blob: d88b8eda39033e42d4cdb9c95454b56cf7f53729 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 *
5 * This file is released under the GPL.
6 */
7
8#include <linux/module.h>
9#include <linux/init.h>
10#include <linux/kernel.h>
11#include <linux/bio.h>
12#include <linux/blkdev.h>
13#include <linux/mempool.h>
14#include <linux/slab.h>
15#include <linux/crypto.h>
16#include <linux/workqueue.h>
17#include <asm/atomic.h>
David Hardeman378f0582005-09-17 17:55:31 +100018#include <linux/scatterlist.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070019#include <asm/page.h>
20
21#include "dm.h"
22
23#define PFX "crypt: "
24
25/*
26 * per bio private data
27 */
28struct crypt_io {
29 struct dm_target *target;
30 struct bio *bio;
31 struct bio *first_clone;
32 struct work_struct work;
33 atomic_t pending;
34 int error;
35};
36
37/*
38 * context holding the current state of a multi-part conversion
39 */
40struct convert_context {
41 struct bio *bio_in;
42 struct bio *bio_out;
43 unsigned int offset_in;
44 unsigned int offset_out;
45 unsigned int idx_in;
46 unsigned int idx_out;
47 sector_t sector;
48 int write;
49};
50
51struct crypt_config;
52
53struct crypt_iv_operations {
54 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
55 const char *opts);
56 void (*dtr)(struct crypt_config *cc);
57 const char *(*status)(struct crypt_config *cc);
58 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
59};
60
61/*
62 * Crypt: maps a linear range of a block device
63 * and encrypts / decrypts at the same time.
64 */
65struct crypt_config {
66 struct dm_dev *dev;
67 sector_t start;
68
69 /*
70 * pool for per bio private data and
71 * for encryption buffer pages
72 */
73 mempool_t *io_pool;
74 mempool_t *page_pool;
75
76 /*
77 * crypto related data
78 */
79 struct crypt_iv_operations *iv_gen_ops;
80 char *iv_mode;
81 void *iv_gen_private;
82 sector_t iv_offset;
83 unsigned int iv_size;
84
85 struct crypto_tfm *tfm;
86 unsigned int key_size;
87 u8 key[0];
88};
89
90#define MIN_IOS 256
91#define MIN_POOL_PAGES 32
92#define MIN_BIO_PAGES 8
93
94static kmem_cache_t *_crypt_io_pool;
95
96/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070097 * Different IV generation algorithms:
98 *
99 * plain: the initial vector is the 32-bit low-endian version of the sector
100 * number, padded with zeros if neccessary.
101 *
102 * ess_iv: "encrypted sector|salt initial vector", the sector number is
103 * encrypted with the bulk cipher using a salt as key. The salt
104 * should be derived from the bulk cipher's key via hashing.
105 *
106 * plumb: unimplemented, see:
107 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
108 */
109
110static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
111{
112 memset(iv, 0, cc->iv_size);
113 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
114
115 return 0;
116}
117
118static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
119 const char *opts)
120{
121 struct crypto_tfm *essiv_tfm;
122 struct crypto_tfm *hash_tfm;
123 struct scatterlist sg;
124 unsigned int saltsize;
125 u8 *salt;
126
127 if (opts == NULL) {
128 ti->error = PFX "Digest algorithm missing for ESSIV mode";
129 return -EINVAL;
130 }
131
132 /* Hash the cipher key with the given hash algorithm */
Herbert Xueb6f1162005-09-01 17:43:25 -0700133 hash_tfm = crypto_alloc_tfm(opts, CRYPTO_TFM_REQ_MAY_SLEEP);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700134 if (hash_tfm == NULL) {
135 ti->error = PFX "Error initializing ESSIV hash";
136 return -EINVAL;
137 }
138
139 if (crypto_tfm_alg_type(hash_tfm) != CRYPTO_ALG_TYPE_DIGEST) {
140 ti->error = PFX "Expected digest algorithm for ESSIV hash";
141 crypto_free_tfm(hash_tfm);
142 return -EINVAL;
143 }
144
145 saltsize = crypto_tfm_alg_digestsize(hash_tfm);
146 salt = kmalloc(saltsize, GFP_KERNEL);
147 if (salt == NULL) {
148 ti->error = PFX "Error kmallocing salt storage in ESSIV";
149 crypto_free_tfm(hash_tfm);
150 return -ENOMEM;
151 }
152
David Hardeman378f0582005-09-17 17:55:31 +1000153 sg_set_buf(&sg, cc->key, cc->key_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700154 crypto_digest_digest(hash_tfm, &sg, 1, salt);
155 crypto_free_tfm(hash_tfm);
156
157 /* Setup the essiv_tfm with the given salt */
158 essiv_tfm = crypto_alloc_tfm(crypto_tfm_alg_name(cc->tfm),
Herbert Xueb6f1162005-09-01 17:43:25 -0700159 CRYPTO_TFM_MODE_ECB |
160 CRYPTO_TFM_REQ_MAY_SLEEP);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700161 if (essiv_tfm == NULL) {
162 ti->error = PFX "Error allocating crypto tfm for ESSIV";
163 kfree(salt);
164 return -EINVAL;
165 }
166 if (crypto_tfm_alg_blocksize(essiv_tfm)
167 != crypto_tfm_alg_ivsize(cc->tfm)) {
168 ti->error = PFX "Block size of ESSIV cipher does "
169 "not match IV size of block cipher";
170 crypto_free_tfm(essiv_tfm);
171 kfree(salt);
172 return -EINVAL;
173 }
174 if (crypto_cipher_setkey(essiv_tfm, salt, saltsize) < 0) {
175 ti->error = PFX "Failed to set key for ESSIV cipher";
176 crypto_free_tfm(essiv_tfm);
177 kfree(salt);
178 return -EINVAL;
179 }
180 kfree(salt);
181
182 cc->iv_gen_private = (void *)essiv_tfm;
183 return 0;
184}
185
186static void crypt_iv_essiv_dtr(struct crypt_config *cc)
187{
188 crypto_free_tfm((struct crypto_tfm *)cc->iv_gen_private);
189 cc->iv_gen_private = NULL;
190}
191
192static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
193{
David Hardeman378f0582005-09-17 17:55:31 +1000194 struct scatterlist sg;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700195
196 memset(iv, 0, cc->iv_size);
197 *(u64 *)iv = cpu_to_le64(sector);
198
David Hardeman378f0582005-09-17 17:55:31 +1000199 sg_set_buf(&sg, iv, cc->iv_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700200 crypto_cipher_encrypt((struct crypto_tfm *)cc->iv_gen_private,
201 &sg, &sg, cc->iv_size);
202
203 return 0;
204}
205
206static struct crypt_iv_operations crypt_iv_plain_ops = {
207 .generator = crypt_iv_plain_gen
208};
209
210static struct crypt_iv_operations crypt_iv_essiv_ops = {
211 .ctr = crypt_iv_essiv_ctr,
212 .dtr = crypt_iv_essiv_dtr,
213 .generator = crypt_iv_essiv_gen
214};
215
216
Arjan van de Ven858119e2006-01-14 13:20:43 -0800217static int
Linus Torvalds1da177e2005-04-16 15:20:36 -0700218crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
219 struct scatterlist *in, unsigned int length,
220 int write, sector_t sector)
221{
222 u8 iv[cc->iv_size];
223 int r;
224
225 if (cc->iv_gen_ops) {
226 r = cc->iv_gen_ops->generator(cc, iv, sector);
227 if (r < 0)
228 return r;
229
230 if (write)
231 r = crypto_cipher_encrypt_iv(cc->tfm, out, in, length, iv);
232 else
233 r = crypto_cipher_decrypt_iv(cc->tfm, out, in, length, iv);
234 } else {
235 if (write)
236 r = crypto_cipher_encrypt(cc->tfm, out, in, length);
237 else
238 r = crypto_cipher_decrypt(cc->tfm, out, in, length);
239 }
240
241 return r;
242}
243
244static void
245crypt_convert_init(struct crypt_config *cc, struct convert_context *ctx,
246 struct bio *bio_out, struct bio *bio_in,
247 sector_t sector, int write)
248{
249 ctx->bio_in = bio_in;
250 ctx->bio_out = bio_out;
251 ctx->offset_in = 0;
252 ctx->offset_out = 0;
253 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
254 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
255 ctx->sector = sector + cc->iv_offset;
256 ctx->write = write;
257}
258
259/*
260 * Encrypt / decrypt data from one bio to another one (can be the same one)
261 */
262static int crypt_convert(struct crypt_config *cc,
263 struct convert_context *ctx)
264{
265 int r = 0;
266
267 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
268 ctx->idx_out < ctx->bio_out->bi_vcnt) {
269 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
270 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
271 struct scatterlist sg_in = {
272 .page = bv_in->bv_page,
273 .offset = bv_in->bv_offset + ctx->offset_in,
274 .length = 1 << SECTOR_SHIFT
275 };
276 struct scatterlist sg_out = {
277 .page = bv_out->bv_page,
278 .offset = bv_out->bv_offset + ctx->offset_out,
279 .length = 1 << SECTOR_SHIFT
280 };
281
282 ctx->offset_in += sg_in.length;
283 if (ctx->offset_in >= bv_in->bv_len) {
284 ctx->offset_in = 0;
285 ctx->idx_in++;
286 }
287
288 ctx->offset_out += sg_out.length;
289 if (ctx->offset_out >= bv_out->bv_len) {
290 ctx->offset_out = 0;
291 ctx->idx_out++;
292 }
293
294 r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
295 ctx->write, ctx->sector);
296 if (r < 0)
297 break;
298
299 ctx->sector++;
300 }
301
302 return r;
303}
304
305/*
306 * Generate a new unfragmented bio with the given size
307 * This should never violate the device limitations
308 * May return a smaller bio when running out of pages
309 */
310static struct bio *
311crypt_alloc_buffer(struct crypt_config *cc, unsigned int size,
312 struct bio *base_bio, unsigned int *bio_vec_idx)
313{
314 struct bio *bio;
315 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
Al Virob4e3ca12005-10-21 03:22:34 -0400316 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700317 unsigned int i;
318
319 /*
Nick Pigginbd53b712005-05-01 08:58:37 -0700320 * Use __GFP_NOMEMALLOC to tell the VM to act less aggressively and
321 * to fail earlier. This is not necessary but increases throughput.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700322 * FIXME: Is this really intelligent?
323 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700324 if (base_bio)
Nick Pigginbd53b712005-05-01 08:58:37 -0700325 bio = bio_clone(base_bio, GFP_NOIO|__GFP_NOMEMALLOC);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700326 else
Nick Pigginbd53b712005-05-01 08:58:37 -0700327 bio = bio_alloc(GFP_NOIO|__GFP_NOMEMALLOC, nr_iovecs);
328 if (!bio)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700329 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700330
331 /* if the last bio was not complete, continue where that one ended */
332 bio->bi_idx = *bio_vec_idx;
333 bio->bi_vcnt = *bio_vec_idx;
334 bio->bi_size = 0;
335 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
336
337 /* bio->bi_idx pages have already been allocated */
338 size -= bio->bi_idx * PAGE_SIZE;
339
340 for(i = bio->bi_idx; i < nr_iovecs; i++) {
341 struct bio_vec *bv = bio_iovec_idx(bio, i);
342
343 bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask);
344 if (!bv->bv_page)
345 break;
346
347 /*
348 * if additional pages cannot be allocated without waiting,
349 * return a partially allocated bio, the caller will then try
350 * to allocate additional bios while submitting this partial bio
351 */
352 if ((i - bio->bi_idx) == (MIN_BIO_PAGES - 1))
353 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
354
355 bv->bv_offset = 0;
356 if (size > PAGE_SIZE)
357 bv->bv_len = PAGE_SIZE;
358 else
359 bv->bv_len = size;
360
361 bio->bi_size += bv->bv_len;
362 bio->bi_vcnt++;
363 size -= bv->bv_len;
364 }
365
Linus Torvalds1da177e2005-04-16 15:20:36 -0700366 if (!bio->bi_size) {
367 bio_put(bio);
368 return NULL;
369 }
370
371 /*
372 * Remember the last bio_vec allocated to be able
373 * to correctly continue after the splitting.
374 */
375 *bio_vec_idx = bio->bi_vcnt;
376
377 return bio;
378}
379
380static void crypt_free_buffer_pages(struct crypt_config *cc,
381 struct bio *bio, unsigned int bytes)
382{
383 unsigned int i, start, end;
384 struct bio_vec *bv;
385
386 /*
387 * This is ugly, but Jens Axboe thinks that using bi_idx in the
388 * endio function is too dangerous at the moment, so I calculate the
389 * correct position using bi_vcnt and bi_size.
390 * The bv_offset and bv_len fields might already be modified but we
391 * know that we always allocated whole pages.
392 * A fix to the bi_idx issue in the kernel is in the works, so
393 * we will hopefully be able to revert to the cleaner solution soon.
394 */
395 i = bio->bi_vcnt - 1;
396 bv = bio_iovec_idx(bio, i);
397 end = (i << PAGE_SHIFT) + (bv->bv_offset + bv->bv_len) - bio->bi_size;
398 start = end - bytes;
399
400 start >>= PAGE_SHIFT;
401 if (!bio->bi_size)
402 end = bio->bi_vcnt;
403 else
404 end >>= PAGE_SHIFT;
405
406 for(i = start; i < end; i++) {
407 bv = bio_iovec_idx(bio, i);
408 BUG_ON(!bv->bv_page);
409 mempool_free(bv->bv_page, cc->page_pool);
410 bv->bv_page = NULL;
411 }
412}
413
414/*
415 * One of the bios was finished. Check for completion of
416 * the whole request and correctly clean up the buffer.
417 */
418static void dec_pending(struct crypt_io *io, int error)
419{
420 struct crypt_config *cc = (struct crypt_config *) io->target->private;
421
422 if (error < 0)
423 io->error = error;
424
425 if (!atomic_dec_and_test(&io->pending))
426 return;
427
428 if (io->first_clone)
429 bio_put(io->first_clone);
430
431 bio_endio(io->bio, io->bio->bi_size, io->error);
432
433 mempool_free(io, cc->io_pool);
434}
435
436/*
437 * kcryptd:
438 *
439 * Needed because it would be very unwise to do decryption in an
440 * interrupt context, so bios returning from read requests get
441 * queued here.
442 */
443static struct workqueue_struct *_kcryptd_workqueue;
444
445static void kcryptd_do_work(void *data)
446{
447 struct crypt_io *io = (struct crypt_io *) data;
448 struct crypt_config *cc = (struct crypt_config *) io->target->private;
449 struct convert_context ctx;
450 int r;
451
452 crypt_convert_init(cc, &ctx, io->bio, io->bio,
453 io->bio->bi_sector - io->target->begin, 0);
454 r = crypt_convert(cc, &ctx);
455
456 dec_pending(io, r);
457}
458
459static void kcryptd_queue_io(struct crypt_io *io)
460{
461 INIT_WORK(&io->work, kcryptd_do_work, io);
462 queue_work(_kcryptd_workqueue, &io->work);
463}
464
465/*
466 * Decode key from its hex representation
467 */
468static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
469{
470 char buffer[3];
471 char *endp;
472 unsigned int i;
473
474 buffer[2] = '\0';
475
476 for(i = 0; i < size; i++) {
477 buffer[0] = *hex++;
478 buffer[1] = *hex++;
479
480 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
481
482 if (endp != &buffer[2])
483 return -EINVAL;
484 }
485
486 if (*hex != '\0')
487 return -EINVAL;
488
489 return 0;
490}
491
492/*
493 * Encode key into its hex representation
494 */
495static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
496{
497 unsigned int i;
498
499 for(i = 0; i < size; i++) {
500 sprintf(hex, "%02x", *key);
501 hex += 2;
502 key++;
503 }
504}
505
506/*
507 * Construct an encryption mapping:
508 * <cipher> <key> <iv_offset> <dev_path> <start>
509 */
510static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
511{
512 struct crypt_config *cc;
513 struct crypto_tfm *tfm;
514 char *tmp;
515 char *cipher;
516 char *chainmode;
517 char *ivmode;
518 char *ivopts;
519 unsigned int crypto_flags;
520 unsigned int key_size;
521
522 if (argc != 5) {
523 ti->error = PFX "Not enough arguments";
524 return -EINVAL;
525 }
526
527 tmp = argv[0];
528 cipher = strsep(&tmp, "-");
529 chainmode = strsep(&tmp, "-");
530 ivopts = strsep(&tmp, "-");
531 ivmode = strsep(&ivopts, ":");
532
533 if (tmp)
534 DMWARN(PFX "Unexpected additional cipher options");
535
536 key_size = strlen(argv[1]) >> 1;
537
538 cc = kmalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
539 if (cc == NULL) {
540 ti->error =
541 PFX "Cannot allocate transparent encryption context";
542 return -ENOMEM;
543 }
544
545 cc->key_size = key_size;
546 if ((!key_size && strcmp(argv[1], "-") != 0) ||
547 (key_size && crypt_decode_key(cc->key, argv[1], key_size) < 0)) {
548 ti->error = PFX "Error decoding key";
549 goto bad1;
550 }
551
552 /* Compatiblity mode for old dm-crypt cipher strings */
553 if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
554 chainmode = "cbc";
555 ivmode = "plain";
556 }
557
558 /* Choose crypto_flags according to chainmode */
559 if (strcmp(chainmode, "cbc") == 0)
560 crypto_flags = CRYPTO_TFM_MODE_CBC;
561 else if (strcmp(chainmode, "ecb") == 0)
562 crypto_flags = CRYPTO_TFM_MODE_ECB;
563 else {
564 ti->error = PFX "Unknown chaining mode";
565 goto bad1;
566 }
567
568 if (crypto_flags != CRYPTO_TFM_MODE_ECB && !ivmode) {
569 ti->error = PFX "This chaining mode requires an IV mechanism";
570 goto bad1;
571 }
572
Herbert Xueb6f1162005-09-01 17:43:25 -0700573 tfm = crypto_alloc_tfm(cipher, crypto_flags | CRYPTO_TFM_REQ_MAY_SLEEP);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700574 if (!tfm) {
575 ti->error = PFX "Error allocating crypto tfm";
576 goto bad1;
577 }
578 if (crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER) {
579 ti->error = PFX "Expected cipher algorithm";
580 goto bad2;
581 }
582
583 cc->tfm = tfm;
584
585 /*
586 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>".
587 * See comments at iv code
588 */
589
590 if (ivmode == NULL)
591 cc->iv_gen_ops = NULL;
592 else if (strcmp(ivmode, "plain") == 0)
593 cc->iv_gen_ops = &crypt_iv_plain_ops;
594 else if (strcmp(ivmode, "essiv") == 0)
595 cc->iv_gen_ops = &crypt_iv_essiv_ops;
596 else {
597 ti->error = PFX "Invalid IV mode";
598 goto bad2;
599 }
600
601 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
602 cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
603 goto bad2;
604
605 if (tfm->crt_cipher.cit_decrypt_iv && tfm->crt_cipher.cit_encrypt_iv)
606 /* at least a 64 bit sector number should fit in our buffer */
607 cc->iv_size = max(crypto_tfm_alg_ivsize(tfm),
608 (unsigned int)(sizeof(u64) / sizeof(u8)));
609 else {
610 cc->iv_size = 0;
611 if (cc->iv_gen_ops) {
612 DMWARN(PFX "Selected cipher does not support IVs");
613 if (cc->iv_gen_ops->dtr)
614 cc->iv_gen_ops->dtr(cc);
615 cc->iv_gen_ops = NULL;
616 }
617 }
618
619 cc->io_pool = mempool_create(MIN_IOS, mempool_alloc_slab,
620 mempool_free_slab, _crypt_io_pool);
621 if (!cc->io_pool) {
622 ti->error = PFX "Cannot allocate crypt io mempool";
623 goto bad3;
624 }
625
Matthew Dobsona19b27c2006-03-26 01:37:45 -0800626 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700627 if (!cc->page_pool) {
628 ti->error = PFX "Cannot allocate page mempool";
629 goto bad4;
630 }
631
632 if (tfm->crt_cipher.cit_setkey(tfm, cc->key, key_size) < 0) {
633 ti->error = PFX "Error setting key";
634 goto bad5;
635 }
636
637 if (sscanf(argv[2], SECTOR_FORMAT, &cc->iv_offset) != 1) {
638 ti->error = PFX "Invalid iv_offset sector";
639 goto bad5;
640 }
641
642 if (sscanf(argv[4], SECTOR_FORMAT, &cc->start) != 1) {
643 ti->error = PFX "Invalid device sector";
644 goto bad5;
645 }
646
647 if (dm_get_device(ti, argv[3], cc->start, ti->len,
648 dm_table_get_mode(ti->table), &cc->dev)) {
649 ti->error = PFX "Device lookup failed";
650 goto bad5;
651 }
652
653 if (ivmode && cc->iv_gen_ops) {
654 if (ivopts)
655 *(ivopts - 1) = ':';
656 cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
657 if (!cc->iv_mode) {
658 ti->error = PFX "Error kmallocing iv_mode string";
659 goto bad5;
660 }
661 strcpy(cc->iv_mode, ivmode);
662 } else
663 cc->iv_mode = NULL;
664
665 ti->private = cc;
666 return 0;
667
668bad5:
669 mempool_destroy(cc->page_pool);
670bad4:
671 mempool_destroy(cc->io_pool);
672bad3:
673 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
674 cc->iv_gen_ops->dtr(cc);
675bad2:
676 crypto_free_tfm(tfm);
677bad1:
Stefan Rompf9d3520a2006-01-06 00:20:08 -0800678 /* Must zero key material before freeing */
679 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700680 kfree(cc);
681 return -EINVAL;
682}
683
684static void crypt_dtr(struct dm_target *ti)
685{
686 struct crypt_config *cc = (struct crypt_config *) ti->private;
687
688 mempool_destroy(cc->page_pool);
689 mempool_destroy(cc->io_pool);
690
Jesper Juhl990a8ba2005-06-21 17:17:30 -0700691 kfree(cc->iv_mode);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700692 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
693 cc->iv_gen_ops->dtr(cc);
694 crypto_free_tfm(cc->tfm);
695 dm_put_device(ti, cc->dev);
Stefan Rompf9d3520a2006-01-06 00:20:08 -0800696
697 /* Must zero key material before freeing */
698 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700699 kfree(cc);
700}
701
702static int crypt_endio(struct bio *bio, unsigned int done, int error)
703{
704 struct crypt_io *io = (struct crypt_io *) bio->bi_private;
705 struct crypt_config *cc = (struct crypt_config *) io->target->private;
706
707 if (bio_data_dir(bio) == WRITE) {
708 /*
709 * free the processed pages, even if
710 * it's only a partially completed write
711 */
712 crypt_free_buffer_pages(cc, bio, done);
713 }
714
715 if (bio->bi_size)
716 return 1;
717
718 bio_put(bio);
719
720 /*
721 * successful reads are decrypted by the worker thread
722 */
723 if ((bio_data_dir(bio) == READ)
724 && bio_flagged(bio, BIO_UPTODATE)) {
725 kcryptd_queue_io(io);
726 return 0;
727 }
728
729 dec_pending(io, error);
730 return error;
731}
732
733static inline struct bio *
734crypt_clone(struct crypt_config *cc, struct crypt_io *io, struct bio *bio,
735 sector_t sector, unsigned int *bvec_idx,
736 struct convert_context *ctx)
737{
738 struct bio *clone;
739
740 if (bio_data_dir(bio) == WRITE) {
741 clone = crypt_alloc_buffer(cc, bio->bi_size,
742 io->first_clone, bvec_idx);
743 if (clone) {
744 ctx->bio_out = clone;
745 if (crypt_convert(cc, ctx) < 0) {
746 crypt_free_buffer_pages(cc, clone,
747 clone->bi_size);
748 bio_put(clone);
749 return NULL;
750 }
751 }
752 } else {
753 /*
754 * The block layer might modify the bvec array, so always
755 * copy the required bvecs because we need the original
756 * one in order to decrypt the whole bio data *afterwards*.
757 */
758 clone = bio_alloc(GFP_NOIO, bio_segments(bio));
759 if (clone) {
760 clone->bi_idx = 0;
761 clone->bi_vcnt = bio_segments(bio);
762 clone->bi_size = bio->bi_size;
763 memcpy(clone->bi_io_vec, bio_iovec(bio),
764 sizeof(struct bio_vec) * clone->bi_vcnt);
765 }
766 }
767
768 if (!clone)
769 return NULL;
770
771 clone->bi_private = io;
772 clone->bi_end_io = crypt_endio;
773 clone->bi_bdev = cc->dev->bdev;
774 clone->bi_sector = cc->start + sector;
775 clone->bi_rw = bio->bi_rw;
776
777 return clone;
778}
779
780static int crypt_map(struct dm_target *ti, struct bio *bio,
781 union map_info *map_context)
782{
783 struct crypt_config *cc = (struct crypt_config *) ti->private;
784 struct crypt_io *io = mempool_alloc(cc->io_pool, GFP_NOIO);
785 struct convert_context ctx;
786 struct bio *clone;
787 unsigned int remaining = bio->bi_size;
788 sector_t sector = bio->bi_sector - ti->begin;
789 unsigned int bvec_idx = 0;
790
791 io->target = ti;
792 io->bio = bio;
793 io->first_clone = NULL;
794 io->error = 0;
795 atomic_set(&io->pending, 1); /* hold a reference */
796
797 if (bio_data_dir(bio) == WRITE)
798 crypt_convert_init(cc, &ctx, NULL, bio, sector, 1);
799
800 /*
801 * The allocated buffers can be smaller than the whole bio,
802 * so repeat the whole process until all the data can be handled.
803 */
804 while (remaining) {
805 clone = crypt_clone(cc, io, bio, sector, &bvec_idx, &ctx);
806 if (!clone)
807 goto cleanup;
808
809 if (!io->first_clone) {
810 /*
811 * hold a reference to the first clone, because it
812 * holds the bio_vec array and that can't be freed
813 * before all other clones are released
814 */
815 bio_get(clone);
816 io->first_clone = clone;
817 }
818 atomic_inc(&io->pending);
819
820 remaining -= clone->bi_size;
821 sector += bio_sectors(clone);
822
823 generic_make_request(clone);
824
825 /* out of memory -> run queues */
826 if (remaining)
827 blk_congestion_wait(bio_data_dir(clone), HZ/100);
828 }
829
830 /* drop reference, clones could have returned before we reach this */
831 dec_pending(io, 0);
832 return 0;
833
834cleanup:
835 if (io->first_clone) {
836 dec_pending(io, -ENOMEM);
837 return 0;
838 }
839
840 /* if no bio has been dispatched yet, we can directly return the error */
841 mempool_free(io, cc->io_pool);
842 return -ENOMEM;
843}
844
845static int crypt_status(struct dm_target *ti, status_type_t type,
846 char *result, unsigned int maxlen)
847{
848 struct crypt_config *cc = (struct crypt_config *) ti->private;
849 const char *cipher;
850 const char *chainmode = NULL;
851 unsigned int sz = 0;
852
853 switch (type) {
854 case STATUSTYPE_INFO:
855 result[0] = '\0';
856 break;
857
858 case STATUSTYPE_TABLE:
859 cipher = crypto_tfm_alg_name(cc->tfm);
860
861 switch(cc->tfm->crt_cipher.cit_mode) {
862 case CRYPTO_TFM_MODE_CBC:
863 chainmode = "cbc";
864 break;
865 case CRYPTO_TFM_MODE_ECB:
866 chainmode = "ecb";
867 break;
868 default:
869 BUG();
870 }
871
872 if (cc->iv_mode)
873 DMEMIT("%s-%s-%s ", cipher, chainmode, cc->iv_mode);
874 else
875 DMEMIT("%s-%s ", cipher, chainmode);
876
877 if (cc->key_size > 0) {
878 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
879 return -ENOMEM;
880
881 crypt_encode_key(result + sz, cc->key, cc->key_size);
882 sz += cc->key_size << 1;
883 } else {
884 if (sz >= maxlen)
885 return -ENOMEM;
886 result[sz++] = '-';
887 }
888
889 DMEMIT(" " SECTOR_FORMAT " %s " SECTOR_FORMAT,
890 cc->iv_offset, cc->dev->name, cc->start);
891 break;
892 }
893 return 0;
894}
895
896static struct target_type crypt_target = {
897 .name = "crypt",
898 .version= {1, 1, 0},
899 .module = THIS_MODULE,
900 .ctr = crypt_ctr,
901 .dtr = crypt_dtr,
902 .map = crypt_map,
903 .status = crypt_status,
904};
905
906static int __init dm_crypt_init(void)
907{
908 int r;
909
910 _crypt_io_pool = kmem_cache_create("dm-crypt_io",
911 sizeof(struct crypt_io),
912 0, 0, NULL, NULL);
913 if (!_crypt_io_pool)
914 return -ENOMEM;
915
916 _kcryptd_workqueue = create_workqueue("kcryptd");
917 if (!_kcryptd_workqueue) {
918 r = -ENOMEM;
919 DMERR(PFX "couldn't create kcryptd");
920 goto bad1;
921 }
922
923 r = dm_register_target(&crypt_target);
924 if (r < 0) {
925 DMERR(PFX "register failed %d", r);
926 goto bad2;
927 }
928
929 return 0;
930
931bad2:
932 destroy_workqueue(_kcryptd_workqueue);
933bad1:
934 kmem_cache_destroy(_crypt_io_pool);
935 return r;
936}
937
938static void __exit dm_crypt_exit(void)
939{
940 int r = dm_unregister_target(&crypt_target);
941
942 if (r < 0)
943 DMERR(PFX "unregister failed %d", r);
944
945 destroy_workqueue(_kcryptd_workqueue);
946 kmem_cache_destroy(_crypt_io_pool);
947}
948
949module_init(dm_crypt_init);
950module_exit(dm_crypt_exit);
951
952MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
953MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
954MODULE_LICENSE("GPL");