blob: 8343c5f74121ec7f9baf6524a6268908894c80cd [file] [log] [blame]
Anand Ashok Dumbred5c706272021-12-03 21:23:56 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Xilinx AMS driver
4 *
5 * Copyright (C) 2021 Xilinx, Inc.
6 *
7 * Manish Narani <mnarani@xilinx.com>
8 * Rajnikant Bhojani <rajnikant.bhojani@xilinx.com>
9 */
10
11#include <linux/bits.h>
12#include <linux/bitfield.h>
13#include <linux/clk.h>
14#include <linux/delay.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/iopoll.h>
18#include <linux/kernel.h>
19#include <linux/module.h>
20#include <linux/mod_devicetable.h>
21#include <linux/overflow.h>
22#include <linux/platform_device.h>
23#include <linux/property.h>
24#include <linux/slab.h>
25
26#include <linux/iio/events.h>
27#include <linux/iio/iio.h>
28
29/* AMS registers definitions */
30#define AMS_ISR_0 0x010
31#define AMS_ISR_1 0x014
32#define AMS_IER_0 0x020
33#define AMS_IER_1 0x024
34#define AMS_IDR_0 0x028
35#define AMS_IDR_1 0x02C
36#define AMS_PS_CSTS 0x040
37#define AMS_PL_CSTS 0x044
38
39#define AMS_VCC_PSPLL0 0x060
40#define AMS_VCC_PSPLL3 0x06C
41#define AMS_VCCINT 0x078
42#define AMS_VCCBRAM 0x07C
43#define AMS_VCCAUX 0x080
44#define AMS_PSDDRPLL 0x084
45#define AMS_PSINTFPDDR 0x09C
46
47#define AMS_VCC_PSPLL0_CH 48
48#define AMS_VCC_PSPLL3_CH 51
49#define AMS_VCCINT_CH 54
50#define AMS_VCCBRAM_CH 55
51#define AMS_VCCAUX_CH 56
52#define AMS_PSDDRPLL_CH 57
53#define AMS_PSINTFPDDR_CH 63
54
55#define AMS_REG_CONFIG0 0x100
56#define AMS_REG_CONFIG1 0x104
57#define AMS_REG_CONFIG3 0x10C
58#define AMS_REG_CONFIG4 0x110
59#define AMS_REG_SEQ_CH0 0x120
60#define AMS_REG_SEQ_CH1 0x124
61#define AMS_REG_SEQ_CH2 0x118
62
63#define AMS_VUSER0_MASK BIT(0)
64#define AMS_VUSER1_MASK BIT(1)
65#define AMS_VUSER2_MASK BIT(2)
66#define AMS_VUSER3_MASK BIT(3)
67
68#define AMS_TEMP 0x000
69#define AMS_SUPPLY1 0x004
70#define AMS_SUPPLY2 0x008
71#define AMS_VP_VN 0x00C
72#define AMS_VREFP 0x010
73#define AMS_VREFN 0x014
74#define AMS_SUPPLY3 0x018
75#define AMS_SUPPLY4 0x034
76#define AMS_SUPPLY5 0x038
77#define AMS_SUPPLY6 0x03C
78#define AMS_SUPPLY7 0x200
79#define AMS_SUPPLY8 0x204
80#define AMS_SUPPLY9 0x208
81#define AMS_SUPPLY10 0x20C
82#define AMS_VCCAMS 0x210
83#define AMS_TEMP_REMOTE 0x214
84
85#define AMS_REG_VAUX(x) (0x40 + 4 * (x))
86
87#define AMS_PS_RESET_VALUE 0xFFFF
88#define AMS_PL_RESET_VALUE 0xFFFF
89
90#define AMS_CONF0_CHANNEL_NUM_MASK GENMASK(6, 0)
91
92#define AMS_CONF1_SEQ_MASK GENMASK(15, 12)
93#define AMS_CONF1_SEQ_DEFAULT FIELD_PREP(AMS_CONF1_SEQ_MASK, 0)
94#define AMS_CONF1_SEQ_CONTINUOUS FIELD_PREP(AMS_CONF1_SEQ_MASK, 1)
95#define AMS_CONF1_SEQ_SINGLE_CHANNEL FIELD_PREP(AMS_CONF1_SEQ_MASK, 2)
96
97#define AMS_REG_SEQ0_MASK GENMASK(15, 0)
98#define AMS_REG_SEQ2_MASK GENMASK(21, 16)
99#define AMS_REG_SEQ1_MASK GENMASK_ULL(37, 22)
100
101#define AMS_PS_SEQ_MASK GENMASK(21, 0)
102#define AMS_PL_SEQ_MASK GENMASK_ULL(59, 22)
103
104#define AMS_ALARM_TEMP 0x140
105#define AMS_ALARM_SUPPLY1 0x144
106#define AMS_ALARM_SUPPLY2 0x148
107#define AMS_ALARM_SUPPLY3 0x160
108#define AMS_ALARM_SUPPLY4 0x164
109#define AMS_ALARM_SUPPLY5 0x168
110#define AMS_ALARM_SUPPLY6 0x16C
111#define AMS_ALARM_SUPPLY7 0x180
112#define AMS_ALARM_SUPPLY8 0x184
113#define AMS_ALARM_SUPPLY9 0x188
114#define AMS_ALARM_SUPPLY10 0x18C
115#define AMS_ALARM_VCCAMS 0x190
116#define AMS_ALARM_TEMP_REMOTE 0x194
117#define AMS_ALARM_THRESHOLD_OFF_10 0x10
118#define AMS_ALARM_THRESHOLD_OFF_20 0x20
119
120#define AMS_ALARM_THR_DIRECT_MASK BIT(1)
121#define AMS_ALARM_THR_MIN 0x0000
122#define AMS_ALARM_THR_MAX (BIT(16) - 1)
123
124#define AMS_ALARM_MASK GENMASK_ULL(63, 0)
125#define AMS_NO_OF_ALARMS 32
126#define AMS_PL_ALARM_START 16
127#define AMS_PL_ALARM_MASK GENMASK(31, 16)
128#define AMS_ISR0_ALARM_MASK GENMASK(31, 0)
129#define AMS_ISR1_ALARM_MASK (GENMASK(31, 29) | GENMASK(4, 0))
130#define AMS_ISR1_EOC_MASK BIT(3)
131#define AMS_ISR1_INTR_MASK GENMASK_ULL(63, 32)
132#define AMS_ISR0_ALARM_2_TO_0_MASK GENMASK(2, 0)
133#define AMS_ISR0_ALARM_6_TO_3_MASK GENMASK(6, 3)
134#define AMS_ISR0_ALARM_12_TO_7_MASK GENMASK(13, 8)
135#define AMS_CONF1_ALARM_2_TO_0_MASK GENMASK(3, 1)
136#define AMS_CONF1_ALARM_6_TO_3_MASK GENMASK(11, 8)
137#define AMS_CONF1_ALARM_12_TO_7_MASK GENMASK(5, 0)
138#define AMS_REGCFG1_ALARM_MASK \
139 (AMS_CONF1_ALARM_2_TO_0_MASK | AMS_CONF1_ALARM_6_TO_3_MASK | BIT(0))
140#define AMS_REGCFG3_ALARM_MASK AMS_CONF1_ALARM_12_TO_7_MASK
141
142#define AMS_PS_CSTS_PS_READY (BIT(27) | BIT(16))
143#define AMS_PL_CSTS_ACCESS_MASK BIT(1)
144
145#define AMS_PL_MAX_FIXED_CHANNEL 10
146#define AMS_PL_MAX_EXT_CHANNEL 20
147
148#define AMS_INIT_POLL_TIME_US 200
149#define AMS_INIT_TIMEOUT_US 10000
150#define AMS_UNMASK_TIMEOUT_MS 500
151
152/*
153 * Following scale and offset value is derived from
154 * UG580 (v1.7) December 20, 2016
155 */
156#define AMS_SUPPLY_SCALE_1VOLT_mV 1000
157#define AMS_SUPPLY_SCALE_3VOLT_mV 3000
158#define AMS_SUPPLY_SCALE_6VOLT_mV 6000
159#define AMS_SUPPLY_SCALE_DIV_BIT 16
160
161#define AMS_TEMP_SCALE 509314
162#define AMS_TEMP_SCALE_DIV_BIT 16
163#define AMS_TEMP_OFFSET -((280230LL << 16) / 509314)
164
165enum ams_alarm_bit {
166 AMS_ALARM_BIT_TEMP = 0,
167 AMS_ALARM_BIT_SUPPLY1 = 1,
168 AMS_ALARM_BIT_SUPPLY2 = 2,
169 AMS_ALARM_BIT_SUPPLY3 = 3,
170 AMS_ALARM_BIT_SUPPLY4 = 4,
171 AMS_ALARM_BIT_SUPPLY5 = 5,
172 AMS_ALARM_BIT_SUPPLY6 = 6,
173 AMS_ALARM_BIT_RESERVED = 7,
174 AMS_ALARM_BIT_SUPPLY7 = 8,
175 AMS_ALARM_BIT_SUPPLY8 = 9,
176 AMS_ALARM_BIT_SUPPLY9 = 10,
177 AMS_ALARM_BIT_SUPPLY10 = 11,
178 AMS_ALARM_BIT_VCCAMS = 12,
179 AMS_ALARM_BIT_TEMP_REMOTE = 13,
180};
181
182enum ams_seq {
183 AMS_SEQ_VCC_PSPLL = 0,
184 AMS_SEQ_VCC_PSBATT = 1,
185 AMS_SEQ_VCCINT = 2,
186 AMS_SEQ_VCCBRAM = 3,
187 AMS_SEQ_VCCAUX = 4,
188 AMS_SEQ_PSDDRPLL = 5,
189 AMS_SEQ_INTDDR = 6,
190};
191
192enum ams_ps_pl_seq {
193 AMS_SEQ_CALIB = 0,
194 AMS_SEQ_RSVD_1 = 1,
195 AMS_SEQ_RSVD_2 = 2,
196 AMS_SEQ_TEST = 3,
197 AMS_SEQ_RSVD_4 = 4,
198 AMS_SEQ_SUPPLY4 = 5,
199 AMS_SEQ_SUPPLY5 = 6,
200 AMS_SEQ_SUPPLY6 = 7,
201 AMS_SEQ_TEMP = 8,
202 AMS_SEQ_SUPPLY2 = 9,
203 AMS_SEQ_SUPPLY1 = 10,
204 AMS_SEQ_VP_VN = 11,
205 AMS_SEQ_VREFP = 12,
206 AMS_SEQ_VREFN = 13,
207 AMS_SEQ_SUPPLY3 = 14,
208 AMS_SEQ_CURRENT_MON = 15,
209 AMS_SEQ_SUPPLY7 = 16,
210 AMS_SEQ_SUPPLY8 = 17,
211 AMS_SEQ_SUPPLY9 = 18,
212 AMS_SEQ_SUPPLY10 = 19,
213 AMS_SEQ_VCCAMS = 20,
214 AMS_SEQ_TEMP_REMOTE = 21,
215 AMS_SEQ_MAX = 22
216};
217
218#define AMS_PS_SEQ_MAX AMS_SEQ_MAX
219#define AMS_SEQ(x) (AMS_SEQ_MAX + (x))
220#define PS_SEQ(x) (x)
221#define PL_SEQ(x) (AMS_PS_SEQ_MAX + (x))
222#define AMS_CTRL_SEQ_BASE (AMS_PS_SEQ_MAX * 3)
223
224#define AMS_CHAN_TEMP(_scan_index, _addr) { \
225 .type = IIO_TEMP, \
226 .indexed = 1, \
227 .address = (_addr), \
228 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
229 BIT(IIO_CHAN_INFO_SCALE) | \
230 BIT(IIO_CHAN_INFO_OFFSET), \
231 .event_spec = ams_temp_events, \
232 .scan_index = _scan_index, \
233 .num_event_specs = ARRAY_SIZE(ams_temp_events), \
234}
235
236#define AMS_CHAN_VOLTAGE(_scan_index, _addr, _alarm) { \
237 .type = IIO_VOLTAGE, \
238 .indexed = 1, \
239 .address = (_addr), \
240 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
241 BIT(IIO_CHAN_INFO_SCALE), \
242 .event_spec = (_alarm) ? ams_voltage_events : NULL, \
243 .scan_index = _scan_index, \
244 .num_event_specs = (_alarm) ? ARRAY_SIZE(ams_voltage_events) : 0, \
245}
246
247#define AMS_PS_CHAN_TEMP(_scan_index, _addr) \
248 AMS_CHAN_TEMP(PS_SEQ(_scan_index), _addr)
249#define AMS_PS_CHAN_VOLTAGE(_scan_index, _addr) \
250 AMS_CHAN_VOLTAGE(PS_SEQ(_scan_index), _addr, true)
251
252#define AMS_PL_CHAN_TEMP(_scan_index, _addr) \
253 AMS_CHAN_TEMP(PL_SEQ(_scan_index), _addr)
254#define AMS_PL_CHAN_VOLTAGE(_scan_index, _addr, _alarm) \
255 AMS_CHAN_VOLTAGE(PL_SEQ(_scan_index), _addr, _alarm)
256#define AMS_PL_AUX_CHAN_VOLTAGE(_auxno) \
257 AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(_auxno)), AMS_REG_VAUX(_auxno), false)
258#define AMS_CTRL_CHAN_VOLTAGE(_scan_index, _addr) \
259 AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(AMS_SEQ(_scan_index))), _addr, false)
260
261/**
262 * struct ams - This structure contains necessary state for xilinx-ams to operate
263 * @base: physical base address of device
264 * @ps_base: physical base address of PS device
265 * @pl_base: physical base address of PL device
266 * @clk: clocks associated with the device
267 * @dev: pointer to device struct
268 * @lock: to handle multiple user interaction
269 * @intr_lock: to protect interrupt mask values
270 * @alarm_mask: alarm configuration
271 * @current_masked_alarm: currently masked due to alarm
272 * @intr_mask: interrupt configuration
273 * @ams_unmask_work: re-enables event once the event condition disappears
274 *
275 */
276struct ams {
277 void __iomem *base;
278 void __iomem *ps_base;
279 void __iomem *pl_base;
280 struct clk *clk;
281 struct device *dev;
282 struct mutex lock;
283 spinlock_t intr_lock;
284 unsigned int alarm_mask;
285 unsigned int current_masked_alarm;
286 u64 intr_mask;
287 struct delayed_work ams_unmask_work;
288};
289
290static inline void ams_ps_update_reg(struct ams *ams, unsigned int offset,
291 u32 mask, u32 data)
292{
293 u32 val, regval;
294
295 val = readl(ams->ps_base + offset);
296 regval = (val & ~mask) | (data & mask);
297 writel(regval, ams->ps_base + offset);
298}
299
300static inline void ams_pl_update_reg(struct ams *ams, unsigned int offset,
301 u32 mask, u32 data)
302{
303 u32 val, regval;
304
305 val = readl(ams->pl_base + offset);
306 regval = (val & ~mask) | (data & mask);
307 writel(regval, ams->pl_base + offset);
308}
309
310static void ams_update_intrmask(struct ams *ams, u64 mask, u64 val)
311{
312 u32 regval;
313
314 ams->intr_mask = (ams->intr_mask & ~mask) | (val & mask);
315
316 regval = ~(ams->intr_mask | ams->current_masked_alarm);
317 writel(regval, ams->base + AMS_IER_0);
318
319 regval = ~(FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask));
320 writel(regval, ams->base + AMS_IER_1);
321
322 regval = ams->intr_mask | ams->current_masked_alarm;
323 writel(regval, ams->base + AMS_IDR_0);
324
325 regval = FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask);
326 writel(regval, ams->base + AMS_IDR_1);
327}
328
329static void ams_disable_all_alarms(struct ams *ams)
330{
331 /* disable PS module alarm */
332 if (ams->ps_base) {
333 ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK,
334 AMS_REGCFG1_ALARM_MASK);
335 ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK,
336 AMS_REGCFG3_ALARM_MASK);
337 }
338
339 /* disable PL module alarm */
340 if (ams->pl_base) {
341 ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK,
342 AMS_REGCFG1_ALARM_MASK);
343 ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK,
344 AMS_REGCFG3_ALARM_MASK);
345 }
346}
347
348static void ams_update_ps_alarm(struct ams *ams, unsigned long alarm_mask)
349{
350 u32 cfg;
351 u32 val;
352
353 val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, alarm_mask);
354 cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val));
355
356 val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, alarm_mask);
357 cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val));
358
359 ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg);
360
361 val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, alarm_mask);
362 cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val));
363 ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg);
364}
365
366static void ams_update_pl_alarm(struct ams *ams, unsigned long alarm_mask)
367{
368 unsigned long pl_alarm_mask;
369 u32 cfg;
370 u32 val;
371
372 pl_alarm_mask = FIELD_GET(AMS_PL_ALARM_MASK, alarm_mask);
373
374 val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, pl_alarm_mask);
375 cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val));
376
377 val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, pl_alarm_mask);
378 cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val));
379
380 ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg);
381
382 val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, pl_alarm_mask);
383 cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val));
384 ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg);
385}
386
387static void ams_update_alarm(struct ams *ams, unsigned long alarm_mask)
388{
389 unsigned long flags;
390
391 if (ams->ps_base)
392 ams_update_ps_alarm(ams, alarm_mask);
393
394 if (ams->pl_base)
395 ams_update_pl_alarm(ams, alarm_mask);
396
397 spin_lock_irqsave(&ams->intr_lock, flags);
398 ams_update_intrmask(ams, AMS_ISR0_ALARM_MASK, ~alarm_mask);
399 spin_unlock_irqrestore(&ams->intr_lock, flags);
400}
401
402static void ams_enable_channel_sequence(struct iio_dev *indio_dev)
403{
404 struct ams *ams = iio_priv(indio_dev);
405 unsigned long long scan_mask;
406 int i;
407 u32 regval;
408
409 /*
410 * Enable channel sequence. First 22 bits of scan_mask represent
411 * PS channels, and next remaining bits represent PL channels.
412 */
413
414 /* Run calibration of PS & PL as part of the sequence */
415 scan_mask = BIT(0) | BIT(AMS_PS_SEQ_MAX);
416 for (i = 0; i < indio_dev->num_channels; i++)
417 scan_mask |= BIT_ULL(indio_dev->channels[i].scan_index);
418
419 if (ams->ps_base) {
420 /* put sysmon in a soft reset to change the sequence */
421 ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
422 AMS_CONF1_SEQ_DEFAULT);
423
424 /* configure basic channels */
425 regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask);
426 writel(regval, ams->ps_base + AMS_REG_SEQ_CH0);
427
428 regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask);
429 writel(regval, ams->ps_base + AMS_REG_SEQ_CH2);
430
431 /* set continuous sequence mode */
432 ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
433 AMS_CONF1_SEQ_CONTINUOUS);
434 }
435
436 if (ams->pl_base) {
437 /* put sysmon in a soft reset to change the sequence */
438 ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
439 AMS_CONF1_SEQ_DEFAULT);
440
441 /* configure basic channels */
442 scan_mask = FIELD_GET(AMS_PL_SEQ_MASK, scan_mask);
443
444 regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask);
445 writel(regval, ams->pl_base + AMS_REG_SEQ_CH0);
446
447 regval = FIELD_GET(AMS_REG_SEQ1_MASK, scan_mask);
448 writel(regval, ams->pl_base + AMS_REG_SEQ_CH1);
449
450 regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask);
451 writel(regval, ams->pl_base + AMS_REG_SEQ_CH2);
452
453 /* set continuous sequence mode */
454 ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
455 AMS_CONF1_SEQ_CONTINUOUS);
456 }
457}
458
459static int ams_init_device(struct ams *ams)
460{
461 u32 expect = AMS_PS_CSTS_PS_READY;
462 u32 reg, value;
463 int ret;
464
465 /* reset AMS */
466 if (ams->ps_base) {
467 writel(AMS_PS_RESET_VALUE, ams->ps_base + AMS_VP_VN);
468
469 ret = readl_poll_timeout(ams->base + AMS_PS_CSTS, reg, (reg & expect),
470 AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US);
471 if (ret)
472 return ret;
473
474 /* put sysmon in a default state */
475 ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
476 AMS_CONF1_SEQ_DEFAULT);
477 }
478
479 if (ams->pl_base) {
480 value = readl(ams->base + AMS_PL_CSTS);
481 if (value == 0)
482 return 0;
483
484 writel(AMS_PL_RESET_VALUE, ams->pl_base + AMS_VP_VN);
485
486 /* put sysmon in a default state */
487 ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
488 AMS_CONF1_SEQ_DEFAULT);
489 }
490
491 ams_disable_all_alarms(ams);
492
493 /* Disable interrupt */
494 ams_update_intrmask(ams, AMS_ALARM_MASK, AMS_ALARM_MASK);
495
496 /* Clear any pending interrupt */
497 writel(AMS_ISR0_ALARM_MASK, ams->base + AMS_ISR_0);
498 writel(AMS_ISR1_ALARM_MASK, ams->base + AMS_ISR_1);
499
500 return 0;
501}
502
503static int ams_enable_single_channel(struct ams *ams, unsigned int offset)
504{
505 u8 channel_num;
506
507 switch (offset) {
508 case AMS_VCC_PSPLL0:
509 channel_num = AMS_VCC_PSPLL0_CH;
510 break;
511 case AMS_VCC_PSPLL3:
512 channel_num = AMS_VCC_PSPLL3_CH;
513 break;
514 case AMS_VCCINT:
515 channel_num = AMS_VCCINT_CH;
516 break;
517 case AMS_VCCBRAM:
518 channel_num = AMS_VCCBRAM_CH;
519 break;
520 case AMS_VCCAUX:
521 channel_num = AMS_VCCAUX_CH;
522 break;
523 case AMS_PSDDRPLL:
524 channel_num = AMS_PSDDRPLL_CH;
525 break;
526 case AMS_PSINTFPDDR:
527 channel_num = AMS_PSINTFPDDR_CH;
528 break;
529 default:
530 return -EINVAL;
531 }
532
533 /* set single channel, sequencer off mode */
534 ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
535 AMS_CONF1_SEQ_SINGLE_CHANNEL);
536
537 /* write the channel number */
538 ams_ps_update_reg(ams, AMS_REG_CONFIG0, AMS_CONF0_CHANNEL_NUM_MASK,
539 channel_num);
540
541 return 0;
542}
543
544static int ams_read_vcc_reg(struct ams *ams, unsigned int offset, u32 *data)
545{
546 u32 expect = AMS_ISR1_EOC_MASK;
547 u32 reg;
548 int ret;
549
550 ret = ams_enable_single_channel(ams, offset);
551 if (ret)
552 return ret;
553
554 ret = readl_poll_timeout(ams->base + AMS_ISR_1, reg, (reg & expect),
555 AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US);
556 if (ret)
557 return ret;
558
559 *data = readl(ams->base + offset);
560
561 return 0;
562}
563
564static int ams_get_ps_scale(int address)
565{
566 int val;
567
568 switch (address) {
569 case AMS_SUPPLY1:
570 case AMS_SUPPLY2:
571 case AMS_SUPPLY3:
572 case AMS_SUPPLY4:
573 case AMS_SUPPLY9:
574 case AMS_SUPPLY10:
575 case AMS_VCCAMS:
576 val = AMS_SUPPLY_SCALE_3VOLT_mV;
577 break;
578 case AMS_SUPPLY5:
579 case AMS_SUPPLY6:
580 case AMS_SUPPLY7:
581 case AMS_SUPPLY8:
582 val = AMS_SUPPLY_SCALE_6VOLT_mV;
583 break;
584 default:
585 val = AMS_SUPPLY_SCALE_1VOLT_mV;
586 break;
587 }
588
589 return val;
590}
591
592static int ams_get_pl_scale(struct ams *ams, int address)
593{
594 int val, regval;
595
596 switch (address) {
597 case AMS_SUPPLY1:
598 case AMS_SUPPLY2:
599 case AMS_SUPPLY3:
600 case AMS_SUPPLY4:
601 case AMS_SUPPLY5:
602 case AMS_SUPPLY6:
603 case AMS_VCCAMS:
604 case AMS_VREFP:
605 case AMS_VREFN:
606 val = AMS_SUPPLY_SCALE_3VOLT_mV;
607 break;
608 case AMS_SUPPLY7:
609 regval = readl(ams->pl_base + AMS_REG_CONFIG4);
610 if (FIELD_GET(AMS_VUSER0_MASK, regval))
611 val = AMS_SUPPLY_SCALE_6VOLT_mV;
612 else
613 val = AMS_SUPPLY_SCALE_3VOLT_mV;
614 break;
615 case AMS_SUPPLY8:
616 regval = readl(ams->pl_base + AMS_REG_CONFIG4);
617 if (FIELD_GET(AMS_VUSER1_MASK, regval))
618 val = AMS_SUPPLY_SCALE_6VOLT_mV;
619 else
620 val = AMS_SUPPLY_SCALE_3VOLT_mV;
621 break;
622 case AMS_SUPPLY9:
623 regval = readl(ams->pl_base + AMS_REG_CONFIG4);
624 if (FIELD_GET(AMS_VUSER2_MASK, regval))
625 val = AMS_SUPPLY_SCALE_6VOLT_mV;
626 else
627 val = AMS_SUPPLY_SCALE_3VOLT_mV;
628 break;
629 case AMS_SUPPLY10:
630 regval = readl(ams->pl_base + AMS_REG_CONFIG4);
631 if (FIELD_GET(AMS_VUSER3_MASK, regval))
632 val = AMS_SUPPLY_SCALE_6VOLT_mV;
633 else
634 val = AMS_SUPPLY_SCALE_3VOLT_mV;
635 break;
636 case AMS_VP_VN:
637 case AMS_REG_VAUX(0) ... AMS_REG_VAUX(15):
638 val = AMS_SUPPLY_SCALE_1VOLT_mV;
639 break;
640 default:
641 val = AMS_SUPPLY_SCALE_1VOLT_mV;
642 break;
643 }
644
645 return val;
646}
647
648static int ams_get_ctrl_scale(int address)
649{
650 int val;
651
652 switch (address) {
653 case AMS_VCC_PSPLL0:
654 case AMS_VCC_PSPLL3:
655 case AMS_VCCINT:
656 case AMS_VCCBRAM:
657 case AMS_VCCAUX:
658 case AMS_PSDDRPLL:
659 case AMS_PSINTFPDDR:
660 val = AMS_SUPPLY_SCALE_3VOLT_mV;
661 break;
662 default:
663 val = AMS_SUPPLY_SCALE_1VOLT_mV;
664 break;
665 }
666
667 return val;
668}
669
670static int ams_read_raw(struct iio_dev *indio_dev,
671 struct iio_chan_spec const *chan,
672 int *val, int *val2, long mask)
673{
674 struct ams *ams = iio_priv(indio_dev);
675 int ret;
676
677 switch (mask) {
678 case IIO_CHAN_INFO_RAW:
679 mutex_lock(&ams->lock);
680 if (chan->scan_index >= AMS_CTRL_SEQ_BASE) {
681 ret = ams_read_vcc_reg(ams, chan->address, val);
682 if (ret)
683 goto unlock_mutex;
684 ams_enable_channel_sequence(indio_dev);
685 } else if (chan->scan_index >= AMS_PS_SEQ_MAX)
686 *val = readl(ams->pl_base + chan->address);
687 else
688 *val = readl(ams->ps_base + chan->address);
689
690 ret = IIO_VAL_INT;
691unlock_mutex:
692 mutex_unlock(&ams->lock);
693 return ret;
694 case IIO_CHAN_INFO_SCALE:
695 switch (chan->type) {
696 case IIO_VOLTAGE:
697 if (chan->scan_index < AMS_PS_SEQ_MAX)
698 *val = ams_get_ps_scale(chan->address);
699 else if (chan->scan_index >= AMS_PS_SEQ_MAX &&
700 chan->scan_index < AMS_CTRL_SEQ_BASE)
701 *val = ams_get_pl_scale(ams, chan->address);
702 else
703 *val = ams_get_ctrl_scale(chan->address);
704
705 *val2 = AMS_SUPPLY_SCALE_DIV_BIT;
706 return IIO_VAL_FRACTIONAL_LOG2;
707 case IIO_TEMP:
708 *val = AMS_TEMP_SCALE;
709 *val2 = AMS_TEMP_SCALE_DIV_BIT;
710 return IIO_VAL_FRACTIONAL_LOG2;
711 default:
712 return -EINVAL;
713 }
714 case IIO_CHAN_INFO_OFFSET:
715 /* Only the temperature channel has an offset */
716 *val = AMS_TEMP_OFFSET;
717 return IIO_VAL_INT;
718 default:
719 return -EINVAL;
720 }
721}
722
723static int ams_get_alarm_offset(int scan_index, enum iio_event_direction dir)
724{
725 int offset;
726
727 if (scan_index >= AMS_PS_SEQ_MAX)
728 scan_index -= AMS_PS_SEQ_MAX;
729
730 if (dir == IIO_EV_DIR_FALLING) {
731 if (scan_index < AMS_SEQ_SUPPLY7)
732 offset = AMS_ALARM_THRESHOLD_OFF_10;
733 else
734 offset = AMS_ALARM_THRESHOLD_OFF_20;
735 } else {
736 offset = 0;
737 }
738
739 switch (scan_index) {
740 case AMS_SEQ_TEMP:
741 return AMS_ALARM_TEMP + offset;
742 case AMS_SEQ_SUPPLY1:
743 return AMS_ALARM_SUPPLY1 + offset;
744 case AMS_SEQ_SUPPLY2:
745 return AMS_ALARM_SUPPLY2 + offset;
746 case AMS_SEQ_SUPPLY3:
747 return AMS_ALARM_SUPPLY3 + offset;
748 case AMS_SEQ_SUPPLY4:
749 return AMS_ALARM_SUPPLY4 + offset;
750 case AMS_SEQ_SUPPLY5:
751 return AMS_ALARM_SUPPLY5 + offset;
752 case AMS_SEQ_SUPPLY6:
753 return AMS_ALARM_SUPPLY6 + offset;
754 case AMS_SEQ_SUPPLY7:
755 return AMS_ALARM_SUPPLY7 + offset;
756 case AMS_SEQ_SUPPLY8:
757 return AMS_ALARM_SUPPLY8 + offset;
758 case AMS_SEQ_SUPPLY9:
759 return AMS_ALARM_SUPPLY9 + offset;
760 case AMS_SEQ_SUPPLY10:
761 return AMS_ALARM_SUPPLY10 + offset;
762 case AMS_SEQ_VCCAMS:
763 return AMS_ALARM_VCCAMS + offset;
764 case AMS_SEQ_TEMP_REMOTE:
765 return AMS_ALARM_TEMP_REMOTE + offset;
766 default:
767 return 0;
768 }
769}
770
771static const struct iio_chan_spec *ams_event_to_channel(struct iio_dev *dev,
772 u32 event)
773{
774 int scan_index = 0, i;
775
776 if (event >= AMS_PL_ALARM_START) {
777 event -= AMS_PL_ALARM_START;
778 scan_index = AMS_PS_SEQ_MAX;
779 }
780
781 switch (event) {
782 case AMS_ALARM_BIT_TEMP:
783 scan_index += AMS_SEQ_TEMP;
784 break;
785 case AMS_ALARM_BIT_SUPPLY1:
786 scan_index += AMS_SEQ_SUPPLY1;
787 break;
788 case AMS_ALARM_BIT_SUPPLY2:
789 scan_index += AMS_SEQ_SUPPLY2;
790 break;
791 case AMS_ALARM_BIT_SUPPLY3:
792 scan_index += AMS_SEQ_SUPPLY3;
793 break;
794 case AMS_ALARM_BIT_SUPPLY4:
795 scan_index += AMS_SEQ_SUPPLY4;
796 break;
797 case AMS_ALARM_BIT_SUPPLY5:
798 scan_index += AMS_SEQ_SUPPLY5;
799 break;
800 case AMS_ALARM_BIT_SUPPLY6:
801 scan_index += AMS_SEQ_SUPPLY6;
802 break;
803 case AMS_ALARM_BIT_SUPPLY7:
804 scan_index += AMS_SEQ_SUPPLY7;
805 break;
806 case AMS_ALARM_BIT_SUPPLY8:
807 scan_index += AMS_SEQ_SUPPLY8;
808 break;
809 case AMS_ALARM_BIT_SUPPLY9:
810 scan_index += AMS_SEQ_SUPPLY9;
811 break;
812 case AMS_ALARM_BIT_SUPPLY10:
813 scan_index += AMS_SEQ_SUPPLY10;
814 break;
815 case AMS_ALARM_BIT_VCCAMS:
816 scan_index += AMS_SEQ_VCCAMS;
817 break;
818 case AMS_ALARM_BIT_TEMP_REMOTE:
819 scan_index += AMS_SEQ_TEMP_REMOTE;
820 break;
821 default:
822 break;
823 }
824
825 for (i = 0; i < dev->num_channels; i++)
826 if (dev->channels[i].scan_index == scan_index)
827 break;
828
829 return &dev->channels[i];
830}
831
832static int ams_get_alarm_mask(int scan_index)
833{
834 int bit = 0;
835
836 if (scan_index >= AMS_PS_SEQ_MAX) {
837 bit = AMS_PL_ALARM_START;
838 scan_index -= AMS_PS_SEQ_MAX;
839 }
840
841 switch (scan_index) {
842 case AMS_SEQ_TEMP:
843 return BIT(AMS_ALARM_BIT_TEMP + bit);
844 case AMS_SEQ_SUPPLY1:
845 return BIT(AMS_ALARM_BIT_SUPPLY1 + bit);
846 case AMS_SEQ_SUPPLY2:
847 return BIT(AMS_ALARM_BIT_SUPPLY2 + bit);
848 case AMS_SEQ_SUPPLY3:
849 return BIT(AMS_ALARM_BIT_SUPPLY3 + bit);
850 case AMS_SEQ_SUPPLY4:
851 return BIT(AMS_ALARM_BIT_SUPPLY4 + bit);
852 case AMS_SEQ_SUPPLY5:
853 return BIT(AMS_ALARM_BIT_SUPPLY5 + bit);
854 case AMS_SEQ_SUPPLY6:
855 return BIT(AMS_ALARM_BIT_SUPPLY6 + bit);
856 case AMS_SEQ_SUPPLY7:
857 return BIT(AMS_ALARM_BIT_SUPPLY7 + bit);
858 case AMS_SEQ_SUPPLY8:
859 return BIT(AMS_ALARM_BIT_SUPPLY8 + bit);
860 case AMS_SEQ_SUPPLY9:
861 return BIT(AMS_ALARM_BIT_SUPPLY9 + bit);
862 case AMS_SEQ_SUPPLY10:
863 return BIT(AMS_ALARM_BIT_SUPPLY10 + bit);
864 case AMS_SEQ_VCCAMS:
865 return BIT(AMS_ALARM_BIT_VCCAMS + bit);
866 case AMS_SEQ_TEMP_REMOTE:
867 return BIT(AMS_ALARM_BIT_TEMP_REMOTE + bit);
868 default:
869 return 0;
870 }
871}
872
873static int ams_read_event_config(struct iio_dev *indio_dev,
874 const struct iio_chan_spec *chan,
875 enum iio_event_type type,
876 enum iio_event_direction dir)
877{
878 struct ams *ams = iio_priv(indio_dev);
879
880 return !!(ams->alarm_mask & ams_get_alarm_mask(chan->scan_index));
881}
882
883static int ams_write_event_config(struct iio_dev *indio_dev,
884 const struct iio_chan_spec *chan,
885 enum iio_event_type type,
886 enum iio_event_direction dir,
887 int state)
888{
889 struct ams *ams = iio_priv(indio_dev);
890 unsigned int alarm;
891
892 alarm = ams_get_alarm_mask(chan->scan_index);
893
894 mutex_lock(&ams->lock);
895
896 if (state)
897 ams->alarm_mask |= alarm;
898 else
899 ams->alarm_mask &= ~alarm;
900
901 ams_update_alarm(ams, ams->alarm_mask);
902
903 mutex_unlock(&ams->lock);
904
905 return 0;
906}
907
908static int ams_read_event_value(struct iio_dev *indio_dev,
909 const struct iio_chan_spec *chan,
910 enum iio_event_type type,
911 enum iio_event_direction dir,
912 enum iio_event_info info, int *val, int *val2)
913{
914 struct ams *ams = iio_priv(indio_dev);
915 unsigned int offset = ams_get_alarm_offset(chan->scan_index, dir);
916
917 mutex_lock(&ams->lock);
918
919 if (chan->scan_index >= AMS_PS_SEQ_MAX)
920 *val = readl(ams->pl_base + offset);
921 else
922 *val = readl(ams->ps_base + offset);
923
924 mutex_unlock(&ams->lock);
925
926 return IIO_VAL_INT;
927}
928
929static int ams_write_event_value(struct iio_dev *indio_dev,
930 const struct iio_chan_spec *chan,
931 enum iio_event_type type,
932 enum iio_event_direction dir,
933 enum iio_event_info info, int val, int val2)
934{
935 struct ams *ams = iio_priv(indio_dev);
936 unsigned int offset;
937
938 mutex_lock(&ams->lock);
939
940 /* Set temperature channel threshold to direct threshold */
941 if (chan->type == IIO_TEMP) {
942 offset = ams_get_alarm_offset(chan->scan_index, IIO_EV_DIR_FALLING);
943
944 if (chan->scan_index >= AMS_PS_SEQ_MAX)
945 ams_pl_update_reg(ams, offset,
946 AMS_ALARM_THR_DIRECT_MASK,
947 AMS_ALARM_THR_DIRECT_MASK);
948 else
949 ams_ps_update_reg(ams, offset,
950 AMS_ALARM_THR_DIRECT_MASK,
951 AMS_ALARM_THR_DIRECT_MASK);
952 }
953
954 offset = ams_get_alarm_offset(chan->scan_index, dir);
955 if (chan->scan_index >= AMS_PS_SEQ_MAX)
956 writel(val, ams->pl_base + offset);
957 else
958 writel(val, ams->ps_base + offset);
959
960 mutex_unlock(&ams->lock);
961
962 return 0;
963}
964
965static void ams_handle_event(struct iio_dev *indio_dev, u32 event)
966{
967 const struct iio_chan_spec *chan;
968
969 chan = ams_event_to_channel(indio_dev, event);
970
971 if (chan->type == IIO_TEMP) {
972 /*
973 * The temperature channel only supports over-temperature
974 * events.
975 */
976 iio_push_event(indio_dev,
977 IIO_UNMOD_EVENT_CODE(chan->type, chan->channel,
978 IIO_EV_TYPE_THRESH,
979 IIO_EV_DIR_RISING),
980 iio_get_time_ns(indio_dev));
981 } else {
982 /*
983 * For other channels we don't know whether it is a upper or
984 * lower threshold event. Userspace will have to check the
985 * channel value if it wants to know.
986 */
987 iio_push_event(indio_dev,
988 IIO_UNMOD_EVENT_CODE(chan->type, chan->channel,
989 IIO_EV_TYPE_THRESH,
990 IIO_EV_DIR_EITHER),
991 iio_get_time_ns(indio_dev));
992 }
993}
994
995static void ams_handle_events(struct iio_dev *indio_dev, unsigned long events)
996{
997 unsigned int bit;
998
999 for_each_set_bit(bit, &events, AMS_NO_OF_ALARMS)
1000 ams_handle_event(indio_dev, bit);
1001}
1002
1003/**
1004 * ams_unmask_worker - ams alarm interrupt unmask worker
1005 * @work: work to be done
1006 *
1007 * The ZynqMP threshold interrupts are level sensitive. Since we can't make the
1008 * threshold condition go way from within the interrupt handler, this means as
1009 * soon as a threshold condition is present we would enter the interrupt handler
1010 * again and again. To work around this we mask all active threshold interrupts
1011 * in the interrupt handler and start a timer. In this timer we poll the
1012 * interrupt status and only if the interrupt is inactive we unmask it again.
1013 */
1014static void ams_unmask_worker(struct work_struct *work)
1015{
1016 struct ams *ams = container_of(work, struct ams, ams_unmask_work.work);
1017 unsigned int status, unmask;
1018
1019 spin_lock_irq(&ams->intr_lock);
1020
1021 status = readl(ams->base + AMS_ISR_0);
1022
1023 /* Clear those bits which are not active anymore */
1024 unmask = (ams->current_masked_alarm ^ status) & ams->current_masked_alarm;
1025
1026 /* Clear status of disabled alarm */
1027 unmask |= ams->intr_mask;
1028
1029 ams->current_masked_alarm &= status;
1030
1031 /* Also clear those which are masked out anyway */
1032 ams->current_masked_alarm &= ~ams->intr_mask;
1033
1034 /* Clear the interrupts before we unmask them */
1035 writel(unmask, ams->base + AMS_ISR_0);
1036
1037 ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK);
1038
1039 spin_unlock_irq(&ams->intr_lock);
1040
1041 /* If still pending some alarm re-trigger the timer */
1042 if (ams->current_masked_alarm)
1043 schedule_delayed_work(&ams->ams_unmask_work,
1044 msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS));
1045}
1046
1047static irqreturn_t ams_irq(int irq, void *data)
1048{
1049 struct iio_dev *indio_dev = data;
1050 struct ams *ams = iio_priv(indio_dev);
1051 u32 isr0;
1052
1053 spin_lock(&ams->intr_lock);
1054
1055 isr0 = readl(ams->base + AMS_ISR_0);
1056
1057 /* Only process alarms that are not masked */
1058 isr0 &= ~((ams->intr_mask & AMS_ISR0_ALARM_MASK) | ams->current_masked_alarm);
1059 if (!isr0) {
1060 spin_unlock(&ams->intr_lock);
1061 return IRQ_NONE;
1062 }
1063
1064 /* Clear interrupt */
1065 writel(isr0, ams->base + AMS_ISR_0);
1066
1067 /* Mask the alarm interrupts until cleared */
1068 ams->current_masked_alarm |= isr0;
1069 ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK);
1070
1071 ams_handle_events(indio_dev, isr0);
1072
1073 schedule_delayed_work(&ams->ams_unmask_work,
1074 msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS));
1075
1076 spin_unlock(&ams->intr_lock);
1077
1078 return IRQ_HANDLED;
1079}
1080
1081static const struct iio_event_spec ams_temp_events[] = {
1082 {
1083 .type = IIO_EV_TYPE_THRESH,
1084 .dir = IIO_EV_DIR_RISING,
1085 .mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE),
1086 },
1087};
1088
1089static const struct iio_event_spec ams_voltage_events[] = {
1090 {
1091 .type = IIO_EV_TYPE_THRESH,
1092 .dir = IIO_EV_DIR_RISING,
1093 .mask_separate = BIT(IIO_EV_INFO_VALUE),
1094 },
1095 {
1096 .type = IIO_EV_TYPE_THRESH,
1097 .dir = IIO_EV_DIR_FALLING,
1098 .mask_separate = BIT(IIO_EV_INFO_VALUE),
1099 },
1100 {
1101 .type = IIO_EV_TYPE_THRESH,
1102 .dir = IIO_EV_DIR_EITHER,
1103 .mask_separate = BIT(IIO_EV_INFO_ENABLE),
1104 },
1105};
1106
1107static const struct iio_chan_spec ams_ps_channels[] = {
1108 AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP),
1109 AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP_REMOTE, AMS_TEMP_REMOTE),
1110 AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1),
1111 AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2),
1112 AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3),
1113 AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4),
1114 AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5),
1115 AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6),
1116 AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7),
1117 AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8),
1118 AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9),
1119 AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10),
1120 AMS_PS_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS),
1121};
1122
1123static const struct iio_chan_spec ams_pl_channels[] = {
1124 AMS_PL_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP),
1125 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1, true),
1126 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2, true),
1127 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFP, AMS_VREFP, false),
1128 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFN, AMS_VREFN, false),
1129 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3, true),
1130 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4, true),
1131 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5, true),
1132 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6, true),
1133 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS, true),
1134 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VP_VN, AMS_VP_VN, false),
1135 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7, true),
1136 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8, true),
1137 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9, true),
1138 AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10, true),
1139 AMS_PL_AUX_CHAN_VOLTAGE(0),
1140 AMS_PL_AUX_CHAN_VOLTAGE(1),
1141 AMS_PL_AUX_CHAN_VOLTAGE(2),
1142 AMS_PL_AUX_CHAN_VOLTAGE(3),
1143 AMS_PL_AUX_CHAN_VOLTAGE(4),
1144 AMS_PL_AUX_CHAN_VOLTAGE(5),
1145 AMS_PL_AUX_CHAN_VOLTAGE(6),
1146 AMS_PL_AUX_CHAN_VOLTAGE(7),
1147 AMS_PL_AUX_CHAN_VOLTAGE(8),
1148 AMS_PL_AUX_CHAN_VOLTAGE(9),
1149 AMS_PL_AUX_CHAN_VOLTAGE(10),
1150 AMS_PL_AUX_CHAN_VOLTAGE(11),
1151 AMS_PL_AUX_CHAN_VOLTAGE(12),
1152 AMS_PL_AUX_CHAN_VOLTAGE(13),
1153 AMS_PL_AUX_CHAN_VOLTAGE(14),
1154 AMS_PL_AUX_CHAN_VOLTAGE(15),
1155};
1156
1157static const struct iio_chan_spec ams_ctrl_channels[] = {
1158 AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSPLL, AMS_VCC_PSPLL0),
1159 AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSBATT, AMS_VCC_PSPLL3),
1160 AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCINT, AMS_VCCINT),
1161 AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCBRAM, AMS_VCCBRAM),
1162 AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCAUX, AMS_VCCAUX),
1163 AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_PSDDRPLL, AMS_PSDDRPLL),
1164 AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_INTDDR, AMS_PSINTFPDDR),
1165};
1166
1167static int ams_get_ext_chan(struct fwnode_handle *chan_node,
1168 struct iio_chan_spec *channels, int num_channels)
1169{
1170 struct iio_chan_spec *chan;
1171 struct fwnode_handle *child;
1172 unsigned int reg, ext_chan;
1173 int ret;
1174
1175 fwnode_for_each_child_node(chan_node, child) {
1176 ret = fwnode_property_read_u32(child, "reg", &reg);
1177 if (ret || reg > AMS_PL_MAX_EXT_CHANNEL + 30)
1178 continue;
1179
1180 chan = &channels[num_channels];
1181 ext_chan = reg + AMS_PL_MAX_FIXED_CHANNEL - 30;
1182 memcpy(chan, &ams_pl_channels[ext_chan], sizeof(*channels));
1183
1184 if (fwnode_property_read_bool(child, "xlnx,bipolar"))
1185 chan->scan_type.sign = 's';
1186
1187 num_channels++;
1188 }
1189
1190 return num_channels;
1191}
1192
1193static void ams_iounmap_ps(void *data)
1194{
1195 struct ams *ams = data;
1196
1197 iounmap(ams->ps_base);
1198}
1199
1200static void ams_iounmap_pl(void *data)
1201{
1202 struct ams *ams = data;
1203
1204 iounmap(ams->pl_base);
1205}
1206
1207static int ams_init_module(struct iio_dev *indio_dev,
1208 struct fwnode_handle *fwnode,
1209 struct iio_chan_spec *channels)
1210{
1211 struct device *dev = indio_dev->dev.parent;
1212 struct ams *ams = iio_priv(indio_dev);
1213 int num_channels = 0;
1214 int ret;
1215
1216 if (fwnode_property_match_string(fwnode, "compatible",
1217 "xlnx,zynqmp-ams-ps") == 0) {
1218 ams->ps_base = fwnode_iomap(fwnode, 0);
1219 if (!ams->ps_base)
1220 return -ENXIO;
1221 ret = devm_add_action_or_reset(dev, ams_iounmap_ps, ams);
1222 if (ret < 0)
1223 return ret;
1224
1225 /* add PS channels to iio device channels */
1226 memcpy(channels, ams_ps_channels, sizeof(ams_ps_channels));
1227 } else if (fwnode_property_match_string(fwnode, "compatible",
1228 "xlnx,zynqmp-ams-pl") == 0) {
1229 ams->pl_base = fwnode_iomap(fwnode, 0);
1230 if (!ams->pl_base)
1231 return -ENXIO;
1232
1233 ret = devm_add_action_or_reset(dev, ams_iounmap_pl, ams);
1234 if (ret < 0)
1235 return ret;
1236
1237 /* Copy only first 10 fix channels */
1238 memcpy(channels, ams_pl_channels, AMS_PL_MAX_FIXED_CHANNEL * sizeof(*channels));
1239 num_channels += AMS_PL_MAX_FIXED_CHANNEL;
1240 num_channels = ams_get_ext_chan(fwnode, channels,
1241 num_channels);
1242 } else if (fwnode_property_match_string(fwnode, "compatible",
1243 "xlnx,zynqmp-ams") == 0) {
1244 /* add AMS channels to iio device channels */
1245 memcpy(channels, ams_ctrl_channels, sizeof(ams_ctrl_channels));
1246 num_channels += ARRAY_SIZE(ams_ctrl_channels);
1247 } else {
1248 return -EINVAL;
1249 }
1250
1251 return num_channels;
1252}
1253
1254static int ams_parse_firmware(struct iio_dev *indio_dev)
1255{
1256 struct ams *ams = iio_priv(indio_dev);
1257 struct iio_chan_spec *ams_channels, *dev_channels;
1258 struct device *dev = indio_dev->dev.parent;
1259 struct fwnode_handle *child = NULL;
1260 struct fwnode_handle *fwnode = dev_fwnode(dev);
1261 size_t ams_size, dev_size;
1262 int ret, ch_cnt = 0, i, rising_off, falling_off;
1263 unsigned int num_channels = 0;
1264
1265 ams_size = ARRAY_SIZE(ams_ps_channels) + ARRAY_SIZE(ams_pl_channels) +
1266 ARRAY_SIZE(ams_ctrl_channels);
1267
1268 /* Initialize buffer for channel specification */
1269 ams_channels = devm_kcalloc(dev, ams_size, sizeof(*ams_channels), GFP_KERNEL);
1270 if (!ams_channels)
1271 return -ENOMEM;
1272
1273 if (fwnode_device_is_available(fwnode)) {
1274 ret = ams_init_module(indio_dev, fwnode, ams_channels);
1275 if (ret < 0)
1276 return ret;
1277
1278 num_channels += ret;
1279 }
1280
1281 fwnode_for_each_child_node(fwnode, child) {
1282 if (fwnode_device_is_available(child)) {
1283 ret = ams_init_module(indio_dev, child, ams_channels + num_channels);
1284 if (ret < 0) {
1285 fwnode_handle_put(child);
1286 return ret;
1287 }
1288
1289 num_channels += ret;
1290 }
1291 }
1292
1293 for (i = 0; i < num_channels; i++) {
1294 ams_channels[i].channel = ch_cnt++;
1295
1296 if (ams_channels[i].scan_index < AMS_CTRL_SEQ_BASE) {
1297 /* set threshold to max and min for each channel */
1298 falling_off =
1299 ams_get_alarm_offset(ams_channels[i].scan_index,
1300 IIO_EV_DIR_FALLING);
1301 rising_off =
1302 ams_get_alarm_offset(ams_channels[i].scan_index,
1303 IIO_EV_DIR_RISING);
1304 if (ams_channels[i].scan_index >= AMS_PS_SEQ_MAX) {
1305 writel(AMS_ALARM_THR_MIN,
1306 ams->pl_base + falling_off);
1307 writel(AMS_ALARM_THR_MAX,
1308 ams->pl_base + rising_off);
1309 } else {
1310 writel(AMS_ALARM_THR_MIN,
1311 ams->ps_base + falling_off);
1312 writel(AMS_ALARM_THR_MAX,
1313 ams->ps_base + rising_off);
1314 }
1315 }
1316 }
1317
1318 dev_size = array_size(sizeof(*dev_channels), num_channels);
1319 if (dev_size == SIZE_MAX)
1320 return -ENOMEM;
1321
1322 dev_channels = devm_krealloc(dev, ams_channels, dev_size, GFP_KERNEL);
1323 if (!dev_channels)
1324 ret = -ENOMEM;
1325
1326 indio_dev->channels = dev_channels;
1327 indio_dev->num_channels = num_channels;
1328
1329 return 0;
1330}
1331
1332static const struct iio_info iio_ams_info = {
1333 .read_raw = &ams_read_raw,
1334 .read_event_config = &ams_read_event_config,
1335 .write_event_config = &ams_write_event_config,
1336 .read_event_value = &ams_read_event_value,
1337 .write_event_value = &ams_write_event_value,
1338};
1339
1340static const struct of_device_id ams_of_match_table[] = {
1341 { .compatible = "xlnx,zynqmp-ams" },
1342 { }
1343};
1344MODULE_DEVICE_TABLE(of, ams_of_match_table);
1345
1346static void ams_clk_disable_unprepare(void *data)
1347{
1348 clk_disable_unprepare(data);
1349}
1350
1351static void ams_cancel_delayed_work(void *data)
1352{
1353 cancel_delayed_work(data);
1354}
1355
1356static int ams_probe(struct platform_device *pdev)
1357{
1358 struct iio_dev *indio_dev;
1359 struct ams *ams;
1360 int ret;
1361 int irq;
1362
1363 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ams));
1364 if (!indio_dev)
1365 return -ENOMEM;
1366
1367 ams = iio_priv(indio_dev);
1368 mutex_init(&ams->lock);
1369 spin_lock_init(&ams->intr_lock);
1370
1371 indio_dev->name = "xilinx-ams";
1372
1373 indio_dev->info = &iio_ams_info;
1374 indio_dev->modes = INDIO_DIRECT_MODE;
1375
1376 ams->base = devm_platform_ioremap_resource(pdev, 0);
1377 if (IS_ERR(ams->base))
1378 return PTR_ERR(ams->base);
1379
1380 ams->clk = devm_clk_get(&pdev->dev, NULL);
1381 if (IS_ERR(ams->clk))
1382 return PTR_ERR(ams->clk);
1383
1384 ret = clk_prepare_enable(ams->clk);
1385 if (ret < 0)
1386 return ret;
1387
1388 ret = devm_add_action_or_reset(&pdev->dev, ams_clk_disable_unprepare, ams->clk);
1389 if (ret < 0)
1390 return ret;
1391
1392 INIT_DELAYED_WORK(&ams->ams_unmask_work, ams_unmask_worker);
1393 ret = devm_add_action_or_reset(&pdev->dev, ams_cancel_delayed_work,
1394 &ams->ams_unmask_work);
1395 if (ret < 0)
1396 return ret;
1397
1398 ret = ams_parse_firmware(indio_dev);
1399 if (ret)
1400 return dev_err_probe(&pdev->dev, ret, "failure in parsing DT\n");
1401
1402 ret = ams_init_device(ams);
1403 if (ret)
1404 return dev_err_probe(&pdev->dev, ret, "failed to initialize AMS\n");
1405
1406 ams_enable_channel_sequence(indio_dev);
1407
1408 irq = platform_get_irq(pdev, 0);
1409 if (irq < 0)
1410 return ret;
1411
1412 ret = devm_request_irq(&pdev->dev, irq, &ams_irq, 0, "ams-irq",
1413 indio_dev);
1414 if (ret < 0)
1415 return dev_err_probe(&pdev->dev, ret, "failed to register interrupt\n");
1416
1417 platform_set_drvdata(pdev, indio_dev);
1418
1419 return devm_iio_device_register(&pdev->dev, indio_dev);
1420}
1421
1422static int __maybe_unused ams_suspend(struct device *dev)
1423{
1424 struct ams *ams = iio_priv(dev_get_drvdata(dev));
1425
1426 clk_disable_unprepare(ams->clk);
1427
1428 return 0;
1429}
1430
1431static int __maybe_unused ams_resume(struct device *dev)
1432{
1433 struct ams *ams = iio_priv(dev_get_drvdata(dev));
1434
1435 return clk_prepare_enable(ams->clk);
1436}
1437
1438static SIMPLE_DEV_PM_OPS(ams_pm_ops, ams_suspend, ams_resume);
1439
1440static struct platform_driver ams_driver = {
1441 .probe = ams_probe,
1442 .driver = {
1443 .name = "xilinx-ams",
1444 .pm = &ams_pm_ops,
1445 .of_match_table = ams_of_match_table,
1446 },
1447};
1448module_platform_driver(ams_driver);
1449
1450MODULE_LICENSE("GPL v2");
1451MODULE_AUTHOR("Xilinx, Inc.");