NOT |
| 28 | * enable it yet - bugs in that code may actually damage your |
| 29 | * hardware! Because of this you should hardware an ESI before |
| 30 | * trying to use this in a LANE or MPOA environment. |
| 31 | * |
| 32 | * o AAL0 is stubbed in but the actual rx/tx path isn't written yet: |
| 33 | * vcc_tx_aal0() needs to send or queue a SKB |
| 34 | * vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs |
| 35 | * vcc_rx_aal0() needs to handle AAL0 interrupts |
| 36 | * This isn't too much work - I just wanted to get other things |
| 37 | * done first. |
| 38 | * |
| 39 | * o lanai_change_qos() isn't written yet |
| 40 | * |
| 41 | * o There aren't any ioctl's yet -- I'd like to eventually support |
| 42 | * setting loopback and LED modes that way. (see lanai_ioctl) |
| 43 | * |
| 44 | * o If the segmentation engine or DMA gets shut down we should restart |
| 45 | * card as per section 17.0i. (see lanai_reset) |
| 46 | * |
| 47 | * o setsockopt(SO_CIRANGE) isn't done (although despite what the |
| 48 | * API says it isn't exactly commonly implemented) |
| 49 | */ |
| 50 | |
| 51 | /* Version history: |
| 52 | * v.1.00 -- 26-JUL-2003 -- PCI/DMA updates |
| 53 | * v.0.02 -- 11-JAN-2000 -- Endian fixes |
| 54 | * v.0.01 -- 30-NOV-1999 -- Initial release |
| 55 | */ |
| 56 | |
| 57 | #include <linux/module.h> |
| 58 | #include <linux/mm.h> |
| 59 | #include <linux/atmdev.h> |
| 60 | #include <asm/io.h> |
| 61 | #include <asm/byteorder.h> |
| 62 | #include <linux/spinlock.h> |
| 63 | #include <linux/pci.h> |
| 64 | #include <linux/dma-mapping.h> |
| 65 | #include <linux/init.h> |
| 66 | #include <linux/delay.h> |
| 67 | #include <linux/interrupt.h> |
| 68 | #include <linux/dma-mapping.h> |
| 69 | |
| 70 | /* -------------------- TUNABLE PARAMATERS: */ |
| 71 | |
| 72 | /* |
| 73 | * Maximum number of VCIs per card. Setting it lower could theoretically |
| 74 | * save some memory, but since we allocate our vcc list with get_free_pages, |
| 75 | * it's not really likely for most architectures |
| 76 | */ |
| 77 | #define NUM_VCI (1024) |
| 78 | |
| 79 | /* |
| 80 | * Enable extra debugging |
| 81 | */ |
| 82 | #define DEBUG |
| 83 | /* |
| 84 | * Debug _all_ register operations with card, except the memory test. |
| 85 | * Also disables the timed poll to prevent extra chattiness. This |
| 86 | * isn't for normal use |
| 87 | */ |
| 88 | #undef DEBUG_RW |
| 89 | |
| 90 | /* |
| 91 | * The programming guide specifies a full test of the on-board SRAM |
| 92 | * at initialization time. Undefine to remove this |
| 93 | */ |
| 94 | #define FULL_MEMORY_TEST |
| 95 | |
| 96 | /* |
| 97 | * This is the number of (4 byte) service entries that we will |
| 98 | * try to allocate at startup. Note that we will end up with |
| 99 | * one PAGE_SIZE's worth regardless of what this is set to |
| 100 | */ |
| 101 | #define SERVICE_ENTRIES (1024) |
| 102 | /* TODO: make above a module load-time option */ |
| 103 | |
| 104 | /* |
| 105 | * We normally read the onboard EEPROM in order to discover our MAC |
| 106 | * address. Undefine to _not_ do this |
| 107 | */ |
| 108 | /* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */ |
| 109 | /* TODO: make above a module load-time option (also) */ |
| 110 | |
| 111 | /* |
| 112 | * Depth of TX fifo (in 128 byte units; range 2-31) |
| 113 | * Smaller numbers are better for network latency |
| 114 | * Larger numbers are better for PCI latency |
| 115 | * I'm really sure where the best tradeoff is, but the BSD driver uses |
| 116 | * 7 and it seems to work ok. |
| 117 | */ |
| 118 | #define TX_FIFO_DEPTH (7) |
| 119 | /* TODO: make above a module load-time option */ |
| 120 | |
| 121 | /* |
| 122 | * How often (in jiffies) we will try to unstick stuck connections - |
| 123 | * shouldn't need to happen much |
| 124 | */ |
| 125 | #define LANAI_POLL_PERIOD (10*HZ) |
| 126 | /* TODO: make above a module load-time option */ |
| 127 | |
| 128 | /* |
| 129 | * When allocating an AAL5 receiving buffer, try to make it at least |
| 130 | * large enough to hold this many max_sdu sized PDUs |
| 131 | */ |
| 132 | #define AAL5_RX_MULTIPLIER (3) |
| 133 | /* TODO: make above a module load-time option */ |
| 134 | |
| 135 | /* |
| 136 | * Same for transmitting buffer |
| 137 | */ |
| 138 | #define AAL5_TX_MULTIPLIER (3) |
| 139 | /* TODO: make above a module load-time option */ |
| 140 | |
| 141 | /* |
| 142 | * When allocating an AAL0 transmiting buffer, how many cells should fit. |
| 143 | * Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't |
| 144 | * really critical |
| 145 | */ |
| 146 | #define AAL0_TX_MULTIPLIER (40) |
| 147 | /* TODO: make above a module load-time option */ |
| 148 | |
| 149 | /* |
| 150 | * How large should we make the AAL0 receiving buffer. Remember that this |
| 151 | * is shared between all AAL0 VC's |
| 152 | */ |
| 153 | #define AAL0_RX_BUFFER_SIZE (PAGE_SIZE) |
| 154 | /* TODO: make above a module load-time option */ |
| 155 | |
| 156 | /* |
| 157 | * Should we use Lanai's "powerdown" feature when no vcc's are bound? |
| 158 | */ |
| 159 | /* #define USE_POWERDOWN */ |
| 160 | /* TODO: make above a module load-time option (also) */ |
| 161 | |
| 162 | /* -------------------- DEBUGGING AIDS: */ |
| 163 | |
| 164 | #define DEV_LABEL "lanai" |
| 165 | |
| 166 | #ifdef DEBUG |
| 167 | |
| 168 | #define DPRINTK(format, args...) \ |
| 169 | printk(KERN_DEBUG DEV_LABEL ": " format, ##args) |
| 170 | #define APRINTK(truth, format, args...) \ |
| 171 | do { \ |
| 172 | if (unlikely(!(truth))) \ |
| 173 | printk(KERN_ERR DEV_LABEL ": " format, ##args); \ |
| 174 | } while (0) |
| 175 | |
| 176 | #else /* !DEBUG */ |
| 177 | |
| 178 | #define DPRINTK(format, args...) |
| 179 | #define APRINTK(truth, format, args...) |
| 180 | |
| 181 | #endif /* DEBUG */ |
| 182 | |
| 183 | #ifdef DEBUG_RW |
| 184 | #define RWDEBUG(format, args...) \ |
| 185 | printk(KERN_DEBUG DEV_LABEL ": " format, ##args) |
| 186 | #else /* !DEBUG_RW */ |
| 187 | #define RWDEBUG(format, args...) |
| 188 | #endif |
| 189 | |
| 190 | /* -------------------- DATA DEFINITIONS: */ |
| 191 | |
| 192 | #define LANAI_MAPPING_SIZE (0x40000) |
| 193 | #define LANAI_EEPROM_SIZE (128) |
| 194 | |
| 195 | typedef int vci_t; |
| 196 | typedef void __iomem *bus_addr_t; |
| 197 | |
| 198 | /* DMA buffer in host memory for TX, RX, or service list. */ |
| 199 | struct lanai_buffer { |
| 200 | u32 *start; /* From get_free_pages */ |
| 201 | u32 *end; /* One past last byte */ |
| 202 | u32 *ptr; /* Pointer to current host location */ |
| 203 | dma_addr_t dmaaddr; |
| 204 | }; |
| 205 | |
| 206 | struct lanai_vcc_stats { |
| 207 | unsigned rx_nomem; |
| 208 | union { |
| 209 | struct { |
| 210 | unsigned rx_badlen; |
| 211 | unsigned service_trash; |
| 212 | unsigned service_stream; |
| 213 | unsigned service_rxcrc; |
| 214 | } aal5; |
| 215 | struct { |
| 216 | } aal0; |
| 217 | } x; |
| 218 | }; |
| 219 | |
| 220 | struct lanai_dev; /* Forward declaration */ |
| 221 | |
| 222 | /* |
| 223 | * This is the card-specific per-vcc data. Note that unlike some other |
| 224 | * drivers there is NOT a 1-to-1 correspondance between these and |
| 225 | * atm_vcc's - each one of these represents an actual 2-way vcc, but |
| 226 | * an atm_vcc can be 1-way and share with a 1-way vcc in the other |
| 227 | * direction. To make it weirder, there can even be 0-way vccs |
| 228 | * bound to us, waiting to do a change_qos |
| 229 | */ |
| 230 | struct lanai_vcc { |
| 231 | bus_addr_t vbase; /* Base of VCC's registers */ |
| 232 | struct lanai_vcc_stats stats; |
| 233 | int nref; /* # of atm_vcc's who reference us */ |
| 234 | vci_t vci; |
| 235 | struct { |
| 236 | struct lanai_buffer buf; |
| 237 | struct atm_vcc *atmvcc; /* atm_vcc who is receiver */ |
| 238 | } rx; |
| 239 | struct { |
| 240 | struct lanai_buffer buf; |
| 241 | struct atm_vcc *atmvcc; /* atm_vcc who is transmitter */ |
| 242 | int endptr; /* last endptr from service entry */ |
| 243 | struct sk_buff_head backlog; |
| 244 | void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int); |
| 245 | } tx; |
| 246 | }; |
| 247 | |
| 248 | enum lanai_type { |
| 249 | lanai2 = PCI_VENDOR_ID_EF_ATM_LANAI2, |
| 250 | lanaihb = PCI_VENDOR_ID_EF_ATM_LANAIHB |
| 251 | }; |
| 252 | |
| 253 | struct lanai_dev_stats { |
| 254 | unsigned ovfl_trash; /* # of cells dropped - buffer overflow */ |
| 255 | unsigned vci_trash; /* # of cells dropped - closed vci */ |
| 256 | unsigned hec_err; /* # of cells dropped - bad HEC */ |
| 257 | unsigned atm_ovfl; /* # of cells dropped - rx fifo overflow */ |
| 258 | unsigned pcierr_parity_detect; |
| 259 | unsigned pcierr_serr_set; |
| 260 | unsigned pcierr_master_abort; |
| 261 | unsigned pcierr_m_target_abort; |
| 262 | unsigned pcierr_s_target_abort; |
| 263 | unsigned pcierr_master_parity; |
| 264 | unsigned service_notx; |
| 265 | unsigned service_norx; |
| 266 | unsigned service_rxnotaal5; |
| 267 | unsigned dma_reenable; |
| 268 | unsigned card_reset; |
| 269 | }; |
| 270 | |
| 271 | struct lanai_dev { |
| 272 | bus_addr_t base; |
| 273 | struct lanai_dev_stats stats; |
| 274 | struct lanai_buffer service; |
| 275 | struct lanai_vcc **vccs; |
| 276 | #ifdef USE_POWERDOWN |
| 277 | int nbound; /* number of bound vccs */ |
| 278 | #endif |
| 279 | enum lanai_type type; |
| 280 | vci_t num_vci; /* Currently just NUM_VCI */ |
| 281 | u8 eeprom[LANAI_EEPROM_SIZE]; |
| 282 | u32 serialno, magicno; |
| 283 | struct pci_dev *pci; |
| 284 | DECLARE_BITMAP(backlog_vccs, NUM_VCI); /* VCCs with tx backlog */ |
| 285 | DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */ |
| 286 | struct timer_list timer; |
| 287 | int naal0; |
| 288 | struct lanai_buffer aal0buf; /* AAL0 RX buffers */ |
| 289 | u32 conf1, conf2; /* CONFIG[12] registers */ |
| 290 | u32 status; /* STATUS register */ |
| 291 | spinlock_t endtxlock; |
| 292 | spinlock_t servicelock; |
| 293 | struct atm_vcc *cbrvcc; |
| 294 | int number; |
| 295 | int board_rev; |
| 296 | u8 pci_revision; |
| 297 | /* TODO - look at race conditions with maintence of conf1/conf2 */ |
| 298 | /* TODO - transmit locking: should we use _irq not _irqsave? */ |
| 299 | /* TODO - organize above in some rational fashion (see <asm/cache.h>) */ |
| 300 | }; |
| 301 | |
| 302 | /* |
| 303 | * Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready) |
| 304 | * This function iterates one of these, calling a given function for each |
| 305 | * vci with their bit set |
| 306 | */ |
| 307 | static void vci_bitfield_iterate(struct lanai_dev *lanai, |
| 308 | /*const*/ unsigned long *lp, |
| 309 | void (*func)(struct lanai_dev *,vci_t vci)) |
| 310 | { |
| 311 | vci_t vci = find_first_bit(lp, NUM_VCI); |
| 312 | while (vci < NUM_VCI) { |
| 313 | func(lanai, vci); |
| 314 | vci = find_next_bit(lp, NUM_VCI, vci + 1); |
| 315 | } |
| 316 | } |
| 317 | |
| 318 | /* -------------------- BUFFER UTILITIES: */ |
| 319 | |
| 320 | /* |
| 321 | * Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes - |
| 322 | * usually any page allocation will do. Just to be safe in case |
| 323 | * PAGE_SIZE is insanely tiny, though... |
| 324 | */ |
| 325 | #define LANAI_PAGE_SIZE ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024) |
| 326 | |
| 327 | /* |
| 328 | * Allocate a buffer in host RAM for service list, RX, or TX |
| 329 | * Returns buf->start==NULL if no memory |
| 330 | * Note that the size will be rounded up 2^n bytes, and |
| 331 | * if we can't allocate that we'll settle for something smaller |
| 332 | * until minbytes |
| 333 | */ |
| 334 | static void lanai_buf_allocate(struct lanai_buffer *buf, |
| 335 | size_t bytes, size_t minbytes, struct pci_dev *pci) |
| 336 | { |
| 337 | int size; |
| 338 | |
| 339 | if (bytes > (128 * 1024)) /* max lanai buffer size */ |
| 340 | bytes = 128 * 1024; |
| 341 | for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2) |
| 342 | ; |
| 343 | if (minbytes < LANAI_PAGE_SIZE) |
| 344 | minbytes = LANAI_PAGE_SIZE; |
| 345 | do { |
| 346 | /* |
| 347 | * Technically we could use non-consistent mappings for |
| 348 | * everything, but the way the lanai uses DMA memory would |
| 349 | * make that a terrific pain. This is much simpler. |
| 350 | */ |
| 351 | buf->start = pci_alloc_consistent(pci, size, &buf->dmaaddr); |
| 352 | if (buf->start != NULL) { /* Success */ |
| 353 | /* Lanai requires 256-byte alignment of DMA bufs */ |
| 354 | APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0, |
| 355 | "bad dmaaddr: 0x%lx\n", |
| 356 | (unsigned long) buf->dmaaddr); |
| 357 | buf->ptr = buf->start; |
| 358 | buf->end = (u32 *) |
| 359 | (&((unsigned char *) buf->start)[size]); |
| 360 | memset(buf->start, 0, size); |
| 361 | break; |
| 362 | } |
| 363 | size /= 2; |
| 364 | } while (size >= minbytes); |
| 365 | } |
| 366 | |
| 367 | /* size of buffer in bytes */ |
| 368 | static inline size_t lanai_buf_size(const struct lanai_buffer *buf) |
| 369 | { |
| 370 | return ((unsigned long) buf->end) - ((unsigned long) buf->start); |
| 371 | } |
| 372 | |
| 373 | static void lanai_buf_deallocate(struct lanai_buffer *buf, |
| 374 | struct pci_dev *pci) |
| 375 | { |
| 376 | if (buf->start != NULL) { |
| 377 | pci_free_consistent(pci, lanai_buf_size(buf), |
| 378 | buf->start, buf->dmaaddr); |
| 379 | buf->start = buf->end = buf->ptr = NULL; |
| 380 | } |
| 381 | } |
| 382 | |
| 383 | /* size of buffer as "card order" (0=1k .. 7=128k) */ |
| 384 | static int lanai_buf_size_cardorder(const struct lanai_buffer *buf) |
| 385 | { |
| 386 | int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10); |
| 387 | |
| 388 | /* This can only happen if PAGE_SIZE is gigantic, but just in case */ |
| 389 | if (order > 7) |
| 390 | order = 7; |
| 391 | return order; |
| 392 | } |
| 393 | |
| 394 | /* -------------------- PORT I/O UTILITIES: */ |
| 395 | |
| 396 | /* Registers (and their bit-fields) */ |
| 397 | enum lanai_register { |
| 398 | Reset_Reg = 0x00, /* Reset; read for chip type; bits: */ |
| 399 | #define RESET_GET_BOARD_REV(x) (((x)>> 0)&0x03) /* Board revision */ |
| 400 | #define RESET_GET_BOARD_ID(x) (((x)>> 2)&0x03) /* Board ID */ |
| 401 | #define BOARD_ID_LANAI256 (0) /* 25.6M adapter card */ |
| 402 | Endian_Reg = 0x04, /* Endian setting */ |
| 403 | IntStatus_Reg = 0x08, /* Interrupt status */ |
| 404 | IntStatusMasked_Reg = 0x0C, /* Interrupt status (masked) */ |
| 405 | IntAck_Reg = 0x10, /* Interrupt acknowledge */ |
| 406 | IntAckMasked_Reg = 0x14, /* Interrupt acknowledge (masked) */ |
| 407 | IntStatusSet_Reg = 0x18, /* Get status + enable/disable */ |
| 408 | IntStatusSetMasked_Reg = 0x1C, /* Get status + en/di (masked) */ |
| 409 | IntControlEna_Reg = 0x20, /* Interrupt control enable */ |
| 410 | IntControlDis_Reg = 0x24, /* Interrupt control disable */ |
| 411 | Status_Reg = 0x28, /* Status */ |
| 412 | #define STATUS_PROMDATA (0x00000001) /* PROM_DATA pin */ |
| 413 | #define STATUS_WAITING (0x00000002) /* Interrupt being delayed */ |
| 414 | #define STATUS_SOOL (0x00000004) /* SOOL alarm */ |
| 415 | #define STATUS_LOCD (0x00000008) /* LOCD alarm */ |
| 416 | #define STATUS_LED (0x00000010) /* LED (HAPPI) output */ |
| 417 | #define STATUS_GPIN (0x00000020) /* GPIN pin */ |
| 418 | #define STATUS_BUTTBUSY (0x00000040) /* Butt register is pending */ |
| 419 | Config1_Reg = 0x2C, /* Config word 1; bits: */ |
| 420 | #define CONFIG1_PROMDATA (0x00000001) /* PROM_DATA pin */ |
| 421 | #define CONFIG1_PROMCLK (0x00000002) /* PROM_CLK pin */ |
| 422 | #define CONFIG1_SET_READMODE(x) ((x)*0x004) /* PCI BM reads; values: */ |
| 423 | #define READMODE_PLAIN (0) /* Plain memory read */ |
| 424 | #define READMODE_LINE (2) /* Memory read line */ |
| 425 | #define READMODE_MULTIPLE (3) /* Memory read multiple */ |
| 426 | #define CONFIG1_DMA_ENABLE (0x00000010) /* Turn on DMA */ |
| 427 | #define CONFIG1_POWERDOWN (0x00000020) /* Turn off clocks */ |
| 428 | #define CONFIG1_SET_LOOPMODE(x) ((x)*0x080) /* Clock&loop mode; values: */ |
| 429 | #define LOOPMODE_NORMAL (0) /* Normal - no loop */ |
| 430 | #define LOOPMODE_TIME (1) |
| 431 | #define LOOPMODE_DIAG (2) |
| 432 | #define LOOPMODE_LINE (3) |
| 433 | #define CONFIG1_MASK_LOOPMODE (0x00000180) |
| 434 | #define CONFIG1_SET_LEDMODE(x) ((x)*0x0200) /* Mode of LED; values: */ |
| 435 | #define LEDMODE_NOT_SOOL (0) /* !SOOL */ |
| 436 | #define LEDMODE_OFF (1) /* 0 */ |
| 437 | #define LEDMODE_ON (2) /* 1 */ |
| 438 | #define LEDMODE_NOT_LOCD (3) /* !LOCD */ |
| 439 | #define LEDMORE_GPIN (4) /* GPIN */ |
| 440 | #define LEDMODE_NOT_GPIN (7) /* !GPIN */ |
| 441 | #define CONFIG1_MASK_LEDMODE (0x00000E00) |
| 442 | #define CONFIG1_GPOUT1 (0x00001000) /* Toggle for reset */ |
| 443 | #define CONFIG1_GPOUT2 (0x00002000) /* Loopback PHY */ |
| 444 | #define CONFIG1_GPOUT3 (0x00004000) /* Loopback lanai */ |
| 445 | Config2_Reg = 0x30, /* Config word 2; bits: */ |
| 446 | #define CONFIG2_HOWMANY (0x00000001) /* >512 VCIs? */ |
| 447 | #define CONFIG2_PTI7_MODE (0x00000002) /* Make PTI=7 RM, not OAM */ |
| 448 | #define CONFIG2_VPI_CHK_DIS (0x00000004) /* Ignore RX VPI value */ |
| 449 | #define CONFIG2_HEC_DROP (0x00000008) /* Drop cells w/ HEC errors */ |
| 450 | #define CONFIG2_VCI0_NORMAL (0x00000010) /* Treat VCI=0 normally */ |
| 451 | #define CONFIG2_CBR_ENABLE (0x00000020) /* Deal with CBR traffic */ |
| 452 | #define CONFIG2_TRASH_ALL (0x00000040) /* Trashing incoming cells */ |
| 453 | #define CONFIG2_TX_DISABLE (0x00000080) /* Trashing outgoing cells */ |
| 454 | #define CONFIG2_SET_TRASH (0x00000100) /* Turn trashing on */ |
| 455 | Statistics_Reg = 0x34, /* Statistics; bits: */ |
| 456 | #define STATS_GET_FIFO_OVFL(x) (((x)>> 0)&0xFF) /* FIFO overflowed */ |
| 457 | #define STATS_GET_HEC_ERR(x) (((x)>> 8)&0xFF) /* HEC was bad */ |
| 458 | #define STATS_GET_BAD_VCI(x) (((x)>>16)&0xFF) /* VCI not open */ |
| 459 | #define STATS_GET_BUF_OVFL(x) (((x)>>24)&0xFF) /* VCC buffer full */ |
| 460 | ServiceStuff_Reg = 0x38, /* Service stuff; bits: */ |
| 461 | #define SSTUFF_SET_SIZE(x) ((x)*0x20000000) /* size of service buffer */ |
| 462 | #define SSTUFF_SET_ADDR(x) ((x)>>8) /* set address of buffer */ |
| 463 | ServWrite_Reg = 0x3C, /* ServWrite Pointer */ |
| 464 | ServRead_Reg = 0x40, /* ServRead Pointer */ |
| 465 | TxDepth_Reg = 0x44, /* FIFO Transmit Depth */ |
| 466 | Butt_Reg = 0x48, /* Butt register */ |
| 467 | CBR_ICG_Reg = 0x50, |
| 468 | CBR_PTR_Reg = 0x54, |
| 469 | PingCount_Reg = 0x58, /* Ping count */ |
| 470 | DMA_Addr_Reg = 0x5C /* DMA address */ |
| 471 | }; |
| 472 | |
| 473 | static inline bus_addr_t reg_addr(const struct lanai_dev *lanai, |
| 474 | enum lanai_register reg) |
| 475 | { |
| 476 | return lanai->base + reg; |
| 477 | } |
| 478 | |
| 479 | static inline u32 reg_read(const struct lanai_dev *lanai, |
| 480 | enum lanai_register reg) |
| 481 | { |
| 482 | u32 t; |
| 483 | t = readl(reg_addr(lanai, reg)); |
| 484 | RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base, |
| 485 | (int) reg, t); |
| 486 | return t; |
| 487 | } |
| 488 | |
| 489 | static inline void reg_write(const struct lanai_dev *lanai, u32 val, |
| 490 | enum lanai_register reg) |
| 491 | { |
| 492 | RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base, |
| 493 | (int) reg, val); |
| 494 | writel(val, reg_addr(lanai, reg)); |
| 495 | } |
| 496 | |
| 497 | static inline void conf1_write(const struct lanai_dev *lanai) |
| 498 | { |
| 499 | reg_write(lanai, lanai->conf1, Config1_Reg); |
| 500 | } |
| 501 | |
| 502 | static inline void conf2_write(const struct lanai_dev *lanai) |
| 503 | { |
| 504 | reg_write(lanai, lanai->conf2, Config2_Reg); |
| 505 | } |
| 506 | |
| 507 | /* Same as conf2_write(), but defers I/O if we're powered down */ |
| 508 | static inline void conf2_write_if_powerup(const struct lanai_dev *lanai) |
| 509 | { |
| 510 | #ifdef USE_POWERDOWN |
| 511 | if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0)) |
| 512 | return; |
| 513 | #endif /* USE_POWERDOWN */ |
| 514 | conf2_write(lanai); |
| 515 | } |
| 516 | |
| 517 | static inline void reset_board(const struct lanai_dev *lanai) |
| 518 | { |
| 519 | DPRINTK("about to reset board\n"); |
| 520 | reg_write(lanai, 0, Reset_Reg); |
| 521 | /* |
| 522 | * If we don't delay a little while here then we can end up |
| 523 | * leaving the card in a VERY weird state and lock up the |
| 524 | * PCI bus. This isn't documented anywhere but I've convinced |
| 525 | * myself after a lot of painful experimentation |
| 526 | */ |
| 527 | udelay(5); |
| 528 | } |
| 529 | |
| 530 | /* -------------------- CARD SRAM UTILITIES: */ |
| 531 | |
| 532 | /* The SRAM is mapped into normal PCI memory space - the only catch is |
| 533 | * that it is only 16-bits wide but must be accessed as 32-bit. The |
| 534 | * 16 high bits will be zero. We don't hide this, since they get |
| 535 | * programmed mostly like discrete registers anyway |
| 536 | */ |
| 537 | #define SRAM_START (0x20000) |
| 538 | #define SRAM_BYTES (0x20000) /* Again, half don't really exist */ |
| 539 | |
| 540 | static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset) |
| 541 | { |
| 542 | return lanai->base + SRAM_START + offset; |
| 543 | } |
| 544 | |
| 545 | static inline u32 sram_read(const struct lanai_dev *lanai, int offset) |
| 546 | { |
| 547 | return readl(sram_addr(lanai, offset)); |
| 548 | } |
| 549 | |
| 550 | static inline void sram_write(const struct lanai_dev *lanai, |
| 551 | u32 val, int offset) |
| 552 | { |
| 553 | writel(val, sram_addr(lanai, offset)); |
| 554 | } |
| 555 | |
| 556 | static int __init sram_test_word( |
| 557 | const struct lanai_dev *lanai, int offset, u32 pattern) |
| 558 | { |
| 559 | u32 readback; |
| 560 | sram_write(lanai, pattern, offset); |
| 561 | readback = sram_read(lanai, offset); |
| 562 | if (likely(readback == pattern)) |
| 563 | return 0; |
| 564 | printk(KERN_ERR DEV_LABEL |
| 565 | "(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n", |
| 566 | lanai->number, offset, |
| 567 | (unsigned int) pattern, (unsigned int) readback); |
| 568 | return -EIO; |
| 569 | } |
| 570 | |
| 571 | static int __devinit sram_test_pass(const struct lanai_dev *lanai, u32 pattern) |
| 572 | { |
| 573 | int offset, result = 0; |
| 574 | for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4) |
| 575 | result = sram_test_word(lanai, offset, pattern); |
| 576 | return result; |
| 577 | } |
| 578 | |
| 579 | static int __devinit sram_test_and_clear(const struct lanai_dev *lanai) |
| 580 | { |
| 581 | #ifdef FULL_MEMORY_TEST |
| 582 | int result; |
| 583 | DPRINTK("testing SRAM\n"); |
| 584 | if ((result = sram_test_pass(lanai, 0x5555)) != 0) |
| 585 | return result; |
| 586 | if ((result = sram_test_pass(lanai, 0xAAAA)) != 0) |
| 587 | return result; |
| 588 | #endif |
| 589 | DPRINTK("clearing SRAM\n"); |
| 590 | return sram_test_pass(lanai, 0x0000); |
| 591 | } |
| 592 | |
| 593 | /* -------------------- CARD-BASED VCC TABLE UTILITIES: */ |
| 594 | |
| 595 | /* vcc table */ |
| 596 | enum lanai_vcc_offset { |
| 597 | vcc_rxaddr1 = 0x00, /* Location1, plus bits: */ |
| 598 | #define RXADDR1_SET_SIZE(x) ((x)*0x0000100) /* size of RX buffer */ |
| 599 | #define RXADDR1_SET_RMMODE(x) ((x)*0x00800) /* RM cell action; values: */ |
| 600 | #define RMMODE_TRASH (0) /* discard */ |
| 601 | #define RMMODE_PRESERVE (1) /* input as AAL0 */ |
| 602 | #define RMMODE_PIPE (2) /* pipe to coscheduler */ |
| 603 | #define RMMODE_PIPEALL (3) /* pipe non-RM too */ |
| 604 | #define RXADDR1_OAM_PRESERVE (0x00002000) /* Input OAM cells as AAL0 */ |
| 605 | #define RXADDR1_SET_MODE(x) ((x)*0x0004000) /* Reassembly mode */ |
| 606 | #define RXMODE_TRASH (0) /* discard */ |
| 607 | #define RXMODE_AAL0 (1) /* non-AAL5 mode */ |
| 608 | #define RXMODE_AAL5 (2) /* AAL5, intr. each PDU */ |
| 609 | #define RXMODE_AAL5_STREAM (3) /* AAL5 w/o per-PDU intr */ |
| 610 | vcc_rxaddr2 = 0x04, /* Location2 */ |
| 611 | vcc_rxcrc1 = 0x08, /* RX CRC claculation space */ |
| 612 | vcc_rxcrc2 = 0x0C, |
| 613 | vcc_rxwriteptr = 0x10, /* RX writeptr, plus bits: */ |
| 614 | #define RXWRITEPTR_LASTEFCI (0x00002000) /* Last PDU had EFCI bit */ |
| 615 | #define RXWRITEPTR_DROPPING (0x00004000) /* Had error, dropping */ |
| 616 | #define RXWRITEPTR_TRASHING (0x00008000) /* Trashing */ |
| 617 | vcc_rxbufstart = 0x14, /* RX bufstart, plus bits: */ |
| 618 | #define RXBUFSTART_CLP (0x00004000) |
| 619 | #define RXBUFSTART_CI (0x00008000) |
| 620 | vcc_rxreadptr = 0x18, /* RX readptr */ |
| 621 | vcc_txicg = 0x1C, /* TX ICG */ |
| 622 | vcc_txaddr1 = 0x20, /* Location1, plus bits: */ |
| 623 | #define TXADDR1_SET_SIZE(x) ((x)*0x0000100) /* size of TX buffer */ |
| 624 | #define TXADDR1_ABR (0x00008000) /* use ABR (doesn't work) */ |
| 625 | vcc_txaddr2 = 0x24, /* Location2 */ |
| 626 | vcc_txcrc1 = 0x28, /* TX CRC claculation space */ |
| 627 | vcc_txcrc2 = 0x2C, |
| 628 | vcc_txreadptr = 0x30, /* TX Readptr, plus bits: */ |
| 629 | #define TXREADPTR_GET_PTR(x) ((x)&0x01FFF) |
| 630 | #define TXREADPTR_MASK_DELTA (0x0000E000) /* ? */ |
| 631 | vcc_txendptr = 0x34, /* TX Endptr, plus bits: */ |
| 632 | #define TXENDPTR_CLP (0x00002000) |
| 633 | #define TXENDPTR_MASK_PDUMODE (0x0000C000) /* PDU mode; values: */ |
| 634 | #define PDUMODE_AAL0 (0*0x04000) |
| 635 | #define PDUMODE_AAL5 (2*0x04000) |
| 636 | #define PDUMODE_AAL5STREAM (3*0x04000) |
| 637 | vcc_txwriteptr = 0x38, /* TX Writeptr */ |
| 638 | #define TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF) |
| 639 | vcc_txcbr_next = 0x3C /* # of next CBR VCI in ring */ |
| 640 | #define TXCBR_NEXT_BOZO (0x00008000) /* "bozo bit" */ |
| 641 | }; |
| 642 | |
| 643 | #define CARDVCC_SIZE (0x40) |
| 644 | |
| 645 | static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai, |
| 646 | vci_t vci) |
| 647 | { |
| 648 | return sram_addr(lanai, vci * CARDVCC_SIZE); |
| 649 | } |
| 650 | |
| 651 | static inline u32 cardvcc_read(const struct lanai_vcc *lvcc, |
| 652 | enum lanai_vcc_offset offset) |
| 653 | { |
| 654 | u32 val; |
| 655 | APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n"); |
| 656 | val= readl(lvcc->vbase + offset); |
| 657 | RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n", |
| 658 | lvcc->vci, (int) offset, val); |
| 659 | return val; |
| 660 | } |
| 661 | |
| 662 | static inline void cardvcc_write(const struct lanai_vcc *lvcc, |
| 663 | u32 val, enum lanai_vcc_offset offset) |
| 664 | { |
| 665 | APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n"); |
| 666 | APRINTK((val & ~0xFFFF) == 0, |
| 667 | "cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n", |
| 668 | (unsigned int) val, lvcc->vci, (unsigned int) offset); |
| 669 | RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n", |
| 670 | lvcc->vci, (unsigned int) offset, (unsigned int) val); |
| 671 | writel(val, lvcc->vbase + offset); |
| 672 | } |
| 673 | |
| 674 | /* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */ |
| 675 | |
| 676 | /* How many bytes will an AAL5 PDU take to transmit - remember that: |
| 677 | * o we need to add 8 bytes for length, CPI, UU, and CRC |
| 678 | * o we need to round up to 48 bytes for cells |
| 679 | */ |
| 680 | static inline int aal5_size(int size) |
| 681 | { |
| 682 | int cells = (size + 8 + 47) / 48; |
| 683 | return cells * 48; |
| 684 | } |
| 685 | |
| 686 | /* How many bytes can we send if we have "space" space, assuming we have |
| 687 | * to send full cells |
| 688 | */ |
| 689 | static inline int aal5_spacefor(int space) |
| 690 | { |
| 691 | int cells = space / 48; |
| 692 | return cells * 48; |
| 693 | } |
| 694 | |
| 695 | /* -------------------- FREE AN ATM SKB: */ |
| 696 | |
| 697 | static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb) |
| 698 | { |
| 699 | if (atmvcc->pop != NULL) |
| 700 | atmvcc->pop(atmvcc, skb); |
| 701 | else |
| 702 | dev_kfree_skb_any(skb); |
| 703 | } |
| 704 | |
| 705 | /* -------------------- TURN VCCS ON AND OFF: */ |
| 706 | |
| 707 | static void host_vcc_start_rx(const struct lanai_vcc *lvcc) |
| 708 | { |
| 709 | u32 addr1; |
| 710 | if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) { |
| 711 | dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr; |
| 712 | cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1); |
| 713 | cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2); |
| 714 | cardvcc_write(lvcc, 0, vcc_rxwriteptr); |
| 715 | cardvcc_write(lvcc, 0, vcc_rxbufstart); |
| 716 | cardvcc_write(lvcc, 0, vcc_rxreadptr); |
| 717 | cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2); |
| 718 | addr1 = ((dmaaddr >> 8) & 0xFF) | |
| 719 | RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))| |
| 720 | RXADDR1_SET_RMMODE(RMMODE_TRASH) | /* ??? */ |
| 721 | /* RXADDR1_OAM_PRESERVE | --- no OAM support yet */ |
| 722 | RXADDR1_SET_MODE(RXMODE_AAL5); |
| 723 | } else |
| 724 | addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */ |
| 725 | RXADDR1_OAM_PRESERVE | /* ??? */ |
| 726 | RXADDR1_SET_MODE(RXMODE_AAL0); |
| 727 | /* This one must be last! */ |
| 728 | cardvcc_write(lvcc, addr1, vcc_rxaddr1); |
| 729 | } |
| 730 | |
| 731 | static void host_vcc_start_tx(const struct lanai_vcc *lvcc) |
| 732 | { |
| 733 | dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr; |
| 734 | cardvcc_write(lvcc, 0, vcc_txicg); |
| 735 | cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1); |
| 736 | cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2); |
| 737 | cardvcc_write(lvcc, 0, vcc_txreadptr); |
| 738 | cardvcc_write(lvcc, 0, vcc_txendptr); |
| 739 | cardvcc_write(lvcc, 0, vcc_txwriteptr); |
| 740 | cardvcc_write(lvcc, |
| 741 | (lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ? |
| 742 | TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next); |
| 743 | cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2); |
| 744 | cardvcc_write(lvcc, |
| 745 | ((dmaaddr >> 8) & 0xFF) | |
| 746 | TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)), |
| 747 | vcc_txaddr1); |
| 748 | } |
| 749 | |
| 750 | /* Shutdown receiving on card */ |
| 751 | static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc) |
| 752 | { |
| 753 | if (lvcc->vbase == NULL) /* We were never bound to a VCI */ |
| 754 | return; |
| 755 | /* 15.1.1 - set to trashing, wait one cell time (15us) */ |
| 756 | cardvcc_write(lvcc, |
| 757 | RXADDR1_SET_RMMODE(RMMODE_TRASH) | |
| 758 | RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1); |
| 759 | udelay(15); |
| 760 | /* 15.1.2 - clear rest of entries */ |
| 761 | cardvcc_write(lvcc, 0, vcc_rxaddr2); |
| 762 | cardvcc_write(lvcc, 0, vcc_rxcrc1); |
| 763 | cardvcc_write(lvcc, 0, vcc_rxcrc2); |
| 764 | cardvcc_write(lvcc, 0, vcc_rxwriteptr); |
| 765 | cardvcc_write(lvcc, 0, vcc_rxbufstart); |
| 766 | cardvcc_write(lvcc, 0, vcc_rxreadptr); |
| 767 | } |
| 768 | |
| 769 | /* Shutdown transmitting on card. |
| 770 | * Unfortunately the lanai needs us to wait until all the data |
| 771 | * drains out of the buffer before we can dealloc it, so this |
| 772 | * can take awhile -- up to 370ms for a full 128KB buffer |
| 773 | * assuming everone else is quiet. In theory the time is |
| 774 | * boundless if there's a CBR VCC holding things up. |
| 775 | */ |
| 776 | static void lanai_shutdown_tx_vci(struct lanai_dev *lanai, |
| 777 | struct lanai_vcc *lvcc) |
| 778 | { |
| 779 | struct sk_buff *skb; |
| 780 | unsigned long flags, timeout; |
| 781 | int read, write, lastread = -1; |
| 782 | APRINTK(!in_interrupt(), |
| 783 | "lanai_shutdown_tx_vci called w/o process context!\n"); |
| 784 | if (lvcc->vbase == NULL) /* We were never bound to a VCI */ |
| 785 | return; |
| 786 | /* 15.2.1 - wait for queue to drain */ |
| 787 | while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL) |
| 788 | lanai_free_skb(lvcc->tx.atmvcc, skb); |
| 789 | read_lock_irqsave(&vcc_sklist_lock, flags); |
| 790 | __clear_bit(lvcc->vci, lanai->backlog_vccs); |
| 791 | read_unlock_irqrestore(&vcc_sklist_lock, flags); |
| 792 | /* |
| 793 | * We need to wait for the VCC to drain but don't wait forever. We |
| 794 | * give each 1K of buffer size 1/128th of a second to clear out. |
| 795 | * TODO: maybe disable CBR if we're about to timeout? |
| 796 | */ |
| 797 | timeout = jiffies + |
| 798 | (((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7); |
| 799 | write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr)); |
| 800 | for (;;) { |
| 801 | read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)); |
| 802 | if (read == write && /* Is TX buffer empty? */ |
| 803 | (lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR || |
| 804 | (cardvcc_read(lvcc, vcc_txcbr_next) & |
| 805 | TXCBR_NEXT_BOZO) == 0)) |
| 806 | break; |
| 807 | if (read != lastread) { /* Has there been any progress? */ |
| 808 | lastread = read; |
| 809 | timeout += HZ / 10; |
| 810 | } |
| 811 | if (unlikely(time_after(jiffies, timeout))) { |
| 812 | printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on " |
| 813 | "backlog closing vci %d\n", |
| 814 | lvcc->tx.atmvcc->dev->number, lvcc->vci); |
| 815 | DPRINTK("read, write = %d, %d\n", read, write); |
| 816 | break; |
| 817 | } |
| 818 | msleep(40); |
| 819 | } |
| 820 | /* 15.2.2 - clear out all tx registers */ |
| 821 | cardvcc_write(lvcc, 0, vcc_txreadptr); |
| 822 | cardvcc_write(lvcc, 0, vcc_txwriteptr); |
| 823 | cardvcc_write(lvcc, 0, vcc_txendptr); |
| 824 | cardvcc_write(lvcc, 0, vcc_txcrc1); |
| 825 | cardvcc_write(lvcc, 0, vcc_txcrc2); |
| 826 | cardvcc_write(lvcc, 0, vcc_txaddr2); |
| 827 | cardvcc_write(lvcc, 0, vcc_txaddr1); |
| 828 | } |
| 829 | |
| 830 | /* -------------------- MANAGING AAL0 RX BUFFER: */ |
| 831 | |
| 832 | static inline int aal0_buffer_allocate(struct lanai_dev *lanai) |
| 833 | { |
| 834 | DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n"); |
| 835 | lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80, |
| 836 | lanai->pci); |
| 837 | return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0; |
| 838 | } |
| 839 | |
| 840 | static inline void aal0_buffer_free(struct lanai_dev *lanai) |
| 841 | { |
| 842 | DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n"); |
| 843 | lanai_buf_deallocate(&lanai->aal0buf, lanai->pci); |
| 844 | } |
| 845 | |
| 846 | /* -------------------- EEPROM UTILITIES: */ |
| 847 | |
| 848 | /* Offsets of data in the EEPROM */ |
| 849 | #define EEPROM_COPYRIGHT (0) |
| 850 | #define EEPROM_COPYRIGHT_LEN (44) |
| 851 | #define EEPROM_CHECKSUM (62) |
| 852 | #define EEPROM_CHECKSUM_REV (63) |
| 853 | #define EEPROM_MAC (64) |
| 854 | #define EEPROM_MAC_REV (70) |
| 855 | #define EEPROM_SERIAL (112) |
| 856 | #define EEPROM_SERIAL_REV (116) |
| 857 | #define EEPROM_MAGIC (120) |
| 858 | #define EEPROM_MAGIC_REV (124) |
| 859 | |
| 860 | #define EEPROM_MAGIC_VALUE (0x5AB478D2) |
| 861 | |
| 862 | #ifndef READ_EEPROM |
| 863 | |
| 864 | /* Stub functions to use if EEPROM reading is disabled */ |
| 865 | static int __devinit eeprom_read(struct lanai_dev *lanai) |
| 866 | { |
| 867 | printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n", |
| 868 | lanai->number); |
| 869 | memset(&lanai->eeprom[EEPROM_MAC], 0, 6); |
| 870 | return 0; |
| 871 | } |
| 872 | |
| 873 | static int __devinit eeprom_validate(struct lanai_dev *lanai) |
| 874 | { |
| 875 | lanai->serialno = 0; |
| 876 | lanai->magicno = EEPROM_MAGIC_VALUE; |
| 877 | return 0; |
| 878 | } |
| 879 | |
| 880 | #else /* READ_EEPROM */ |
| 881 | |
| 882 | static int __devinit eeprom_read(struct lanai_dev *lanai) |
| 883 | { |
| 884 | int i, address; |
| 885 | u8 data; |
| 886 | u32 tmp; |
| 887 | #define set_config1(x) do { lanai->conf1 = x; conf1_write(lanai); \ |
| 888 | } while (0) |
| 889 | #define clock_h() set_config1(lanai->conf1 | CONFIG1_PROMCLK) |
| 890 | #define clock_l() set_config1(lanai->conf1 &~ CONFIG1_PROMCLK) |
| 891 | #define data_h() set_config1(lanai->conf1 | CONFIG1_PROMDATA) |
| 892 | #define data_l() set_config1(lanai->conf1 &~ CONFIG1_PROMDATA) |
| 893 | #define pre_read() do { data_h(); clock_h(); udelay(5); } while (0) |
| 894 | #define read_pin() (reg_read(lanai, Status_Reg) & STATUS_PROMDATA) |
| 895 | #define send_stop() do { data_l(); udelay(5); clock_h(); udelay(5); \ |
| 896 | data_h(); udelay(5); } while (0) |
| 897 | /* start with both clock and data high */ |
| 898 | data_h(); clock_h(); udelay(5); |
| 899 | for (address = 0; address < LANAI_EEPROM_SIZE; address++) { |
| 900 | data = (address << 1) | 1; /* Command=read + address */ |
| 901 | /* send start bit */ |
| 902 | data_l(); udelay(5); |
| 903 | clock_l(); udelay(5); |
| 904 | for (i = 128; i != 0; i >>= 1) { /* write command out */ |
| 905 | tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) | |
| 906 | (data & i) ? CONFIG1_PROMDATA : 0; |
| 907 | if (lanai->conf1 != tmp) { |
| 908 | set_config1(tmp); |
| 909 | udelay(5); /* Let new data settle */ |
| 910 | } |
| 911 | clock_h(); udelay(5); clock_l(); udelay(5); |
| 912 | } |
| 913 | /* look for ack */ |
| 914 | data_h(); clock_h(); udelay(5); |
| 915 | if (read_pin() != 0) |
| 916 | goto error; /* No ack seen */ |
| 917 | clock_l(); udelay(5); |
| 918 | /* read back result */ |
| 919 | for (data = 0, i = 7; i >= 0; i--) { |
| 920 | data_h(); clock_h(); udelay(5); |
| 921 | data = (data << 1) | !!read_pin(); |
| 922 | clock_l(); udelay(5); |
| 923 | } |
| 924 | /* look again for ack */ |
| 925 | data_h(); clock_h(); udelay(5); |
| 926 | if (read_pin() == 0) |
| 927 | goto error; /* Spurious ack */ |
| 928 | clock_l(); udelay(5); |
| 929 | send_stop(); |
| 930 | lanai->eeprom[address] = data; |
| 931 | DPRINTK("EEPROM 0x%04X %02X\n", |
| 932 | (unsigned int) address, (unsigned int) data); |
| 933 | } |
| 934 | return 0; |
| 935 | error: |
| 936 | clock_l(); udelay(5); /* finish read */ |
| 937 | send_stop(); |
| 938 | printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n", |
| 939 | lanai->number, address); |
| 940 | return -EIO; |
| 941 | #undef set_config1 |
| 942 | #undef clock_h |
| 943 | #undef clock_l |
| 944 | #undef data_h |
| 945 | #undef data_l |
| 946 | #undef pre_read |
| 947 | #undef read_pin |
| 948 | #undef send_stop |
| 949 | } |
| 950 | |
| 951 | /* read a big-endian 4-byte value out of eeprom */ |
| 952 | static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address) |
| 953 | { |
| 954 | return be32_to_cpup((u32 *) (&lanai->eeprom[address])); |
| 955 | } |
| 956 | |
| 957 | /* Checksum/validate EEPROM contents */ |
| 958 | static int __devinit eeprom_validate(struct lanai_dev *lanai) |
| 959 | { |
| 960 | int i, s; |
| 961 | u32 v; |
| 962 | const u8 *e = lanai->eeprom; |
| 963 | #ifdef DEBUG |
| 964 | /* First, see if we can get an ASCIIZ string out of the copyright */ |
| 965 | for (i = EEPROM_COPYRIGHT; |
| 966 | i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++) |
| 967 | if (e[i] < 0x20 || e[i] > 0x7E) |
| 968 | break; |
| 969 | if ( i != EEPROM_COPYRIGHT && |
| 970 | i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0') |
| 971 | DPRINTK("eeprom: copyright = \"%s\"\n", |
| 972 | (char *) &e[EEPROM_COPYRIGHT]); |
| 973 | else |
| 974 | DPRINTK("eeprom: copyright not found\n"); |
| 975 | #endif |
| 976 | /* Validate checksum */ |
| 977 | for (i = s = 0; i < EEPROM_CHECKSUM; i++) |
| 978 | s += e[i]; |
| 979 | s &= 0xFF; |
| 980 | if (s != e[EEPROM_CHECKSUM]) { |
| 981 | printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad " |
| 982 | "(wanted 0x%02X, got 0x%02X)\n", lanai->number, |
| 983 | (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]); |
| 984 | return -EIO; |
| 985 | } |
| 986 | s ^= 0xFF; |
| 987 | if (s != e[EEPROM_CHECKSUM_REV]) { |
| 988 | printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum " |
| 989 | "bad (wanted 0x%02X, got 0x%02X)\n", lanai->number, |
| 990 | (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]); |
| 991 | return -EIO; |
| 992 | } |
| 993 | /* Verify MAC address */ |
| 994 | for (i = 0; i < 6; i++) |
| 995 | if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) { |
| 996 | printk(KERN_ERR DEV_LABEL |
| 997 | "(itf %d) : EEPROM MAC addresses don't match " |
| 998 | "(0x%02X, inverse 0x%02X)\n", lanai->number, |
| 999 | (unsigned int) e[EEPROM_MAC + i], |
| 1000 | (unsigned int) e[EEPROM_MAC_REV + i]); |
| 1001 | return -EIO; |
| 1002 | } |
| 1003 | DPRINTK("eeprom: MAC address = %02X:%02X:%02X:%02X:%02X:%02X\n", |
| 1004 | e[EEPROM_MAC + 0], e[EEPROM_MAC + 1], e[EEPROM_MAC + 2], |
| 1005 | e[EEPROM_MAC + 3], e[EEPROM_MAC + 4], e[EEPROM_MAC + 5]); |
| 1006 | /* Verify serial number */ |
| 1007 | lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL); |
| 1008 | v = eeprom_be4(lanai, EEPROM_SERIAL_REV); |
| 1009 | if ((lanai->serialno ^ v) != 0xFFFFFFFF) { |
| 1010 | printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers " |
| 1011 | "don't match (0x%08X, inverse 0x%08X)\n", lanai->number, |
| 1012 | (unsigned int) lanai->serialno, (unsigned int) v); |
| 1013 | return -EIO; |
| 1014 | } |
| 1015 | DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno); |
| 1016 | /* Verify magic number */ |
| 1017 | lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC); |
| 1018 | v = eeprom_be4(lanai, EEPROM_MAGIC_REV); |
| 1019 | if ((lanai->magicno ^ v) != 0xFFFFFFFF) { |
| 1020 | printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers " |
| 1021 | "don't match (0x%08X, inverse 0x%08X)\n", lanai->number, |
| 1022 | lanai->magicno, v); |
| 1023 | return -EIO; |
| 1024 | } |
| 1025 | DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno); |
| 1026 | if (lanai->magicno != EEPROM_MAGIC_VALUE) |
| 1027 | printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM " |
| 1028 | "magic not what expected (got 0x%08X, not 0x%08X)\n", |
| 1029 | lanai->number, (unsigned int) lanai->magicno, |
| 1030 | (unsigned int) EEPROM_MAGIC_VALUE); |
| 1031 | return 0; |
| 1032 | } |
| 1033 | |
| 1034 | #endif /* READ_EEPROM */ |
| 1035 | |
| 1036 | static inline const u8 *eeprom_mac(const struct lanai_dev *lanai) |
| 1037 | { |
| 1038 | return &lanai->eeprom[EEPROM_MAC]; |
| 1039 | } |
| 1040 | |
| 1041 | /* -------------------- INTERRUPT HANDLING UTILITIES: */ |
| 1042 | |
| 1043 | /* Interrupt types */ |
| 1044 | #define INT_STATS (0x00000002) /* Statistics counter overflow */ |
| 1045 | #define INT_SOOL (0x00000004) /* SOOL changed state */ |
| 1046 | #define INT_LOCD (0x00000008) /* LOCD changed state */ |
| 1047 | #define INT_LED (0x00000010) /* LED (HAPPI) changed state */ |
| 1048 | #define INT_GPIN (0x00000020) /* GPIN changed state */ |
| 1049 | #define INT_PING (0x00000040) /* PING_COUNT fulfilled */ |
| 1050 | #define INT_WAKE (0x00000080) /* Lanai wants bus */ |
| 1051 | #define INT_CBR0 (0x00000100) /* CBR sched hit VCI 0 */ |
| 1052 | #define INT_LOCK (0x00000200) /* Service list overflow */ |
| 1053 | #define INT_MISMATCH (0x00000400) /* TX magic list mismatch */ |
| 1054 | #define INT_AAL0_STR (0x00000800) /* Non-AAL5 buffer half filled */ |
| 1055 | #define INT_AAL0 (0x00001000) /* Non-AAL5 data available */ |
| 1056 | #define INT_SERVICE (0x00002000) /* Service list entries available */ |
| 1057 | #define INT_TABORTSENT (0x00004000) /* Target abort sent by lanai */ |
| 1058 | #define INT_TABORTBM (0x00008000) /* Abort rcv'd as bus master */ |
| 1059 | #define INT_TIMEOUTBM (0x00010000) /* No response to bus master */ |
| 1060 | #define INT_PCIPARITY (0x00020000) /* Parity error on PCI */ |
| 1061 | |
| 1062 | /* Sets of the above */ |
| 1063 | #define INT_ALL (0x0003FFFE) /* All interrupts */ |
| 1064 | #define INT_STATUS (0x0000003C) /* Some status pin changed */ |
| 1065 | #define INT_DMASHUT (0x00038000) /* DMA engine got shut down */ |
| 1066 | #define INT_SEGSHUT (0x00000700) /* Segmentation got shut down */ |
| 1067 | |
| 1068 | static inline u32 intr_pending(const struct lanai_dev *lanai) |
| 1069 | { |
| 1070 | return reg_read(lanai, IntStatusMasked_Reg); |
| 1071 | } |
| 1072 | |
| 1073 | static inline void intr_enable(const struct lanai_dev *lanai, u32 i) |
| 1074 | { |
| 1075 | reg_write(lanai, i, IntControlEna_Reg); |
| 1076 | } |
| 1077 | |
| 1078 | static inline void intr_disable(const struct lanai_dev *lanai, u32 i) |
| 1079 | { |
| 1080 | reg_write(lanai, i, IntControlDis_Reg); |
| 1081 | } |
| 1082 | |
| 1083 | /* -------------------- CARD/PCI STATUS: */ |
| 1084 | |
| 1085 | static void status_message(int itf, const char *name, int status) |
| 1086 | { |
| 1087 | static const char *onoff[2] = { "off to on", "on to off" }; |
| 1088 | printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n", |
| 1089 | itf, name, onoff[!status]); |
| 1090 | } |
| 1091 | |
| 1092 | static void lanai_check_status(struct lanai_dev *lanai) |
| 1093 | { |
| 1094 | u32 new = reg_read(lanai, Status_Reg); |
| 1095 | u32 changes = new ^ lanai->status; |
| 1096 | lanai->status = new; |
| 1097 | #define e(flag, name) \ |
| 1098 | if (changes & flag) \ |
| 1099 | status_message(lanai->number, name, new & flag) |
| 1100 | e(STATUS_SOOL, "SOOL"); |
| 1101 | e(STATUS_LOCD, "LOCD"); |
| 1102 | e(STATUS_LED, "LED"); |
| 1103 | e(STATUS_GPIN, "GPIN"); |
| 1104 | #undef e |
| 1105 | } |
| 1106 | |
| 1107 | static void pcistatus_got(int itf, const char *name) |
| 1108 | { |
| 1109 | printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name); |
| 1110 | } |
| 1111 | |
| 1112 | static void pcistatus_check(struct lanai_dev *lanai, int clearonly) |
| 1113 | { |
| 1114 | u16 s; |
| 1115 | int result; |
| 1116 | result = pci_read_config_word(lanai->pci, PCI_STATUS, &s); |
| 1117 | if (result != PCIBIOS_SUCCESSFUL) { |
| 1118 | printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: " |
| 1119 | "%d\n", lanai->number, result); |
| 1120 | return; |
| 1121 | } |
| 1122 | s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR | |
| 1123 | PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT | |
| 1124 | PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY; |
| 1125 | if (s == 0) |
| 1126 | return; |
| 1127 | result = pci_write_config_word(lanai->pci, PCI_STATUS, s); |
| 1128 | if (result != PCIBIOS_SUCCESSFUL) |
| 1129 | printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: " |
| 1130 | "%d\n", lanai->number, result); |
| 1131 | if (clearonly) |
| 1132 | return; |
| 1133 | #define e(flag, name, stat) \ |
| 1134 | if (s & flag) { \ |
| 1135 | pcistatus_got(lanai->number, name); \ |
| 1136 | ++lanai->stats.pcierr_##stat; \ |
| 1137 | } |
| 1138 | e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect); |
| 1139 | e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set); |
| 1140 | e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort); |
| 1141 | e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort); |
| 1142 | e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort); |
| 1143 | e(PCI_STATUS_PARITY, "master parity", master_parity); |
| 1144 | #undef e |
| 1145 | } |
| 1146 | |
| 1147 | /* -------------------- VCC TX BUFFER UTILITIES: */ |
| 1148 | |
| 1149 | /* space left in tx buffer in bytes */ |
| 1150 | static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr) |
| 1151 | { |
| 1152 | int r; |
| 1153 | r = endptr * 16; |
| 1154 | r -= ((unsigned long) lvcc->tx.buf.ptr) - |
| 1155 | ((unsigned long) lvcc->tx.buf.start); |
| 1156 | r -= 16; /* Leave "bubble" - if start==end it looks empty */ |
| 1157 | if (r < 0) |
| 1158 | r += lanai_buf_size(&lvcc->tx.buf); |
| 1159 | return r; |
| 1160 | } |
| 1161 | |
| 1162 | /* test if VCC is currently backlogged */ |
| 1163 | static inline int vcc_is_backlogged(/*const*/ struct lanai_vcc *lvcc) |
| 1164 | { |
| 1165 | return !skb_queue_empty(&lvcc->tx.backlog); |
| 1166 | } |
| 1167 | |
| 1168 | /* Bit fields in the segmentation buffer descriptor */ |
| 1169 | #define DESCRIPTOR_MAGIC (0xD0000000) |
| 1170 | #define DESCRIPTOR_AAL5 (0x00008000) |
| 1171 | #define DESCRIPTOR_AAL5_STREAM (0x00004000) |
| 1172 | #define DESCRIPTOR_CLP (0x00002000) |
| 1173 | |
| 1174 | /* Add 32-bit descriptor with its padding */ |
| 1175 | static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc, |
| 1176 | u32 flags, int len) |
| 1177 | { |
| 1178 | int pos; |
| 1179 | APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0, |
| 1180 | "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr); |
| 1181 | lvcc->tx.buf.ptr += 4; /* Hope the values REALLY don't matter */ |
| 1182 | pos = ((unsigned char *) lvcc->tx.buf.ptr) - |
| 1183 | (unsigned char *) lvcc->tx.buf.start; |
| 1184 | APRINTK((pos & ~0x0001FFF0) == 0, |
| 1185 | "vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, " |
| 1186 | "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci, |
| 1187 | lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end); |
| 1188 | pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1); |
| 1189 | APRINTK((pos & ~0x0001FFF0) == 0, |
| 1190 | "vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, " |
| 1191 | "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci, |
| 1192 | lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end); |
| 1193 | lvcc->tx.buf.ptr[-1] = |
| 1194 | cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 | |
| 1195 | ((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ? |
| 1196 | DESCRIPTOR_CLP : 0) | flags | pos >> 4); |
| 1197 | if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end) |
| 1198 | lvcc->tx.buf.ptr = lvcc->tx.buf.start; |
| 1199 | } |
| 1200 | |
| 1201 | /* Add 32-bit AAL5 trailer and leave room for its CRC */ |
| 1202 | static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc, |
| 1203 | int len, int cpi, int uu) |
| 1204 | { |
| 1205 | APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8, |
| 1206 | "vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr); |
| 1207 | lvcc->tx.buf.ptr += 2; |
| 1208 | lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len); |
| 1209 | if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end) |
| 1210 | lvcc->tx.buf.ptr = lvcc->tx.buf.start; |
| 1211 | } |
| 1212 | |
| 1213 | static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc, |
| 1214 | const unsigned char *src, int n) |
| 1215 | { |
| 1216 | unsigned char *e; |
| 1217 | int m; |
| 1218 | e = ((unsigned char *) lvcc->tx.buf.ptr) + n; |
| 1219 | m = e - (unsigned char *) lvcc->tx.buf.end; |
| 1220 | if (m < 0) |
| 1221 | m = 0; |
| 1222 | memcpy(lvcc->tx.buf.ptr, src, n - m); |
| 1223 | if (m != 0) { |
| 1224 | memcpy(lvcc->tx.buf.start, src + n - m, m); |
| 1225 | e = ((unsigned char *) lvcc->tx.buf.start) + m; |
| 1226 | } |
| 1227 | lvcc->tx.buf.ptr = (u32 *) e; |
| 1228 | } |
| 1229 | |
| 1230 | static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n) |
| 1231 | { |
| 1232 | unsigned char *e; |
| 1233 | int m; |
| 1234 | if (n == 0) |
| 1235 | return; |
| 1236 | e = ((unsigned char *) lvcc->tx.buf.ptr) + n; |
| 1237 | m = e - (unsigned char *) lvcc->tx.buf.end; |
| 1238 | if (m < 0) |
| 1239 | m = 0; |
| 1240 | memset(lvcc->tx.buf.ptr, 0, n - m); |
| 1241 | if (m != 0) { |
| 1242 | memset(lvcc->tx.buf.start, 0, m); |
| 1243 | e = ((unsigned char *) lvcc->tx.buf.start) + m; |
| 1244 | } |
| 1245 | lvcc->tx.buf.ptr = (u32 *) e; |
| 1246 | } |
| 1247 | |
| 1248 | /* Update "butt" register to specify new WritePtr */ |
| 1249 | static inline void lanai_endtx(struct lanai_dev *lanai, |
| 1250 | const struct lanai_vcc *lvcc) |
| 1251 | { |
| 1252 | int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) - |
| 1253 | (unsigned char *) lvcc->tx.buf.start; |
| 1254 | APRINTK((ptr & ~0x0001FFF0) == 0, |
| 1255 | "lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n", |
| 1256 | ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr, |
| 1257 | lvcc->tx.buf.end); |
| 1258 | |
| 1259 | /* |
| 1260 | * Since the "butt register" is a shared resounce on the card we |
| 1261 | * serialize all accesses to it through this spinlock. This is |
| 1262 | * mostly just paranoia sicne the register is rarely "busy" anyway |
| 1263 | * but is needed for correctness. |
| 1264 | */ |
| 1265 | spin_lock(&lanai->endtxlock); |
| 1266 | /* |
| 1267 | * We need to check if the "butt busy" bit is set before |
| 1268 | * updating the butt register. In theory this should |
| 1269 | * never happen because the ATM card is plenty fast at |
| 1270 | * updating the register. Still, we should make sure |
| 1271 | */ |
| 1272 | for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) { |
| 1273 | if (unlikely(i > 50)) { |
| 1274 | printk(KERN_ERR DEV_LABEL "(itf %d): butt register " |
| 1275 | "always busy!\n", lanai->number); |
| 1276 | break; |
| 1277 | } |
| 1278 | udelay(5); |
| 1279 | } |
| 1280 | /* |
| 1281 | * Before we tall the card to start work we need to be sure 100% of |
| 1282 | * the info in the service buffer has been written before we tell |
| 1283 | * the card about it |
| 1284 | */ |
| 1285 | wmb(); |
| 1286 | reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg); |
| 1287 | spin_unlock(&lanai->endtxlock); |
| 1288 | } |
| 1289 | |
| 1290 | /* |
| 1291 | * Add one AAL5 PDU to lvcc's transmit buffer. Caller garauntees there's |
| 1292 | * space available. "pdusize" is the number of bytes the PDU will take |
| 1293 | */ |
| 1294 | static void lanai_send_one_aal5(struct lanai_dev *lanai, |
| 1295 | struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize) |
| 1296 | { |
| 1297 | int pad; |
| 1298 | APRINTK(pdusize == aal5_size(skb->len), |
| 1299 | "lanai_send_one_aal5: wrong size packet (%d != %d)\n", |
| 1300 | pdusize, aal5_size(skb->len)); |
| 1301 | vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize); |
| 1302 | pad = pdusize - skb->len - 8; |
| 1303 | APRINTK(pad >= 0, "pad is negative (%d)\n", pad); |
| 1304 | APRINTK(pad < 48, "pad is too big (%d)\n", pad); |
| 1305 | vcc_tx_memcpy(lvcc, skb->data, skb->len); |
| 1306 | vcc_tx_memzero(lvcc, pad); |
| 1307 | vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0); |
| 1308 | lanai_endtx(lanai, lvcc); |
| 1309 | lanai_free_skb(lvcc->tx.atmvcc, skb); |
| 1310 | atomic_inc(&lvcc->tx.atmvcc->stats->tx); |
| 1311 | } |
| 1312 | |
| 1313 | /* Try to fill the buffer - don't call unless there is backlog */ |
| 1314 | static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai, |
| 1315 | struct lanai_vcc *lvcc, int endptr) |
| 1316 | { |
| 1317 | int n; |
| 1318 | struct sk_buff *skb; |
| 1319 | int space = vcc_tx_space(lvcc, endptr); |
| 1320 | APRINTK(vcc_is_backlogged(lvcc), |
| 1321 | "vcc_tx_unqueue() called with empty backlog (vci=%d)\n", |
| 1322 | lvcc->vci); |
| 1323 | while (space >= 64) { |
| 1324 | skb = skb_dequeue(&lvcc->tx.backlog); |
| 1325 | if (skb == NULL) |
| 1326 | goto no_backlog; |
| 1327 | n = aal5_size(skb->len); |
| 1328 | if (n + 16 > space) { |
| 1329 | /* No room for this packet - put it back on queue */ |
| 1330 | skb_queue_head(&lvcc->tx.backlog, skb); |
| 1331 | return; |
| 1332 | } |
| 1333 | lanai_send_one_aal5(lanai, lvcc, skb, n); |
| 1334 | space -= n + 16; |
| 1335 | } |
| 1336 | if (!vcc_is_backlogged(lvcc)) { |
| 1337 | no_backlog: |
| 1338 | __clear_bit(lvcc->vci, lanai->backlog_vccs); |
| 1339 | } |
| 1340 | } |
| 1341 | |
| 1342 | /* Given an skb that we want to transmit either send it now or queue */ |
| 1343 | static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc, |
| 1344 | struct sk_buff *skb) |
| 1345 | { |
| 1346 | int space, n; |
| 1347 | if (vcc_is_backlogged(lvcc)) /* Already backlogged */ |
| 1348 | goto queue_it; |
| 1349 | space = vcc_tx_space(lvcc, |
| 1350 | TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr))); |
| 1351 | n = aal5_size(skb->len); |
| 1352 | APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n); |
| 1353 | if (space < n + 16) { /* No space for this PDU */ |
| 1354 | __set_bit(lvcc->vci, lanai->backlog_vccs); |
| 1355 | queue_it: |
| 1356 | skb_queue_tail(&lvcc->tx.backlog, skb); |
| 1357 | return; |
| 1358 | } |
| 1359 | lanai_send_one_aal5(lanai, lvcc, skb, n); |
| 1360 | } |
| 1361 | |
| 1362 | static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai, |
| 1363 | struct lanai_vcc *lvcc, int endptr) |
| 1364 | { |
| 1365 | printk(KERN_INFO DEV_LABEL |
| 1366 | ": vcc_tx_unqueue_aal0: not implemented\n"); |
| 1367 | } |
| 1368 | |
| 1369 | static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc, |
| 1370 | struct sk_buff *skb) |
| 1371 | { |
| 1372 | printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n"); |
| 1373 | /* Remember to increment lvcc->tx.atmvcc->stats->tx */ |
| 1374 | lanai_free_skb(lvcc->tx.atmvcc, skb); |
| 1375 | } |
| 1376 | |
| 1377 | /* -------------------- VCC RX BUFFER UTILITIES: */ |
| 1378 | |
| 1379 | /* unlike the _tx_ cousins, this doesn't update ptr */ |
| 1380 | static inline void vcc_rx_memcpy(unsigned char *dest, |
| 1381 | const struct lanai_vcc *lvcc, int n) |
| 1382 | { |
| 1383 | int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n - |
| 1384 | ((const unsigned char *) (lvcc->rx.buf.end)); |
| 1385 | if (m < 0) |
| 1386 | m = 0; |
| 1387 | memcpy(dest, lvcc->rx.buf.ptr, n - m); |
| 1388 | memcpy(dest + n - m, lvcc->rx.buf.start, m); |
| 1389 | /* Make sure that these copies don't get reordered */ |
| 1390 | barrier(); |
| 1391 | } |
| 1392 | |
| 1393 | /* Receive AAL5 data on a VCC with a particular endptr */ |
| 1394 | static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr) |
| 1395 | { |
| 1396 | int size; |
| 1397 | struct sk_buff *skb; |
| 1398 | /*const*/ u32 *x, *end = &lvcc->rx.buf.start[endptr * 4]; |
| 1399 | int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr); |
| 1400 | if (n < 0) |
| 1401 | n += lanai_buf_size(&lvcc->rx.buf); |
| 1402 | APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15), |
| 1403 | "vcc_rx_aal5: n out of range (%d/%Zu)\n", |
| 1404 | n, lanai_buf_size(&lvcc->rx.buf)); |
| 1405 | /* Recover the second-to-last word to get true pdu length */ |
| 1406 | if ((x = &end[-2]) < lvcc->rx.buf.start) |
| 1407 | x = &lvcc->rx.buf.end[-2]; |
| 1408 | /* |
| 1409 | * Before we actually read from the buffer, make sure the memory |
| 1410 | * changes have arrived |
| 1411 | */ |
| 1412 | rmb(); |
| 1413 | size = be32_to_cpup(x) & 0xffff; |
| 1414 | if (unlikely(n != aal5_size(size))) { |
| 1415 | /* Make sure size matches padding */ |
| 1416 | printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length " |
| 1417 | "on vci=%d - size=%d n=%d\n", |
| 1418 | lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n); |
| 1419 | lvcc->stats.x.aal5.rx_badlen++; |
| 1420 | goto out; |
| 1421 | } |
| 1422 | skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC); |
| 1423 | if (unlikely(skb == NULL)) { |
| 1424 | lvcc->stats.rx_nomem++; |
| 1425 | goto out; |
| 1426 | } |
| 1427 | skb_put(skb, size); |
| 1428 | vcc_rx_memcpy(skb->data, lvcc, size); |
| 1429 | ATM_SKB(skb)->vcc = lvcc->rx.atmvcc; |
Patrick McHardy | a61bbcf | 2005-08-14 17:24:31 -0700 | [diff] [blame^] | 1430 | __net_timestamp(skb); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1431 | lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb); |
| 1432 | atomic_inc(&lvcc->rx.atmvcc->stats->rx); |
| 1433 | out: |
| 1434 | lvcc->rx.buf.ptr = end; |
| 1435 | cardvcc_write(lvcc, endptr, vcc_rxreadptr); |
| 1436 | } |
| 1437 | |
| 1438 | static void vcc_rx_aal0(struct lanai_dev *lanai) |
| 1439 | { |
| 1440 | printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n"); |
| 1441 | /* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */ |
| 1442 | /* Remember to increment lvcc->rx.atmvcc->stats->rx */ |
| 1443 | } |
| 1444 | |
| 1445 | /* -------------------- MANAGING HOST-BASED VCC TABLE: */ |
| 1446 | |
| 1447 | /* Decide whether to use vmalloc or get_zeroed_page for VCC table */ |
| 1448 | #if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE |
| 1449 | #define VCCTABLE_GETFREEPAGE |
| 1450 | #else |
| 1451 | #include <linux/vmalloc.h> |
| 1452 | #endif |
| 1453 | |
| 1454 | static int __devinit vcc_table_allocate(struct lanai_dev *lanai) |
| 1455 | { |
| 1456 | #ifdef VCCTABLE_GETFREEPAGE |
| 1457 | APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE, |
| 1458 | "vcc table > PAGE_SIZE!"); |
| 1459 | lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL); |
| 1460 | return (lanai->vccs == NULL) ? -ENOMEM : 0; |
| 1461 | #else |
| 1462 | int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *); |
| 1463 | lanai->vccs = (struct lanai_vcc **) vmalloc(bytes); |
| 1464 | if (unlikely(lanai->vccs == NULL)) |
| 1465 | return -ENOMEM; |
| 1466 | memset(lanai->vccs, 0, bytes); |
| 1467 | return 0; |
| 1468 | #endif |
| 1469 | } |
| 1470 | |
| 1471 | static inline void vcc_table_deallocate(const struct lanai_dev *lanai) |
| 1472 | { |
| 1473 | #ifdef VCCTABLE_GETFREEPAGE |
| 1474 | free_page((unsigned long) lanai->vccs); |
| 1475 | #else |
| 1476 | vfree(lanai->vccs); |
| 1477 | #endif |
| 1478 | } |
| 1479 | |
| 1480 | /* Allocate a fresh lanai_vcc, with the appropriate things cleared */ |
| 1481 | static inline struct lanai_vcc *new_lanai_vcc(void) |
| 1482 | { |
| 1483 | struct lanai_vcc *lvcc; |
| 1484 | lvcc = (struct lanai_vcc *) kmalloc(sizeof(*lvcc), GFP_KERNEL); |
| 1485 | if (likely(lvcc != NULL)) { |
| 1486 | lvcc->vbase = NULL; |
| 1487 | lvcc->rx.atmvcc = lvcc->tx.atmvcc = NULL; |
| 1488 | lvcc->nref = 0; |
| 1489 | memset(&lvcc->stats, 0, sizeof lvcc->stats); |
| 1490 | lvcc->rx.buf.start = lvcc->tx.buf.start = NULL; |
| 1491 | skb_queue_head_init(&lvcc->tx.backlog); |
| 1492 | #ifdef DEBUG |
| 1493 | lvcc->tx.unqueue = NULL; |
| 1494 | lvcc->vci = -1; |
| 1495 | #endif |
| 1496 | } |
| 1497 | return lvcc; |
| 1498 | } |
| 1499 | |
| 1500 | static int lanai_get_sized_buffer(struct lanai_dev *lanai, |
| 1501 | struct lanai_buffer *buf, int max_sdu, int multiplier, |
| 1502 | const char *name) |
| 1503 | { |
| 1504 | int size; |
| 1505 | if (unlikely(max_sdu < 1)) |
| 1506 | max_sdu = 1; |
| 1507 | max_sdu = aal5_size(max_sdu); |
| 1508 | size = (max_sdu + 16) * multiplier + 16; |
| 1509 | lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci); |
| 1510 | if (unlikely(buf->start == NULL)) |
| 1511 | return -ENOMEM; |
| 1512 | if (unlikely(lanai_buf_size(buf) < size)) |
| 1513 | printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes " |
| 1514 | "for %s buffer, got only %Zu\n", lanai->number, size, |
| 1515 | name, lanai_buf_size(buf)); |
| 1516 | DPRINTK("Allocated %Zu byte %s buffer\n", lanai_buf_size(buf), name); |
| 1517 | return 0; |
| 1518 | } |
| 1519 | |
| 1520 | /* Setup a RX buffer for a currently unbound AAL5 vci */ |
| 1521 | static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai, |
| 1522 | struct lanai_vcc *lvcc, const struct atm_qos *qos) |
| 1523 | { |
| 1524 | return lanai_get_sized_buffer(lanai, &lvcc->rx.buf, |
| 1525 | qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX"); |
| 1526 | } |
| 1527 | |
| 1528 | /* Setup a TX buffer for a currently unbound AAL5 vci */ |
| 1529 | static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc, |
| 1530 | const struct atm_qos *qos) |
| 1531 | { |
| 1532 | int max_sdu, multiplier; |
| 1533 | if (qos->aal == ATM_AAL0) { |
| 1534 | lvcc->tx.unqueue = vcc_tx_unqueue_aal0; |
| 1535 | max_sdu = ATM_CELL_SIZE - 1; |
| 1536 | multiplier = AAL0_TX_MULTIPLIER; |
| 1537 | } else { |
| 1538 | lvcc->tx.unqueue = vcc_tx_unqueue_aal5; |
| 1539 | max_sdu = qos->txtp.max_sdu; |
| 1540 | multiplier = AAL5_TX_MULTIPLIER; |
| 1541 | } |
| 1542 | return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu, |
| 1543 | multiplier, "TX"); |
| 1544 | } |
| 1545 | |
| 1546 | static inline void host_vcc_bind(struct lanai_dev *lanai, |
| 1547 | struct lanai_vcc *lvcc, vci_t vci) |
| 1548 | { |
| 1549 | if (lvcc->vbase != NULL) |
| 1550 | return; /* We already were bound in the other direction */ |
| 1551 | DPRINTK("Binding vci %d\n", vci); |
| 1552 | #ifdef USE_POWERDOWN |
| 1553 | if (lanai->nbound++ == 0) { |
| 1554 | DPRINTK("Coming out of powerdown\n"); |
| 1555 | lanai->conf1 &= ~CONFIG1_POWERDOWN; |
| 1556 | conf1_write(lanai); |
| 1557 | conf2_write(lanai); |
| 1558 | } |
| 1559 | #endif |
| 1560 | lvcc->vbase = cardvcc_addr(lanai, vci); |
| 1561 | lanai->vccs[lvcc->vci = vci] = lvcc; |
| 1562 | } |
| 1563 | |
| 1564 | static inline void host_vcc_unbind(struct lanai_dev *lanai, |
| 1565 | struct lanai_vcc *lvcc) |
| 1566 | { |
| 1567 | if (lvcc->vbase == NULL) |
| 1568 | return; /* This vcc was never bound */ |
| 1569 | DPRINTK("Unbinding vci %d\n", lvcc->vci); |
| 1570 | lvcc->vbase = NULL; |
| 1571 | lanai->vccs[lvcc->vci] = NULL; |
| 1572 | #ifdef USE_POWERDOWN |
| 1573 | if (--lanai->nbound == 0) { |
| 1574 | DPRINTK("Going into powerdown\n"); |
| 1575 | lanai->conf1 |= CONFIG1_POWERDOWN; |
| 1576 | conf1_write(lanai); |
| 1577 | } |
| 1578 | #endif |
| 1579 | } |
| 1580 | |
| 1581 | /* -------------------- RESET CARD: */ |
| 1582 | |
| 1583 | static void lanai_reset(struct lanai_dev *lanai) |
| 1584 | { |
| 1585 | printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* reseting - not " |
| 1586 | "implemented\n", lanai->number); |
| 1587 | /* TODO */ |
| 1588 | /* The following is just a hack until we write the real |
| 1589 | * resetter - at least ack whatever interrupt sent us |
| 1590 | * here |
| 1591 | */ |
| 1592 | reg_write(lanai, INT_ALL, IntAck_Reg); |
| 1593 | lanai->stats.card_reset++; |
| 1594 | } |
| 1595 | |
| 1596 | /* -------------------- SERVICE LIST UTILITIES: */ |
| 1597 | |
| 1598 | /* |
| 1599 | * Allocate service buffer and tell card about it |
| 1600 | */ |
| 1601 | static int __devinit service_buffer_allocate(struct lanai_dev *lanai) |
| 1602 | { |
| 1603 | lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8, |
| 1604 | lanai->pci); |
| 1605 | if (unlikely(lanai->service.start == NULL)) |
| 1606 | return -ENOMEM; |
| 1607 | DPRINTK("allocated service buffer at 0x%08lX, size %Zu(%d)\n", |
| 1608 | (unsigned long) lanai->service.start, |
| 1609 | lanai_buf_size(&lanai->service), |
| 1610 | lanai_buf_size_cardorder(&lanai->service)); |
| 1611 | /* Clear ServWrite register to be safe */ |
| 1612 | reg_write(lanai, 0, ServWrite_Reg); |
| 1613 | /* ServiceStuff register contains size and address of buffer */ |
| 1614 | reg_write(lanai, |
| 1615 | SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) | |
| 1616 | SSTUFF_SET_ADDR(lanai->service.dmaaddr), |
| 1617 | ServiceStuff_Reg); |
| 1618 | return 0; |
| 1619 | } |
| 1620 | |
| 1621 | static inline void service_buffer_deallocate(struct lanai_dev *lanai) |
| 1622 | { |
| 1623 | lanai_buf_deallocate(&lanai->service, lanai->pci); |
| 1624 | } |
| 1625 | |
| 1626 | /* Bitfields in service list */ |
| 1627 | #define SERVICE_TX (0x80000000) /* Was from transmission */ |
| 1628 | #define SERVICE_TRASH (0x40000000) /* RXed PDU was trashed */ |
| 1629 | #define SERVICE_CRCERR (0x20000000) /* RXed PDU had CRC error */ |
| 1630 | #define SERVICE_CI (0x10000000) /* RXed PDU had CI set */ |
| 1631 | #define SERVICE_CLP (0x08000000) /* RXed PDU had CLP set */ |
| 1632 | #define SERVICE_STREAM (0x04000000) /* RX Stream mode */ |
| 1633 | #define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF) |
| 1634 | #define SERVICE_GET_END(x) ((x)&0x1FFF) |
| 1635 | |
| 1636 | /* Handle one thing from the service list - returns true if it marked a |
| 1637 | * VCC ready for xmit |
| 1638 | */ |
| 1639 | static int handle_service(struct lanai_dev *lanai, u32 s) |
| 1640 | { |
| 1641 | vci_t vci = SERVICE_GET_VCI(s); |
| 1642 | struct lanai_vcc *lvcc; |
| 1643 | read_lock(&vcc_sklist_lock); |
| 1644 | lvcc = lanai->vccs[vci]; |
| 1645 | if (unlikely(lvcc == NULL)) { |
| 1646 | read_unlock(&vcc_sklist_lock); |
| 1647 | DPRINTK("(itf %d) got service entry 0x%X for nonexistent " |
| 1648 | "vcc %d\n", lanai->number, (unsigned int) s, vci); |
| 1649 | if (s & SERVICE_TX) |
| 1650 | lanai->stats.service_notx++; |
| 1651 | else |
| 1652 | lanai->stats.service_norx++; |
| 1653 | return 0; |
| 1654 | } |
| 1655 | if (s & SERVICE_TX) { /* segmentation interrupt */ |
| 1656 | if (unlikely(lvcc->tx.atmvcc == NULL)) { |
| 1657 | read_unlock(&vcc_sklist_lock); |
| 1658 | DPRINTK("(itf %d) got service entry 0x%X for non-TX " |
| 1659 | "vcc %d\n", lanai->number, (unsigned int) s, vci); |
| 1660 | lanai->stats.service_notx++; |
| 1661 | return 0; |
| 1662 | } |
| 1663 | __set_bit(vci, lanai->transmit_ready); |
| 1664 | lvcc->tx.endptr = SERVICE_GET_END(s); |
| 1665 | read_unlock(&vcc_sklist_lock); |
| 1666 | return 1; |
| 1667 | } |
| 1668 | if (unlikely(lvcc->rx.atmvcc == NULL)) { |
| 1669 | read_unlock(&vcc_sklist_lock); |
| 1670 | DPRINTK("(itf %d) got service entry 0x%X for non-RX " |
| 1671 | "vcc %d\n", lanai->number, (unsigned int) s, vci); |
| 1672 | lanai->stats.service_norx++; |
| 1673 | return 0; |
| 1674 | } |
| 1675 | if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) { |
| 1676 | read_unlock(&vcc_sklist_lock); |
| 1677 | DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 " |
| 1678 | "vcc %d\n", lanai->number, (unsigned int) s, vci); |
| 1679 | lanai->stats.service_rxnotaal5++; |
| 1680 | atomic_inc(&lvcc->rx.atmvcc->stats->rx_err); |
| 1681 | return 0; |
| 1682 | } |
| 1683 | if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) { |
| 1684 | vcc_rx_aal5(lvcc, SERVICE_GET_END(s)); |
| 1685 | read_unlock(&vcc_sklist_lock); |
| 1686 | return 0; |
| 1687 | } |
| 1688 | if (s & SERVICE_TRASH) { |
| 1689 | int bytes; |
| 1690 | read_unlock(&vcc_sklist_lock); |
| 1691 | DPRINTK("got trashed rx pdu on vci %d\n", vci); |
| 1692 | atomic_inc(&lvcc->rx.atmvcc->stats->rx_err); |
| 1693 | lvcc->stats.x.aal5.service_trash++; |
| 1694 | bytes = (SERVICE_GET_END(s) * 16) - |
| 1695 | (((unsigned long) lvcc->rx.buf.ptr) - |
| 1696 | ((unsigned long) lvcc->rx.buf.start)) + 47; |
| 1697 | if (bytes < 0) |
| 1698 | bytes += lanai_buf_size(&lvcc->rx.buf); |
| 1699 | lanai->stats.ovfl_trash += (bytes / 48); |
| 1700 | return 0; |
| 1701 | } |
| 1702 | if (s & SERVICE_STREAM) { |
| 1703 | read_unlock(&vcc_sklist_lock); |
| 1704 | atomic_inc(&lvcc->rx.atmvcc->stats->rx_err); |
| 1705 | lvcc->stats.x.aal5.service_stream++; |
| 1706 | printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream " |
| 1707 | "PDU on VCI %d!\n", lanai->number, vci); |
| 1708 | lanai_reset(lanai); |
| 1709 | return 0; |
| 1710 | } |
| 1711 | DPRINTK("got rx crc error on vci %d\n", vci); |
| 1712 | atomic_inc(&lvcc->rx.atmvcc->stats->rx_err); |
| 1713 | lvcc->stats.x.aal5.service_rxcrc++; |
| 1714 | lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4]; |
| 1715 | cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr); |
| 1716 | read_unlock(&vcc_sklist_lock); |
| 1717 | return 0; |
| 1718 | } |
| 1719 | |
| 1720 | /* Try transmitting on all VCIs that we marked ready to serve */ |
| 1721 | static void iter_transmit(struct lanai_dev *lanai, vci_t vci) |
| 1722 | { |
| 1723 | struct lanai_vcc *lvcc = lanai->vccs[vci]; |
| 1724 | if (vcc_is_backlogged(lvcc)) |
| 1725 | lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr); |
| 1726 | } |
| 1727 | |
| 1728 | /* Run service queue -- called from interrupt context or with |
| 1729 | * interrupts otherwise disabled and with the lanai->servicelock |
| 1730 | * lock held |
| 1731 | */ |
| 1732 | static void run_service(struct lanai_dev *lanai) |
| 1733 | { |
| 1734 | int ntx = 0; |
| 1735 | u32 wreg = reg_read(lanai, ServWrite_Reg); |
| 1736 | const u32 *end = lanai->service.start + wreg; |
| 1737 | while (lanai->service.ptr != end) { |
| 1738 | ntx += handle_service(lanai, |
| 1739 | le32_to_cpup(lanai->service.ptr++)); |
| 1740 | if (lanai->service.ptr >= lanai->service.end) |
| 1741 | lanai->service.ptr = lanai->service.start; |
| 1742 | } |
| 1743 | reg_write(lanai, wreg, ServRead_Reg); |
| 1744 | if (ntx != 0) { |
| 1745 | read_lock(&vcc_sklist_lock); |
| 1746 | vci_bitfield_iterate(lanai, lanai->transmit_ready, |
| 1747 | iter_transmit); |
| 1748 | bitmap_zero(lanai->transmit_ready, NUM_VCI); |
| 1749 | read_unlock(&vcc_sklist_lock); |
| 1750 | } |
| 1751 | } |
| 1752 | |
| 1753 | /* -------------------- GATHER STATISTICS: */ |
| 1754 | |
| 1755 | static void get_statistics(struct lanai_dev *lanai) |
| 1756 | { |
| 1757 | u32 statreg = reg_read(lanai, Statistics_Reg); |
| 1758 | lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg); |
| 1759 | lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg); |
| 1760 | lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg); |
| 1761 | lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg); |
| 1762 | } |
| 1763 | |
| 1764 | /* -------------------- POLLING TIMER: */ |
| 1765 | |
| 1766 | #ifndef DEBUG_RW |
| 1767 | /* Try to undequeue 1 backlogged vcc */ |
| 1768 | static void iter_dequeue(struct lanai_dev *lanai, vci_t vci) |
| 1769 | { |
| 1770 | struct lanai_vcc *lvcc = lanai->vccs[vci]; |
| 1771 | int endptr; |
| 1772 | if (lvcc == NULL || lvcc->tx.atmvcc == NULL || |
| 1773 | !vcc_is_backlogged(lvcc)) { |
| 1774 | __clear_bit(vci, lanai->backlog_vccs); |
| 1775 | return; |
| 1776 | } |
| 1777 | endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)); |
| 1778 | lvcc->tx.unqueue(lanai, lvcc, endptr); |
| 1779 | } |
| 1780 | #endif /* !DEBUG_RW */ |
| 1781 | |
| 1782 | static void lanai_timed_poll(unsigned long arg) |
| 1783 | { |
| 1784 | struct lanai_dev *lanai = (struct lanai_dev *) arg; |
| 1785 | #ifndef DEBUG_RW |
| 1786 | unsigned long flags; |
| 1787 | #ifdef USE_POWERDOWN |
| 1788 | if (lanai->conf1 & CONFIG1_POWERDOWN) |
| 1789 | return; |
| 1790 | #endif /* USE_POWERDOWN */ |
| 1791 | local_irq_save(flags); |
| 1792 | /* If we can grab the spinlock, check if any services need to be run */ |
| 1793 | if (spin_trylock(&lanai->servicelock)) { |
| 1794 | run_service(lanai); |
| 1795 | spin_unlock(&lanai->servicelock); |
| 1796 | } |
| 1797 | /* ...and see if any backlogged VCs can make progress */ |
| 1798 | /* unfortunately linux has no read_trylock() currently */ |
| 1799 | read_lock(&vcc_sklist_lock); |
| 1800 | vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue); |
| 1801 | read_unlock(&vcc_sklist_lock); |
| 1802 | local_irq_restore(flags); |
| 1803 | |
| 1804 | get_statistics(lanai); |
| 1805 | #endif /* !DEBUG_RW */ |
| 1806 | mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD); |
| 1807 | } |
| 1808 | |
| 1809 | static inline void lanai_timed_poll_start(struct lanai_dev *lanai) |
| 1810 | { |
| 1811 | init_timer(&lanai->timer); |
| 1812 | lanai->timer.expires = jiffies + LANAI_POLL_PERIOD; |
| 1813 | lanai->timer.data = (unsigned long) lanai; |
| 1814 | lanai->timer.function = lanai_timed_poll; |
| 1815 | add_timer(&lanai->timer); |
| 1816 | } |
| 1817 | |
| 1818 | static inline void lanai_timed_poll_stop(struct lanai_dev *lanai) |
| 1819 | { |
| 1820 | del_timer_sync(&lanai->timer); |
| 1821 | } |
| 1822 | |
| 1823 | /* -------------------- INTERRUPT SERVICE: */ |
| 1824 | |
| 1825 | static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason) |
| 1826 | { |
| 1827 | u32 ack = 0; |
| 1828 | if (reason & INT_SERVICE) { |
| 1829 | ack = INT_SERVICE; |
| 1830 | spin_lock(&lanai->servicelock); |
| 1831 | run_service(lanai); |
| 1832 | spin_unlock(&lanai->servicelock); |
| 1833 | } |
| 1834 | if (reason & (INT_AAL0_STR | INT_AAL0)) { |
| 1835 | ack |= reason & (INT_AAL0_STR | INT_AAL0); |
| 1836 | vcc_rx_aal0(lanai); |
| 1837 | } |
| 1838 | /* The rest of the interrupts are pretty rare */ |
| 1839 | if (ack == reason) |
| 1840 | goto done; |
| 1841 | if (reason & INT_STATS) { |
| 1842 | reason &= ~INT_STATS; /* No need to ack */ |
| 1843 | get_statistics(lanai); |
| 1844 | } |
| 1845 | if (reason & INT_STATUS) { |
| 1846 | ack |= reason & INT_STATUS; |
| 1847 | lanai_check_status(lanai); |
| 1848 | } |
| 1849 | if (unlikely(reason & INT_DMASHUT)) { |
| 1850 | printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA " |
| 1851 | "shutdown, reason=0x%08X, address=0x%08X\n", |
| 1852 | lanai->number, (unsigned int) (reason & INT_DMASHUT), |
| 1853 | (unsigned int) reg_read(lanai, DMA_Addr_Reg)); |
| 1854 | if (reason & INT_TABORTBM) { |
| 1855 | lanai_reset(lanai); |
| 1856 | return; |
| 1857 | } |
| 1858 | ack |= (reason & INT_DMASHUT); |
| 1859 | printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n", |
| 1860 | lanai->number); |
| 1861 | conf1_write(lanai); |
| 1862 | lanai->stats.dma_reenable++; |
| 1863 | pcistatus_check(lanai, 0); |
| 1864 | } |
| 1865 | if (unlikely(reason & INT_TABORTSENT)) { |
| 1866 | ack |= (reason & INT_TABORTSENT); |
| 1867 | printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n", |
| 1868 | lanai->number); |
| 1869 | pcistatus_check(lanai, 0); |
| 1870 | } |
| 1871 | if (unlikely(reason & INT_SEGSHUT)) { |
| 1872 | printk(KERN_ERR DEV_LABEL "(itf %d): driver error - " |
| 1873 | "segmentation shutdown, reason=0x%08X\n", lanai->number, |
| 1874 | (unsigned int) (reason & INT_SEGSHUT)); |
| 1875 | lanai_reset(lanai); |
| 1876 | return; |
| 1877 | } |
| 1878 | if (unlikely(reason & (INT_PING | INT_WAKE))) { |
| 1879 | printk(KERN_ERR DEV_LABEL "(itf %d): driver error - " |
| 1880 | "unexpected interrupt 0x%08X, resetting\n", |
| 1881 | lanai->number, |
| 1882 | (unsigned int) (reason & (INT_PING | INT_WAKE))); |
| 1883 | lanai_reset(lanai); |
| 1884 | return; |
| 1885 | } |
| 1886 | #ifdef DEBUG |
| 1887 | if (unlikely(ack != reason)) { |
| 1888 | DPRINTK("unacked ints: 0x%08X\n", |
| 1889 | (unsigned int) (reason & ~ack)); |
| 1890 | ack = reason; |
| 1891 | } |
| 1892 | #endif |
| 1893 | done: |
| 1894 | if (ack != 0) |
| 1895 | reg_write(lanai, ack, IntAck_Reg); |
| 1896 | } |
| 1897 | |
| 1898 | static irqreturn_t lanai_int(int irq, void *devid, struct pt_regs *regs) |
| 1899 | { |
| 1900 | struct lanai_dev *lanai = (struct lanai_dev *) devid; |
| 1901 | u32 reason; |
| 1902 | |
| 1903 | (void) irq; (void) regs; /* unused variables */ |
| 1904 | |
| 1905 | #ifdef USE_POWERDOWN |
| 1906 | /* |
| 1907 | * If we're powered down we shouldn't be generating any interrupts - |
| 1908 | * so assume that this is a shared interrupt line and it's for someone |
| 1909 | * else |
| 1910 | */ |
| 1911 | if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN)) |
| 1912 | return IRQ_NONE; |
| 1913 | #endif |
| 1914 | |
| 1915 | reason = intr_pending(lanai); |
| 1916 | if (reason == 0) |
| 1917 | return IRQ_NONE; /* Must be for someone else */ |
| 1918 | |
| 1919 | do { |
| 1920 | if (unlikely(reason == 0xFFFFFFFF)) |
| 1921 | break; /* Maybe we've been unplugged? */ |
| 1922 | lanai_int_1(lanai, reason); |
| 1923 | reason = intr_pending(lanai); |
| 1924 | } while (reason != 0); |
| 1925 | |
| 1926 | return IRQ_HANDLED; |
| 1927 | } |
| 1928 | |
| 1929 | /* TODO - it would be nice if we could use the "delayed interrupt" system |
| 1930 | * to some advantage |
| 1931 | */ |
| 1932 | |
| 1933 | /* -------------------- CHECK BOARD ID/REV: */ |
| 1934 | |
| 1935 | /* |
| 1936 | * The board id and revision are stored both in the reset register and |
| 1937 | * in the PCI configuration space - the documentation says to check |
| 1938 | * each of them. If revp!=NULL we store the revision there |
| 1939 | */ |
| 1940 | static int check_board_id_and_rev(const char *name, u32 val, int *revp) |
| 1941 | { |
| 1942 | DPRINTK("%s says board_id=%d, board_rev=%d\n", name, |
| 1943 | (int) RESET_GET_BOARD_ID(val), |
| 1944 | (int) RESET_GET_BOARD_REV(val)); |
| 1945 | if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) { |
| 1946 | printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a " |
| 1947 | "Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val)); |
| 1948 | return -ENODEV; |
| 1949 | } |
| 1950 | if (revp != NULL) |
| 1951 | *revp = RESET_GET_BOARD_REV(val); |
| 1952 | return 0; |
| 1953 | } |
| 1954 | |
| 1955 | /* -------------------- PCI INITIALIZATION/SHUTDOWN: */ |
| 1956 | |
| 1957 | static int __devinit lanai_pci_start(struct lanai_dev *lanai) |
| 1958 | { |
| 1959 | struct pci_dev *pci = lanai->pci; |
| 1960 | int result; |
| 1961 | u16 w; |
| 1962 | |
| 1963 | if (pci_enable_device(pci) != 0) { |
| 1964 | printk(KERN_ERR DEV_LABEL "(itf %d): can't enable " |
| 1965 | "PCI device", lanai->number); |
| 1966 | return -ENXIO; |
| 1967 | } |
| 1968 | pci_set_master(pci); |
| 1969 | if (pci_set_dma_mask(pci, DMA_32BIT_MASK) != 0) { |
| 1970 | printk(KERN_WARNING DEV_LABEL |
| 1971 | "(itf %d): No suitable DMA available.\n", lanai->number); |
| 1972 | return -EBUSY; |
| 1973 | } |
| 1974 | if (pci_set_consistent_dma_mask(pci, 0xFFFFFFFF) != 0) { |
| 1975 | printk(KERN_WARNING DEV_LABEL |
| 1976 | "(itf %d): No suitable DMA available.\n", lanai->number); |
| 1977 | return -EBUSY; |
| 1978 | } |
| 1979 | /* Get the pci revision byte */ |
| 1980 | result = pci_read_config_byte(pci, PCI_REVISION_ID, |
| 1981 | &lanai->pci_revision); |
| 1982 | if (result != PCIBIOS_SUCCESSFUL) { |
| 1983 | printk(KERN_ERR DEV_LABEL "(itf %d): can't read " |
| 1984 | "PCI_REVISION_ID: %d\n", lanai->number, result); |
| 1985 | return -EINVAL; |
| 1986 | } |
| 1987 | result = pci_read_config_word(pci, PCI_SUBSYSTEM_ID, &w); |
| 1988 | if (result != PCIBIOS_SUCCESSFUL) { |
| 1989 | printk(KERN_ERR DEV_LABEL "(itf %d): can't read " |
| 1990 | "PCI_SUBSYSTEM_ID: %d\n", lanai->number, result); |
| 1991 | return -EINVAL; |
| 1992 | } |
| 1993 | result = check_board_id_and_rev("PCI", w, NULL); |
| 1994 | if (result != 0) |
| 1995 | return result; |
| 1996 | /* Set latency timer to zero as per lanai docs */ |
| 1997 | result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0); |
| 1998 | if (result != PCIBIOS_SUCCESSFUL) { |
| 1999 | printk(KERN_ERR DEV_LABEL "(itf %d): can't write " |
| 2000 | "PCI_LATENCY_TIMER: %d\n", lanai->number, result); |
| 2001 | return -EINVAL; |
| 2002 | } |
| 2003 | pcistatus_check(lanai, 1); |
| 2004 | pcistatus_check(lanai, 0); |
| 2005 | return 0; |
| 2006 | } |
| 2007 | |
| 2008 | /* -------------------- VPI/VCI ALLOCATION: */ |
| 2009 | |
| 2010 | /* |
| 2011 | * We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll |
| 2012 | * get a CBRZERO interrupt), and we can use it only if noone is receiving |
| 2013 | * AAL0 traffic (since they will use the same queue) - according to the |
| 2014 | * docs we shouldn't even use it for AAL0 traffic |
| 2015 | */ |
| 2016 | static inline int vci0_is_ok(struct lanai_dev *lanai, |
| 2017 | const struct atm_qos *qos) |
| 2018 | { |
| 2019 | if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0) |
| 2020 | return 0; |
| 2021 | if (qos->rxtp.traffic_class != ATM_NONE) { |
| 2022 | if (lanai->naal0 != 0) |
| 2023 | return 0; |
| 2024 | lanai->conf2 |= CONFIG2_VCI0_NORMAL; |
| 2025 | conf2_write_if_powerup(lanai); |
| 2026 | } |
| 2027 | return 1; |
| 2028 | } |
| 2029 | |
| 2030 | /* return true if vci is currently unused, or if requested qos is |
| 2031 | * compatible |
| 2032 | */ |
| 2033 | static int vci_is_ok(struct lanai_dev *lanai, vci_t vci, |
| 2034 | const struct atm_vcc *atmvcc) |
| 2035 | { |
| 2036 | const struct atm_qos *qos = &atmvcc->qos; |
| 2037 | const struct lanai_vcc *lvcc = lanai->vccs[vci]; |
| 2038 | if (vci == 0 && !vci0_is_ok(lanai, qos)) |
| 2039 | return 0; |
| 2040 | if (unlikely(lvcc != NULL)) { |
| 2041 | if (qos->rxtp.traffic_class != ATM_NONE && |
| 2042 | lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc) |
| 2043 | return 0; |
| 2044 | if (qos->txtp.traffic_class != ATM_NONE && |
| 2045 | lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc) |
| 2046 | return 0; |
| 2047 | if (qos->txtp.traffic_class == ATM_CBR && |
| 2048 | lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc) |
| 2049 | return 0; |
| 2050 | } |
| 2051 | if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 && |
| 2052 | qos->rxtp.traffic_class != ATM_NONE) { |
| 2053 | const struct lanai_vcc *vci0 = lanai->vccs[0]; |
| 2054 | if (vci0 != NULL && vci0->rx.atmvcc != NULL) |
| 2055 | return 0; |
| 2056 | lanai->conf2 &= ~CONFIG2_VCI0_NORMAL; |
| 2057 | conf2_write_if_powerup(lanai); |
| 2058 | } |
| 2059 | return 1; |
| 2060 | } |
| 2061 | |
| 2062 | static int lanai_normalize_ci(struct lanai_dev *lanai, |
| 2063 | const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip) |
| 2064 | { |
| 2065 | switch (*vpip) { |
| 2066 | case ATM_VPI_ANY: |
| 2067 | *vpip = 0; |
| 2068 | /* FALLTHROUGH */ |
| 2069 | case 0: |
| 2070 | break; |
| 2071 | default: |
| 2072 | return -EADDRINUSE; |
| 2073 | } |
| 2074 | switch (*vcip) { |
| 2075 | case ATM_VCI_ANY: |
| 2076 | for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci; |
| 2077 | (*vcip)++) |
| 2078 | if (vci_is_ok(lanai, *vcip, atmvcc)) |
| 2079 | return 0; |
| 2080 | return -EADDRINUSE; |
| 2081 | default: |
| 2082 | if (*vcip >= lanai->num_vci || *vcip < 0 || |
| 2083 | !vci_is_ok(lanai, *vcip, atmvcc)) |
| 2084 | return -EADDRINUSE; |
| 2085 | } |
| 2086 | return 0; |
| 2087 | } |
| 2088 | |
| 2089 | /* -------------------- MANAGE CBR: */ |
| 2090 | |
| 2091 | /* |
| 2092 | * CBR ICG is stored as a fixed-point number with 4 fractional bits. |
| 2093 | * Note that storing a number greater than 2046.0 will result in |
| 2094 | * incorrect shaping |
| 2095 | */ |
| 2096 | #define CBRICG_FRAC_BITS (4) |
| 2097 | #define CBRICG_MAX (2046 << CBRICG_FRAC_BITS) |
| 2098 | |
| 2099 | /* |
| 2100 | * ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1) |
| 2101 | * where MAXPCR is (according to the docs) 25600000/(54*8), |
| 2102 | * which is equal to (3125<<9)/27. |
| 2103 | * |
| 2104 | * Solving for ICG, we get: |
| 2105 | * ICG = MAXPCR/PCR - 1 |
| 2106 | * ICG = (3125<<9)/(27*PCR) - 1 |
| 2107 | * ICG = ((3125<<9) - (27*PCR)) / (27*PCR) |
| 2108 | * |
| 2109 | * The end result is supposed to be a fixed-point number with FRAC_BITS |
| 2110 | * bits of a fractional part, so we keep everything in the numerator |
| 2111 | * shifted by that much as we compute |
| 2112 | * |
| 2113 | */ |
| 2114 | static int pcr_to_cbricg(/*const*/ struct atm_qos *qos) |
| 2115 | { |
| 2116 | int rounddown = 0; /* 1 = Round PCR down, i.e. round ICG _up_ */ |
| 2117 | int x, icg, pcr = atm_pcr_goal(&qos->txtp); |
| 2118 | if (pcr == 0) /* Use maximum bandwidth */ |
| 2119 | return 0; |
| 2120 | if (pcr < 0) { |
| 2121 | rounddown = 1; |
| 2122 | pcr = -pcr; |
| 2123 | } |
| 2124 | x = pcr * 27; |
| 2125 | icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS); |
| 2126 | if (rounddown) |
| 2127 | icg += x - 1; |
| 2128 | icg /= x; |
| 2129 | if (icg > CBRICG_MAX) |
| 2130 | icg = CBRICG_MAX; |
| 2131 | DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n", |
| 2132 | pcr, rounddown ? 'Y' : 'N', icg); |
| 2133 | return icg; |
| 2134 | } |
| 2135 | |
| 2136 | static inline void lanai_cbr_setup(struct lanai_dev *lanai) |
| 2137 | { |
| 2138 | reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg); |
| 2139 | reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg); |
| 2140 | lanai->conf2 |= CONFIG2_CBR_ENABLE; |
| 2141 | conf2_write(lanai); |
| 2142 | } |
| 2143 | |
| 2144 | static inline void lanai_cbr_shutdown(struct lanai_dev *lanai) |
| 2145 | { |
| 2146 | lanai->conf2 &= ~CONFIG2_CBR_ENABLE; |
| 2147 | conf2_write(lanai); |
| 2148 | } |
| 2149 | |
| 2150 | /* -------------------- OPERATIONS: */ |
| 2151 | |
| 2152 | /* setup a newly detected device */ |
| 2153 | static int __devinit lanai_dev_open(struct atm_dev *atmdev) |
| 2154 | { |
| 2155 | struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data; |
| 2156 | unsigned long raw_base; |
| 2157 | int result; |
| 2158 | |
| 2159 | DPRINTK("In lanai_dev_open()\n"); |
| 2160 | /* Basic device fields */ |
| 2161 | lanai->number = atmdev->number; |
| 2162 | lanai->num_vci = NUM_VCI; |
| 2163 | bitmap_zero(lanai->backlog_vccs, NUM_VCI); |
| 2164 | bitmap_zero(lanai->transmit_ready, NUM_VCI); |
| 2165 | lanai->naal0 = 0; |
| 2166 | #ifdef USE_POWERDOWN |
| 2167 | lanai->nbound = 0; |
| 2168 | #endif |
| 2169 | lanai->cbrvcc = NULL; |
| 2170 | memset(&lanai->stats, 0, sizeof lanai->stats); |
| 2171 | spin_lock_init(&lanai->endtxlock); |
| 2172 | spin_lock_init(&lanai->servicelock); |
| 2173 | atmdev->ci_range.vpi_bits = 0; |
| 2174 | atmdev->ci_range.vci_bits = 0; |
| 2175 | while (1 << atmdev->ci_range.vci_bits < lanai->num_vci) |
| 2176 | atmdev->ci_range.vci_bits++; |
| 2177 | atmdev->link_rate = ATM_25_PCR; |
| 2178 | |
| 2179 | /* 3.2: PCI initialization */ |
| 2180 | if ((result = lanai_pci_start(lanai)) != 0) |
| 2181 | goto error; |
| 2182 | raw_base = lanai->pci->resource[0].start; |
| 2183 | lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE); |
| 2184 | if (lanai->base == NULL) { |
| 2185 | printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n"); |
| 2186 | goto error_pci; |
| 2187 | } |
| 2188 | /* 3.3: Reset lanai and PHY */ |
| 2189 | reset_board(lanai); |
| 2190 | lanai->conf1 = reg_read(lanai, Config1_Reg); |
| 2191 | lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN | |
| 2192 | CONFIG1_MASK_LEDMODE); |
| 2193 | lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL); |
| 2194 | reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg); |
| 2195 | udelay(1000); |
| 2196 | conf1_write(lanai); |
| 2197 | |
| 2198 | /* |
| 2199 | * 3.4: Turn on endian mode for big-endian hardware |
| 2200 | * We don't actually want to do this - the actual bit fields |
| 2201 | * in the endian register are not documented anywhere. |
| 2202 | * Instead we do the bit-flipping ourselves on big-endian |
| 2203 | * hardware. |
| 2204 | * |
| 2205 | * 3.5: get the board ID/rev by reading the reset register |
| 2206 | */ |
| 2207 | result = check_board_id_and_rev("register", |
| 2208 | reg_read(lanai, Reset_Reg), &lanai->board_rev); |
| 2209 | if (result != 0) |
| 2210 | goto error_unmap; |
| 2211 | |
| 2212 | /* 3.6: read EEPROM */ |
| 2213 | if ((result = eeprom_read(lanai)) != 0) |
| 2214 | goto error_unmap; |
| 2215 | if ((result = eeprom_validate(lanai)) != 0) |
| 2216 | goto error_unmap; |
| 2217 | |
| 2218 | /* 3.7: re-reset PHY, do loopback tests, setup PHY */ |
| 2219 | reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg); |
| 2220 | udelay(1000); |
| 2221 | conf1_write(lanai); |
| 2222 | /* TODO - loopback tests */ |
| 2223 | lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE); |
| 2224 | conf1_write(lanai); |
| 2225 | |
| 2226 | /* 3.8/3.9: test and initialize card SRAM */ |
| 2227 | if ((result = sram_test_and_clear(lanai)) != 0) |
| 2228 | goto error_unmap; |
| 2229 | |
| 2230 | /* 3.10: initialize lanai registers */ |
| 2231 | lanai->conf1 |= CONFIG1_DMA_ENABLE; |
| 2232 | conf1_write(lanai); |
| 2233 | if ((result = service_buffer_allocate(lanai)) != 0) |
| 2234 | goto error_unmap; |
| 2235 | if ((result = vcc_table_allocate(lanai)) != 0) |
| 2236 | goto error_service; |
| 2237 | lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) | |
| 2238 | CONFIG2_HEC_DROP | /* ??? */ CONFIG2_PTI7_MODE; |
| 2239 | conf2_write(lanai); |
| 2240 | reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg); |
| 2241 | reg_write(lanai, 0, CBR_ICG_Reg); /* CBR defaults to no limit */ |
| 2242 | if ((result = request_irq(lanai->pci->irq, lanai_int, SA_SHIRQ, |
| 2243 | DEV_LABEL, lanai)) != 0) { |
| 2244 | printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n"); |
| 2245 | goto error_vcctable; |
| 2246 | } |
| 2247 | mb(); /* Make sure that all that made it */ |
| 2248 | intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE)); |
| 2249 | /* 3.11: initialize loop mode (i.e. turn looping off) */ |
| 2250 | lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) | |
| 2251 | CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) | |
| 2252 | CONFIG1_GPOUT2 | CONFIG1_GPOUT3; |
| 2253 | conf1_write(lanai); |
| 2254 | lanai->status = reg_read(lanai, Status_Reg); |
| 2255 | /* We're now done initializing this card */ |
| 2256 | #ifdef USE_POWERDOWN |
| 2257 | lanai->conf1 |= CONFIG1_POWERDOWN; |
| 2258 | conf1_write(lanai); |
| 2259 | #endif |
| 2260 | memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN); |
| 2261 | lanai_timed_poll_start(lanai); |
| 2262 | printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=0x%lx, irq=%u " |
| 2263 | "(%02X-%02X-%02X-%02X-%02X-%02X)\n", lanai->number, |
| 2264 | (int) lanai->pci_revision, (unsigned long) lanai->base, |
| 2265 | lanai->pci->irq, |
| 2266 | atmdev->esi[0], atmdev->esi[1], atmdev->esi[2], |
| 2267 | atmdev->esi[3], atmdev->esi[4], atmdev->esi[5]); |
| 2268 | printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), " |
| 2269 | "board_rev=%d\n", lanai->number, |
| 2270 | lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno, |
| 2271 | (unsigned int) lanai->serialno, lanai->board_rev); |
| 2272 | return 0; |
| 2273 | |
| 2274 | error_vcctable: |
| 2275 | vcc_table_deallocate(lanai); |
| 2276 | error_service: |
| 2277 | service_buffer_deallocate(lanai); |
| 2278 | error_unmap: |
| 2279 | reset_board(lanai); |
| 2280 | #ifdef USE_POWERDOWN |
| 2281 | lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN; |
| 2282 | conf1_write(lanai); |
| 2283 | #endif |
| 2284 | iounmap(lanai->base); |
| 2285 | error_pci: |
| 2286 | pci_disable_device(lanai->pci); |
| 2287 | error: |
| 2288 | return result; |
| 2289 | } |
| 2290 | |
| 2291 | /* called when device is being shutdown, and all vcc's are gone - higher |
| 2292 | * levels will deallocate the atm device for us |
| 2293 | */ |
| 2294 | static void lanai_dev_close(struct atm_dev *atmdev) |
| 2295 | { |
| 2296 | struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data; |
| 2297 | printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n", |
| 2298 | lanai->number); |
| 2299 | lanai_timed_poll_stop(lanai); |
| 2300 | #ifdef USE_POWERDOWN |
| 2301 | lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN; |
| 2302 | conf1_write(lanai); |
| 2303 | #endif |
| 2304 | intr_disable(lanai, INT_ALL); |
| 2305 | free_irq(lanai->pci->irq, lanai); |
| 2306 | reset_board(lanai); |
| 2307 | #ifdef USE_POWERDOWN |
| 2308 | lanai->conf1 |= CONFIG1_POWERDOWN; |
| 2309 | conf1_write(lanai); |
| 2310 | #endif |
| 2311 | pci_disable_device(lanai->pci); |
| 2312 | vcc_table_deallocate(lanai); |
| 2313 | service_buffer_deallocate(lanai); |
| 2314 | iounmap(lanai->base); |
| 2315 | kfree(lanai); |
| 2316 | } |
| 2317 | |
| 2318 | /* close a vcc */ |
| 2319 | static void lanai_close(struct atm_vcc *atmvcc) |
| 2320 | { |
| 2321 | struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data; |
| 2322 | struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data; |
| 2323 | if (lvcc == NULL) |
| 2324 | return; |
| 2325 | clear_bit(ATM_VF_READY, &atmvcc->flags); |
| 2326 | clear_bit(ATM_VF_PARTIAL, &atmvcc->flags); |
| 2327 | if (lvcc->rx.atmvcc == atmvcc) { |
| 2328 | lanai_shutdown_rx_vci(lvcc); |
| 2329 | if (atmvcc->qos.aal == ATM_AAL0) { |
| 2330 | if (--lanai->naal0 <= 0) |
| 2331 | aal0_buffer_free(lanai); |
| 2332 | } else |
| 2333 | lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci); |
| 2334 | lvcc->rx.atmvcc = NULL; |
| 2335 | } |
| 2336 | if (lvcc->tx.atmvcc == atmvcc) { |
| 2337 | if (atmvcc == lanai->cbrvcc) { |
| 2338 | if (lvcc->vbase != NULL) |
| 2339 | lanai_cbr_shutdown(lanai); |
| 2340 | lanai->cbrvcc = NULL; |
| 2341 | } |
| 2342 | lanai_shutdown_tx_vci(lanai, lvcc); |
| 2343 | lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci); |
| 2344 | lvcc->tx.atmvcc = NULL; |
| 2345 | } |
| 2346 | if (--lvcc->nref == 0) { |
| 2347 | host_vcc_unbind(lanai, lvcc); |
| 2348 | kfree(lvcc); |
| 2349 | } |
| 2350 | atmvcc->dev_data = NULL; |
| 2351 | clear_bit(ATM_VF_ADDR, &atmvcc->flags); |
| 2352 | } |
| 2353 | |
| 2354 | /* open a vcc on the card to vpi/vci */ |
| 2355 | static int lanai_open(struct atm_vcc *atmvcc) |
| 2356 | { |
| 2357 | struct lanai_dev *lanai; |
| 2358 | struct lanai_vcc *lvcc; |
| 2359 | int result = 0; |
| 2360 | int vci = atmvcc->vci; |
| 2361 | short vpi = atmvcc->vpi; |
| 2362 | /* we don't support partial open - it's not really useful anyway */ |
| 2363 | if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) || |
| 2364 | (vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC)) |
| 2365 | return -EINVAL; |
| 2366 | lanai = (struct lanai_dev *) atmvcc->dev->dev_data; |
| 2367 | result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci); |
| 2368 | if (unlikely(result != 0)) |
| 2369 | goto out; |
| 2370 | set_bit(ATM_VF_ADDR, &atmvcc->flags); |
| 2371 | if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5) |
| 2372 | return -EINVAL; |
| 2373 | DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number, |
| 2374 | (int) vpi, vci); |
| 2375 | lvcc = lanai->vccs[vci]; |
| 2376 | if (lvcc == NULL) { |
| 2377 | lvcc = new_lanai_vcc(); |
| 2378 | if (unlikely(lvcc == NULL)) |
| 2379 | return -ENOMEM; |
| 2380 | atmvcc->dev_data = lvcc; |
| 2381 | } |
| 2382 | lvcc->nref++; |
| 2383 | if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) { |
| 2384 | APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n", |
| 2385 | vci); |
| 2386 | if (atmvcc->qos.aal == ATM_AAL0) { |
| 2387 | if (lanai->naal0 == 0) |
| 2388 | result = aal0_buffer_allocate(lanai); |
| 2389 | } else |
| 2390 | result = lanai_setup_rx_vci_aal5( |
| 2391 | lanai, lvcc, &atmvcc->qos); |
| 2392 | if (unlikely(result != 0)) |
| 2393 | goto out_free; |
| 2394 | lvcc->rx.atmvcc = atmvcc; |
| 2395 | lvcc->stats.rx_nomem = 0; |
| 2396 | lvcc->stats.x.aal5.rx_badlen = 0; |
| 2397 | lvcc->stats.x.aal5.service_trash = 0; |
| 2398 | lvcc->stats.x.aal5.service_stream = 0; |
| 2399 | lvcc->stats.x.aal5.service_rxcrc = 0; |
| 2400 | if (atmvcc->qos.aal == ATM_AAL0) |
| 2401 | lanai->naal0++; |
| 2402 | } |
| 2403 | if (atmvcc->qos.txtp.traffic_class != ATM_NONE) { |
| 2404 | APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n", |
| 2405 | vci); |
| 2406 | result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos); |
| 2407 | if (unlikely(result != 0)) |
| 2408 | goto out_free; |
| 2409 | lvcc->tx.atmvcc = atmvcc; |
| 2410 | if (atmvcc->qos.txtp.traffic_class == ATM_CBR) { |
| 2411 | APRINTK(lanai->cbrvcc == NULL, |
| 2412 | "cbrvcc!=NULL, vci=%d\n", vci); |
| 2413 | lanai->cbrvcc = atmvcc; |
| 2414 | } |
| 2415 | } |
| 2416 | host_vcc_bind(lanai, lvcc, vci); |
| 2417 | /* |
| 2418 | * Make sure everything made it to RAM before we tell the card about |
| 2419 | * the VCC |
| 2420 | */ |
| 2421 | wmb(); |
| 2422 | if (atmvcc == lvcc->rx.atmvcc) |
| 2423 | host_vcc_start_rx(lvcc); |
| 2424 | if (atmvcc == lvcc->tx.atmvcc) { |
| 2425 | host_vcc_start_tx(lvcc); |
| 2426 | if (lanai->cbrvcc == atmvcc) |
| 2427 | lanai_cbr_setup(lanai); |
| 2428 | } |
| 2429 | set_bit(ATM_VF_READY, &atmvcc->flags); |
| 2430 | return 0; |
| 2431 | out_free: |
| 2432 | lanai_close(atmvcc); |
| 2433 | out: |
| 2434 | return result; |
| 2435 | } |
| 2436 | |
| 2437 | #if 0 |
| 2438 | /* ioctl operations for card */ |
| 2439 | /* NOTE: these are all DEBUGGING ONLY currently */ |
| 2440 | static int lanai_ioctl(struct atm_dev *atmdev, unsigned int cmd, void __user *arg) |
| 2441 | { |
| 2442 | int result = 0; |
| 2443 | struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data; |
| 2444 | switch(cmd) { |
| 2445 | case 2106275: |
| 2446 | shutdown_atm_dev(atmdev); |
| 2447 | return 0; |
| 2448 | case 2200000: { |
| 2449 | unsigned long flags; |
| 2450 | spin_lock_irqsave(&lanai->servicelock, flags); |
| 2451 | run_service(lanai); |
| 2452 | spin_unlock_irqrestore(&lanai->servicelock, flags); |
| 2453 | return 0; } |
| 2454 | case 2200002: |
| 2455 | get_statistics(lanai); |
| 2456 | return 0; |
| 2457 | case 2200003: { |
| 2458 | unsigned int i; |
| 2459 | for (i = 0; i <= 0x5C ; i += 4) { |
| 2460 | if (i==0x48) /* Write-only butt reg */ |
| 2461 | continue; |
| 2462 | printk(KERN_CRIT DEV_LABEL " 0x%02X: " |
| 2463 | "0x%08X\n", i, |
| 2464 | (unsigned int) readl(lanai->base + i)); |
| 2465 | barrier(); mb(); |
| 2466 | pcistatus_check(lanai, 0); |
| 2467 | barrier(); mb(); |
| 2468 | } |
| 2469 | return 0; } |
| 2470 | case 2200004: { |
| 2471 | u8 b; |
| 2472 | u16 w; |
| 2473 | u32 dw; |
| 2474 | struct pci_dev *pci = lanai->pci; |
| 2475 | (void) pci_read_config_word(pci, PCI_VENDOR_ID, &w); |
| 2476 | DPRINTK("vendor = 0x%X\n", (unsigned int) w); |
| 2477 | (void) pci_read_config_word(pci, PCI_DEVICE_ID, &w); |
| 2478 | DPRINTK("device = 0x%X\n", (unsigned int) w); |
| 2479 | (void) pci_read_config_word(pci, PCI_COMMAND, &w); |
| 2480 | DPRINTK("command = 0x%X\n", (unsigned int) w); |
| 2481 | (void) pci_read_config_word(pci, PCI_STATUS, &w); |
| 2482 | DPRINTK("status = 0x%X\n", (unsigned int) w); |
| 2483 | (void) pci_read_config_dword(pci, |
| 2484 | PCI_CLASS_REVISION, &dw); |
| 2485 | DPRINTK("class/revision = 0x%X\n", (unsigned int) dw); |
| 2486 | (void) pci_read_config_byte(pci, |
| 2487 | PCI_CACHE_LINE_SIZE, &b); |
| 2488 | DPRINTK("cache line size = 0x%X\n", (unsigned int) b); |
| 2489 | (void) pci_read_config_byte(pci, PCI_LATENCY_TIMER, &b); |
| 2490 | DPRINTK("latency = %d (0x%X)\n", |
| 2491 | (int) b, (unsigned int) b); |
| 2492 | (void) pci_read_config_byte(pci, PCI_HEADER_TYPE, &b); |
| 2493 | DPRINTK("header type = 0x%X\n", (unsigned int) b); |
| 2494 | (void) pci_read_config_byte(pci, PCI_BIST, &b); |
| 2495 | DPRINTK("bist = 0x%X\n", (unsigned int) b); |
| 2496 | /* skipping a few here */ |
| 2497 | (void) pci_read_config_byte(pci, |
| 2498 | PCI_INTERRUPT_LINE, &b); |
| 2499 | DPRINTK("pci_int_line = 0x%X\n", (unsigned int) b); |
| 2500 | (void) pci_read_config_byte(pci, |
| 2501 | PCI_INTERRUPT_PIN, &b); |
| 2502 | DPRINTK("pci_int_pin = 0x%X\n", (unsigned int) b); |
| 2503 | (void) pci_read_config_byte(pci, PCI_MIN_GNT, &b); |
| 2504 | DPRINTK("min_gnt = 0x%X\n", (unsigned int) b); |
| 2505 | (void) pci_read_config_byte(pci, PCI_MAX_LAT, &b); |
| 2506 | DPRINTK("max_lat = 0x%X\n", (unsigned int) b); } |
| 2507 | return 0; |
| 2508 | #ifdef USE_POWERDOWN |
| 2509 | case 2200005: |
| 2510 | DPRINTK("Coming out of powerdown\n"); |
| 2511 | lanai->conf1 &= ~CONFIG1_POWERDOWN; |
| 2512 | conf1_write(lanai); |
| 2513 | return 0; |
| 2514 | #endif |
| 2515 | default: |
| 2516 | result = -ENOIOCTLCMD; |
| 2517 | } |
| 2518 | return result; |
| 2519 | } |
| 2520 | #else /* !0 */ |
| 2521 | #define lanai_ioctl NULL |
| 2522 | #endif /* 0 */ |
| 2523 | |
| 2524 | static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb) |
| 2525 | { |
| 2526 | struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data; |
| 2527 | struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data; |
| 2528 | unsigned long flags; |
| 2529 | if (unlikely(lvcc == NULL || lvcc->vbase == NULL || |
| 2530 | lvcc->tx.atmvcc != atmvcc)) |
| 2531 | goto einval; |
| 2532 | #ifdef DEBUG |
| 2533 | if (unlikely(skb == NULL)) { |
| 2534 | DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci); |
| 2535 | goto einval; |
| 2536 | } |
| 2537 | if (unlikely(lanai == NULL)) { |
| 2538 | DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci); |
| 2539 | goto einval; |
| 2540 | } |
| 2541 | #endif |
| 2542 | ATM_SKB(skb)->vcc = atmvcc; |
| 2543 | switch (atmvcc->qos.aal) { |
| 2544 | case ATM_AAL5: |
| 2545 | read_lock_irqsave(&vcc_sklist_lock, flags); |
| 2546 | vcc_tx_aal5(lanai, lvcc, skb); |
| 2547 | read_unlock_irqrestore(&vcc_sklist_lock, flags); |
| 2548 | return 0; |
| 2549 | case ATM_AAL0: |
| 2550 | if (unlikely(skb->len != ATM_CELL_SIZE-1)) |
| 2551 | goto einval; |
| 2552 | /* NOTE - this next line is technically invalid - we haven't unshared skb */ |
| 2553 | cpu_to_be32s((u32 *) skb->data); |
| 2554 | read_lock_irqsave(&vcc_sklist_lock, flags); |
| 2555 | vcc_tx_aal0(lanai, lvcc, skb); |
| 2556 | read_unlock_irqrestore(&vcc_sklist_lock, flags); |
| 2557 | return 0; |
| 2558 | } |
| 2559 | DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal, |
| 2560 | atmvcc->vci); |
| 2561 | einval: |
| 2562 | lanai_free_skb(atmvcc, skb); |
| 2563 | return -EINVAL; |
| 2564 | } |
| 2565 | |
| 2566 | static int lanai_change_qos(struct atm_vcc *atmvcc, |
| 2567 | /*const*/ struct atm_qos *qos, int flags) |
| 2568 | { |
| 2569 | return -EBUSY; /* TODO: need to write this */ |
| 2570 | } |
| 2571 | |
| 2572 | #ifndef CONFIG_PROC_FS |
| 2573 | #define lanai_proc_read NULL |
| 2574 | #else |
| 2575 | static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page) |
| 2576 | { |
| 2577 | struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data; |
| 2578 | loff_t left = *pos; |
| 2579 | struct lanai_vcc *lvcc; |
| 2580 | if (left-- == 0) |
| 2581 | return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, " |
| 2582 | "serial=%u, magic=0x%08X, num_vci=%d\n", |
| 2583 | atmdev->number, lanai->type==lanai2 ? "2" : "HB", |
| 2584 | (unsigned int) lanai->serialno, |
| 2585 | (unsigned int) lanai->magicno, lanai->num_vci); |
| 2586 | if (left-- == 0) |
| 2587 | return sprintf(page, "revision: board=%d, pci_if=%d\n", |
| 2588 | lanai->board_rev, (int) lanai->pci_revision); |
| 2589 | if (left-- == 0) |
| 2590 | return sprintf(page, "EEPROM ESI: " |
| 2591 | "%02X:%02X:%02X:%02X:%02X:%02X\n", |
| 2592 | lanai->eeprom[EEPROM_MAC + 0], |
| 2593 | lanai->eeprom[EEPROM_MAC + 1], |
| 2594 | lanai->eeprom[EEPROM_MAC + 2], |
| 2595 | lanai->eeprom[EEPROM_MAC + 3], |
| 2596 | lanai->eeprom[EEPROM_MAC + 4], |
| 2597 | lanai->eeprom[EEPROM_MAC + 5]); |
| 2598 | if (left-- == 0) |
| 2599 | return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, " |
| 2600 | "GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0, |
| 2601 | (lanai->status & STATUS_LOCD) ? 1 : 0, |
| 2602 | (lanai->status & STATUS_LED) ? 1 : 0, |
| 2603 | (lanai->status & STATUS_GPIN) ? 1 : 0); |
| 2604 | if (left-- == 0) |
| 2605 | return sprintf(page, "global buffer sizes: service=%Zu, " |
| 2606 | "aal0_rx=%Zu\n", lanai_buf_size(&lanai->service), |
| 2607 | lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0); |
| 2608 | if (left-- == 0) { |
| 2609 | get_statistics(lanai); |
| 2610 | return sprintf(page, "cells in error: overflow=%u, " |
| 2611 | "closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n", |
| 2612 | lanai->stats.ovfl_trash, lanai->stats.vci_trash, |
| 2613 | lanai->stats.hec_err, lanai->stats.atm_ovfl); |
| 2614 | } |
| 2615 | if (left-- == 0) |
| 2616 | return sprintf(page, "PCI errors: parity_detect=%u, " |
| 2617 | "master_abort=%u, master_target_abort=%u,\n", |
| 2618 | lanai->stats.pcierr_parity_detect, |
| 2619 | lanai->stats.pcierr_serr_set, |
| 2620 | lanai->stats.pcierr_m_target_abort); |
| 2621 | if (left-- == 0) |
| 2622 | return sprintf(page, " slave_target_abort=%u, " |
| 2623 | "master_parity=%u\n", lanai->stats.pcierr_s_target_abort, |
| 2624 | lanai->stats.pcierr_master_parity); |
| 2625 | if (left-- == 0) |
| 2626 | return sprintf(page, " no_tx=%u, " |
| 2627 | "no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx, |
| 2628 | lanai->stats.service_notx, |
| 2629 | lanai->stats.service_rxnotaal5); |
| 2630 | if (left-- == 0) |
| 2631 | return sprintf(page, "resets: dma=%u, card=%u\n", |
| 2632 | lanai->stats.dma_reenable, lanai->stats.card_reset); |
| 2633 | /* At this point, "left" should be the VCI we're looking for */ |
| 2634 | read_lock(&vcc_sklist_lock); |
| 2635 | for (; ; left++) { |
| 2636 | if (left >= NUM_VCI) { |
| 2637 | left = 0; |
| 2638 | goto out; |
| 2639 | } |
| 2640 | if ((lvcc = lanai->vccs[left]) != NULL) |
| 2641 | break; |
| 2642 | (*pos)++; |
| 2643 | } |
| 2644 | /* Note that we re-use "left" here since we're done with it */ |
| 2645 | left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u", (vci_t) left, |
| 2646 | lvcc->nref, lvcc->stats.rx_nomem); |
| 2647 | if (lvcc->rx.atmvcc != NULL) { |
| 2648 | left += sprintf(&page[left], ",\n rx_AAL=%d", |
| 2649 | lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0); |
| 2650 | if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) |
| 2651 | left += sprintf(&page[left], ", rx_buf_size=%Zu, " |
| 2652 | "rx_bad_len=%u,\n rx_service_trash=%u, " |
| 2653 | "rx_service_stream=%u, rx_bad_crc=%u", |
| 2654 | lanai_buf_size(&lvcc->rx.buf), |
| 2655 | lvcc->stats.x.aal5.rx_badlen, |
| 2656 | lvcc->stats.x.aal5.service_trash, |
| 2657 | lvcc->stats.x.aal5.service_stream, |
| 2658 | lvcc->stats.x.aal5.service_rxcrc); |
| 2659 | } |
| 2660 | if (lvcc->tx.atmvcc != NULL) |
| 2661 | left += sprintf(&page[left], ",\n tx_AAL=%d, " |
| 2662 | "tx_buf_size=%Zu, tx_qos=%cBR, tx_backlogged=%c", |
| 2663 | lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0, |
| 2664 | lanai_buf_size(&lvcc->tx.buf), |
| 2665 | lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U', |
| 2666 | vcc_is_backlogged(lvcc) ? 'Y' : 'N'); |
| 2667 | page[left++] = '\n'; |
| 2668 | page[left] = '\0'; |
| 2669 | out: |
| 2670 | read_unlock(&vcc_sklist_lock); |
| 2671 | return left; |
| 2672 | } |
| 2673 | #endif /* CONFIG_PROC_FS */ |
| 2674 | |
| 2675 | /* -------------------- HOOKS: */ |
| 2676 | |
| 2677 | static const struct atmdev_ops ops = { |
| 2678 | .dev_close = lanai_dev_close, |
| 2679 | .open = lanai_open, |
| 2680 | .close = lanai_close, |
| 2681 | .ioctl = lanai_ioctl, |
| 2682 | .getsockopt = NULL, |
| 2683 | .setsockopt = NULL, |
| 2684 | .send = lanai_send, |
| 2685 | .phy_put = NULL, |
| 2686 | .phy_get = NULL, |
| 2687 | .change_qos = lanai_change_qos, |
| 2688 | .proc_read = lanai_proc_read, |
| 2689 | .owner = THIS_MODULE |
| 2690 | }; |
| 2691 | |
| 2692 | /* initialize one probed card */ |
| 2693 | static int __devinit lanai_init_one(struct pci_dev *pci, |
| 2694 | const struct pci_device_id *ident) |
| 2695 | { |
| 2696 | struct lanai_dev *lanai; |
| 2697 | struct atm_dev *atmdev; |
| 2698 | int result; |
| 2699 | |
| 2700 | lanai = (struct lanai_dev *) kmalloc(sizeof(*lanai), GFP_KERNEL); |
| 2701 | if (lanai == NULL) { |
| 2702 | printk(KERN_ERR DEV_LABEL |
| 2703 | ": couldn't allocate dev_data structure!\n"); |
| 2704 | return -ENOMEM; |
| 2705 | } |
| 2706 | |
| 2707 | atmdev = atm_dev_register(DEV_LABEL, &ops, -1, NULL); |
| 2708 | if (atmdev == NULL) { |
| 2709 | printk(KERN_ERR DEV_LABEL |
| 2710 | ": couldn't register atm device!\n"); |
| 2711 | kfree(lanai); |
| 2712 | return -EBUSY; |
| 2713 | } |
| 2714 | |
| 2715 | atmdev->dev_data = lanai; |
| 2716 | lanai->pci = pci; |
| 2717 | lanai->type = (enum lanai_type) ident->device; |
| 2718 | |
| 2719 | result = lanai_dev_open(atmdev); |
| 2720 | if (result != 0) { |
| 2721 | DPRINTK("lanai_start() failed, err=%d\n", -result); |
| 2722 | atm_dev_deregister(atmdev); |
| 2723 | kfree(lanai); |
| 2724 | } |
| 2725 | return result; |
| 2726 | } |
| 2727 | |
| 2728 | static struct pci_device_id lanai_pci_tbl[] = { |
| 2729 | { |
| 2730 | PCI_VENDOR_ID_EF, PCI_VENDOR_ID_EF_ATM_LANAI2, |
| 2731 | PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 |
| 2732 | }, |
| 2733 | { |
| 2734 | PCI_VENDOR_ID_EF, PCI_VENDOR_ID_EF_ATM_LANAIHB, |
| 2735 | PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 |
| 2736 | }, |
| 2737 | { 0, } /* terminal entry */ |
| 2738 | }; |
| 2739 | MODULE_DEVICE_TABLE(pci, lanai_pci_tbl); |
| 2740 | |
| 2741 | static struct pci_driver lanai_driver = { |
| 2742 | .name = DEV_LABEL, |
| 2743 | .id_table = lanai_pci_tbl, |
| 2744 | .probe = lanai_init_one, |
| 2745 | }; |
| 2746 | |
| 2747 | static int __init lanai_module_init(void) |
| 2748 | { |
| 2749 | int x; |
| 2750 | |
| 2751 | x = pci_register_driver(&lanai_driver); |
| 2752 | if (x != 0) |
| 2753 | printk(KERN_ERR DEV_LABEL ": no adapter found\n"); |
| 2754 | return x; |
| 2755 | } |
| 2756 | |
| 2757 | static void __exit lanai_module_exit(void) |
| 2758 | { |
| 2759 | /* We'll only get called when all the interfaces are already |
| 2760 | * gone, so there isn't much to do |
| 2761 | */ |
| 2762 | DPRINTK("cleanup_module()\n"); |
| 2763 | } |
| 2764 | |
| 2765 | module_init(lanai_module_init); |
| 2766 | module_exit(lanai_module_exit); |
| 2767 | |
| 2768 | MODULE_AUTHOR("Mitchell Blank Jr <mitch@sfgoth.com>"); |
| 2769 | MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver"); |
| 2770 | MODULE_LICENSE("GPL"); |