Thomas Gleixner | d2912cb | 2019-06-04 10:11:33 +0200 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 2 | /* |
| 3 | * AMD Memory Encryption Support |
| 4 | * |
| 5 | * Copyright (C) 2016 Advanced Micro Devices, Inc. |
| 6 | * |
| 7 | * Author: Tom Lendacky <thomas.lendacky@amd.com> |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 8 | */ |
| 9 | |
| 10 | #define DISABLE_BRANCH_PROFILING |
| 11 | |
Kirill A. Shutemov | aad9839 | 2018-01-31 16:54:03 +0300 | [diff] [blame] | 12 | /* |
| 13 | * Since we're dealing with identity mappings, physical and virtual |
| 14 | * addresses are the same, so override these defines which are ultimately |
| 15 | * used by the headers in misc.h. |
| 16 | */ |
| 17 | #define __pa(x) ((unsigned long)(x)) |
| 18 | #define __va(x) ((void *)((unsigned long)(x))) |
| 19 | |
| 20 | /* |
| 21 | * Special hack: we have to be careful, because no indirections are |
| 22 | * allowed here, and paravirt_ops is a kind of one. As it will only run in |
| 23 | * baremetal anyway, we just keep it from happening. (This list needs to |
| 24 | * be extended when new paravirt and debugging variants are added.) |
| 25 | */ |
| 26 | #undef CONFIG_PARAVIRT |
Juergen Gross | c00a280 | 2018-08-28 09:40:21 +0200 | [diff] [blame] | 27 | #undef CONFIG_PARAVIRT_XXL |
Kirill A. Shutemov | aad9839 | 2018-01-31 16:54:03 +0300 | [diff] [blame] | 28 | #undef CONFIG_PARAVIRT_SPINLOCKS |
| 29 | |
| 30 | #include <linux/kernel.h> |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 31 | #include <linux/mm.h> |
| 32 | #include <linux/mem_encrypt.h> |
| 33 | |
| 34 | #include <asm/setup.h> |
| 35 | #include <asm/sections.h> |
| 36 | #include <asm/cmdline.h> |
| 37 | |
| 38 | #include "mm_internal.h" |
| 39 | |
| 40 | #define PGD_FLAGS _KERNPG_TABLE_NOENC |
| 41 | #define P4D_FLAGS _KERNPG_TABLE_NOENC |
| 42 | #define PUD_FLAGS _KERNPG_TABLE_NOENC |
| 43 | #define PMD_FLAGS _KERNPG_TABLE_NOENC |
| 44 | |
| 45 | #define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL) |
| 46 | |
| 47 | #define PMD_FLAGS_DEC PMD_FLAGS_LARGE |
| 48 | #define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \ |
| 49 | (_PAGE_PAT | _PAGE_PWT)) |
| 50 | |
| 51 | #define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC) |
| 52 | |
| 53 | #define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL) |
| 54 | |
| 55 | #define PTE_FLAGS_DEC PTE_FLAGS |
| 56 | #define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \ |
| 57 | (_PAGE_PAT | _PAGE_PWT)) |
| 58 | |
| 59 | #define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC) |
| 60 | |
| 61 | struct sme_populate_pgd_data { |
| 62 | void *pgtable_area; |
| 63 | pgd_t *pgd; |
| 64 | |
| 65 | pmdval_t pmd_flags; |
| 66 | pteval_t pte_flags; |
| 67 | unsigned long paddr; |
| 68 | |
| 69 | unsigned long vaddr; |
| 70 | unsigned long vaddr_end; |
| 71 | }; |
| 72 | |
Thomas Lendacky | e1bfa87 | 2019-06-19 18:40:59 +0000 | [diff] [blame] | 73 | /* |
| 74 | * This work area lives in the .init.scratch section, which lives outside of |
| 75 | * the kernel proper. It is sized to hold the intermediate copy buffer and |
| 76 | * more than enough pagetable pages. |
| 77 | * |
| 78 | * By using this section, the kernel can be encrypted in place and it |
| 79 | * avoids any possibility of boot parameters or initramfs images being |
| 80 | * placed such that the in-place encryption logic overwrites them. This |
| 81 | * section is 2MB aligned to allow for simple pagetable setup using only |
| 82 | * PMD entries (see vmlinux.lds.S). |
| 83 | */ |
| 84 | static char sme_workarea[2 * PMD_PAGE_SIZE] __section(.init.scratch); |
| 85 | |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 86 | static char sme_cmdline_arg[] __initdata = "mem_encrypt"; |
| 87 | static char sme_cmdline_on[] __initdata = "on"; |
| 88 | static char sme_cmdline_off[] __initdata = "off"; |
| 89 | |
| 90 | static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd) |
| 91 | { |
| 92 | unsigned long pgd_start, pgd_end, pgd_size; |
| 93 | pgd_t *pgd_p; |
| 94 | |
| 95 | pgd_start = ppd->vaddr & PGDIR_MASK; |
| 96 | pgd_end = ppd->vaddr_end & PGDIR_MASK; |
| 97 | |
| 98 | pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t); |
| 99 | |
| 100 | pgd_p = ppd->pgd + pgd_index(ppd->vaddr); |
| 101 | |
| 102 | memset(pgd_p, 0, pgd_size); |
| 103 | } |
| 104 | |
Kirill A. Shutemov | aad9839 | 2018-01-31 16:54:03 +0300 | [diff] [blame] | 105 | static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd) |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 106 | { |
Kirill A. Shutemov | aad9839 | 2018-01-31 16:54:03 +0300 | [diff] [blame] | 107 | pgd_t *pgd; |
| 108 | p4d_t *p4d; |
| 109 | pud_t *pud; |
| 110 | pmd_t *pmd; |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 111 | |
Kirill A. Shutemov | aad9839 | 2018-01-31 16:54:03 +0300 | [diff] [blame] | 112 | pgd = ppd->pgd + pgd_index(ppd->vaddr); |
| 113 | if (pgd_none(*pgd)) { |
| 114 | p4d = ppd->pgtable_area; |
| 115 | memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D); |
| 116 | ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D; |
| 117 | set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d))); |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 118 | } |
| 119 | |
Kirill A. Shutemov | aad9839 | 2018-01-31 16:54:03 +0300 | [diff] [blame] | 120 | p4d = p4d_offset(pgd, ppd->vaddr); |
| 121 | if (p4d_none(*p4d)) { |
| 122 | pud = ppd->pgtable_area; |
| 123 | memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD); |
| 124 | ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD; |
| 125 | set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud))); |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 126 | } |
| 127 | |
Kirill A. Shutemov | aad9839 | 2018-01-31 16:54:03 +0300 | [diff] [blame] | 128 | pud = pud_offset(p4d, ppd->vaddr); |
| 129 | if (pud_none(*pud)) { |
| 130 | pmd = ppd->pgtable_area; |
| 131 | memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD); |
| 132 | ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD; |
| 133 | set_pud(pud, __pud(PUD_FLAGS | __pa(pmd))); |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 134 | } |
| 135 | |
Kirill A. Shutemov | aad9839 | 2018-01-31 16:54:03 +0300 | [diff] [blame] | 136 | if (pud_large(*pud)) |
| 137 | return NULL; |
| 138 | |
| 139 | return pud; |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 140 | } |
| 141 | |
| 142 | static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd) |
| 143 | { |
Kirill A. Shutemov | aad9839 | 2018-01-31 16:54:03 +0300 | [diff] [blame] | 144 | pud_t *pud; |
| 145 | pmd_t *pmd; |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 146 | |
Kirill A. Shutemov | aad9839 | 2018-01-31 16:54:03 +0300 | [diff] [blame] | 147 | pud = sme_prepare_pgd(ppd); |
| 148 | if (!pud) |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 149 | return; |
| 150 | |
Kirill A. Shutemov | aad9839 | 2018-01-31 16:54:03 +0300 | [diff] [blame] | 151 | pmd = pmd_offset(pud, ppd->vaddr); |
| 152 | if (pmd_large(*pmd)) |
| 153 | return; |
| 154 | |
| 155 | set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags)); |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 156 | } |
| 157 | |
| 158 | static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd) |
| 159 | { |
Kirill A. Shutemov | aad9839 | 2018-01-31 16:54:03 +0300 | [diff] [blame] | 160 | pud_t *pud; |
| 161 | pmd_t *pmd; |
| 162 | pte_t *pte; |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 163 | |
Kirill A. Shutemov | aad9839 | 2018-01-31 16:54:03 +0300 | [diff] [blame] | 164 | pud = sme_prepare_pgd(ppd); |
| 165 | if (!pud) |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 166 | return; |
| 167 | |
Kirill A. Shutemov | aad9839 | 2018-01-31 16:54:03 +0300 | [diff] [blame] | 168 | pmd = pmd_offset(pud, ppd->vaddr); |
| 169 | if (pmd_none(*pmd)) { |
| 170 | pte = ppd->pgtable_area; |
Peng Hao | bf7d28c5 | 2018-12-29 14:34:12 +0800 | [diff] [blame] | 171 | memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE); |
| 172 | ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE; |
Kirill A. Shutemov | aad9839 | 2018-01-31 16:54:03 +0300 | [diff] [blame] | 173 | set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte))); |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 174 | } |
| 175 | |
Kirill A. Shutemov | aad9839 | 2018-01-31 16:54:03 +0300 | [diff] [blame] | 176 | if (pmd_large(*pmd)) |
| 177 | return; |
| 178 | |
| 179 | pte = pte_offset_map(pmd, ppd->vaddr); |
| 180 | if (pte_none(*pte)) |
| 181 | set_pte(pte, __pte(ppd->paddr | ppd->pte_flags)); |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 182 | } |
| 183 | |
| 184 | static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd) |
| 185 | { |
| 186 | while (ppd->vaddr < ppd->vaddr_end) { |
| 187 | sme_populate_pgd_large(ppd); |
| 188 | |
| 189 | ppd->vaddr += PMD_PAGE_SIZE; |
| 190 | ppd->paddr += PMD_PAGE_SIZE; |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd) |
| 195 | { |
| 196 | while (ppd->vaddr < ppd->vaddr_end) { |
| 197 | sme_populate_pgd(ppd); |
| 198 | |
| 199 | ppd->vaddr += PAGE_SIZE; |
| 200 | ppd->paddr += PAGE_SIZE; |
| 201 | } |
| 202 | } |
| 203 | |
| 204 | static void __init __sme_map_range(struct sme_populate_pgd_data *ppd, |
| 205 | pmdval_t pmd_flags, pteval_t pte_flags) |
| 206 | { |
| 207 | unsigned long vaddr_end; |
| 208 | |
| 209 | ppd->pmd_flags = pmd_flags; |
| 210 | ppd->pte_flags = pte_flags; |
| 211 | |
| 212 | /* Save original end value since we modify the struct value */ |
| 213 | vaddr_end = ppd->vaddr_end; |
| 214 | |
| 215 | /* If start is not 2MB aligned, create PTE entries */ |
| 216 | ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE); |
| 217 | __sme_map_range_pte(ppd); |
| 218 | |
| 219 | /* Create PMD entries */ |
| 220 | ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK; |
| 221 | __sme_map_range_pmd(ppd); |
| 222 | |
| 223 | /* If end is not 2MB aligned, create PTE entries */ |
| 224 | ppd->vaddr_end = vaddr_end; |
| 225 | __sme_map_range_pte(ppd); |
| 226 | } |
| 227 | |
| 228 | static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd) |
| 229 | { |
| 230 | __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC); |
| 231 | } |
| 232 | |
| 233 | static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd) |
| 234 | { |
| 235 | __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC); |
| 236 | } |
| 237 | |
| 238 | static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd) |
| 239 | { |
| 240 | __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP); |
| 241 | } |
| 242 | |
| 243 | static unsigned long __init sme_pgtable_calc(unsigned long len) |
| 244 | { |
Kirill A. Shutemov | 1070730 | 2018-01-31 16:54:04 +0300 | [diff] [blame] | 245 | unsigned long entries = 0, tables = 0; |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 246 | |
| 247 | /* |
| 248 | * Perform a relatively simplistic calculation of the pagetable |
| 249 | * entries that are needed. Those mappings will be covered mostly |
| 250 | * by 2MB PMD entries so we can conservatively calculate the required |
| 251 | * number of P4D, PUD and PMD structures needed to perform the |
| 252 | * mappings. For mappings that are not 2MB aligned, PTE mappings |
| 253 | * would be needed for the start and end portion of the address range |
| 254 | * that fall outside of the 2MB alignment. This results in, at most, |
| 255 | * two extra pages to hold PTE entries for each range that is mapped. |
| 256 | * Incrementing the count for each covers the case where the addresses |
| 257 | * cross entries. |
| 258 | */ |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 259 | |
Kirill A. Shutemov | 1070730 | 2018-01-31 16:54:04 +0300 | [diff] [blame] | 260 | /* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */ |
| 261 | if (PTRS_PER_P4D > 1) |
| 262 | entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D; |
| 263 | entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD; |
| 264 | entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD; |
| 265 | entries += 2 * sizeof(pte_t) * PTRS_PER_PTE; |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 266 | |
| 267 | /* |
| 268 | * Now calculate the added pagetable structures needed to populate |
| 269 | * the new pagetables. |
| 270 | */ |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 271 | |
Kirill A. Shutemov | 1070730 | 2018-01-31 16:54:04 +0300 | [diff] [blame] | 272 | if (PTRS_PER_P4D > 1) |
| 273 | tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D; |
| 274 | tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD; |
| 275 | tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD; |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 276 | |
Kirill A. Shutemov | 1070730 | 2018-01-31 16:54:04 +0300 | [diff] [blame] | 277 | return entries + tables; |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 278 | } |
| 279 | |
Tom Lendacky | ae8d1d0 | 2018-02-26 17:25:54 -0600 | [diff] [blame] | 280 | void __init sme_encrypt_kernel(struct boot_params *bp) |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 281 | { |
| 282 | unsigned long workarea_start, workarea_end, workarea_len; |
| 283 | unsigned long execute_start, execute_end, execute_len; |
| 284 | unsigned long kernel_start, kernel_end, kernel_len; |
| 285 | unsigned long initrd_start, initrd_end, initrd_len; |
| 286 | struct sme_populate_pgd_data ppd; |
| 287 | unsigned long pgtable_area_len; |
| 288 | unsigned long decrypted_base; |
| 289 | |
| 290 | if (!sme_active()) |
| 291 | return; |
| 292 | |
| 293 | /* |
| 294 | * Prepare for encrypting the kernel and initrd by building new |
| 295 | * pagetables with the necessary attributes needed to encrypt the |
| 296 | * kernel in place. |
| 297 | * |
| 298 | * One range of virtual addresses will map the memory occupied |
| 299 | * by the kernel and initrd as encrypted. |
| 300 | * |
| 301 | * Another range of virtual addresses will map the memory occupied |
| 302 | * by the kernel and initrd as decrypted and write-protected. |
| 303 | * |
| 304 | * The use of write-protect attribute will prevent any of the |
| 305 | * memory from being cached. |
| 306 | */ |
| 307 | |
| 308 | /* Physical addresses gives us the identity mapped virtual addresses */ |
| 309 | kernel_start = __pa_symbol(_text); |
| 310 | kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE); |
| 311 | kernel_len = kernel_end - kernel_start; |
| 312 | |
| 313 | initrd_start = 0; |
| 314 | initrd_end = 0; |
| 315 | initrd_len = 0; |
| 316 | #ifdef CONFIG_BLK_DEV_INITRD |
| 317 | initrd_len = (unsigned long)bp->hdr.ramdisk_size | |
| 318 | ((unsigned long)bp->ext_ramdisk_size << 32); |
| 319 | if (initrd_len) { |
| 320 | initrd_start = (unsigned long)bp->hdr.ramdisk_image | |
| 321 | ((unsigned long)bp->ext_ramdisk_image << 32); |
| 322 | initrd_end = PAGE_ALIGN(initrd_start + initrd_len); |
| 323 | initrd_len = initrd_end - initrd_start; |
| 324 | } |
| 325 | #endif |
| 326 | |
Thomas Lendacky | e1bfa87 | 2019-06-19 18:40:59 +0000 | [diff] [blame] | 327 | /* |
| 328 | * We're running identity mapped, so we must obtain the address to the |
| 329 | * SME encryption workarea using rip-relative addressing. |
| 330 | */ |
| 331 | asm ("lea sme_workarea(%%rip), %0" |
| 332 | : "=r" (workarea_start) |
| 333 | : "p" (sme_workarea)); |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 334 | |
| 335 | /* |
| 336 | * Calculate required number of workarea bytes needed: |
| 337 | * executable encryption area size: |
| 338 | * stack page (PAGE_SIZE) |
| 339 | * encryption routine page (PAGE_SIZE) |
| 340 | * intermediate copy buffer (PMD_PAGE_SIZE) |
| 341 | * pagetable structures for the encryption of the kernel |
| 342 | * pagetable structures for workarea (in case not currently mapped) |
| 343 | */ |
| 344 | execute_start = workarea_start; |
| 345 | execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE; |
| 346 | execute_len = execute_end - execute_start; |
| 347 | |
| 348 | /* |
| 349 | * One PGD for both encrypted and decrypted mappings and a set of |
| 350 | * PUDs and PMDs for each of the encrypted and decrypted mappings. |
| 351 | */ |
| 352 | pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD; |
| 353 | pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2; |
| 354 | if (initrd_len) |
| 355 | pgtable_area_len += sme_pgtable_calc(initrd_len) * 2; |
| 356 | |
| 357 | /* PUDs and PMDs needed in the current pagetables for the workarea */ |
| 358 | pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len); |
| 359 | |
| 360 | /* |
| 361 | * The total workarea includes the executable encryption area and |
| 362 | * the pagetable area. The start of the workarea is already 2MB |
| 363 | * aligned, align the end of the workarea on a 2MB boundary so that |
| 364 | * we don't try to create/allocate PTE entries from the workarea |
| 365 | * before it is mapped. |
| 366 | */ |
| 367 | workarea_len = execute_len + pgtable_area_len; |
| 368 | workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE); |
| 369 | |
| 370 | /* |
| 371 | * Set the address to the start of where newly created pagetable |
| 372 | * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable |
| 373 | * structures are created when the workarea is added to the current |
| 374 | * pagetables and when the new encrypted and decrypted kernel |
| 375 | * mappings are populated. |
| 376 | */ |
| 377 | ppd.pgtable_area = (void *)execute_end; |
| 378 | |
| 379 | /* |
| 380 | * Make sure the current pagetable structure has entries for |
| 381 | * addressing the workarea. |
| 382 | */ |
| 383 | ppd.pgd = (pgd_t *)native_read_cr3_pa(); |
| 384 | ppd.paddr = workarea_start; |
| 385 | ppd.vaddr = workarea_start; |
| 386 | ppd.vaddr_end = workarea_end; |
| 387 | sme_map_range_decrypted(&ppd); |
| 388 | |
| 389 | /* Flush the TLB - no globals so cr3 is enough */ |
| 390 | native_write_cr3(__native_read_cr3()); |
| 391 | |
| 392 | /* |
| 393 | * A new pagetable structure is being built to allow for the kernel |
| 394 | * and initrd to be encrypted. It starts with an empty PGD that will |
| 395 | * then be populated with new PUDs and PMDs as the encrypted and |
| 396 | * decrypted kernel mappings are created. |
| 397 | */ |
| 398 | ppd.pgd = ppd.pgtable_area; |
| 399 | memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD); |
| 400 | ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD; |
| 401 | |
| 402 | /* |
| 403 | * A different PGD index/entry must be used to get different |
| 404 | * pagetable entries for the decrypted mapping. Choose the next |
| 405 | * PGD index and convert it to a virtual address to be used as |
| 406 | * the base of the mapping. |
| 407 | */ |
| 408 | decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1); |
| 409 | if (initrd_len) { |
| 410 | unsigned long check_base; |
| 411 | |
| 412 | check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1); |
| 413 | decrypted_base = max(decrypted_base, check_base); |
| 414 | } |
| 415 | decrypted_base <<= PGDIR_SHIFT; |
| 416 | |
| 417 | /* Add encrypted kernel (identity) mappings */ |
| 418 | ppd.paddr = kernel_start; |
| 419 | ppd.vaddr = kernel_start; |
| 420 | ppd.vaddr_end = kernel_end; |
| 421 | sme_map_range_encrypted(&ppd); |
| 422 | |
| 423 | /* Add decrypted, write-protected kernel (non-identity) mappings */ |
| 424 | ppd.paddr = kernel_start; |
| 425 | ppd.vaddr = kernel_start + decrypted_base; |
| 426 | ppd.vaddr_end = kernel_end + decrypted_base; |
| 427 | sme_map_range_decrypted_wp(&ppd); |
| 428 | |
| 429 | if (initrd_len) { |
| 430 | /* Add encrypted initrd (identity) mappings */ |
| 431 | ppd.paddr = initrd_start; |
| 432 | ppd.vaddr = initrd_start; |
| 433 | ppd.vaddr_end = initrd_end; |
| 434 | sme_map_range_encrypted(&ppd); |
| 435 | /* |
| 436 | * Add decrypted, write-protected initrd (non-identity) mappings |
| 437 | */ |
| 438 | ppd.paddr = initrd_start; |
| 439 | ppd.vaddr = initrd_start + decrypted_base; |
| 440 | ppd.vaddr_end = initrd_end + decrypted_base; |
| 441 | sme_map_range_decrypted_wp(&ppd); |
| 442 | } |
| 443 | |
| 444 | /* Add decrypted workarea mappings to both kernel mappings */ |
| 445 | ppd.paddr = workarea_start; |
| 446 | ppd.vaddr = workarea_start; |
| 447 | ppd.vaddr_end = workarea_end; |
| 448 | sme_map_range_decrypted(&ppd); |
| 449 | |
| 450 | ppd.paddr = workarea_start; |
| 451 | ppd.vaddr = workarea_start + decrypted_base; |
| 452 | ppd.vaddr_end = workarea_end + decrypted_base; |
| 453 | sme_map_range_decrypted(&ppd); |
| 454 | |
| 455 | /* Perform the encryption */ |
| 456 | sme_encrypt_execute(kernel_start, kernel_start + decrypted_base, |
| 457 | kernel_len, workarea_start, (unsigned long)ppd.pgd); |
| 458 | |
| 459 | if (initrd_len) |
| 460 | sme_encrypt_execute(initrd_start, initrd_start + decrypted_base, |
| 461 | initrd_len, workarea_start, |
| 462 | (unsigned long)ppd.pgd); |
| 463 | |
| 464 | /* |
| 465 | * At this point we are running encrypted. Remove the mappings for |
| 466 | * the decrypted areas - all that is needed for this is to remove |
| 467 | * the PGD entry/entries. |
| 468 | */ |
| 469 | ppd.vaddr = kernel_start + decrypted_base; |
| 470 | ppd.vaddr_end = kernel_end + decrypted_base; |
| 471 | sme_clear_pgd(&ppd); |
| 472 | |
| 473 | if (initrd_len) { |
| 474 | ppd.vaddr = initrd_start + decrypted_base; |
| 475 | ppd.vaddr_end = initrd_end + decrypted_base; |
| 476 | sme_clear_pgd(&ppd); |
| 477 | } |
| 478 | |
| 479 | ppd.vaddr = workarea_start + decrypted_base; |
| 480 | ppd.vaddr_end = workarea_end + decrypted_base; |
| 481 | sme_clear_pgd(&ppd); |
| 482 | |
| 483 | /* Flush the TLB - no globals so cr3 is enough */ |
| 484 | native_write_cr3(__native_read_cr3()); |
| 485 | } |
| 486 | |
Tom Lendacky | ae8d1d0 | 2018-02-26 17:25:54 -0600 | [diff] [blame] | 487 | void __init sme_enable(struct boot_params *bp) |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 488 | { |
| 489 | const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off; |
| 490 | unsigned int eax, ebx, ecx, edx; |
| 491 | unsigned long feature_mask; |
| 492 | bool active_by_default; |
| 493 | unsigned long me_mask; |
| 494 | char buffer[16]; |
| 495 | u64 msr; |
| 496 | |
| 497 | /* Check for the SME/SEV support leaf */ |
| 498 | eax = 0x80000000; |
| 499 | ecx = 0; |
| 500 | native_cpuid(&eax, &ebx, &ecx, &edx); |
| 501 | if (eax < 0x8000001f) |
| 502 | return; |
| 503 | |
| 504 | #define AMD_SME_BIT BIT(0) |
| 505 | #define AMD_SEV_BIT BIT(1) |
| 506 | /* |
| 507 | * Set the feature mask (SME or SEV) based on whether we are |
| 508 | * running under a hypervisor. |
| 509 | */ |
| 510 | eax = 1; |
| 511 | ecx = 0; |
| 512 | native_cpuid(&eax, &ebx, &ecx, &edx); |
| 513 | feature_mask = (ecx & BIT(31)) ? AMD_SEV_BIT : AMD_SME_BIT; |
| 514 | |
| 515 | /* |
| 516 | * Check for the SME/SEV feature: |
| 517 | * CPUID Fn8000_001F[EAX] |
| 518 | * - Bit 0 - Secure Memory Encryption support |
| 519 | * - Bit 1 - Secure Encrypted Virtualization support |
| 520 | * CPUID Fn8000_001F[EBX] |
| 521 | * - Bits 5:0 - Pagetable bit position used to indicate encryption |
| 522 | */ |
| 523 | eax = 0x8000001f; |
| 524 | ecx = 0; |
| 525 | native_cpuid(&eax, &ebx, &ecx, &edx); |
| 526 | if (!(eax & feature_mask)) |
| 527 | return; |
| 528 | |
| 529 | me_mask = 1UL << (ebx & 0x3f); |
| 530 | |
| 531 | /* Check if memory encryption is enabled */ |
| 532 | if (feature_mask == AMD_SME_BIT) { |
| 533 | /* For SME, check the SYSCFG MSR */ |
| 534 | msr = __rdmsr(MSR_K8_SYSCFG); |
| 535 | if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT)) |
| 536 | return; |
| 537 | } else { |
| 538 | /* For SEV, check the SEV MSR */ |
| 539 | msr = __rdmsr(MSR_AMD64_SEV); |
| 540 | if (!(msr & MSR_AMD64_SEV_ENABLED)) |
| 541 | return; |
| 542 | |
| 543 | /* SEV state cannot be controlled by a command line option */ |
| 544 | sme_me_mask = me_mask; |
| 545 | sev_enabled = true; |
Kirill A. Shutemov | 94d49eb | 2018-05-18 14:30:28 +0300 | [diff] [blame] | 546 | physical_mask &= ~sme_me_mask; |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 547 | return; |
| 548 | } |
| 549 | |
| 550 | /* |
| 551 | * Fixups have not been applied to phys_base yet and we're running |
| 552 | * identity mapped, so we must obtain the address to the SME command |
| 553 | * line argument data using rip-relative addressing. |
| 554 | */ |
| 555 | asm ("lea sme_cmdline_arg(%%rip), %0" |
| 556 | : "=r" (cmdline_arg) |
| 557 | : "p" (sme_cmdline_arg)); |
| 558 | asm ("lea sme_cmdline_on(%%rip), %0" |
| 559 | : "=r" (cmdline_on) |
| 560 | : "p" (sme_cmdline_on)); |
| 561 | asm ("lea sme_cmdline_off(%%rip), %0" |
| 562 | : "=r" (cmdline_off) |
| 563 | : "p" (sme_cmdline_off)); |
| 564 | |
| 565 | if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT)) |
| 566 | active_by_default = true; |
| 567 | else |
| 568 | active_by_default = false; |
| 569 | |
| 570 | cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr | |
| 571 | ((u64)bp->ext_cmd_line_ptr << 32)); |
| 572 | |
| 573 | cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer)); |
| 574 | |
| 575 | if (!strncmp(buffer, cmdline_on, sizeof(buffer))) |
| 576 | sme_me_mask = me_mask; |
| 577 | else if (!strncmp(buffer, cmdline_off, sizeof(buffer))) |
| 578 | sme_me_mask = 0; |
| 579 | else |
| 580 | sme_me_mask = active_by_default ? me_mask : 0; |
Kirill A. Shutemov | 94d49eb | 2018-05-18 14:30:28 +0300 | [diff] [blame] | 581 | |
| 582 | physical_mask &= ~sme_me_mask; |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 583 | } |