blob: 428c5801d4b45cf19be318079ed23c8c55a7ccfd [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/file.h>
23#include <linux/writeback.h>
24#include <linux/blkdev.h>
25#include <linux/buffer_head.h> /* for try_to_release_page(),
26 buffer_heads_over_limit */
27#include <linux/mm_inline.h>
28#include <linux/pagevec.h>
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
34#include <linux/notifier.h>
35#include <linux/rwsem.h>
36
37#include <asm/tlbflush.h>
38#include <asm/div64.h>
39
40#include <linux/swapops.h>
41
42/* possible outcome of pageout() */
43typedef enum {
44 /* failed to write page out, page is locked */
45 PAGE_KEEP,
46 /* move page to the active list, page is locked */
47 PAGE_ACTIVATE,
48 /* page has been sent to the disk successfully, page is unlocked */
49 PAGE_SUCCESS,
50 /* page is clean and locked */
51 PAGE_CLEAN,
52} pageout_t;
53
54struct scan_control {
55 /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56 unsigned long nr_to_scan;
57
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
60
61 /* Incremented by the number of pages reclaimed */
62 unsigned long nr_reclaimed;
63
64 unsigned long nr_mapped; /* From page_state */
65
Linus Torvalds1da177e2005-04-16 15:20:36 -070066 /* Ask shrink_caches, or shrink_zone to scan at this priority */
67 unsigned int priority;
68
69 /* This context's GFP mask */
Al Viro6daa0e22005-10-21 03:18:50 -040070 gfp_t gfp_mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -070071
72 int may_writepage;
73
74 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
75 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
76 * In this context, it doesn't matter that we scan the
77 * whole list at once. */
78 int swap_cluster_max;
79};
80
81/*
82 * The list of shrinker callbacks used by to apply pressure to
83 * ageable caches.
84 */
85struct shrinker {
86 shrinker_t shrinker;
87 struct list_head list;
88 int seeks; /* seeks to recreate an obj */
89 long nr; /* objs pending delete */
90};
91
92#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
93
94#ifdef ARCH_HAS_PREFETCH
95#define prefetch_prev_lru_page(_page, _base, _field) \
96 do { \
97 if ((_page)->lru.prev != _base) { \
98 struct page *prev; \
99 \
100 prev = lru_to_page(&(_page->lru)); \
101 prefetch(&prev->_field); \
102 } \
103 } while (0)
104#else
105#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
106#endif
107
108#ifdef ARCH_HAS_PREFETCHW
109#define prefetchw_prev_lru_page(_page, _base, _field) \
110 do { \
111 if ((_page)->lru.prev != _base) { \
112 struct page *prev; \
113 \
114 prev = lru_to_page(&(_page->lru)); \
115 prefetchw(&prev->_field); \
116 } \
117 } while (0)
118#else
119#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
120#endif
121
122/*
123 * From 0 .. 100. Higher means more swappy.
124 */
125int vm_swappiness = 60;
126static long total_memory;
127
128static LIST_HEAD(shrinker_list);
129static DECLARE_RWSEM(shrinker_rwsem);
130
131/*
132 * Add a shrinker callback to be called from the vm
133 */
134struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
135{
136 struct shrinker *shrinker;
137
138 shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
139 if (shrinker) {
140 shrinker->shrinker = theshrinker;
141 shrinker->seeks = seeks;
142 shrinker->nr = 0;
143 down_write(&shrinker_rwsem);
144 list_add_tail(&shrinker->list, &shrinker_list);
145 up_write(&shrinker_rwsem);
146 }
147 return shrinker;
148}
149EXPORT_SYMBOL(set_shrinker);
150
151/*
152 * Remove one
153 */
154void remove_shrinker(struct shrinker *shrinker)
155{
156 down_write(&shrinker_rwsem);
157 list_del(&shrinker->list);
158 up_write(&shrinker_rwsem);
159 kfree(shrinker);
160}
161EXPORT_SYMBOL(remove_shrinker);
162
163#define SHRINK_BATCH 128
164/*
165 * Call the shrink functions to age shrinkable caches
166 *
167 * Here we assume it costs one seek to replace a lru page and that it also
168 * takes a seek to recreate a cache object. With this in mind we age equal
169 * percentages of the lru and ageable caches. This should balance the seeks
170 * generated by these structures.
171 *
172 * If the vm encounted mapped pages on the LRU it increase the pressure on
173 * slab to avoid swapping.
174 *
175 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
176 *
177 * `lru_pages' represents the number of on-LRU pages in all the zones which
178 * are eligible for the caller's allocation attempt. It is used for balancing
179 * slab reclaim versus page reclaim.
akpm@osdl.orgb15e0902005-06-21 17:14:35 -0700180 *
181 * Returns the number of slab objects which we shrunk.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700182 */
Andrew Morton9d0243b2006-01-08 01:00:39 -0800183int shrink_slab(unsigned long scanned, gfp_t gfp_mask, unsigned long lru_pages)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700184{
185 struct shrinker *shrinker;
akpm@osdl.orgb15e0902005-06-21 17:14:35 -0700186 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700187
188 if (scanned == 0)
189 scanned = SWAP_CLUSTER_MAX;
190
191 if (!down_read_trylock(&shrinker_rwsem))
akpm@osdl.orgb15e0902005-06-21 17:14:35 -0700192 return 1; /* Assume we'll be able to shrink next time */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700193
194 list_for_each_entry(shrinker, &shrinker_list, list) {
195 unsigned long long delta;
196 unsigned long total_scan;
Andrea Arcangeliea164d72005-11-28 13:44:15 -0800197 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700198
199 delta = (4 * scanned) / shrinker->seeks;
Andrea Arcangeliea164d72005-11-28 13:44:15 -0800200 delta *= max_pass;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700201 do_div(delta, lru_pages + 1);
202 shrinker->nr += delta;
Andrea Arcangeliea164d72005-11-28 13:44:15 -0800203 if (shrinker->nr < 0) {
204 printk(KERN_ERR "%s: nr=%ld\n",
205 __FUNCTION__, shrinker->nr);
206 shrinker->nr = max_pass;
207 }
208
209 /*
210 * Avoid risking looping forever due to too large nr value:
211 * never try to free more than twice the estimate number of
212 * freeable entries.
213 */
214 if (shrinker->nr > max_pass * 2)
215 shrinker->nr = max_pass * 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700216
217 total_scan = shrinker->nr;
218 shrinker->nr = 0;
219
220 while (total_scan >= SHRINK_BATCH) {
221 long this_scan = SHRINK_BATCH;
222 int shrink_ret;
akpm@osdl.orgb15e0902005-06-21 17:14:35 -0700223 int nr_before;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700224
akpm@osdl.orgb15e0902005-06-21 17:14:35 -0700225 nr_before = (*shrinker->shrinker)(0, gfp_mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700226 shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
227 if (shrink_ret == -1)
228 break;
akpm@osdl.orgb15e0902005-06-21 17:14:35 -0700229 if (shrink_ret < nr_before)
230 ret += nr_before - shrink_ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700231 mod_page_state(slabs_scanned, this_scan);
232 total_scan -= this_scan;
233
234 cond_resched();
235 }
236
237 shrinker->nr += total_scan;
238 }
239 up_read(&shrinker_rwsem);
akpm@osdl.orgb15e0902005-06-21 17:14:35 -0700240 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700241}
242
243/* Called without lock on whether page is mapped, so answer is unstable */
244static inline int page_mapping_inuse(struct page *page)
245{
246 struct address_space *mapping;
247
248 /* Page is in somebody's page tables. */
249 if (page_mapped(page))
250 return 1;
251
252 /* Be more reluctant to reclaim swapcache than pagecache */
253 if (PageSwapCache(page))
254 return 1;
255
256 mapping = page_mapping(page);
257 if (!mapping)
258 return 0;
259
260 /* File is mmap'd by somebody? */
261 return mapping_mapped(mapping);
262}
263
264static inline int is_page_cache_freeable(struct page *page)
265{
266 return page_count(page) - !!PagePrivate(page) == 2;
267}
268
269static int may_write_to_queue(struct backing_dev_info *bdi)
270{
271 if (current_is_kswapd())
272 return 1;
273 if (current_is_pdflush()) /* This is unlikely, but why not... */
274 return 1;
275 if (!bdi_write_congested(bdi))
276 return 1;
277 if (bdi == current->backing_dev_info)
278 return 1;
279 return 0;
280}
281
282/*
283 * We detected a synchronous write error writing a page out. Probably
284 * -ENOSPC. We need to propagate that into the address_space for a subsequent
285 * fsync(), msync() or close().
286 *
287 * The tricky part is that after writepage we cannot touch the mapping: nothing
288 * prevents it from being freed up. But we have a ref on the page and once
289 * that page is locked, the mapping is pinned.
290 *
291 * We're allowed to run sleeping lock_page() here because we know the caller has
292 * __GFP_FS.
293 */
294static void handle_write_error(struct address_space *mapping,
295 struct page *page, int error)
296{
297 lock_page(page);
298 if (page_mapping(page) == mapping) {
299 if (error == -ENOSPC)
300 set_bit(AS_ENOSPC, &mapping->flags);
301 else
302 set_bit(AS_EIO, &mapping->flags);
303 }
304 unlock_page(page);
305}
306
307/*
308 * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
309 */
310static pageout_t pageout(struct page *page, struct address_space *mapping)
311{
312 /*
313 * If the page is dirty, only perform writeback if that write
314 * will be non-blocking. To prevent this allocation from being
315 * stalled by pagecache activity. But note that there may be
316 * stalls if we need to run get_block(). We could test
317 * PagePrivate for that.
318 *
319 * If this process is currently in generic_file_write() against
320 * this page's queue, we can perform writeback even if that
321 * will block.
322 *
323 * If the page is swapcache, write it back even if that would
324 * block, for some throttling. This happens by accident, because
325 * swap_backing_dev_info is bust: it doesn't reflect the
326 * congestion state of the swapdevs. Easy to fix, if needed.
327 * See swapfile.c:page_queue_congested().
328 */
329 if (!is_page_cache_freeable(page))
330 return PAGE_KEEP;
331 if (!mapping) {
332 /*
333 * Some data journaling orphaned pages can have
334 * page->mapping == NULL while being dirty with clean buffers.
335 */
akpm@osdl.org323aca62005-04-16 15:24:06 -0700336 if (PagePrivate(page)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700337 if (try_to_free_buffers(page)) {
338 ClearPageDirty(page);
339 printk("%s: orphaned page\n", __FUNCTION__);
340 return PAGE_CLEAN;
341 }
342 }
343 return PAGE_KEEP;
344 }
345 if (mapping->a_ops->writepage == NULL)
346 return PAGE_ACTIVATE;
347 if (!may_write_to_queue(mapping->backing_dev_info))
348 return PAGE_KEEP;
349
350 if (clear_page_dirty_for_io(page)) {
351 int res;
352 struct writeback_control wbc = {
353 .sync_mode = WB_SYNC_NONE,
354 .nr_to_write = SWAP_CLUSTER_MAX,
355 .nonblocking = 1,
356 .for_reclaim = 1,
357 };
358
359 SetPageReclaim(page);
360 res = mapping->a_ops->writepage(page, &wbc);
361 if (res < 0)
362 handle_write_error(mapping, page, res);
Zach Brown994fc28c2005-12-15 14:28:17 -0800363 if (res == AOP_WRITEPAGE_ACTIVATE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700364 ClearPageReclaim(page);
365 return PAGE_ACTIVATE;
366 }
367 if (!PageWriteback(page)) {
368 /* synchronous write or broken a_ops? */
369 ClearPageReclaim(page);
370 }
371
372 return PAGE_SUCCESS;
373 }
374
375 return PAGE_CLEAN;
376}
377
378/*
379 * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
380 */
381static int shrink_list(struct list_head *page_list, struct scan_control *sc)
382{
383 LIST_HEAD(ret_pages);
384 struct pagevec freed_pvec;
385 int pgactivate = 0;
386 int reclaimed = 0;
387
388 cond_resched();
389
390 pagevec_init(&freed_pvec, 1);
391 while (!list_empty(page_list)) {
392 struct address_space *mapping;
393 struct page *page;
394 int may_enter_fs;
395 int referenced;
396
397 cond_resched();
398
399 page = lru_to_page(page_list);
400 list_del(&page->lru);
401
402 if (TestSetPageLocked(page))
403 goto keep;
404
405 BUG_ON(PageActive(page));
406
407 sc->nr_scanned++;
408 /* Double the slab pressure for mapped and swapcache pages */
409 if (page_mapped(page) || PageSwapCache(page))
410 sc->nr_scanned++;
411
412 if (PageWriteback(page))
413 goto keep_locked;
414
Rik van Rielf7b7fd82005-11-28 13:44:07 -0800415 referenced = page_referenced(page, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700416 /* In active use or really unfreeable? Activate it. */
417 if (referenced && page_mapping_inuse(page))
418 goto activate_locked;
419
420#ifdef CONFIG_SWAP
421 /*
422 * Anonymous process memory has backing store?
423 * Try to allocate it some swap space here.
424 */
Lee Schermerhornc3400102005-10-29 18:15:51 -0700425 if (PageAnon(page) && !PageSwapCache(page)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700426 if (!add_to_swap(page))
427 goto activate_locked;
428 }
429#endif /* CONFIG_SWAP */
430
431 mapping = page_mapping(page);
432 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
433 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
434
435 /*
436 * The page is mapped into the page tables of one or more
437 * processes. Try to unmap it here.
438 */
439 if (page_mapped(page) && mapping) {
440 switch (try_to_unmap(page)) {
441 case SWAP_FAIL:
442 goto activate_locked;
443 case SWAP_AGAIN:
444 goto keep_locked;
445 case SWAP_SUCCESS:
446 ; /* try to free the page below */
447 }
448 }
449
450 if (PageDirty(page)) {
451 if (referenced)
452 goto keep_locked;
453 if (!may_enter_fs)
454 goto keep_locked;
455 if (laptop_mode && !sc->may_writepage)
456 goto keep_locked;
457
458 /* Page is dirty, try to write it out here */
459 switch(pageout(page, mapping)) {
460 case PAGE_KEEP:
461 goto keep_locked;
462 case PAGE_ACTIVATE:
463 goto activate_locked;
464 case PAGE_SUCCESS:
465 if (PageWriteback(page) || PageDirty(page))
466 goto keep;
467 /*
468 * A synchronous write - probably a ramdisk. Go
469 * ahead and try to reclaim the page.
470 */
471 if (TestSetPageLocked(page))
472 goto keep;
473 if (PageDirty(page) || PageWriteback(page))
474 goto keep_locked;
475 mapping = page_mapping(page);
476 case PAGE_CLEAN:
477 ; /* try to free the page below */
478 }
479 }
480
481 /*
482 * If the page has buffers, try to free the buffer mappings
483 * associated with this page. If we succeed we try to free
484 * the page as well.
485 *
486 * We do this even if the page is PageDirty().
487 * try_to_release_page() does not perform I/O, but it is
488 * possible for a page to have PageDirty set, but it is actually
489 * clean (all its buffers are clean). This happens if the
490 * buffers were written out directly, with submit_bh(). ext3
491 * will do this, as well as the blockdev mapping.
492 * try_to_release_page() will discover that cleanness and will
493 * drop the buffers and mark the page clean - it can be freed.
494 *
495 * Rarely, pages can have buffers and no ->mapping. These are
496 * the pages which were not successfully invalidated in
497 * truncate_complete_page(). We try to drop those buffers here
498 * and if that worked, and the page is no longer mapped into
499 * process address space (page_count == 1) it can be freed.
500 * Otherwise, leave the page on the LRU so it is swappable.
501 */
502 if (PagePrivate(page)) {
503 if (!try_to_release_page(page, sc->gfp_mask))
504 goto activate_locked;
505 if (!mapping && page_count(page) == 1)
506 goto free_it;
507 }
508
509 if (!mapping)
510 goto keep_locked; /* truncate got there first */
511
512 write_lock_irq(&mapping->tree_lock);
513
514 /*
515 * The non-racy check for busy page. It is critical to check
516 * PageDirty _after_ making sure that the page is freeable and
517 * not in use by anybody. (pagecache + us == 2)
518 */
Linus Torvalds3d806362005-10-16 17:36:06 -0700519 if (unlikely(page_count(page) != 2))
520 goto cannot_free;
521 smp_rmb();
522 if (unlikely(PageDirty(page)))
523 goto cannot_free;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700524
525#ifdef CONFIG_SWAP
526 if (PageSwapCache(page)) {
Hugh Dickins4c21e2f2005-10-29 18:16:40 -0700527 swp_entry_t swap = { .val = page_private(page) };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700528 __delete_from_swap_cache(page);
529 write_unlock_irq(&mapping->tree_lock);
530 swap_free(swap);
531 __put_page(page); /* The pagecache ref */
532 goto free_it;
533 }
534#endif /* CONFIG_SWAP */
535
536 __remove_from_page_cache(page);
537 write_unlock_irq(&mapping->tree_lock);
538 __put_page(page);
539
540free_it:
541 unlock_page(page);
542 reclaimed++;
543 if (!pagevec_add(&freed_pvec, page))
544 __pagevec_release_nonlru(&freed_pvec);
545 continue;
546
Linus Torvalds3d806362005-10-16 17:36:06 -0700547cannot_free:
548 write_unlock_irq(&mapping->tree_lock);
549 goto keep_locked;
550
Linus Torvalds1da177e2005-04-16 15:20:36 -0700551activate_locked:
552 SetPageActive(page);
553 pgactivate++;
554keep_locked:
555 unlock_page(page);
556keep:
557 list_add(&page->lru, &ret_pages);
558 BUG_ON(PageLRU(page));
559 }
560 list_splice(&ret_pages, page_list);
561 if (pagevec_count(&freed_pvec))
562 __pagevec_release_nonlru(&freed_pvec);
563 mod_page_state(pgactivate, pgactivate);
564 sc->nr_reclaimed += reclaimed;
565 return reclaimed;
566}
567
568/*
569 * zone->lru_lock is heavily contended. Some of the functions that
570 * shrink the lists perform better by taking out a batch of pages
571 * and working on them outside the LRU lock.
572 *
573 * For pagecache intensive workloads, this function is the hottest
574 * spot in the kernel (apart from copy_*_user functions).
575 *
576 * Appropriate locks must be held before calling this function.
577 *
578 * @nr_to_scan: The number of pages to look through on the list.
579 * @src: The LRU list to pull pages off.
580 * @dst: The temp list to put pages on to.
581 * @scanned: The number of pages that were scanned.
582 *
583 * returns how many pages were moved onto *@dst.
584 */
585static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
586 struct list_head *dst, int *scanned)
587{
588 int nr_taken = 0;
589 struct page *page;
590 int scan = 0;
591
592 while (scan++ < nr_to_scan && !list_empty(src)) {
593 page = lru_to_page(src);
594 prefetchw_prev_lru_page(page, src, flags);
595
596 if (!TestClearPageLRU(page))
597 BUG();
598 list_del(&page->lru);
599 if (get_page_testone(page)) {
600 /*
601 * It is being freed elsewhere
602 */
603 __put_page(page);
604 SetPageLRU(page);
605 list_add(&page->lru, src);
606 continue;
607 } else {
608 list_add(&page->lru, dst);
609 nr_taken++;
610 }
611 }
612
613 *scanned = scan;
614 return nr_taken;
615}
616
617/*
618 * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
619 */
620static void shrink_cache(struct zone *zone, struct scan_control *sc)
621{
622 LIST_HEAD(page_list);
623 struct pagevec pvec;
624 int max_scan = sc->nr_to_scan;
625
626 pagevec_init(&pvec, 1);
627
628 lru_add_drain();
629 spin_lock_irq(&zone->lru_lock);
630 while (max_scan > 0) {
631 struct page *page;
632 int nr_taken;
633 int nr_scan;
634 int nr_freed;
635
636 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
637 &zone->inactive_list,
638 &page_list, &nr_scan);
639 zone->nr_inactive -= nr_taken;
640 zone->pages_scanned += nr_scan;
641 spin_unlock_irq(&zone->lru_lock);
642
643 if (nr_taken == 0)
644 goto done;
645
646 max_scan -= nr_scan;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700647 nr_freed = shrink_list(&page_list, sc);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700648
Nick Piggina74609f2006-01-06 00:11:20 -0800649 local_irq_disable();
650 if (current_is_kswapd()) {
651 __mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
652 __mod_page_state(kswapd_steal, nr_freed);
653 } else
654 __mod_page_state_zone(zone, pgscan_direct, nr_scan);
655 __mod_page_state_zone(zone, pgsteal, nr_freed);
656
657 spin_lock(&zone->lru_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700658 /*
659 * Put back any unfreeable pages.
660 */
661 while (!list_empty(&page_list)) {
662 page = lru_to_page(&page_list);
663 if (TestSetPageLRU(page))
664 BUG();
665 list_del(&page->lru);
666 if (PageActive(page))
667 add_page_to_active_list(zone, page);
668 else
669 add_page_to_inactive_list(zone, page);
670 if (!pagevec_add(&pvec, page)) {
671 spin_unlock_irq(&zone->lru_lock);
672 __pagevec_release(&pvec);
673 spin_lock_irq(&zone->lru_lock);
674 }
675 }
676 }
677 spin_unlock_irq(&zone->lru_lock);
678done:
679 pagevec_release(&pvec);
680}
681
682/*
683 * This moves pages from the active list to the inactive list.
684 *
685 * We move them the other way if the page is referenced by one or more
686 * processes, from rmap.
687 *
688 * If the pages are mostly unmapped, the processing is fast and it is
689 * appropriate to hold zone->lru_lock across the whole operation. But if
690 * the pages are mapped, the processing is slow (page_referenced()) so we
691 * should drop zone->lru_lock around each page. It's impossible to balance
692 * this, so instead we remove the pages from the LRU while processing them.
693 * It is safe to rely on PG_active against the non-LRU pages in here because
694 * nobody will play with that bit on a non-LRU page.
695 *
696 * The downside is that we have to touch page->_count against each page.
697 * But we had to alter page->flags anyway.
698 */
699static void
700refill_inactive_zone(struct zone *zone, struct scan_control *sc)
701{
702 int pgmoved;
703 int pgdeactivate = 0;
704 int pgscanned;
705 int nr_pages = sc->nr_to_scan;
706 LIST_HEAD(l_hold); /* The pages which were snipped off */
707 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
708 LIST_HEAD(l_active); /* Pages to go onto the active_list */
709 struct page *page;
710 struct pagevec pvec;
711 int reclaim_mapped = 0;
712 long mapped_ratio;
713 long distress;
714 long swap_tendency;
715
716 lru_add_drain();
717 spin_lock_irq(&zone->lru_lock);
718 pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
719 &l_hold, &pgscanned);
720 zone->pages_scanned += pgscanned;
721 zone->nr_active -= pgmoved;
722 spin_unlock_irq(&zone->lru_lock);
723
724 /*
725 * `distress' is a measure of how much trouble we're having reclaiming
726 * pages. 0 -> no problems. 100 -> great trouble.
727 */
728 distress = 100 >> zone->prev_priority;
729
730 /*
731 * The point of this algorithm is to decide when to start reclaiming
732 * mapped memory instead of just pagecache. Work out how much memory
733 * is mapped.
734 */
735 mapped_ratio = (sc->nr_mapped * 100) / total_memory;
736
737 /*
738 * Now decide how much we really want to unmap some pages. The mapped
739 * ratio is downgraded - just because there's a lot of mapped memory
740 * doesn't necessarily mean that page reclaim isn't succeeding.
741 *
742 * The distress ratio is important - we don't want to start going oom.
743 *
744 * A 100% value of vm_swappiness overrides this algorithm altogether.
745 */
746 swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
747
748 /*
749 * Now use this metric to decide whether to start moving mapped memory
750 * onto the inactive list.
751 */
752 if (swap_tendency >= 100)
753 reclaim_mapped = 1;
754
755 while (!list_empty(&l_hold)) {
756 cond_resched();
757 page = lru_to_page(&l_hold);
758 list_del(&page->lru);
759 if (page_mapped(page)) {
760 if (!reclaim_mapped ||
761 (total_swap_pages == 0 && PageAnon(page)) ||
Rik van Rielf7b7fd82005-11-28 13:44:07 -0800762 page_referenced(page, 0)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700763 list_add(&page->lru, &l_active);
764 continue;
765 }
766 }
767 list_add(&page->lru, &l_inactive);
768 }
769
770 pagevec_init(&pvec, 1);
771 pgmoved = 0;
772 spin_lock_irq(&zone->lru_lock);
773 while (!list_empty(&l_inactive)) {
774 page = lru_to_page(&l_inactive);
775 prefetchw_prev_lru_page(page, &l_inactive, flags);
776 if (TestSetPageLRU(page))
777 BUG();
778 if (!TestClearPageActive(page))
779 BUG();
780 list_move(&page->lru, &zone->inactive_list);
781 pgmoved++;
782 if (!pagevec_add(&pvec, page)) {
783 zone->nr_inactive += pgmoved;
784 spin_unlock_irq(&zone->lru_lock);
785 pgdeactivate += pgmoved;
786 pgmoved = 0;
787 if (buffer_heads_over_limit)
788 pagevec_strip(&pvec);
789 __pagevec_release(&pvec);
790 spin_lock_irq(&zone->lru_lock);
791 }
792 }
793 zone->nr_inactive += pgmoved;
794 pgdeactivate += pgmoved;
795 if (buffer_heads_over_limit) {
796 spin_unlock_irq(&zone->lru_lock);
797 pagevec_strip(&pvec);
798 spin_lock_irq(&zone->lru_lock);
799 }
800
801 pgmoved = 0;
802 while (!list_empty(&l_active)) {
803 page = lru_to_page(&l_active);
804 prefetchw_prev_lru_page(page, &l_active, flags);
805 if (TestSetPageLRU(page))
806 BUG();
807 BUG_ON(!PageActive(page));
808 list_move(&page->lru, &zone->active_list);
809 pgmoved++;
810 if (!pagevec_add(&pvec, page)) {
811 zone->nr_active += pgmoved;
812 pgmoved = 0;
813 spin_unlock_irq(&zone->lru_lock);
814 __pagevec_release(&pvec);
815 spin_lock_irq(&zone->lru_lock);
816 }
817 }
818 zone->nr_active += pgmoved;
Nick Piggina74609f2006-01-06 00:11:20 -0800819 spin_unlock(&zone->lru_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700820
Nick Piggina74609f2006-01-06 00:11:20 -0800821 __mod_page_state_zone(zone, pgrefill, pgscanned);
822 __mod_page_state(pgdeactivate, pgdeactivate);
823 local_irq_enable();
824
825 pagevec_release(&pvec);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700826}
827
828/*
829 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
830 */
831static void
832shrink_zone(struct zone *zone, struct scan_control *sc)
833{
834 unsigned long nr_active;
835 unsigned long nr_inactive;
836
Martin Hicks53e9a612005-09-03 15:54:51 -0700837 atomic_inc(&zone->reclaim_in_progress);
838
Linus Torvalds1da177e2005-04-16 15:20:36 -0700839 /*
840 * Add one to `nr_to_scan' just to make sure that the kernel will
841 * slowly sift through the active list.
842 */
843 zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
844 nr_active = zone->nr_scan_active;
845 if (nr_active >= sc->swap_cluster_max)
846 zone->nr_scan_active = 0;
847 else
848 nr_active = 0;
849
850 zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
851 nr_inactive = zone->nr_scan_inactive;
852 if (nr_inactive >= sc->swap_cluster_max)
853 zone->nr_scan_inactive = 0;
854 else
855 nr_inactive = 0;
856
Linus Torvalds1da177e2005-04-16 15:20:36 -0700857 while (nr_active || nr_inactive) {
858 if (nr_active) {
859 sc->nr_to_scan = min(nr_active,
860 (unsigned long)sc->swap_cluster_max);
861 nr_active -= sc->nr_to_scan;
862 refill_inactive_zone(zone, sc);
863 }
864
865 if (nr_inactive) {
866 sc->nr_to_scan = min(nr_inactive,
867 (unsigned long)sc->swap_cluster_max);
868 nr_inactive -= sc->nr_to_scan;
869 shrink_cache(zone, sc);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700870 }
871 }
872
873 throttle_vm_writeout();
Martin Hicks53e9a612005-09-03 15:54:51 -0700874
875 atomic_dec(&zone->reclaim_in_progress);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700876}
877
878/*
879 * This is the direct reclaim path, for page-allocating processes. We only
880 * try to reclaim pages from zones which will satisfy the caller's allocation
881 * request.
882 *
883 * We reclaim from a zone even if that zone is over pages_high. Because:
884 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
885 * allocation or
886 * b) The zones may be over pages_high but they must go *over* pages_high to
887 * satisfy the `incremental min' zone defense algorithm.
888 *
889 * Returns the number of reclaimed pages.
890 *
891 * If a zone is deemed to be full of pinned pages then just give it a light
892 * scan then give up on it.
893 */
894static void
895shrink_caches(struct zone **zones, struct scan_control *sc)
896{
897 int i;
898
899 for (i = 0; zones[i] != NULL; i++) {
900 struct zone *zone = zones[i];
901
Con Kolivasf3fe6512006-01-06 00:11:15 -0800902 if (!populated_zone(zone))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700903 continue;
904
Paul Jackson9bf22292005-09-06 15:18:12 -0700905 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700906 continue;
907
908 zone->temp_priority = sc->priority;
909 if (zone->prev_priority > sc->priority)
910 zone->prev_priority = sc->priority;
911
912 if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
913 continue; /* Let kswapd poll it */
914
915 shrink_zone(zone, sc);
916 }
917}
918
919/*
920 * This is the main entry point to direct page reclaim.
921 *
922 * If a full scan of the inactive list fails to free enough memory then we
923 * are "out of memory" and something needs to be killed.
924 *
925 * If the caller is !__GFP_FS then the probability of a failure is reasonably
926 * high - the zone may be full of dirty or under-writeback pages, which this
927 * caller can't do much about. We kick pdflush and take explicit naps in the
928 * hope that some of these pages can be written. But if the allocating task
929 * holds filesystem locks which prevent writeout this might not work, and the
930 * allocation attempt will fail.
931 */
Al Viro6daa0e22005-10-21 03:18:50 -0400932int try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700933{
934 int priority;
935 int ret = 0;
936 int total_scanned = 0, total_reclaimed = 0;
937 struct reclaim_state *reclaim_state = current->reclaim_state;
938 struct scan_control sc;
939 unsigned long lru_pages = 0;
940 int i;
941
942 sc.gfp_mask = gfp_mask;
943 sc.may_writepage = 0;
944
945 inc_page_state(allocstall);
946
947 for (i = 0; zones[i] != NULL; i++) {
948 struct zone *zone = zones[i];
949
Paul Jackson9bf22292005-09-06 15:18:12 -0700950 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700951 continue;
952
953 zone->temp_priority = DEF_PRIORITY;
954 lru_pages += zone->nr_active + zone->nr_inactive;
955 }
956
957 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
958 sc.nr_mapped = read_page_state(nr_mapped);
959 sc.nr_scanned = 0;
960 sc.nr_reclaimed = 0;
961 sc.priority = priority;
962 sc.swap_cluster_max = SWAP_CLUSTER_MAX;
Rik van Rielf7b7fd82005-11-28 13:44:07 -0800963 if (!priority)
964 disable_swap_token();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700965 shrink_caches(zones, &sc);
966 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
967 if (reclaim_state) {
968 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
969 reclaim_state->reclaimed_slab = 0;
970 }
971 total_scanned += sc.nr_scanned;
972 total_reclaimed += sc.nr_reclaimed;
973 if (total_reclaimed >= sc.swap_cluster_max) {
974 ret = 1;
975 goto out;
976 }
977
978 /*
979 * Try to write back as many pages as we just scanned. This
980 * tends to cause slow streaming writers to write data to the
981 * disk smoothly, at the dirtying rate, which is nice. But
982 * that's undesirable in laptop mode, where we *want* lumpy
983 * writeout. So in laptop mode, write out the whole world.
984 */
985 if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
Pekka J Enberg687a21c2005-06-28 20:44:55 -0700986 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700987 sc.may_writepage = 1;
988 }
989
990 /* Take a nap, wait for some writeback to complete */
991 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
992 blk_congestion_wait(WRITE, HZ/10);
993 }
994out:
995 for (i = 0; zones[i] != 0; i++) {
996 struct zone *zone = zones[i];
997
Paul Jackson9bf22292005-09-06 15:18:12 -0700998 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700999 continue;
1000
1001 zone->prev_priority = zone->temp_priority;
1002 }
1003 return ret;
1004}
1005
1006/*
1007 * For kswapd, balance_pgdat() will work across all this node's zones until
1008 * they are all at pages_high.
1009 *
1010 * If `nr_pages' is non-zero then it is the number of pages which are to be
1011 * reclaimed, regardless of the zone occupancies. This is a software suspend
1012 * special.
1013 *
1014 * Returns the number of pages which were actually freed.
1015 *
1016 * There is special handling here for zones which are full of pinned pages.
1017 * This can happen if the pages are all mlocked, or if they are all used by
1018 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1019 * What we do is to detect the case where all pages in the zone have been
1020 * scanned twice and there has been zero successful reclaim. Mark the zone as
1021 * dead and from now on, only perform a short scan. Basically we're polling
1022 * the zone for when the problem goes away.
1023 *
1024 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1025 * zones which have free_pages > pages_high, but once a zone is found to have
1026 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1027 * of the number of free pages in the lower zones. This interoperates with
1028 * the page allocator fallback scheme to ensure that aging of pages is balanced
1029 * across the zones.
1030 */
1031static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
1032{
1033 int to_free = nr_pages;
1034 int all_zones_ok;
1035 int priority;
1036 int i;
1037 int total_scanned, total_reclaimed;
1038 struct reclaim_state *reclaim_state = current->reclaim_state;
1039 struct scan_control sc;
1040
1041loop_again:
1042 total_scanned = 0;
1043 total_reclaimed = 0;
1044 sc.gfp_mask = GFP_KERNEL;
1045 sc.may_writepage = 0;
1046 sc.nr_mapped = read_page_state(nr_mapped);
1047
1048 inc_page_state(pageoutrun);
1049
1050 for (i = 0; i < pgdat->nr_zones; i++) {
1051 struct zone *zone = pgdat->node_zones + i;
1052
1053 zone->temp_priority = DEF_PRIORITY;
1054 }
1055
1056 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1057 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1058 unsigned long lru_pages = 0;
1059
Rik van Rielf7b7fd82005-11-28 13:44:07 -08001060 /* The swap token gets in the way of swapout... */
1061 if (!priority)
1062 disable_swap_token();
1063
Linus Torvalds1da177e2005-04-16 15:20:36 -07001064 all_zones_ok = 1;
1065
1066 if (nr_pages == 0) {
1067 /*
1068 * Scan in the highmem->dma direction for the highest
1069 * zone which needs scanning
1070 */
1071 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1072 struct zone *zone = pgdat->node_zones + i;
1073
Con Kolivasf3fe6512006-01-06 00:11:15 -08001074 if (!populated_zone(zone))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001075 continue;
1076
1077 if (zone->all_unreclaimable &&
1078 priority != DEF_PRIORITY)
1079 continue;
1080
1081 if (!zone_watermark_ok(zone, order,
Rohit Seth7fb1d9f2005-11-13 16:06:43 -08001082 zone->pages_high, 0, 0)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001083 end_zone = i;
1084 goto scan;
1085 }
1086 }
1087 goto out;
1088 } else {
1089 end_zone = pgdat->nr_zones - 1;
1090 }
1091scan:
1092 for (i = 0; i <= end_zone; i++) {
1093 struct zone *zone = pgdat->node_zones + i;
1094
1095 lru_pages += zone->nr_active + zone->nr_inactive;
1096 }
1097
1098 /*
1099 * Now scan the zone in the dma->highmem direction, stopping
1100 * at the last zone which needs scanning.
1101 *
1102 * We do this because the page allocator works in the opposite
1103 * direction. This prevents the page allocator from allocating
1104 * pages behind kswapd's direction of progress, which would
1105 * cause too much scanning of the lower zones.
1106 */
1107 for (i = 0; i <= end_zone; i++) {
1108 struct zone *zone = pgdat->node_zones + i;
akpm@osdl.orgb15e0902005-06-21 17:14:35 -07001109 int nr_slab;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001110
Con Kolivasf3fe6512006-01-06 00:11:15 -08001111 if (!populated_zone(zone))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001112 continue;
1113
1114 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1115 continue;
1116
1117 if (nr_pages == 0) { /* Not software suspend */
1118 if (!zone_watermark_ok(zone, order,
Rohit Seth7fb1d9f2005-11-13 16:06:43 -08001119 zone->pages_high, end_zone, 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001120 all_zones_ok = 0;
1121 }
1122 zone->temp_priority = priority;
1123 if (zone->prev_priority > priority)
1124 zone->prev_priority = priority;
1125 sc.nr_scanned = 0;
1126 sc.nr_reclaimed = 0;
1127 sc.priority = priority;
1128 sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
Martin Hicks1e7e5a92005-06-21 17:14:43 -07001129 atomic_inc(&zone->reclaim_in_progress);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001130 shrink_zone(zone, &sc);
Martin Hicks1e7e5a92005-06-21 17:14:43 -07001131 atomic_dec(&zone->reclaim_in_progress);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001132 reclaim_state->reclaimed_slab = 0;
akpm@osdl.orgb15e0902005-06-21 17:14:35 -07001133 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1134 lru_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001135 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1136 total_reclaimed += sc.nr_reclaimed;
1137 total_scanned += sc.nr_scanned;
1138 if (zone->all_unreclaimable)
1139 continue;
akpm@osdl.orgb15e0902005-06-21 17:14:35 -07001140 if (nr_slab == 0 && zone->pages_scanned >=
1141 (zone->nr_active + zone->nr_inactive) * 4)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001142 zone->all_unreclaimable = 1;
1143 /*
1144 * If we've done a decent amount of scanning and
1145 * the reclaim ratio is low, start doing writepage
1146 * even in laptop mode
1147 */
1148 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1149 total_scanned > total_reclaimed+total_reclaimed/2)
1150 sc.may_writepage = 1;
1151 }
1152 if (nr_pages && to_free > total_reclaimed)
1153 continue; /* swsusp: need to do more work */
1154 if (all_zones_ok)
1155 break; /* kswapd: all done */
1156 /*
1157 * OK, kswapd is getting into trouble. Take a nap, then take
1158 * another pass across the zones.
1159 */
1160 if (total_scanned && priority < DEF_PRIORITY - 2)
1161 blk_congestion_wait(WRITE, HZ/10);
1162
1163 /*
1164 * We do this so kswapd doesn't build up large priorities for
1165 * example when it is freeing in parallel with allocators. It
1166 * matches the direct reclaim path behaviour in terms of impact
1167 * on zone->*_priority.
1168 */
1169 if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1170 break;
1171 }
1172out:
1173 for (i = 0; i < pgdat->nr_zones; i++) {
1174 struct zone *zone = pgdat->node_zones + i;
1175
1176 zone->prev_priority = zone->temp_priority;
1177 }
1178 if (!all_zones_ok) {
1179 cond_resched();
1180 goto loop_again;
1181 }
1182
1183 return total_reclaimed;
1184}
1185
1186/*
1187 * The background pageout daemon, started as a kernel thread
1188 * from the init process.
1189 *
1190 * This basically trickles out pages so that we have _some_
1191 * free memory available even if there is no other activity
1192 * that frees anything up. This is needed for things like routing
1193 * etc, where we otherwise might have all activity going on in
1194 * asynchronous contexts that cannot page things out.
1195 *
1196 * If there are applications that are active memory-allocators
1197 * (most normal use), this basically shouldn't matter.
1198 */
1199static int kswapd(void *p)
1200{
1201 unsigned long order;
1202 pg_data_t *pgdat = (pg_data_t*)p;
1203 struct task_struct *tsk = current;
1204 DEFINE_WAIT(wait);
1205 struct reclaim_state reclaim_state = {
1206 .reclaimed_slab = 0,
1207 };
1208 cpumask_t cpumask;
1209
1210 daemonize("kswapd%d", pgdat->node_id);
1211 cpumask = node_to_cpumask(pgdat->node_id);
1212 if (!cpus_empty(cpumask))
1213 set_cpus_allowed(tsk, cpumask);
1214 current->reclaim_state = &reclaim_state;
1215
1216 /*
1217 * Tell the memory management that we're a "memory allocator",
1218 * and that if we need more memory we should get access to it
1219 * regardless (see "__alloc_pages()"). "kswapd" should
1220 * never get caught in the normal page freeing logic.
1221 *
1222 * (Kswapd normally doesn't need memory anyway, but sometimes
1223 * you need a small amount of memory in order to be able to
1224 * page out something else, and this flag essentially protects
1225 * us from recursively trying to free more memory as we're
1226 * trying to free the first piece of memory in the first place).
1227 */
1228 tsk->flags |= PF_MEMALLOC|PF_KSWAPD;
1229
1230 order = 0;
1231 for ( ; ; ) {
1232 unsigned long new_order;
Christoph Lameter3e1d1d22005-06-24 23:13:50 -07001233
1234 try_to_freeze();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001235
1236 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1237 new_order = pgdat->kswapd_max_order;
1238 pgdat->kswapd_max_order = 0;
1239 if (order < new_order) {
1240 /*
1241 * Don't sleep if someone wants a larger 'order'
1242 * allocation
1243 */
1244 order = new_order;
1245 } else {
1246 schedule();
1247 order = pgdat->kswapd_max_order;
1248 }
1249 finish_wait(&pgdat->kswapd_wait, &wait);
1250
1251 balance_pgdat(pgdat, 0, order);
1252 }
1253 return 0;
1254}
1255
1256/*
1257 * A zone is low on free memory, so wake its kswapd task to service it.
1258 */
1259void wakeup_kswapd(struct zone *zone, int order)
1260{
1261 pg_data_t *pgdat;
1262
Con Kolivasf3fe6512006-01-06 00:11:15 -08001263 if (!populated_zone(zone))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001264 return;
1265
1266 pgdat = zone->zone_pgdat;
Rohit Seth7fb1d9f2005-11-13 16:06:43 -08001267 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001268 return;
1269 if (pgdat->kswapd_max_order < order)
1270 pgdat->kswapd_max_order = order;
Paul Jackson9bf22292005-09-06 15:18:12 -07001271 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001272 return;
Con Kolivas8d0986e2005-09-13 01:25:07 -07001273 if (!waitqueue_active(&pgdat->kswapd_wait))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001274 return;
Con Kolivas8d0986e2005-09-13 01:25:07 -07001275 wake_up_interruptible(&pgdat->kswapd_wait);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001276}
1277
1278#ifdef CONFIG_PM
1279/*
1280 * Try to free `nr_pages' of memory, system-wide. Returns the number of freed
1281 * pages.
1282 */
1283int shrink_all_memory(int nr_pages)
1284{
1285 pg_data_t *pgdat;
1286 int nr_to_free = nr_pages;
1287 int ret = 0;
1288 struct reclaim_state reclaim_state = {
1289 .reclaimed_slab = 0,
1290 };
1291
1292 current->reclaim_state = &reclaim_state;
1293 for_each_pgdat(pgdat) {
1294 int freed;
1295 freed = balance_pgdat(pgdat, nr_to_free, 0);
1296 ret += freed;
1297 nr_to_free -= freed;
1298 if (nr_to_free <= 0)
1299 break;
1300 }
1301 current->reclaim_state = NULL;
1302 return ret;
1303}
1304#endif
1305
1306#ifdef CONFIG_HOTPLUG_CPU
1307/* It's optimal to keep kswapds on the same CPUs as their memory, but
1308 not required for correctness. So if the last cpu in a node goes
1309 away, we get changed to run anywhere: as the first one comes back,
1310 restore their cpu bindings. */
1311static int __devinit cpu_callback(struct notifier_block *nfb,
1312 unsigned long action,
1313 void *hcpu)
1314{
1315 pg_data_t *pgdat;
1316 cpumask_t mask;
1317
1318 if (action == CPU_ONLINE) {
1319 for_each_pgdat(pgdat) {
1320 mask = node_to_cpumask(pgdat->node_id);
1321 if (any_online_cpu(mask) != NR_CPUS)
1322 /* One of our CPUs online: restore mask */
1323 set_cpus_allowed(pgdat->kswapd, mask);
1324 }
1325 }
1326 return NOTIFY_OK;
1327}
1328#endif /* CONFIG_HOTPLUG_CPU */
1329
1330static int __init kswapd_init(void)
1331{
1332 pg_data_t *pgdat;
1333 swap_setup();
1334 for_each_pgdat(pgdat)
1335 pgdat->kswapd
1336 = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1337 total_memory = nr_free_pagecache_pages();
1338 hotcpu_notifier(cpu_callback, 0);
1339 return 0;
1340}
1341
1342module_init(kswapd_init)