Darrick J. Wong | 86ffa47 | 2020-05-01 16:00:45 -0700 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (c) 2000-2006 Silicon Graphics, Inc. |
| 4 | * All Rights Reserved. |
| 5 | */ |
| 6 | #include "xfs.h" |
| 7 | #include "xfs_fs.h" |
| 8 | #include "xfs_shared.h" |
| 9 | #include "xfs_format.h" |
| 10 | #include "xfs_log_format.h" |
| 11 | #include "xfs_trans_resv.h" |
| 12 | #include "xfs_bit.h" |
| 13 | #include "xfs_mount.h" |
| 14 | #include "xfs_trans.h" |
| 15 | #include "xfs_buf_item.h" |
| 16 | #include "xfs_trans_priv.h" |
| 17 | #include "xfs_trace.h" |
| 18 | #include "xfs_log.h" |
| 19 | #include "xfs_log_priv.h" |
| 20 | #include "xfs_log_recover.h" |
Darrick J. Wong | 1094d3f | 2020-05-01 16:00:47 -0700 | [diff] [blame] | 21 | #include "xfs_error.h" |
| 22 | #include "xfs_inode.h" |
| 23 | #include "xfs_dir2.h" |
| 24 | #include "xfs_quota.h" |
Darrick J. Wong | 86ffa47 | 2020-05-01 16:00:45 -0700 | [diff] [blame] | 25 | |
| 26 | /* |
Darrick J. Wong | 17d29bf | 2020-05-01 16:00:56 -0700 | [diff] [blame] | 27 | * This structure is used during recovery to record the buf log items which |
| 28 | * have been canceled and should not be replayed. |
| 29 | */ |
| 30 | struct xfs_buf_cancel { |
| 31 | xfs_daddr_t bc_blkno; |
| 32 | uint bc_len; |
| 33 | int bc_refcount; |
| 34 | struct list_head bc_list; |
| 35 | }; |
| 36 | |
| 37 | static struct xfs_buf_cancel * |
| 38 | xlog_find_buffer_cancelled( |
| 39 | struct xlog *log, |
| 40 | xfs_daddr_t blkno, |
| 41 | uint len) |
| 42 | { |
| 43 | struct list_head *bucket; |
| 44 | struct xfs_buf_cancel *bcp; |
| 45 | |
| 46 | if (!log->l_buf_cancel_table) |
| 47 | return NULL; |
| 48 | |
| 49 | bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); |
| 50 | list_for_each_entry(bcp, bucket, bc_list) { |
| 51 | if (bcp->bc_blkno == blkno && bcp->bc_len == len) |
| 52 | return bcp; |
| 53 | } |
| 54 | |
| 55 | return NULL; |
| 56 | } |
| 57 | |
| 58 | static bool |
| 59 | xlog_add_buffer_cancelled( |
| 60 | struct xlog *log, |
| 61 | xfs_daddr_t blkno, |
| 62 | uint len) |
| 63 | { |
| 64 | struct xfs_buf_cancel *bcp; |
| 65 | |
| 66 | /* |
| 67 | * If we find an existing cancel record, this indicates that the buffer |
| 68 | * was cancelled multiple times. To ensure that during pass 2 we keep |
| 69 | * the record in the table until we reach its last occurrence in the |
| 70 | * log, a reference count is kept to tell how many times we expect to |
| 71 | * see this record during the second pass. |
| 72 | */ |
| 73 | bcp = xlog_find_buffer_cancelled(log, blkno, len); |
| 74 | if (bcp) { |
| 75 | bcp->bc_refcount++; |
| 76 | return false; |
| 77 | } |
| 78 | |
| 79 | bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), 0); |
| 80 | bcp->bc_blkno = blkno; |
| 81 | bcp->bc_len = len; |
| 82 | bcp->bc_refcount = 1; |
| 83 | list_add_tail(&bcp->bc_list, XLOG_BUF_CANCEL_BUCKET(log, blkno)); |
| 84 | return true; |
| 85 | } |
| 86 | |
| 87 | /* |
| 88 | * Check if there is and entry for blkno, len in the buffer cancel record table. |
| 89 | */ |
| 90 | bool |
| 91 | xlog_is_buffer_cancelled( |
| 92 | struct xlog *log, |
| 93 | xfs_daddr_t blkno, |
| 94 | uint len) |
| 95 | { |
| 96 | return xlog_find_buffer_cancelled(log, blkno, len) != NULL; |
| 97 | } |
| 98 | |
| 99 | /* |
| 100 | * Check if there is and entry for blkno, len in the buffer cancel record table, |
| 101 | * and decremented the reference count on it if there is one. |
| 102 | * |
| 103 | * Remove the cancel record once the refcount hits zero, so that if the same |
| 104 | * buffer is re-used again after its last cancellation we actually replay the |
| 105 | * changes made at that point. |
| 106 | */ |
| 107 | static bool |
| 108 | xlog_put_buffer_cancelled( |
| 109 | struct xlog *log, |
| 110 | xfs_daddr_t blkno, |
| 111 | uint len) |
| 112 | { |
| 113 | struct xfs_buf_cancel *bcp; |
| 114 | |
| 115 | bcp = xlog_find_buffer_cancelled(log, blkno, len); |
| 116 | if (!bcp) { |
| 117 | ASSERT(0); |
| 118 | return false; |
| 119 | } |
| 120 | |
| 121 | if (--bcp->bc_refcount == 0) { |
| 122 | list_del(&bcp->bc_list); |
| 123 | kmem_free(bcp); |
| 124 | } |
| 125 | return true; |
| 126 | } |
| 127 | |
| 128 | /* log buffer item recovery */ |
| 129 | |
| 130 | /* |
Darrick J. Wong | 86ffa47 | 2020-05-01 16:00:45 -0700 | [diff] [blame] | 131 | * Sort buffer items for log recovery. Most buffer items should end up on the |
| 132 | * buffer list and are recovered first, with the following exceptions: |
| 133 | * |
| 134 | * 1. XFS_BLF_CANCEL buffers must be processed last because some log items |
| 135 | * might depend on the incor ecancellation record, and replaying a cancelled |
| 136 | * buffer item can remove the incore record. |
| 137 | * |
| 138 | * 2. XFS_BLF_INODE_BUF buffers are handled after most regular items so that |
| 139 | * we replay di_next_unlinked only after flushing the inode 'free' state |
| 140 | * to the inode buffer. |
| 141 | * |
| 142 | * See xlog_recover_reorder_trans for more details. |
| 143 | */ |
| 144 | STATIC enum xlog_recover_reorder |
| 145 | xlog_recover_buf_reorder( |
| 146 | struct xlog_recover_item *item) |
| 147 | { |
| 148 | struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; |
| 149 | |
| 150 | if (buf_f->blf_flags & XFS_BLF_CANCEL) |
| 151 | return XLOG_REORDER_CANCEL_LIST; |
| 152 | if (buf_f->blf_flags & XFS_BLF_INODE_BUF) |
| 153 | return XLOG_REORDER_INODE_BUFFER_LIST; |
| 154 | return XLOG_REORDER_BUFFER_LIST; |
| 155 | } |
| 156 | |
Darrick J. Wong | 8ea5682 | 2020-05-01 16:00:46 -0700 | [diff] [blame] | 157 | STATIC void |
| 158 | xlog_recover_buf_ra_pass2( |
| 159 | struct xlog *log, |
| 160 | struct xlog_recover_item *item) |
| 161 | { |
| 162 | struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; |
| 163 | |
| 164 | xlog_buf_readahead(log, buf_f->blf_blkno, buf_f->blf_len, NULL); |
| 165 | } |
| 166 | |
Darrick J. Wong | 3304a4f | 2020-05-01 16:00:46 -0700 | [diff] [blame] | 167 | /* |
| 168 | * Build up the table of buf cancel records so that we don't replay cancelled |
| 169 | * data in the second pass. |
| 170 | */ |
| 171 | static int |
| 172 | xlog_recover_buf_commit_pass1( |
| 173 | struct xlog *log, |
| 174 | struct xlog_recover_item *item) |
| 175 | { |
| 176 | struct xfs_buf_log_format *bf = item->ri_buf[0].i_addr; |
| 177 | |
| 178 | if (!xfs_buf_log_check_iovec(&item->ri_buf[0])) { |
| 179 | xfs_err(log->l_mp, "bad buffer log item size (%d)", |
| 180 | item->ri_buf[0].i_len); |
| 181 | return -EFSCORRUPTED; |
| 182 | } |
| 183 | |
| 184 | if (!(bf->blf_flags & XFS_BLF_CANCEL)) |
| 185 | trace_xfs_log_recover_buf_not_cancel(log, bf); |
| 186 | else if (xlog_add_buffer_cancelled(log, bf->blf_blkno, bf->blf_len)) |
| 187 | trace_xfs_log_recover_buf_cancel_add(log, bf); |
| 188 | else |
| 189 | trace_xfs_log_recover_buf_cancel_ref_inc(log, bf); |
| 190 | return 0; |
| 191 | } |
| 192 | |
Darrick J. Wong | 1094d3f | 2020-05-01 16:00:47 -0700 | [diff] [blame] | 193 | /* |
| 194 | * Validate the recovered buffer is of the correct type and attach the |
| 195 | * appropriate buffer operations to them for writeback. Magic numbers are in a |
| 196 | * few places: |
| 197 | * the first 16 bits of the buffer (inode buffer, dquot buffer), |
| 198 | * the first 32 bits of the buffer (most blocks), |
| 199 | * inside a struct xfs_da_blkinfo at the start of the buffer. |
| 200 | */ |
| 201 | static void |
| 202 | xlog_recover_validate_buf_type( |
| 203 | struct xfs_mount *mp, |
| 204 | struct xfs_buf *bp, |
| 205 | struct xfs_buf_log_format *buf_f, |
| 206 | xfs_lsn_t current_lsn) |
| 207 | { |
| 208 | struct xfs_da_blkinfo *info = bp->b_addr; |
| 209 | uint32_t magic32; |
| 210 | uint16_t magic16; |
| 211 | uint16_t magicda; |
| 212 | char *warnmsg = NULL; |
| 213 | |
| 214 | /* |
| 215 | * We can only do post recovery validation on items on CRC enabled |
| 216 | * fielsystems as we need to know when the buffer was written to be able |
| 217 | * to determine if we should have replayed the item. If we replay old |
| 218 | * metadata over a newer buffer, then it will enter a temporarily |
| 219 | * inconsistent state resulting in verification failures. Hence for now |
| 220 | * just avoid the verification stage for non-crc filesystems |
| 221 | */ |
| 222 | if (!xfs_sb_version_hascrc(&mp->m_sb)) |
| 223 | return; |
| 224 | |
| 225 | magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); |
| 226 | magic16 = be16_to_cpu(*(__be16*)bp->b_addr); |
| 227 | magicda = be16_to_cpu(info->magic); |
| 228 | switch (xfs_blft_from_flags(buf_f)) { |
| 229 | case XFS_BLFT_BTREE_BUF: |
| 230 | switch (magic32) { |
| 231 | case XFS_ABTB_CRC_MAGIC: |
| 232 | case XFS_ABTB_MAGIC: |
| 233 | bp->b_ops = &xfs_bnobt_buf_ops; |
| 234 | break; |
| 235 | case XFS_ABTC_CRC_MAGIC: |
| 236 | case XFS_ABTC_MAGIC: |
| 237 | bp->b_ops = &xfs_cntbt_buf_ops; |
| 238 | break; |
| 239 | case XFS_IBT_CRC_MAGIC: |
| 240 | case XFS_IBT_MAGIC: |
| 241 | bp->b_ops = &xfs_inobt_buf_ops; |
| 242 | break; |
| 243 | case XFS_FIBT_CRC_MAGIC: |
| 244 | case XFS_FIBT_MAGIC: |
| 245 | bp->b_ops = &xfs_finobt_buf_ops; |
| 246 | break; |
| 247 | case XFS_BMAP_CRC_MAGIC: |
| 248 | case XFS_BMAP_MAGIC: |
| 249 | bp->b_ops = &xfs_bmbt_buf_ops; |
| 250 | break; |
| 251 | case XFS_RMAP_CRC_MAGIC: |
| 252 | bp->b_ops = &xfs_rmapbt_buf_ops; |
| 253 | break; |
| 254 | case XFS_REFC_CRC_MAGIC: |
| 255 | bp->b_ops = &xfs_refcountbt_buf_ops; |
| 256 | break; |
| 257 | default: |
| 258 | warnmsg = "Bad btree block magic!"; |
| 259 | break; |
| 260 | } |
| 261 | break; |
| 262 | case XFS_BLFT_AGF_BUF: |
| 263 | if (magic32 != XFS_AGF_MAGIC) { |
| 264 | warnmsg = "Bad AGF block magic!"; |
| 265 | break; |
| 266 | } |
| 267 | bp->b_ops = &xfs_agf_buf_ops; |
| 268 | break; |
| 269 | case XFS_BLFT_AGFL_BUF: |
| 270 | if (magic32 != XFS_AGFL_MAGIC) { |
| 271 | warnmsg = "Bad AGFL block magic!"; |
| 272 | break; |
| 273 | } |
| 274 | bp->b_ops = &xfs_agfl_buf_ops; |
| 275 | break; |
| 276 | case XFS_BLFT_AGI_BUF: |
| 277 | if (magic32 != XFS_AGI_MAGIC) { |
| 278 | warnmsg = "Bad AGI block magic!"; |
| 279 | break; |
| 280 | } |
| 281 | bp->b_ops = &xfs_agi_buf_ops; |
| 282 | break; |
| 283 | case XFS_BLFT_UDQUOT_BUF: |
| 284 | case XFS_BLFT_PDQUOT_BUF: |
| 285 | case XFS_BLFT_GDQUOT_BUF: |
| 286 | #ifdef CONFIG_XFS_QUOTA |
| 287 | if (magic16 != XFS_DQUOT_MAGIC) { |
| 288 | warnmsg = "Bad DQUOT block magic!"; |
| 289 | break; |
| 290 | } |
| 291 | bp->b_ops = &xfs_dquot_buf_ops; |
| 292 | #else |
| 293 | xfs_alert(mp, |
| 294 | "Trying to recover dquots without QUOTA support built in!"); |
| 295 | ASSERT(0); |
| 296 | #endif |
| 297 | break; |
| 298 | case XFS_BLFT_DINO_BUF: |
| 299 | if (magic16 != XFS_DINODE_MAGIC) { |
| 300 | warnmsg = "Bad INODE block magic!"; |
| 301 | break; |
| 302 | } |
| 303 | bp->b_ops = &xfs_inode_buf_ops; |
| 304 | break; |
| 305 | case XFS_BLFT_SYMLINK_BUF: |
| 306 | if (magic32 != XFS_SYMLINK_MAGIC) { |
| 307 | warnmsg = "Bad symlink block magic!"; |
| 308 | break; |
| 309 | } |
| 310 | bp->b_ops = &xfs_symlink_buf_ops; |
| 311 | break; |
| 312 | case XFS_BLFT_DIR_BLOCK_BUF: |
| 313 | if (magic32 != XFS_DIR2_BLOCK_MAGIC && |
| 314 | magic32 != XFS_DIR3_BLOCK_MAGIC) { |
| 315 | warnmsg = "Bad dir block magic!"; |
| 316 | break; |
| 317 | } |
| 318 | bp->b_ops = &xfs_dir3_block_buf_ops; |
| 319 | break; |
| 320 | case XFS_BLFT_DIR_DATA_BUF: |
| 321 | if (magic32 != XFS_DIR2_DATA_MAGIC && |
| 322 | magic32 != XFS_DIR3_DATA_MAGIC) { |
| 323 | warnmsg = "Bad dir data magic!"; |
| 324 | break; |
| 325 | } |
| 326 | bp->b_ops = &xfs_dir3_data_buf_ops; |
| 327 | break; |
| 328 | case XFS_BLFT_DIR_FREE_BUF: |
| 329 | if (magic32 != XFS_DIR2_FREE_MAGIC && |
| 330 | magic32 != XFS_DIR3_FREE_MAGIC) { |
| 331 | warnmsg = "Bad dir3 free magic!"; |
| 332 | break; |
| 333 | } |
| 334 | bp->b_ops = &xfs_dir3_free_buf_ops; |
| 335 | break; |
| 336 | case XFS_BLFT_DIR_LEAF1_BUF: |
| 337 | if (magicda != XFS_DIR2_LEAF1_MAGIC && |
| 338 | magicda != XFS_DIR3_LEAF1_MAGIC) { |
| 339 | warnmsg = "Bad dir leaf1 magic!"; |
| 340 | break; |
| 341 | } |
| 342 | bp->b_ops = &xfs_dir3_leaf1_buf_ops; |
| 343 | break; |
| 344 | case XFS_BLFT_DIR_LEAFN_BUF: |
| 345 | if (magicda != XFS_DIR2_LEAFN_MAGIC && |
| 346 | magicda != XFS_DIR3_LEAFN_MAGIC) { |
| 347 | warnmsg = "Bad dir leafn magic!"; |
| 348 | break; |
| 349 | } |
| 350 | bp->b_ops = &xfs_dir3_leafn_buf_ops; |
| 351 | break; |
| 352 | case XFS_BLFT_DA_NODE_BUF: |
| 353 | if (magicda != XFS_DA_NODE_MAGIC && |
| 354 | magicda != XFS_DA3_NODE_MAGIC) { |
| 355 | warnmsg = "Bad da node magic!"; |
| 356 | break; |
| 357 | } |
| 358 | bp->b_ops = &xfs_da3_node_buf_ops; |
| 359 | break; |
| 360 | case XFS_BLFT_ATTR_LEAF_BUF: |
| 361 | if (magicda != XFS_ATTR_LEAF_MAGIC && |
| 362 | magicda != XFS_ATTR3_LEAF_MAGIC) { |
| 363 | warnmsg = "Bad attr leaf magic!"; |
| 364 | break; |
| 365 | } |
| 366 | bp->b_ops = &xfs_attr3_leaf_buf_ops; |
| 367 | break; |
| 368 | case XFS_BLFT_ATTR_RMT_BUF: |
| 369 | if (magic32 != XFS_ATTR3_RMT_MAGIC) { |
| 370 | warnmsg = "Bad attr remote magic!"; |
| 371 | break; |
| 372 | } |
| 373 | bp->b_ops = &xfs_attr3_rmt_buf_ops; |
| 374 | break; |
| 375 | case XFS_BLFT_SB_BUF: |
| 376 | if (magic32 != XFS_SB_MAGIC) { |
| 377 | warnmsg = "Bad SB block magic!"; |
| 378 | break; |
| 379 | } |
| 380 | bp->b_ops = &xfs_sb_buf_ops; |
| 381 | break; |
| 382 | #ifdef CONFIG_XFS_RT |
| 383 | case XFS_BLFT_RTBITMAP_BUF: |
| 384 | case XFS_BLFT_RTSUMMARY_BUF: |
| 385 | /* no magic numbers for verification of RT buffers */ |
| 386 | bp->b_ops = &xfs_rtbuf_ops; |
| 387 | break; |
| 388 | #endif /* CONFIG_XFS_RT */ |
| 389 | default: |
| 390 | xfs_warn(mp, "Unknown buffer type %d!", |
| 391 | xfs_blft_from_flags(buf_f)); |
| 392 | break; |
| 393 | } |
| 394 | |
| 395 | /* |
| 396 | * Nothing else to do in the case of a NULL current LSN as this means |
| 397 | * the buffer is more recent than the change in the log and will be |
| 398 | * skipped. |
| 399 | */ |
| 400 | if (current_lsn == NULLCOMMITLSN) |
| 401 | return; |
| 402 | |
| 403 | if (warnmsg) { |
| 404 | xfs_warn(mp, warnmsg); |
| 405 | ASSERT(0); |
| 406 | } |
| 407 | |
| 408 | /* |
| 409 | * We must update the metadata LSN of the buffer as it is written out to |
| 410 | * ensure that older transactions never replay over this one and corrupt |
| 411 | * the buffer. This can occur if log recovery is interrupted at some |
| 412 | * point after the current transaction completes, at which point a |
| 413 | * subsequent mount starts recovery from the beginning. |
| 414 | * |
| 415 | * Write verifiers update the metadata LSN from log items attached to |
| 416 | * the buffer. Therefore, initialize a bli purely to carry the LSN to |
| 417 | * the verifier. We'll clean it up in our ->iodone() callback. |
| 418 | */ |
| 419 | if (bp->b_ops) { |
| 420 | struct xfs_buf_log_item *bip; |
| 421 | |
Dave Chinner | 9fe5c77 | 2020-06-29 14:48:47 -0700 | [diff] [blame^] | 422 | bp->b_flags |= _XBF_LOGRECOVERY; |
Darrick J. Wong | 1094d3f | 2020-05-01 16:00:47 -0700 | [diff] [blame] | 423 | xfs_buf_item_init(bp, mp); |
| 424 | bip = bp->b_log_item; |
| 425 | bip->bli_item.li_lsn = current_lsn; |
| 426 | } |
| 427 | } |
| 428 | |
| 429 | /* |
| 430 | * Perform a 'normal' buffer recovery. Each logged region of the |
| 431 | * buffer should be copied over the corresponding region in the |
| 432 | * given buffer. The bitmap in the buf log format structure indicates |
| 433 | * where to place the logged data. |
| 434 | */ |
| 435 | STATIC void |
| 436 | xlog_recover_do_reg_buffer( |
| 437 | struct xfs_mount *mp, |
| 438 | struct xlog_recover_item *item, |
| 439 | struct xfs_buf *bp, |
| 440 | struct xfs_buf_log_format *buf_f, |
| 441 | xfs_lsn_t current_lsn) |
| 442 | { |
| 443 | int i; |
| 444 | int bit; |
| 445 | int nbits; |
| 446 | xfs_failaddr_t fa; |
| 447 | const size_t size_disk_dquot = sizeof(struct xfs_disk_dquot); |
| 448 | |
| 449 | trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); |
| 450 | |
| 451 | bit = 0; |
| 452 | i = 1; /* 0 is the buf format structure */ |
| 453 | while (1) { |
| 454 | bit = xfs_next_bit(buf_f->blf_data_map, |
| 455 | buf_f->blf_map_size, bit); |
| 456 | if (bit == -1) |
| 457 | break; |
| 458 | nbits = xfs_contig_bits(buf_f->blf_data_map, |
| 459 | buf_f->blf_map_size, bit); |
| 460 | ASSERT(nbits > 0); |
| 461 | ASSERT(item->ri_buf[i].i_addr != NULL); |
| 462 | ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); |
| 463 | ASSERT(BBTOB(bp->b_length) >= |
| 464 | ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); |
| 465 | |
| 466 | /* |
| 467 | * The dirty regions logged in the buffer, even though |
| 468 | * contiguous, may span multiple chunks. This is because the |
| 469 | * dirty region may span a physical page boundary in a buffer |
| 470 | * and hence be split into two separate vectors for writing into |
| 471 | * the log. Hence we need to trim nbits back to the length of |
| 472 | * the current region being copied out of the log. |
| 473 | */ |
| 474 | if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) |
| 475 | nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; |
| 476 | |
| 477 | /* |
| 478 | * Do a sanity check if this is a dquot buffer. Just checking |
| 479 | * the first dquot in the buffer should do. XXXThis is |
| 480 | * probably a good thing to do for other buf types also. |
| 481 | */ |
| 482 | fa = NULL; |
| 483 | if (buf_f->blf_flags & |
| 484 | (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { |
| 485 | if (item->ri_buf[i].i_addr == NULL) { |
| 486 | xfs_alert(mp, |
| 487 | "XFS: NULL dquot in %s.", __func__); |
| 488 | goto next; |
| 489 | } |
| 490 | if (item->ri_buf[i].i_len < size_disk_dquot) { |
| 491 | xfs_alert(mp, |
| 492 | "XFS: dquot too small (%d) in %s.", |
| 493 | item->ri_buf[i].i_len, __func__); |
| 494 | goto next; |
| 495 | } |
| 496 | fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr, |
| 497 | -1, 0); |
| 498 | if (fa) { |
| 499 | xfs_alert(mp, |
| 500 | "dquot corrupt at %pS trying to replay into block 0x%llx", |
| 501 | fa, bp->b_bn); |
| 502 | goto next; |
| 503 | } |
| 504 | } |
| 505 | |
| 506 | memcpy(xfs_buf_offset(bp, |
| 507 | (uint)bit << XFS_BLF_SHIFT), /* dest */ |
| 508 | item->ri_buf[i].i_addr, /* source */ |
| 509 | nbits<<XFS_BLF_SHIFT); /* length */ |
| 510 | next: |
| 511 | i++; |
| 512 | bit += nbits; |
| 513 | } |
| 514 | |
| 515 | /* Shouldn't be any more regions */ |
| 516 | ASSERT(i == item->ri_total); |
| 517 | |
| 518 | xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn); |
| 519 | } |
| 520 | |
| 521 | /* |
| 522 | * Perform a dquot buffer recovery. |
| 523 | * Simple algorithm: if we have found a QUOTAOFF log item of the same type |
| 524 | * (ie. USR or GRP), then just toss this buffer away; don't recover it. |
| 525 | * Else, treat it as a regular buffer and do recovery. |
| 526 | * |
| 527 | * Return false if the buffer was tossed and true if we recovered the buffer to |
| 528 | * indicate to the caller if the buffer needs writing. |
| 529 | */ |
| 530 | STATIC bool |
| 531 | xlog_recover_do_dquot_buffer( |
| 532 | struct xfs_mount *mp, |
| 533 | struct xlog *log, |
| 534 | struct xlog_recover_item *item, |
| 535 | struct xfs_buf *bp, |
| 536 | struct xfs_buf_log_format *buf_f) |
| 537 | { |
| 538 | uint type; |
| 539 | |
| 540 | trace_xfs_log_recover_buf_dquot_buf(log, buf_f); |
| 541 | |
| 542 | /* |
| 543 | * Filesystems are required to send in quota flags at mount time. |
| 544 | */ |
| 545 | if (!mp->m_qflags) |
| 546 | return false; |
| 547 | |
| 548 | type = 0; |
| 549 | if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) |
| 550 | type |= XFS_DQ_USER; |
| 551 | if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) |
| 552 | type |= XFS_DQ_PROJ; |
| 553 | if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) |
| 554 | type |= XFS_DQ_GROUP; |
| 555 | /* |
| 556 | * This type of quotas was turned off, so ignore this buffer |
| 557 | */ |
| 558 | if (log->l_quotaoffs_flag & type) |
| 559 | return false; |
| 560 | |
| 561 | xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN); |
| 562 | return true; |
| 563 | } |
| 564 | |
| 565 | /* |
| 566 | * Perform recovery for a buffer full of inodes. In these buffers, the only |
| 567 | * data which should be recovered is that which corresponds to the |
| 568 | * di_next_unlinked pointers in the on disk inode structures. The rest of the |
| 569 | * data for the inodes is always logged through the inodes themselves rather |
| 570 | * than the inode buffer and is recovered in xlog_recover_inode_pass2(). |
| 571 | * |
| 572 | * The only time when buffers full of inodes are fully recovered is when the |
| 573 | * buffer is full of newly allocated inodes. In this case the buffer will |
| 574 | * not be marked as an inode buffer and so will be sent to |
| 575 | * xlog_recover_do_reg_buffer() below during recovery. |
| 576 | */ |
| 577 | STATIC int |
| 578 | xlog_recover_do_inode_buffer( |
| 579 | struct xfs_mount *mp, |
| 580 | struct xlog_recover_item *item, |
| 581 | struct xfs_buf *bp, |
| 582 | struct xfs_buf_log_format *buf_f) |
| 583 | { |
| 584 | int i; |
| 585 | int item_index = 0; |
| 586 | int bit = 0; |
| 587 | int nbits = 0; |
| 588 | int reg_buf_offset = 0; |
| 589 | int reg_buf_bytes = 0; |
| 590 | int next_unlinked_offset; |
| 591 | int inodes_per_buf; |
| 592 | xfs_agino_t *logged_nextp; |
| 593 | xfs_agino_t *buffer_nextp; |
| 594 | |
| 595 | trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); |
| 596 | |
| 597 | /* |
| 598 | * Post recovery validation only works properly on CRC enabled |
| 599 | * filesystems. |
| 600 | */ |
| 601 | if (xfs_sb_version_hascrc(&mp->m_sb)) |
| 602 | bp->b_ops = &xfs_inode_buf_ops; |
| 603 | |
| 604 | inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog; |
| 605 | for (i = 0; i < inodes_per_buf; i++) { |
| 606 | next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + |
| 607 | offsetof(xfs_dinode_t, di_next_unlinked); |
| 608 | |
| 609 | while (next_unlinked_offset >= |
| 610 | (reg_buf_offset + reg_buf_bytes)) { |
| 611 | /* |
| 612 | * The next di_next_unlinked field is beyond |
| 613 | * the current logged region. Find the next |
| 614 | * logged region that contains or is beyond |
| 615 | * the current di_next_unlinked field. |
| 616 | */ |
| 617 | bit += nbits; |
| 618 | bit = xfs_next_bit(buf_f->blf_data_map, |
| 619 | buf_f->blf_map_size, bit); |
| 620 | |
| 621 | /* |
| 622 | * If there are no more logged regions in the |
| 623 | * buffer, then we're done. |
| 624 | */ |
| 625 | if (bit == -1) |
| 626 | return 0; |
| 627 | |
| 628 | nbits = xfs_contig_bits(buf_f->blf_data_map, |
| 629 | buf_f->blf_map_size, bit); |
| 630 | ASSERT(nbits > 0); |
| 631 | reg_buf_offset = bit << XFS_BLF_SHIFT; |
| 632 | reg_buf_bytes = nbits << XFS_BLF_SHIFT; |
| 633 | item_index++; |
| 634 | } |
| 635 | |
| 636 | /* |
| 637 | * If the current logged region starts after the current |
| 638 | * di_next_unlinked field, then move on to the next |
| 639 | * di_next_unlinked field. |
| 640 | */ |
| 641 | if (next_unlinked_offset < reg_buf_offset) |
| 642 | continue; |
| 643 | |
| 644 | ASSERT(item->ri_buf[item_index].i_addr != NULL); |
| 645 | ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); |
| 646 | ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length)); |
| 647 | |
| 648 | /* |
| 649 | * The current logged region contains a copy of the |
| 650 | * current di_next_unlinked field. Extract its value |
| 651 | * and copy it to the buffer copy. |
| 652 | */ |
| 653 | logged_nextp = item->ri_buf[item_index].i_addr + |
| 654 | next_unlinked_offset - reg_buf_offset; |
| 655 | if (XFS_IS_CORRUPT(mp, *logged_nextp == 0)) { |
| 656 | xfs_alert(mp, |
| 657 | "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). " |
| 658 | "Trying to replay bad (0) inode di_next_unlinked field.", |
| 659 | item, bp); |
| 660 | return -EFSCORRUPTED; |
| 661 | } |
| 662 | |
| 663 | buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset); |
| 664 | *buffer_nextp = *logged_nextp; |
| 665 | |
| 666 | /* |
| 667 | * If necessary, recalculate the CRC in the on-disk inode. We |
| 668 | * have to leave the inode in a consistent state for whoever |
| 669 | * reads it next.... |
| 670 | */ |
| 671 | xfs_dinode_calc_crc(mp, |
| 672 | xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); |
| 673 | |
| 674 | } |
| 675 | |
| 676 | return 0; |
| 677 | } |
| 678 | |
| 679 | /* |
| 680 | * V5 filesystems know the age of the buffer on disk being recovered. We can |
| 681 | * have newer objects on disk than we are replaying, and so for these cases we |
| 682 | * don't want to replay the current change as that will make the buffer contents |
| 683 | * temporarily invalid on disk. |
| 684 | * |
| 685 | * The magic number might not match the buffer type we are going to recover |
| 686 | * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence |
| 687 | * extract the LSN of the existing object in the buffer based on it's current |
| 688 | * magic number. If we don't recognise the magic number in the buffer, then |
| 689 | * return a LSN of -1 so that the caller knows it was an unrecognised block and |
| 690 | * so can recover the buffer. |
| 691 | * |
| 692 | * Note: we cannot rely solely on magic number matches to determine that the |
| 693 | * buffer has a valid LSN - we also need to verify that it belongs to this |
| 694 | * filesystem, so we need to extract the object's LSN and compare it to that |
| 695 | * which we read from the superblock. If the UUIDs don't match, then we've got a |
| 696 | * stale metadata block from an old filesystem instance that we need to recover |
| 697 | * over the top of. |
| 698 | */ |
| 699 | static xfs_lsn_t |
| 700 | xlog_recover_get_buf_lsn( |
| 701 | struct xfs_mount *mp, |
| 702 | struct xfs_buf *bp) |
| 703 | { |
| 704 | uint32_t magic32; |
| 705 | uint16_t magic16; |
| 706 | uint16_t magicda; |
| 707 | void *blk = bp->b_addr; |
| 708 | uuid_t *uuid; |
| 709 | xfs_lsn_t lsn = -1; |
| 710 | |
| 711 | /* v4 filesystems always recover immediately */ |
| 712 | if (!xfs_sb_version_hascrc(&mp->m_sb)) |
| 713 | goto recover_immediately; |
| 714 | |
| 715 | magic32 = be32_to_cpu(*(__be32 *)blk); |
| 716 | switch (magic32) { |
| 717 | case XFS_ABTB_CRC_MAGIC: |
| 718 | case XFS_ABTC_CRC_MAGIC: |
| 719 | case XFS_ABTB_MAGIC: |
| 720 | case XFS_ABTC_MAGIC: |
| 721 | case XFS_RMAP_CRC_MAGIC: |
| 722 | case XFS_REFC_CRC_MAGIC: |
| 723 | case XFS_IBT_CRC_MAGIC: |
| 724 | case XFS_IBT_MAGIC: { |
| 725 | struct xfs_btree_block *btb = blk; |
| 726 | |
| 727 | lsn = be64_to_cpu(btb->bb_u.s.bb_lsn); |
| 728 | uuid = &btb->bb_u.s.bb_uuid; |
| 729 | break; |
| 730 | } |
| 731 | case XFS_BMAP_CRC_MAGIC: |
| 732 | case XFS_BMAP_MAGIC: { |
| 733 | struct xfs_btree_block *btb = blk; |
| 734 | |
| 735 | lsn = be64_to_cpu(btb->bb_u.l.bb_lsn); |
| 736 | uuid = &btb->bb_u.l.bb_uuid; |
| 737 | break; |
| 738 | } |
| 739 | case XFS_AGF_MAGIC: |
| 740 | lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn); |
| 741 | uuid = &((struct xfs_agf *)blk)->agf_uuid; |
| 742 | break; |
| 743 | case XFS_AGFL_MAGIC: |
| 744 | lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn); |
| 745 | uuid = &((struct xfs_agfl *)blk)->agfl_uuid; |
| 746 | break; |
| 747 | case XFS_AGI_MAGIC: |
| 748 | lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn); |
| 749 | uuid = &((struct xfs_agi *)blk)->agi_uuid; |
| 750 | break; |
| 751 | case XFS_SYMLINK_MAGIC: |
| 752 | lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn); |
| 753 | uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid; |
| 754 | break; |
| 755 | case XFS_DIR3_BLOCK_MAGIC: |
| 756 | case XFS_DIR3_DATA_MAGIC: |
| 757 | case XFS_DIR3_FREE_MAGIC: |
| 758 | lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn); |
| 759 | uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid; |
| 760 | break; |
| 761 | case XFS_ATTR3_RMT_MAGIC: |
| 762 | /* |
| 763 | * Remote attr blocks are written synchronously, rather than |
| 764 | * being logged. That means they do not contain a valid LSN |
| 765 | * (i.e. transactionally ordered) in them, and hence any time we |
| 766 | * see a buffer to replay over the top of a remote attribute |
| 767 | * block we should simply do so. |
| 768 | */ |
| 769 | goto recover_immediately; |
| 770 | case XFS_SB_MAGIC: |
| 771 | /* |
| 772 | * superblock uuids are magic. We may or may not have a |
| 773 | * sb_meta_uuid on disk, but it will be set in the in-core |
| 774 | * superblock. We set the uuid pointer for verification |
| 775 | * according to the superblock feature mask to ensure we check |
| 776 | * the relevant UUID in the superblock. |
| 777 | */ |
| 778 | lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn); |
| 779 | if (xfs_sb_version_hasmetauuid(&mp->m_sb)) |
| 780 | uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid; |
| 781 | else |
| 782 | uuid = &((struct xfs_dsb *)blk)->sb_uuid; |
| 783 | break; |
| 784 | default: |
| 785 | break; |
| 786 | } |
| 787 | |
| 788 | if (lsn != (xfs_lsn_t)-1) { |
| 789 | if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid)) |
| 790 | goto recover_immediately; |
| 791 | return lsn; |
| 792 | } |
| 793 | |
| 794 | magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic); |
| 795 | switch (magicda) { |
| 796 | case XFS_DIR3_LEAF1_MAGIC: |
| 797 | case XFS_DIR3_LEAFN_MAGIC: |
| 798 | case XFS_DA3_NODE_MAGIC: |
| 799 | lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn); |
| 800 | uuid = &((struct xfs_da3_blkinfo *)blk)->uuid; |
| 801 | break; |
| 802 | default: |
| 803 | break; |
| 804 | } |
| 805 | |
| 806 | if (lsn != (xfs_lsn_t)-1) { |
| 807 | if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) |
| 808 | goto recover_immediately; |
| 809 | return lsn; |
| 810 | } |
| 811 | |
| 812 | /* |
| 813 | * We do individual object checks on dquot and inode buffers as they |
| 814 | * have their own individual LSN records. Also, we could have a stale |
| 815 | * buffer here, so we have to at least recognise these buffer types. |
| 816 | * |
| 817 | * A notd complexity here is inode unlinked list processing - it logs |
| 818 | * the inode directly in the buffer, but we don't know which inodes have |
| 819 | * been modified, and there is no global buffer LSN. Hence we need to |
| 820 | * recover all inode buffer types immediately. This problem will be |
| 821 | * fixed by logical logging of the unlinked list modifications. |
| 822 | */ |
| 823 | magic16 = be16_to_cpu(*(__be16 *)blk); |
| 824 | switch (magic16) { |
| 825 | case XFS_DQUOT_MAGIC: |
| 826 | case XFS_DINODE_MAGIC: |
| 827 | goto recover_immediately; |
| 828 | default: |
| 829 | break; |
| 830 | } |
| 831 | |
| 832 | /* unknown buffer contents, recover immediately */ |
| 833 | |
| 834 | recover_immediately: |
| 835 | return (xfs_lsn_t)-1; |
| 836 | |
| 837 | } |
| 838 | |
| 839 | /* |
| 840 | * This routine replays a modification made to a buffer at runtime. |
| 841 | * There are actually two types of buffer, regular and inode, which |
| 842 | * are handled differently. Inode buffers are handled differently |
| 843 | * in that we only recover a specific set of data from them, namely |
| 844 | * the inode di_next_unlinked fields. This is because all other inode |
| 845 | * data is actually logged via inode records and any data we replay |
| 846 | * here which overlaps that may be stale. |
| 847 | * |
| 848 | * When meta-data buffers are freed at run time we log a buffer item |
| 849 | * with the XFS_BLF_CANCEL bit set to indicate that previous copies |
| 850 | * of the buffer in the log should not be replayed at recovery time. |
| 851 | * This is so that if the blocks covered by the buffer are reused for |
| 852 | * file data before we crash we don't end up replaying old, freed |
| 853 | * meta-data into a user's file. |
| 854 | * |
| 855 | * To handle the cancellation of buffer log items, we make two passes |
| 856 | * over the log during recovery. During the first we build a table of |
| 857 | * those buffers which have been cancelled, and during the second we |
| 858 | * only replay those buffers which do not have corresponding cancel |
| 859 | * records in the table. See xlog_recover_buf_pass[1,2] above |
| 860 | * for more details on the implementation of the table of cancel records. |
| 861 | */ |
| 862 | STATIC int |
| 863 | xlog_recover_buf_commit_pass2( |
| 864 | struct xlog *log, |
| 865 | struct list_head *buffer_list, |
| 866 | struct xlog_recover_item *item, |
| 867 | xfs_lsn_t current_lsn) |
| 868 | { |
| 869 | struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; |
| 870 | struct xfs_mount *mp = log->l_mp; |
| 871 | struct xfs_buf *bp; |
| 872 | int error; |
| 873 | uint buf_flags; |
| 874 | xfs_lsn_t lsn; |
| 875 | |
| 876 | /* |
| 877 | * In this pass we only want to recover all the buffers which have |
| 878 | * not been cancelled and are not cancellation buffers themselves. |
| 879 | */ |
| 880 | if (buf_f->blf_flags & XFS_BLF_CANCEL) { |
| 881 | if (xlog_put_buffer_cancelled(log, buf_f->blf_blkno, |
| 882 | buf_f->blf_len)) |
| 883 | goto cancelled; |
| 884 | } else { |
| 885 | |
| 886 | if (xlog_is_buffer_cancelled(log, buf_f->blf_blkno, |
| 887 | buf_f->blf_len)) |
| 888 | goto cancelled; |
| 889 | } |
| 890 | |
| 891 | trace_xfs_log_recover_buf_recover(log, buf_f); |
| 892 | |
| 893 | buf_flags = 0; |
| 894 | if (buf_f->blf_flags & XFS_BLF_INODE_BUF) |
| 895 | buf_flags |= XBF_UNMAPPED; |
| 896 | |
| 897 | error = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, |
| 898 | buf_flags, &bp, NULL); |
| 899 | if (error) |
| 900 | return error; |
| 901 | |
| 902 | /* |
| 903 | * Recover the buffer only if we get an LSN from it and it's less than |
| 904 | * the lsn of the transaction we are replaying. |
| 905 | * |
| 906 | * Note that we have to be extremely careful of readahead here. |
| 907 | * Readahead does not attach verfiers to the buffers so if we don't |
| 908 | * actually do any replay after readahead because of the LSN we found |
| 909 | * in the buffer if more recent than that current transaction then we |
| 910 | * need to attach the verifier directly. Failure to do so can lead to |
| 911 | * future recovery actions (e.g. EFI and unlinked list recovery) can |
| 912 | * operate on the buffers and they won't get the verifier attached. This |
| 913 | * can lead to blocks on disk having the correct content but a stale |
| 914 | * CRC. |
| 915 | * |
| 916 | * It is safe to assume these clean buffers are currently up to date. |
| 917 | * If the buffer is dirtied by a later transaction being replayed, then |
| 918 | * the verifier will be reset to match whatever recover turns that |
| 919 | * buffer into. |
| 920 | */ |
| 921 | lsn = xlog_recover_get_buf_lsn(mp, bp); |
| 922 | if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { |
| 923 | trace_xfs_log_recover_buf_skip(log, buf_f); |
| 924 | xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN); |
| 925 | goto out_release; |
| 926 | } |
| 927 | |
| 928 | if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { |
| 929 | error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); |
| 930 | if (error) |
| 931 | goto out_release; |
| 932 | } else if (buf_f->blf_flags & |
| 933 | (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { |
| 934 | bool dirty; |
| 935 | |
| 936 | dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); |
| 937 | if (!dirty) |
| 938 | goto out_release; |
| 939 | } else { |
| 940 | xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn); |
| 941 | } |
| 942 | |
| 943 | /* |
| 944 | * Perform delayed write on the buffer. Asynchronous writes will be |
| 945 | * slower when taking into account all the buffers to be flushed. |
| 946 | * |
| 947 | * Also make sure that only inode buffers with good sizes stay in |
| 948 | * the buffer cache. The kernel moves inodes in buffers of 1 block |
| 949 | * or inode_cluster_size bytes, whichever is bigger. The inode |
| 950 | * buffers in the log can be a different size if the log was generated |
| 951 | * by an older kernel using unclustered inode buffers or a newer kernel |
| 952 | * running with a different inode cluster size. Regardless, if the |
| 953 | * the inode buffer size isn't max(blocksize, inode_cluster_size) |
| 954 | * for *our* value of inode_cluster_size, then we need to keep |
| 955 | * the buffer out of the buffer cache so that the buffer won't |
| 956 | * overlap with future reads of those inodes. |
| 957 | */ |
| 958 | if (XFS_DINODE_MAGIC == |
| 959 | be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && |
| 960 | (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) { |
| 961 | xfs_buf_stale(bp); |
| 962 | error = xfs_bwrite(bp); |
| 963 | } else { |
| 964 | ASSERT(bp->b_mount == mp); |
Dave Chinner | 9fe5c77 | 2020-06-29 14:48:47 -0700 | [diff] [blame^] | 965 | bp->b_flags |= _XBF_LOGRECOVERY; |
Darrick J. Wong | 1094d3f | 2020-05-01 16:00:47 -0700 | [diff] [blame] | 966 | xfs_buf_delwri_queue(bp, buffer_list); |
| 967 | } |
| 968 | |
| 969 | out_release: |
| 970 | xfs_buf_relse(bp); |
| 971 | return error; |
| 972 | cancelled: |
| 973 | trace_xfs_log_recover_buf_cancel(log, buf_f); |
| 974 | return 0; |
| 975 | } |
| 976 | |
Darrick J. Wong | 86ffa47 | 2020-05-01 16:00:45 -0700 | [diff] [blame] | 977 | const struct xlog_recover_item_ops xlog_buf_item_ops = { |
| 978 | .item_type = XFS_LI_BUF, |
| 979 | .reorder = xlog_recover_buf_reorder, |
Darrick J. Wong | 8ea5682 | 2020-05-01 16:00:46 -0700 | [diff] [blame] | 980 | .ra_pass2 = xlog_recover_buf_ra_pass2, |
Darrick J. Wong | 3304a4f | 2020-05-01 16:00:46 -0700 | [diff] [blame] | 981 | .commit_pass1 = xlog_recover_buf_commit_pass1, |
Darrick J. Wong | 1094d3f | 2020-05-01 16:00:47 -0700 | [diff] [blame] | 982 | .commit_pass2 = xlog_recover_buf_commit_pass2, |
Darrick J. Wong | 86ffa47 | 2020-05-01 16:00:45 -0700 | [diff] [blame] | 983 | }; |