blob: 93cbeb9daec075dde5dc4eb63ee1e7ee6e21a544 [file] [log] [blame]
Arnd Bergmann0e3fd812018-07-10 16:46:41 +02001ktime accessors
2===============
3
4Device drivers can read the current time using ktime_get() and the many
5related functions declared in linux/timekeeping.h. As a rule of thumb,
6using an accessor with a shorter name is preferred over one with a longer
7name if both are equally fit for a particular use case.
8
9Basic ktime_t based interfaces
10------------------------------
11
12The recommended simplest form returns an opaque ktime_t, with variants
13that return time for different clock references:
14
15
16.. c:function:: ktime_t ktime_get( void )
17
18 CLOCK_MONOTONIC
19
20 Useful for reliable timestamps and measuring short time intervals
21 accurately. Starts at system boot time but stops during suspend.
22
23.. c:function:: ktime_t ktime_get_boottime( void )
24
25 CLOCK_BOOTTIME
26
27 Like ktime_get(), but does not stop when suspended. This can be
28 used e.g. for key expiration times that need to be synchronized
29 with other machines across a suspend operation.
30
31.. c:function:: ktime_t ktime_get_real( void )
32
33 CLOCK_REALTIME
34
35 Returns the time in relative to the UNIX epoch starting in 1970
36 using the Coordinated Universal Time (UTC), same as gettimeofday()
37 user space. This is used for all timestamps that need to
38 persist across a reboot, like inode times, but should be avoided
39 for internal uses, since it can jump backwards due to a leap
40 second update, NTP adjustment settimeofday() operation from user
41 space.
42
43.. c:function:: ktime_t ktime_get_clocktai( void )
44
45 CLOCK_TAI
46
47 Like ktime_get_real(), but uses the International Atomic Time (TAI)
48 reference instead of UTC to avoid jumping on leap second updates.
49 This is rarely useful in the kernel.
50
51.. c:function:: ktime_t ktime_get_raw( void )
52
53 CLOCK_MONOTONIC_RAW
54
55 Like ktime_get(), but runs at the same rate as the hardware
56 clocksource without (NTP) adjustments for clock drift. This is
57 also rarely needed in the kernel.
58
59nanosecond, timespec64, and second output
60-----------------------------------------
61
62For all of the above, there are variants that return the time in a
63different format depending on what is required by the user:
64
65.. c:function:: u64 ktime_get_ns( void )
66 u64 ktime_get_boottime_ns( void )
67 u64 ktime_get_real_ns( void )
68 u64 ktime_get_tai_ns( void )
69 u64 ktime_get_raw_ns( void )
70
71 Same as the plain ktime_get functions, but returning a u64 number
72 of nanoseconds in the respective time reference, which may be
73 more convenient for some callers.
74
75.. c:function:: void ktime_get_ts64( struct timespec64 * )
76 void ktime_get_boottime_ts64( struct timespec64 * )
77 void ktime_get_real_ts64( struct timespec64 * )
78 void ktime_get_clocktai_ts64( struct timespec64 * )
79 void ktime_get_raw_ts64( struct timespec64 * )
80
81 Same above, but returns the time in a 'struct timespec64', split
82 into seconds and nanoseconds. This can avoid an extra division
83 when printing the time, or when passing it into an external
84 interface that expects a 'timespec' or 'timeval' structure.
85
86.. c:function:: time64_t ktime_get_seconds( void )
87 time64_t ktime_get_boottime_seconds( void )
88 time64_t ktime_get_real_seconds( void )
89 time64_t ktime_get_clocktai_seconds( void )
90 time64_t ktime_get_raw_seconds( void )
91
92 Return a coarse-grained version of the time as a scalar
93 time64_t. This avoids accessing the clock hardware and rounds
94 down the seconds to the full seconds of the last timer tick
95 using the respective reference.
96
97Coarse and fast_ns access
98-------------------------
99
100Some additional variants exist for more specialized cases:
101
102.. c:function:: ktime_t ktime_get_coarse_boottime( void )
103 ktime_t ktime_get_coarse_real( void )
104 ktime_t ktime_get_coarse_clocktai( void )
105 ktime_t ktime_get_coarse_raw( void )
106
107.. c:function:: void ktime_get_coarse_ts64( struct timespec64 * )
108 void ktime_get_coarse_boottime_ts64( struct timespec64 * )
109 void ktime_get_coarse_real_ts64( struct timespec64 * )
110 void ktime_get_coarse_clocktai_ts64( struct timespec64 * )
111 void ktime_get_coarse_raw_ts64( struct timespec64 * )
112
113 These are quicker than the non-coarse versions, but less accurate,
114 corresponding to CLOCK_MONONOTNIC_COARSE and CLOCK_REALTIME_COARSE
115 in user space, along with the equivalent boottime/tai/raw
116 timebase not available in user space.
117
118 The time returned here corresponds to the last timer tick, which
119 may be as much as 10ms in the past (for CONFIG_HZ=100), same as
120 reading the 'jiffies' variable. These are only useful when called
121 in a fast path and one still expects better than second accuracy,
122 but can't easily use 'jiffies', e.g. for inode timestamps.
123 Skipping the hardware clock access saves around 100 CPU cycles
124 on most modern machines with a reliable cycle counter, but
125 up to several microseconds on older hardware with an external
126 clocksource.
127
128.. c:function:: u64 ktime_get_mono_fast_ns( void )
129 u64 ktime_get_raw_fast_ns( void )
130 u64 ktime_get_boot_fast_ns( void )
131 u64 ktime_get_real_fast_ns( void )
132
133 These variants are safe to call from any context, including from
134 a non-maskable interrupt (NMI) during a timekeeper update, and
135 while we are entering suspend with the clocksource powered down.
136 This is useful in some tracing or debugging code as well as
137 machine check reporting, but most drivers should never call them,
138 since the time is allowed to jump under certain conditions.
139
140Deprecated time interfaces
141--------------------------
142
143Older kernels used some other interfaces that are now being phased out
144but may appear in third-party drivers being ported here. In particular,
145all interfaces returning a 'struct timeval' or 'struct timespec' have
146been replaced because the tv_sec member overflows in year 2038 on 32-bit
147architectures. These are the recommended replacements:
148
149.. c:function:: void ktime_get_ts( struct timespec * )
150
151 Use ktime_get() or ktime_get_ts64() instead.
152
153.. c:function:: struct timeval do_gettimeofday( void )
154 struct timespec getnstimeofday( void )
155 struct timespec64 getnstimeofday64( void )
156 void ktime_get_real_ts( struct timespec * )
157
158 ktime_get_real_ts64() is a direct replacement, but consider using
159 monotonic time (ktime_get_ts64()) and/or a ktime_t based interface
160 (ktime_get()/ktime_get_real()).
161
162.. c:function:: struct timespec current_kernel_time( void )
163 struct timespec64 current_kernel_time64( void )
164 struct timespec get_monotonic_coarse( void )
165 struct timespec64 get_monotonic_coarse64( void )
166
167 These are replaced by ktime_get_coarse_real_ts64() and
168 ktime_get_coarse_ts64(). However, A lot of code that wants
169 coarse-grained times can use the simple 'jiffies' instead, while
170 some drivers may actually want the higher resolution accessors
171 these days.
172
173.. c:function:: struct timespec getrawmonotonic( void )
174 struct timespec64 getrawmonotonic64( void )
175 struct timespec timekeeping_clocktai( void )
176 struct timespec64 timekeeping_clocktai64( void )
177 struct timespec get_monotonic_boottime( void )
178 struct timespec64 get_monotonic_boottime64( void )
179
180 These are replaced by ktime_get_raw()/ktime_get_raw_ts64(),
181 ktime_get_clocktai()/ktime_get_clocktai_ts64() as well
182 as ktime_get_boottime()/ktime_get_boottime_ts64().
183 However, if the particular choice of clock source is not
184 important for the user, consider converting to
185 ktime_get()/ktime_get_ts64() instead for consistency.