Andre Przywara | a0675c2 | 2014-06-07 00:54:51 +0200 | [diff] [blame^] | 1 | /* |
| 2 | * GICv3 distributor and redistributor emulation |
| 3 | * |
| 4 | * GICv3 emulation is currently only supported on a GICv3 host (because |
| 5 | * we rely on the hardware's CPU interface virtualization support), but |
| 6 | * supports both hardware with or without the optional GICv2 backwards |
| 7 | * compatibility features. |
| 8 | * |
| 9 | * Limitations of the emulation: |
| 10 | * (RAZ/WI: read as zero, write ignore, RAO/WI: read as one, write ignore) |
| 11 | * - We do not support LPIs (yet). TYPER.LPIS is reported as 0 and is RAZ/WI. |
| 12 | * - We do not support the message based interrupts (MBIs) triggered by |
| 13 | * writes to the GICD_{SET,CLR}SPI_* registers. TYPER.MBIS is reported as 0. |
| 14 | * - We do not support the (optional) backwards compatibility feature. |
| 15 | * GICD_CTLR.ARE resets to 1 and is RAO/WI. If the _host_ GIC supports |
| 16 | * the compatiblity feature, you can use a GICv2 in the guest, though. |
| 17 | * - We only support a single security state. GICD_CTLR.DS is 1 and is RAO/WI. |
| 18 | * - Priorities are not emulated (same as the GICv2 emulation). Linux |
| 19 | * as a guest is fine with this, because it does not use priorities. |
| 20 | * - We only support Group1 interrupts. Again Linux uses only those. |
| 21 | * |
| 22 | * Copyright (C) 2014 ARM Ltd. |
| 23 | * Author: Andre Przywara <andre.przywara@arm.com> |
| 24 | * |
| 25 | * This program is free software; you can redistribute it and/or modify |
| 26 | * it under the terms of the GNU General Public License version 2 as |
| 27 | * published by the Free Software Foundation. |
| 28 | * |
| 29 | * This program is distributed in the hope that it will be useful, |
| 30 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 31 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 32 | * GNU General Public License for more details. |
| 33 | * |
| 34 | * You should have received a copy of the GNU General Public License |
| 35 | * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 36 | */ |
| 37 | |
| 38 | #include <linux/cpu.h> |
| 39 | #include <linux/kvm.h> |
| 40 | #include <linux/kvm_host.h> |
| 41 | #include <linux/interrupt.h> |
| 42 | |
| 43 | #include <linux/irqchip/arm-gic-v3.h> |
| 44 | #include <kvm/arm_vgic.h> |
| 45 | |
| 46 | #include <asm/kvm_emulate.h> |
| 47 | #include <asm/kvm_arm.h> |
| 48 | #include <asm/kvm_mmu.h> |
| 49 | |
| 50 | #include "vgic.h" |
| 51 | |
| 52 | static bool handle_mmio_rao_wi(struct kvm_vcpu *vcpu, |
| 53 | struct kvm_exit_mmio *mmio, phys_addr_t offset) |
| 54 | { |
| 55 | u32 reg = 0xffffffff; |
| 56 | |
| 57 | vgic_reg_access(mmio, ®, offset, |
| 58 | ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); |
| 59 | |
| 60 | return false; |
| 61 | } |
| 62 | |
| 63 | static bool handle_mmio_ctlr(struct kvm_vcpu *vcpu, |
| 64 | struct kvm_exit_mmio *mmio, phys_addr_t offset) |
| 65 | { |
| 66 | u32 reg = 0; |
| 67 | |
| 68 | /* |
| 69 | * Force ARE and DS to 1, the guest cannot change this. |
| 70 | * For the time being we only support Group1 interrupts. |
| 71 | */ |
| 72 | if (vcpu->kvm->arch.vgic.enabled) |
| 73 | reg = GICD_CTLR_ENABLE_SS_G1; |
| 74 | reg |= GICD_CTLR_ARE_NS | GICD_CTLR_DS; |
| 75 | |
| 76 | vgic_reg_access(mmio, ®, offset, |
| 77 | ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); |
| 78 | if (mmio->is_write) { |
| 79 | if (reg & GICD_CTLR_ENABLE_SS_G0) |
| 80 | kvm_info("guest tried to enable unsupported Group0 interrupts\n"); |
| 81 | vcpu->kvm->arch.vgic.enabled = !!(reg & GICD_CTLR_ENABLE_SS_G1); |
| 82 | vgic_update_state(vcpu->kvm); |
| 83 | return true; |
| 84 | } |
| 85 | return false; |
| 86 | } |
| 87 | |
| 88 | /* |
| 89 | * As this implementation does not provide compatibility |
| 90 | * with GICv2 (ARE==1), we report zero CPUs in bits [5..7]. |
| 91 | * Also LPIs and MBIs are not supported, so we set the respective bits to 0. |
| 92 | * Also we report at most 2**10=1024 interrupt IDs (to match 1024 SPIs). |
| 93 | */ |
| 94 | #define INTERRUPT_ID_BITS 10 |
| 95 | static bool handle_mmio_typer(struct kvm_vcpu *vcpu, |
| 96 | struct kvm_exit_mmio *mmio, phys_addr_t offset) |
| 97 | { |
| 98 | u32 reg; |
| 99 | |
| 100 | reg = (min(vcpu->kvm->arch.vgic.nr_irqs, 1024) >> 5) - 1; |
| 101 | |
| 102 | reg |= (INTERRUPT_ID_BITS - 1) << 19; |
| 103 | |
| 104 | vgic_reg_access(mmio, ®, offset, |
| 105 | ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); |
| 106 | |
| 107 | return false; |
| 108 | } |
| 109 | |
| 110 | static bool handle_mmio_iidr(struct kvm_vcpu *vcpu, |
| 111 | struct kvm_exit_mmio *mmio, phys_addr_t offset) |
| 112 | { |
| 113 | u32 reg; |
| 114 | |
| 115 | reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0); |
| 116 | vgic_reg_access(mmio, ®, offset, |
| 117 | ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); |
| 118 | |
| 119 | return false; |
| 120 | } |
| 121 | |
| 122 | static bool handle_mmio_set_enable_reg_dist(struct kvm_vcpu *vcpu, |
| 123 | struct kvm_exit_mmio *mmio, |
| 124 | phys_addr_t offset) |
| 125 | { |
| 126 | if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) |
| 127 | return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, |
| 128 | vcpu->vcpu_id, |
| 129 | ACCESS_WRITE_SETBIT); |
| 130 | |
| 131 | vgic_reg_access(mmio, NULL, offset, |
| 132 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); |
| 133 | return false; |
| 134 | } |
| 135 | |
| 136 | static bool handle_mmio_clear_enable_reg_dist(struct kvm_vcpu *vcpu, |
| 137 | struct kvm_exit_mmio *mmio, |
| 138 | phys_addr_t offset) |
| 139 | { |
| 140 | if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) |
| 141 | return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, |
| 142 | vcpu->vcpu_id, |
| 143 | ACCESS_WRITE_CLEARBIT); |
| 144 | |
| 145 | vgic_reg_access(mmio, NULL, offset, |
| 146 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); |
| 147 | return false; |
| 148 | } |
| 149 | |
| 150 | static bool handle_mmio_set_pending_reg_dist(struct kvm_vcpu *vcpu, |
| 151 | struct kvm_exit_mmio *mmio, |
| 152 | phys_addr_t offset) |
| 153 | { |
| 154 | if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) |
| 155 | return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset, |
| 156 | vcpu->vcpu_id); |
| 157 | |
| 158 | vgic_reg_access(mmio, NULL, offset, |
| 159 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); |
| 160 | return false; |
| 161 | } |
| 162 | |
| 163 | static bool handle_mmio_clear_pending_reg_dist(struct kvm_vcpu *vcpu, |
| 164 | struct kvm_exit_mmio *mmio, |
| 165 | phys_addr_t offset) |
| 166 | { |
| 167 | if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) |
| 168 | return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset, |
| 169 | vcpu->vcpu_id); |
| 170 | |
| 171 | vgic_reg_access(mmio, NULL, offset, |
| 172 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); |
| 173 | return false; |
| 174 | } |
| 175 | |
| 176 | static bool handle_mmio_priority_reg_dist(struct kvm_vcpu *vcpu, |
| 177 | struct kvm_exit_mmio *mmio, |
| 178 | phys_addr_t offset) |
| 179 | { |
| 180 | u32 *reg; |
| 181 | |
| 182 | if (unlikely(offset < VGIC_NR_PRIVATE_IRQS)) { |
| 183 | vgic_reg_access(mmio, NULL, offset, |
| 184 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); |
| 185 | return false; |
| 186 | } |
| 187 | |
| 188 | reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority, |
| 189 | vcpu->vcpu_id, offset); |
| 190 | vgic_reg_access(mmio, reg, offset, |
| 191 | ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); |
| 192 | return false; |
| 193 | } |
| 194 | |
| 195 | static bool handle_mmio_cfg_reg_dist(struct kvm_vcpu *vcpu, |
| 196 | struct kvm_exit_mmio *mmio, |
| 197 | phys_addr_t offset) |
| 198 | { |
| 199 | u32 *reg; |
| 200 | |
| 201 | if (unlikely(offset < VGIC_NR_PRIVATE_IRQS / 4)) { |
| 202 | vgic_reg_access(mmio, NULL, offset, |
| 203 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); |
| 204 | return false; |
| 205 | } |
| 206 | |
| 207 | reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg, |
| 208 | vcpu->vcpu_id, offset >> 1); |
| 209 | |
| 210 | return vgic_handle_cfg_reg(reg, mmio, offset); |
| 211 | } |
| 212 | |
| 213 | /* |
| 214 | * We use a compressed version of the MPIDR (all 32 bits in one 32-bit word) |
| 215 | * when we store the target MPIDR written by the guest. |
| 216 | */ |
| 217 | static u32 compress_mpidr(unsigned long mpidr) |
| 218 | { |
| 219 | u32 ret; |
| 220 | |
| 221 | ret = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
| 222 | ret |= MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8; |
| 223 | ret |= MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16; |
| 224 | ret |= MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24; |
| 225 | |
| 226 | return ret; |
| 227 | } |
| 228 | |
| 229 | static unsigned long uncompress_mpidr(u32 value) |
| 230 | { |
| 231 | unsigned long mpidr; |
| 232 | |
| 233 | mpidr = ((value >> 0) & 0xFF) << MPIDR_LEVEL_SHIFT(0); |
| 234 | mpidr |= ((value >> 8) & 0xFF) << MPIDR_LEVEL_SHIFT(1); |
| 235 | mpidr |= ((value >> 16) & 0xFF) << MPIDR_LEVEL_SHIFT(2); |
| 236 | mpidr |= (u64)((value >> 24) & 0xFF) << MPIDR_LEVEL_SHIFT(3); |
| 237 | |
| 238 | return mpidr; |
| 239 | } |
| 240 | |
| 241 | /* |
| 242 | * Lookup the given MPIDR value to get the vcpu_id (if there is one) |
| 243 | * and store that in the irq_spi_cpu[] array. |
| 244 | * This limits the number of VCPUs to 255 for now, extending the data |
| 245 | * type (or storing kvm_vcpu pointers) should lift the limit. |
| 246 | * Store the original MPIDR value in an extra array to support read-as-written. |
| 247 | * Unallocated MPIDRs are translated to a special value and caught |
| 248 | * before any array accesses. |
| 249 | */ |
| 250 | static bool handle_mmio_route_reg(struct kvm_vcpu *vcpu, |
| 251 | struct kvm_exit_mmio *mmio, |
| 252 | phys_addr_t offset) |
| 253 | { |
| 254 | struct kvm *kvm = vcpu->kvm; |
| 255 | struct vgic_dist *dist = &kvm->arch.vgic; |
| 256 | int spi; |
| 257 | u32 reg; |
| 258 | int vcpu_id; |
| 259 | unsigned long *bmap, mpidr; |
| 260 | |
| 261 | /* |
| 262 | * The upper 32 bits of each 64 bit register are zero, |
| 263 | * as we don't support Aff3. |
| 264 | */ |
| 265 | if ((offset & 4)) { |
| 266 | vgic_reg_access(mmio, NULL, offset, |
| 267 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); |
| 268 | return false; |
| 269 | } |
| 270 | |
| 271 | /* This region only covers SPIs, so no handling of private IRQs here. */ |
| 272 | spi = offset / 8; |
| 273 | |
| 274 | /* get the stored MPIDR for this IRQ */ |
| 275 | mpidr = uncompress_mpidr(dist->irq_spi_mpidr[spi]); |
| 276 | reg = mpidr; |
| 277 | |
| 278 | vgic_reg_access(mmio, ®, offset, |
| 279 | ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); |
| 280 | |
| 281 | if (!mmio->is_write) |
| 282 | return false; |
| 283 | |
| 284 | /* |
| 285 | * Now clear the currently assigned vCPU from the map, making room |
| 286 | * for the new one to be written below |
| 287 | */ |
| 288 | vcpu = kvm_mpidr_to_vcpu(kvm, mpidr); |
| 289 | if (likely(vcpu)) { |
| 290 | vcpu_id = vcpu->vcpu_id; |
| 291 | bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]); |
| 292 | __clear_bit(spi, bmap); |
| 293 | } |
| 294 | |
| 295 | dist->irq_spi_mpidr[spi] = compress_mpidr(reg); |
| 296 | vcpu = kvm_mpidr_to_vcpu(kvm, reg & MPIDR_HWID_BITMASK); |
| 297 | |
| 298 | /* |
| 299 | * The spec says that non-existent MPIDR values should not be |
| 300 | * forwarded to any existent (v)CPU, but should be able to become |
| 301 | * pending anyway. We simply keep the irq_spi_target[] array empty, so |
| 302 | * the interrupt will never be injected. |
| 303 | * irq_spi_cpu[irq] gets a magic value in this case. |
| 304 | */ |
| 305 | if (likely(vcpu)) { |
| 306 | vcpu_id = vcpu->vcpu_id; |
| 307 | dist->irq_spi_cpu[spi] = vcpu_id; |
| 308 | bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]); |
| 309 | __set_bit(spi, bmap); |
| 310 | } else { |
| 311 | dist->irq_spi_cpu[spi] = VCPU_NOT_ALLOCATED; |
| 312 | } |
| 313 | |
| 314 | vgic_update_state(kvm); |
| 315 | |
| 316 | return true; |
| 317 | } |
| 318 | |
| 319 | /* |
| 320 | * We should be careful about promising too much when a guest reads |
| 321 | * this register. Don't claim to be like any hardware implementation, |
| 322 | * but just report the GIC as version 3 - which is what a Linux guest |
| 323 | * would check. |
| 324 | */ |
| 325 | static bool handle_mmio_idregs(struct kvm_vcpu *vcpu, |
| 326 | struct kvm_exit_mmio *mmio, |
| 327 | phys_addr_t offset) |
| 328 | { |
| 329 | u32 reg = 0; |
| 330 | |
| 331 | switch (offset + GICD_IDREGS) { |
| 332 | case GICD_PIDR2: |
| 333 | reg = 0x3b; |
| 334 | break; |
| 335 | } |
| 336 | |
| 337 | vgic_reg_access(mmio, ®, offset, |
| 338 | ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); |
| 339 | |
| 340 | return false; |
| 341 | } |
| 342 | |
| 343 | static const struct kvm_mmio_range vgic_v3_dist_ranges[] = { |
| 344 | { |
| 345 | .base = GICD_CTLR, |
| 346 | .len = 0x04, |
| 347 | .bits_per_irq = 0, |
| 348 | .handle_mmio = handle_mmio_ctlr, |
| 349 | }, |
| 350 | { |
| 351 | .base = GICD_TYPER, |
| 352 | .len = 0x04, |
| 353 | .bits_per_irq = 0, |
| 354 | .handle_mmio = handle_mmio_typer, |
| 355 | }, |
| 356 | { |
| 357 | .base = GICD_IIDR, |
| 358 | .len = 0x04, |
| 359 | .bits_per_irq = 0, |
| 360 | .handle_mmio = handle_mmio_iidr, |
| 361 | }, |
| 362 | { |
| 363 | /* this register is optional, it is RAZ/WI if not implemented */ |
| 364 | .base = GICD_STATUSR, |
| 365 | .len = 0x04, |
| 366 | .bits_per_irq = 0, |
| 367 | .handle_mmio = handle_mmio_raz_wi, |
| 368 | }, |
| 369 | { |
| 370 | /* this write only register is WI when TYPER.MBIS=0 */ |
| 371 | .base = GICD_SETSPI_NSR, |
| 372 | .len = 0x04, |
| 373 | .bits_per_irq = 0, |
| 374 | .handle_mmio = handle_mmio_raz_wi, |
| 375 | }, |
| 376 | { |
| 377 | /* this write only register is WI when TYPER.MBIS=0 */ |
| 378 | .base = GICD_CLRSPI_NSR, |
| 379 | .len = 0x04, |
| 380 | .bits_per_irq = 0, |
| 381 | .handle_mmio = handle_mmio_raz_wi, |
| 382 | }, |
| 383 | { |
| 384 | /* this is RAZ/WI when DS=1 */ |
| 385 | .base = GICD_SETSPI_SR, |
| 386 | .len = 0x04, |
| 387 | .bits_per_irq = 0, |
| 388 | .handle_mmio = handle_mmio_raz_wi, |
| 389 | }, |
| 390 | { |
| 391 | /* this is RAZ/WI when DS=1 */ |
| 392 | .base = GICD_CLRSPI_SR, |
| 393 | .len = 0x04, |
| 394 | .bits_per_irq = 0, |
| 395 | .handle_mmio = handle_mmio_raz_wi, |
| 396 | }, |
| 397 | { |
| 398 | .base = GICD_IGROUPR, |
| 399 | .len = 0x80, |
| 400 | .bits_per_irq = 1, |
| 401 | .handle_mmio = handle_mmio_rao_wi, |
| 402 | }, |
| 403 | { |
| 404 | .base = GICD_ISENABLER, |
| 405 | .len = 0x80, |
| 406 | .bits_per_irq = 1, |
| 407 | .handle_mmio = handle_mmio_set_enable_reg_dist, |
| 408 | }, |
| 409 | { |
| 410 | .base = GICD_ICENABLER, |
| 411 | .len = 0x80, |
| 412 | .bits_per_irq = 1, |
| 413 | .handle_mmio = handle_mmio_clear_enable_reg_dist, |
| 414 | }, |
| 415 | { |
| 416 | .base = GICD_ISPENDR, |
| 417 | .len = 0x80, |
| 418 | .bits_per_irq = 1, |
| 419 | .handle_mmio = handle_mmio_set_pending_reg_dist, |
| 420 | }, |
| 421 | { |
| 422 | .base = GICD_ICPENDR, |
| 423 | .len = 0x80, |
| 424 | .bits_per_irq = 1, |
| 425 | .handle_mmio = handle_mmio_clear_pending_reg_dist, |
| 426 | }, |
| 427 | { |
| 428 | .base = GICD_ISACTIVER, |
| 429 | .len = 0x80, |
| 430 | .bits_per_irq = 1, |
| 431 | .handle_mmio = handle_mmio_raz_wi, |
| 432 | }, |
| 433 | { |
| 434 | .base = GICD_ICACTIVER, |
| 435 | .len = 0x80, |
| 436 | .bits_per_irq = 1, |
| 437 | .handle_mmio = handle_mmio_raz_wi, |
| 438 | }, |
| 439 | { |
| 440 | .base = GICD_IPRIORITYR, |
| 441 | .len = 0x400, |
| 442 | .bits_per_irq = 8, |
| 443 | .handle_mmio = handle_mmio_priority_reg_dist, |
| 444 | }, |
| 445 | { |
| 446 | /* TARGETSRn is RES0 when ARE=1 */ |
| 447 | .base = GICD_ITARGETSR, |
| 448 | .len = 0x400, |
| 449 | .bits_per_irq = 8, |
| 450 | .handle_mmio = handle_mmio_raz_wi, |
| 451 | }, |
| 452 | { |
| 453 | .base = GICD_ICFGR, |
| 454 | .len = 0x100, |
| 455 | .bits_per_irq = 2, |
| 456 | .handle_mmio = handle_mmio_cfg_reg_dist, |
| 457 | }, |
| 458 | { |
| 459 | /* this is RAZ/WI when DS=1 */ |
| 460 | .base = GICD_IGRPMODR, |
| 461 | .len = 0x80, |
| 462 | .bits_per_irq = 1, |
| 463 | .handle_mmio = handle_mmio_raz_wi, |
| 464 | }, |
| 465 | { |
| 466 | /* this is RAZ/WI when DS=1 */ |
| 467 | .base = GICD_NSACR, |
| 468 | .len = 0x100, |
| 469 | .bits_per_irq = 2, |
| 470 | .handle_mmio = handle_mmio_raz_wi, |
| 471 | }, |
| 472 | { |
| 473 | /* this is RAZ/WI when ARE=1 */ |
| 474 | .base = GICD_SGIR, |
| 475 | .len = 0x04, |
| 476 | .handle_mmio = handle_mmio_raz_wi, |
| 477 | }, |
| 478 | { |
| 479 | /* this is RAZ/WI when ARE=1 */ |
| 480 | .base = GICD_CPENDSGIR, |
| 481 | .len = 0x10, |
| 482 | .handle_mmio = handle_mmio_raz_wi, |
| 483 | }, |
| 484 | { |
| 485 | /* this is RAZ/WI when ARE=1 */ |
| 486 | .base = GICD_SPENDSGIR, |
| 487 | .len = 0x10, |
| 488 | .handle_mmio = handle_mmio_raz_wi, |
| 489 | }, |
| 490 | { |
| 491 | .base = GICD_IROUTER + 0x100, |
| 492 | .len = 0x1ee0, |
| 493 | .bits_per_irq = 64, |
| 494 | .handle_mmio = handle_mmio_route_reg, |
| 495 | }, |
| 496 | { |
| 497 | .base = GICD_IDREGS, |
| 498 | .len = 0x30, |
| 499 | .bits_per_irq = 0, |
| 500 | .handle_mmio = handle_mmio_idregs, |
| 501 | }, |
| 502 | {}, |
| 503 | }; |
| 504 | |
| 505 | static bool handle_mmio_set_enable_reg_redist(struct kvm_vcpu *vcpu, |
| 506 | struct kvm_exit_mmio *mmio, |
| 507 | phys_addr_t offset) |
| 508 | { |
| 509 | struct kvm_vcpu *redist_vcpu = mmio->private; |
| 510 | |
| 511 | return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, |
| 512 | redist_vcpu->vcpu_id, |
| 513 | ACCESS_WRITE_SETBIT); |
| 514 | } |
| 515 | |
| 516 | static bool handle_mmio_clear_enable_reg_redist(struct kvm_vcpu *vcpu, |
| 517 | struct kvm_exit_mmio *mmio, |
| 518 | phys_addr_t offset) |
| 519 | { |
| 520 | struct kvm_vcpu *redist_vcpu = mmio->private; |
| 521 | |
| 522 | return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, |
| 523 | redist_vcpu->vcpu_id, |
| 524 | ACCESS_WRITE_CLEARBIT); |
| 525 | } |
| 526 | |
| 527 | static bool handle_mmio_set_pending_reg_redist(struct kvm_vcpu *vcpu, |
| 528 | struct kvm_exit_mmio *mmio, |
| 529 | phys_addr_t offset) |
| 530 | { |
| 531 | struct kvm_vcpu *redist_vcpu = mmio->private; |
| 532 | |
| 533 | return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset, |
| 534 | redist_vcpu->vcpu_id); |
| 535 | } |
| 536 | |
| 537 | static bool handle_mmio_clear_pending_reg_redist(struct kvm_vcpu *vcpu, |
| 538 | struct kvm_exit_mmio *mmio, |
| 539 | phys_addr_t offset) |
| 540 | { |
| 541 | struct kvm_vcpu *redist_vcpu = mmio->private; |
| 542 | |
| 543 | return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset, |
| 544 | redist_vcpu->vcpu_id); |
| 545 | } |
| 546 | |
| 547 | static bool handle_mmio_priority_reg_redist(struct kvm_vcpu *vcpu, |
| 548 | struct kvm_exit_mmio *mmio, |
| 549 | phys_addr_t offset) |
| 550 | { |
| 551 | struct kvm_vcpu *redist_vcpu = mmio->private; |
| 552 | u32 *reg; |
| 553 | |
| 554 | reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority, |
| 555 | redist_vcpu->vcpu_id, offset); |
| 556 | vgic_reg_access(mmio, reg, offset, |
| 557 | ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); |
| 558 | return false; |
| 559 | } |
| 560 | |
| 561 | static bool handle_mmio_cfg_reg_redist(struct kvm_vcpu *vcpu, |
| 562 | struct kvm_exit_mmio *mmio, |
| 563 | phys_addr_t offset) |
| 564 | { |
| 565 | struct kvm_vcpu *redist_vcpu = mmio->private; |
| 566 | |
| 567 | u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg, |
| 568 | redist_vcpu->vcpu_id, offset >> 1); |
| 569 | |
| 570 | return vgic_handle_cfg_reg(reg, mmio, offset); |
| 571 | } |
| 572 | |
| 573 | static const struct kvm_mmio_range vgic_redist_sgi_ranges[] = { |
| 574 | { |
| 575 | .base = GICR_IGROUPR0, |
| 576 | .len = 0x04, |
| 577 | .bits_per_irq = 1, |
| 578 | .handle_mmio = handle_mmio_rao_wi, |
| 579 | }, |
| 580 | { |
| 581 | .base = GICR_ISENABLER0, |
| 582 | .len = 0x04, |
| 583 | .bits_per_irq = 1, |
| 584 | .handle_mmio = handle_mmio_set_enable_reg_redist, |
| 585 | }, |
| 586 | { |
| 587 | .base = GICR_ICENABLER0, |
| 588 | .len = 0x04, |
| 589 | .bits_per_irq = 1, |
| 590 | .handle_mmio = handle_mmio_clear_enable_reg_redist, |
| 591 | }, |
| 592 | { |
| 593 | .base = GICR_ISPENDR0, |
| 594 | .len = 0x04, |
| 595 | .bits_per_irq = 1, |
| 596 | .handle_mmio = handle_mmio_set_pending_reg_redist, |
| 597 | }, |
| 598 | { |
| 599 | .base = GICR_ICPENDR0, |
| 600 | .len = 0x04, |
| 601 | .bits_per_irq = 1, |
| 602 | .handle_mmio = handle_mmio_clear_pending_reg_redist, |
| 603 | }, |
| 604 | { |
| 605 | .base = GICR_ISACTIVER0, |
| 606 | .len = 0x04, |
| 607 | .bits_per_irq = 1, |
| 608 | .handle_mmio = handle_mmio_raz_wi, |
| 609 | }, |
| 610 | { |
| 611 | .base = GICR_ICACTIVER0, |
| 612 | .len = 0x04, |
| 613 | .bits_per_irq = 1, |
| 614 | .handle_mmio = handle_mmio_raz_wi, |
| 615 | }, |
| 616 | { |
| 617 | .base = GICR_IPRIORITYR0, |
| 618 | .len = 0x20, |
| 619 | .bits_per_irq = 8, |
| 620 | .handle_mmio = handle_mmio_priority_reg_redist, |
| 621 | }, |
| 622 | { |
| 623 | .base = GICR_ICFGR0, |
| 624 | .len = 0x08, |
| 625 | .bits_per_irq = 2, |
| 626 | .handle_mmio = handle_mmio_cfg_reg_redist, |
| 627 | }, |
| 628 | { |
| 629 | .base = GICR_IGRPMODR0, |
| 630 | .len = 0x04, |
| 631 | .bits_per_irq = 1, |
| 632 | .handle_mmio = handle_mmio_raz_wi, |
| 633 | }, |
| 634 | { |
| 635 | .base = GICR_NSACR, |
| 636 | .len = 0x04, |
| 637 | .handle_mmio = handle_mmio_raz_wi, |
| 638 | }, |
| 639 | {}, |
| 640 | }; |
| 641 | |
| 642 | static bool handle_mmio_ctlr_redist(struct kvm_vcpu *vcpu, |
| 643 | struct kvm_exit_mmio *mmio, |
| 644 | phys_addr_t offset) |
| 645 | { |
| 646 | /* since we don't support LPIs, this register is zero for now */ |
| 647 | vgic_reg_access(mmio, NULL, offset, |
| 648 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); |
| 649 | return false; |
| 650 | } |
| 651 | |
| 652 | static bool handle_mmio_typer_redist(struct kvm_vcpu *vcpu, |
| 653 | struct kvm_exit_mmio *mmio, |
| 654 | phys_addr_t offset) |
| 655 | { |
| 656 | u32 reg; |
| 657 | u64 mpidr; |
| 658 | struct kvm_vcpu *redist_vcpu = mmio->private; |
| 659 | int target_vcpu_id = redist_vcpu->vcpu_id; |
| 660 | |
| 661 | /* the upper 32 bits contain the affinity value */ |
| 662 | if ((offset & ~3) == 4) { |
| 663 | mpidr = kvm_vcpu_get_mpidr_aff(redist_vcpu); |
| 664 | reg = compress_mpidr(mpidr); |
| 665 | |
| 666 | vgic_reg_access(mmio, ®, offset, |
| 667 | ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); |
| 668 | return false; |
| 669 | } |
| 670 | |
| 671 | reg = redist_vcpu->vcpu_id << 8; |
| 672 | if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1) |
| 673 | reg |= GICR_TYPER_LAST; |
| 674 | vgic_reg_access(mmio, ®, offset, |
| 675 | ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); |
| 676 | return false; |
| 677 | } |
| 678 | |
| 679 | static const struct kvm_mmio_range vgic_redist_ranges[] = { |
| 680 | { |
| 681 | .base = GICR_CTLR, |
| 682 | .len = 0x04, |
| 683 | .bits_per_irq = 0, |
| 684 | .handle_mmio = handle_mmio_ctlr_redist, |
| 685 | }, |
| 686 | { |
| 687 | .base = GICR_TYPER, |
| 688 | .len = 0x08, |
| 689 | .bits_per_irq = 0, |
| 690 | .handle_mmio = handle_mmio_typer_redist, |
| 691 | }, |
| 692 | { |
| 693 | .base = GICR_IIDR, |
| 694 | .len = 0x04, |
| 695 | .bits_per_irq = 0, |
| 696 | .handle_mmio = handle_mmio_iidr, |
| 697 | }, |
| 698 | { |
| 699 | .base = GICR_WAKER, |
| 700 | .len = 0x04, |
| 701 | .bits_per_irq = 0, |
| 702 | .handle_mmio = handle_mmio_raz_wi, |
| 703 | }, |
| 704 | { |
| 705 | .base = GICR_IDREGS, |
| 706 | .len = 0x30, |
| 707 | .bits_per_irq = 0, |
| 708 | .handle_mmio = handle_mmio_idregs, |
| 709 | }, |
| 710 | {}, |
| 711 | }; |
| 712 | |
| 713 | /* |
| 714 | * This function splits accesses between the distributor and the two |
| 715 | * redistributor parts (private/SPI). As each redistributor is accessible |
| 716 | * from any CPU, we have to determine the affected VCPU by taking the faulting |
| 717 | * address into account. We then pass this VCPU to the handler function via |
| 718 | * the private parameter. |
| 719 | */ |
| 720 | #define SGI_BASE_OFFSET SZ_64K |
| 721 | static bool vgic_v3_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, |
| 722 | struct kvm_exit_mmio *mmio) |
| 723 | { |
| 724 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 725 | unsigned long dbase = dist->vgic_dist_base; |
| 726 | unsigned long rdbase = dist->vgic_redist_base; |
| 727 | int nrcpus = atomic_read(&vcpu->kvm->online_vcpus); |
| 728 | int vcpu_id; |
| 729 | const struct kvm_mmio_range *mmio_range; |
| 730 | |
| 731 | if (is_in_range(mmio->phys_addr, mmio->len, dbase, GIC_V3_DIST_SIZE)) { |
| 732 | return vgic_handle_mmio_range(vcpu, run, mmio, |
| 733 | vgic_v3_dist_ranges, dbase); |
| 734 | } |
| 735 | |
| 736 | if (!is_in_range(mmio->phys_addr, mmio->len, rdbase, |
| 737 | GIC_V3_REDIST_SIZE * nrcpus)) |
| 738 | return false; |
| 739 | |
| 740 | vcpu_id = (mmio->phys_addr - rdbase) / GIC_V3_REDIST_SIZE; |
| 741 | rdbase += (vcpu_id * GIC_V3_REDIST_SIZE); |
| 742 | mmio->private = kvm_get_vcpu(vcpu->kvm, vcpu_id); |
| 743 | |
| 744 | if (mmio->phys_addr >= rdbase + SGI_BASE_OFFSET) { |
| 745 | rdbase += SGI_BASE_OFFSET; |
| 746 | mmio_range = vgic_redist_sgi_ranges; |
| 747 | } else { |
| 748 | mmio_range = vgic_redist_ranges; |
| 749 | } |
| 750 | return vgic_handle_mmio_range(vcpu, run, mmio, mmio_range, rdbase); |
| 751 | } |
| 752 | |
| 753 | static bool vgic_v3_queue_sgi(struct kvm_vcpu *vcpu, int irq) |
| 754 | { |
| 755 | if (vgic_queue_irq(vcpu, 0, irq)) { |
| 756 | vgic_dist_irq_clear_pending(vcpu, irq); |
| 757 | vgic_cpu_irq_clear(vcpu, irq); |
| 758 | return true; |
| 759 | } |
| 760 | |
| 761 | return false; |
| 762 | } |
| 763 | |
| 764 | static int vgic_v3_map_resources(struct kvm *kvm, |
| 765 | const struct vgic_params *params) |
| 766 | { |
| 767 | int ret = 0; |
| 768 | struct vgic_dist *dist = &kvm->arch.vgic; |
| 769 | |
| 770 | if (!irqchip_in_kernel(kvm)) |
| 771 | return 0; |
| 772 | |
| 773 | mutex_lock(&kvm->lock); |
| 774 | |
| 775 | if (vgic_ready(kvm)) |
| 776 | goto out; |
| 777 | |
| 778 | if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) || |
| 779 | IS_VGIC_ADDR_UNDEF(dist->vgic_redist_base)) { |
| 780 | kvm_err("Need to set vgic distributor addresses first\n"); |
| 781 | ret = -ENXIO; |
| 782 | goto out; |
| 783 | } |
| 784 | |
| 785 | /* |
| 786 | * For a VGICv3 we require the userland to explicitly initialize |
| 787 | * the VGIC before we need to use it. |
| 788 | */ |
| 789 | if (!vgic_initialized(kvm)) { |
| 790 | ret = -EBUSY; |
| 791 | goto out; |
| 792 | } |
| 793 | |
| 794 | kvm->arch.vgic.ready = true; |
| 795 | out: |
| 796 | if (ret) |
| 797 | kvm_vgic_destroy(kvm); |
| 798 | mutex_unlock(&kvm->lock); |
| 799 | return ret; |
| 800 | } |
| 801 | |
| 802 | static int vgic_v3_init_model(struct kvm *kvm) |
| 803 | { |
| 804 | int i; |
| 805 | u32 mpidr; |
| 806 | struct vgic_dist *dist = &kvm->arch.vgic; |
| 807 | int nr_spis = dist->nr_irqs - VGIC_NR_PRIVATE_IRQS; |
| 808 | |
| 809 | dist->irq_spi_mpidr = kcalloc(nr_spis, sizeof(dist->irq_spi_mpidr[0]), |
| 810 | GFP_KERNEL); |
| 811 | |
| 812 | if (!dist->irq_spi_mpidr) |
| 813 | return -ENOMEM; |
| 814 | |
| 815 | /* Initialize the target VCPUs for each IRQ to VCPU 0 */ |
| 816 | mpidr = compress_mpidr(kvm_vcpu_get_mpidr_aff(kvm_get_vcpu(kvm, 0))); |
| 817 | for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i++) { |
| 818 | dist->irq_spi_cpu[i - VGIC_NR_PRIVATE_IRQS] = 0; |
| 819 | dist->irq_spi_mpidr[i - VGIC_NR_PRIVATE_IRQS] = mpidr; |
| 820 | vgic_bitmap_set_irq_val(dist->irq_spi_target, 0, i, 1); |
| 821 | } |
| 822 | |
| 823 | return 0; |
| 824 | } |
| 825 | |
| 826 | /* GICv3 does not keep track of SGI sources anymore. */ |
| 827 | static void vgic_v3_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source) |
| 828 | { |
| 829 | } |
| 830 | |
| 831 | void vgic_v3_init_emulation(struct kvm *kvm) |
| 832 | { |
| 833 | struct vgic_dist *dist = &kvm->arch.vgic; |
| 834 | |
| 835 | dist->vm_ops.handle_mmio = vgic_v3_handle_mmio; |
| 836 | dist->vm_ops.queue_sgi = vgic_v3_queue_sgi; |
| 837 | dist->vm_ops.add_sgi_source = vgic_v3_add_sgi_source; |
| 838 | dist->vm_ops.init_model = vgic_v3_init_model; |
| 839 | dist->vm_ops.map_resources = vgic_v3_map_resources; |
| 840 | |
| 841 | kvm->arch.max_vcpus = KVM_MAX_VCPUS; |
| 842 | } |
| 843 | |
| 844 | static int vgic_v3_create(struct kvm_device *dev, u32 type) |
| 845 | { |
| 846 | return kvm_vgic_create(dev->kvm, type); |
| 847 | } |
| 848 | |
| 849 | static void vgic_v3_destroy(struct kvm_device *dev) |
| 850 | { |
| 851 | kfree(dev); |
| 852 | } |
| 853 | |
| 854 | static int vgic_v3_set_attr(struct kvm_device *dev, |
| 855 | struct kvm_device_attr *attr) |
| 856 | { |
| 857 | int ret; |
| 858 | |
| 859 | ret = vgic_set_common_attr(dev, attr); |
| 860 | if (ret != -ENXIO) |
| 861 | return ret; |
| 862 | |
| 863 | switch (attr->group) { |
| 864 | case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: |
| 865 | case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: |
| 866 | return -ENXIO; |
| 867 | } |
| 868 | |
| 869 | return -ENXIO; |
| 870 | } |
| 871 | |
| 872 | static int vgic_v3_get_attr(struct kvm_device *dev, |
| 873 | struct kvm_device_attr *attr) |
| 874 | { |
| 875 | int ret; |
| 876 | |
| 877 | ret = vgic_get_common_attr(dev, attr); |
| 878 | if (ret != -ENXIO) |
| 879 | return ret; |
| 880 | |
| 881 | switch (attr->group) { |
| 882 | case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: |
| 883 | case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: |
| 884 | return -ENXIO; |
| 885 | } |
| 886 | |
| 887 | return -ENXIO; |
| 888 | } |
| 889 | |
| 890 | static int vgic_v3_has_attr(struct kvm_device *dev, |
| 891 | struct kvm_device_attr *attr) |
| 892 | { |
| 893 | switch (attr->group) { |
| 894 | case KVM_DEV_ARM_VGIC_GRP_ADDR: |
| 895 | switch (attr->attr) { |
| 896 | case KVM_VGIC_V2_ADDR_TYPE_DIST: |
| 897 | case KVM_VGIC_V2_ADDR_TYPE_CPU: |
| 898 | return -ENXIO; |
| 899 | } |
| 900 | break; |
| 901 | case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: |
| 902 | case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: |
| 903 | return -ENXIO; |
| 904 | case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: |
| 905 | return 0; |
| 906 | case KVM_DEV_ARM_VGIC_GRP_CTRL: |
| 907 | switch (attr->attr) { |
| 908 | case KVM_DEV_ARM_VGIC_CTRL_INIT: |
| 909 | return 0; |
| 910 | } |
| 911 | } |
| 912 | return -ENXIO; |
| 913 | } |
| 914 | |
| 915 | struct kvm_device_ops kvm_arm_vgic_v3_ops = { |
| 916 | .name = "kvm-arm-vgic-v3", |
| 917 | .create = vgic_v3_create, |
| 918 | .destroy = vgic_v3_destroy, |
| 919 | .set_attr = vgic_v3_set_attr, |
| 920 | .get_attr = vgic_v3_get_attr, |
| 921 | .has_attr = vgic_v3_has_attr, |
| 922 | }; |