blob: 9063f40b638bdd24ab65ea5d101e4041c0246b2c [file] [log] [blame]
Pallipadi, Venkatesh9e41a492010-02-10 15:26:07 -08001/*
2 * Handle caching attributes in page tables (PAT)
3 *
4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5 * Suresh B Siddha <suresh.b.siddha@intel.com>
6 *
7 * Interval tree (augmented rbtree) used to store the PAT memory type
8 * reservations.
9 */
10
11#include <linux/seq_file.h>
12#include <linux/debugfs.h>
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/rbtree.h>
16#include <linux/sched.h>
17#include <linux/gfp.h>
18
19#include <asm/pgtable.h>
20#include <asm/pat.h>
21
22#include "pat_internal.h"
23
24/*
25 * The memtype tree keeps track of memory type for specific
26 * physical memory areas. Without proper tracking, conflicting memory
27 * types in different mappings can cause CPU cache corruption.
28 *
29 * The tree is an interval tree (augmented rbtree) with tree ordered
30 * on starting address. Tree can contain multiple entries for
31 * different regions which overlap. All the aliases have the same
32 * cache attributes of course.
33 *
34 * memtype_lock protects the rbtree.
35 */
36
37static void memtype_rb_augment_cb(struct rb_node *node);
38static struct rb_root memtype_rbroot = RB_AUGMENT_ROOT(&memtype_rb_augment_cb);
39
40static int is_node_overlap(struct memtype *node, u64 start, u64 end)
41{
42 if (node->start >= end || node->end <= start)
43 return 0;
44
45 return 1;
46}
47
48static u64 get_subtree_max_end(struct rb_node *node)
49{
50 u64 ret = 0;
51 if (node) {
52 struct memtype *data = container_of(node, struct memtype, rb);
53 ret = data->subtree_max_end;
54 }
55 return ret;
56}
57
58/* Update 'subtree_max_end' for a node, based on node and its children */
59static void update_node_max_end(struct rb_node *node)
60{
61 struct memtype *data;
62 u64 max_end, child_max_end;
63
64 if (!node)
65 return;
66
67 data = container_of(node, struct memtype, rb);
68 max_end = data->end;
69
70 child_max_end = get_subtree_max_end(node->rb_right);
71 if (child_max_end > max_end)
72 max_end = child_max_end;
73
74 child_max_end = get_subtree_max_end(node->rb_left);
75 if (child_max_end > max_end)
76 max_end = child_max_end;
77
78 data->subtree_max_end = max_end;
79}
80
81/* Update 'subtree_max_end' for a node and all its ancestors */
82static void update_path_max_end(struct rb_node *node)
83{
84 u64 old_max_end, new_max_end;
85
86 while (node) {
87 struct memtype *data = container_of(node, struct memtype, rb);
88
89 old_max_end = data->subtree_max_end;
90 update_node_max_end(node);
91 new_max_end = data->subtree_max_end;
92
93 if (new_max_end == old_max_end)
94 break;
95
96 node = rb_parent(node);
97 }
98}
99
100/* Find the first (lowest start addr) overlapping range from rb tree */
101static struct memtype *memtype_rb_lowest_match(struct rb_root *root,
102 u64 start, u64 end)
103{
104 struct rb_node *node = root->rb_node;
105 struct memtype *last_lower = NULL;
106
107 while (node) {
108 struct memtype *data = container_of(node, struct memtype, rb);
109
110 if (get_subtree_max_end(node->rb_left) > start) {
111 /* Lowest overlap if any must be on left side */
112 node = node->rb_left;
113 } else if (is_node_overlap(data, start, end)) {
114 last_lower = data;
115 break;
116 } else if (start >= data->start) {
117 /* Lowest overlap if any must be on right side */
118 node = node->rb_right;
119 } else {
120 break;
121 }
122 }
123 return last_lower; /* Returns NULL if there is no overlap */
124}
125
126static struct memtype *memtype_rb_exact_match(struct rb_root *root,
127 u64 start, u64 end)
128{
129 struct memtype *match;
130
131 match = memtype_rb_lowest_match(root, start, end);
132 while (match != NULL && match->start < end) {
133 struct rb_node *node;
134
135 if (match->start == start && match->end == end)
136 return match;
137
138 node = rb_next(&match->rb);
139 if (node)
140 match = container_of(node, struct memtype, rb);
141 else
142 match = NULL;
143 }
144
145 return NULL; /* Returns NULL if there is no exact match */
146}
147
148static int memtype_rb_check_conflict(struct rb_root *root,
149 u64 start, u64 end,
150 unsigned long reqtype, unsigned long *newtype)
151{
152 struct rb_node *node;
153 struct memtype *match;
154 int found_type = reqtype;
155
156 match = memtype_rb_lowest_match(&memtype_rbroot, start, end);
157 if (match == NULL)
158 goto success;
159
160 if (match->type != found_type && newtype == NULL)
161 goto failure;
162
163 dprintk("Overlap at 0x%Lx-0x%Lx\n", match->start, match->end);
164 found_type = match->type;
165
166 node = rb_next(&match->rb);
167 while (node) {
168 match = container_of(node, struct memtype, rb);
169
170 if (match->start >= end) /* Checked all possible matches */
171 goto success;
172
173 if (is_node_overlap(match, start, end) &&
174 match->type != found_type) {
175 goto failure;
176 }
177
178 node = rb_next(&match->rb);
179 }
180success:
181 if (newtype)
182 *newtype = found_type;
183
184 return 0;
185
186failure:
187 printk(KERN_INFO "%s:%d conflicting memory types "
188 "%Lx-%Lx %s<->%s\n", current->comm, current->pid, start,
189 end, cattr_name(found_type), cattr_name(match->type));
190 return -EBUSY;
191}
192
193static void memtype_rb_augment_cb(struct rb_node *node)
194{
195 if (node)
196 update_path_max_end(node);
197}
198
199static void memtype_rb_insert(struct rb_root *root, struct memtype *newdata)
200{
201 struct rb_node **node = &(root->rb_node);
202 struct rb_node *parent = NULL;
203
204 while (*node) {
205 struct memtype *data = container_of(*node, struct memtype, rb);
206
207 parent = *node;
208 if (newdata->start <= data->start)
209 node = &((*node)->rb_left);
210 else if (newdata->start > data->start)
211 node = &((*node)->rb_right);
212 }
213
214 rb_link_node(&newdata->rb, parent, node);
215 rb_insert_color(&newdata->rb, root);
216}
217
218int rbt_memtype_check_insert(struct memtype *new, unsigned long *ret_type)
219{
220 int err = 0;
221
222 err = memtype_rb_check_conflict(&memtype_rbroot, new->start, new->end,
223 new->type, ret_type);
224
225 if (!err) {
226 new->type = *ret_type;
227 memtype_rb_insert(&memtype_rbroot, new);
228 }
229 return err;
230}
231
232int rbt_memtype_erase(u64 start, u64 end)
233{
234 struct memtype *data;
235
236 data = memtype_rb_exact_match(&memtype_rbroot, start, end);
237 if (!data)
238 return -EINVAL;
239
240 rb_erase(&data->rb, &memtype_rbroot);
241 return 0;
242}
243
244struct memtype *rbt_memtype_lookup(u64 addr)
245{
246 struct memtype *data;
247 data = memtype_rb_lowest_match(&memtype_rbroot, addr, addr + PAGE_SIZE);
248 return data;
249}
250
251#if defined(CONFIG_DEBUG_FS)
252int rbt_memtype_copy_nth_element(struct memtype *out, loff_t pos)
253{
254 struct rb_node *node;
255 int i = 1;
256
257 node = rb_first(&memtype_rbroot);
258 while (node && pos != i) {
259 node = rb_next(node);
260 i++;
261 }
262
263 if (node) { /* pos == i */
264 struct memtype *this = container_of(node, struct memtype, rb);
265 *out = *this;
266 return 0;
267 } else {
268 return 1;
269 }
270}
271#endif