blob: e1d70e8b626872f157f7c3731a349bcdc1abb9bf [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Real Time Clock interface for Linux
3 *
4 * Copyright (C) 1996 Paul Gortmaker
5 *
6 * This driver allows use of the real time clock (built into
7 * nearly all computers) from user space. It exports the /dev/rtc
8 * interface supporting various ioctl() and also the
9 * /proc/driver/rtc pseudo-file for status information.
10 *
11 * The ioctls can be used to set the interrupt behaviour and
12 * generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 * interface can be used to make use of these timer interrupts,
14 * be they interval or alarm based.
15 *
16 * The /dev/rtc interface will block on reads until an interrupt
17 * has been received. If a RTC interrupt has already happened,
18 * it will output an unsigned long and then block. The output value
19 * contains the interrupt status in the low byte and the number of
20 * interrupts since the last read in the remaining high bytes. The
21 * /dev/rtc interface can also be used with the select(2) call.
22 *
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
27 *
28 * Based on other minimal char device drivers, like Alan's
29 * watchdog, Ted's random, etc. etc.
30 *
31 * 1.07 Paul Gortmaker.
32 * 1.08 Miquel van Smoorenburg: disallow certain things on the
33 * DEC Alpha as the CMOS clock is also used for other things.
34 * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
35 * 1.09a Pete Zaitcev: Sun SPARC
36 * 1.09b Jeff Garzik: Modularize, init cleanup
37 * 1.09c Jeff Garzik: SMP cleanup
Ralf Baechle12a0a702006-10-09 23:20:47 +010038 * 1.10 Paul Barton-Davis: add support for async I/O
Linus Torvalds1da177e2005-04-16 15:20:36 -070039 * 1.10a Andrea Arcangeli: Alpha updates
40 * 1.10b Andrew Morton: SMP lock fix
41 * 1.10c Cesar Barros: SMP locking fixes and cleanup
42 * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
43 * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
Ralf Baechle12a0a702006-10-09 23:20:47 +010044 * 1.11 Takashi Iwai: Kernel access functions
Linus Torvalds1da177e2005-04-16 15:20:36 -070045 * rtc_register/rtc_unregister/rtc_control
46 * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 * CONFIG_HPET_EMULATE_RTC
Maciej W. Rozycki38e0e8c2006-07-10 04:45:30 -070049 * 1.12a Maciej W. Rozycki: Handle memory-mapped chips properly.
Alan Coxb7599582006-01-11 12:17:32 -080050 * 1.12ac Alan Cox: Allow read access to the day of week register
Linus Torvalds1da177e2005-04-16 15:20:36 -070051 */
52
Alan Coxb7599582006-01-11 12:17:32 -080053#define RTC_VERSION "1.12ac"
Linus Torvalds1da177e2005-04-16 15:20:36 -070054
Linus Torvalds1da177e2005-04-16 15:20:36 -070055/*
56 * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
57 * interrupts disabled. Due to the index-port/data-port (0x70/0x71)
58 * design of the RTC, we don't want two different things trying to
59 * get to it at once. (e.g. the periodic 11 min sync from time.c vs.
60 * this driver.)
61 */
62
Linus Torvalds1da177e2005-04-16 15:20:36 -070063#include <linux/interrupt.h>
64#include <linux/module.h>
65#include <linux/kernel.h>
66#include <linux/types.h>
67#include <linux/miscdevice.h>
68#include <linux/ioport.h>
69#include <linux/fcntl.h>
70#include <linux/mc146818rtc.h>
71#include <linux/init.h>
72#include <linux/poll.h>
73#include <linux/proc_fs.h>
74#include <linux/seq_file.h>
75#include <linux/spinlock.h>
76#include <linux/sysctl.h>
77#include <linux/wait.h>
78#include <linux/bcd.h>
Luca Falavigna47f176f2005-06-28 20:44:42 -070079#include <linux/delay.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070080
81#include <asm/current.h>
82#include <asm/uaccess.h>
83#include <asm/system.h>
84
85#if defined(__i386__)
86#include <asm/hpet.h>
87#endif
88
89#ifdef __sparc__
90#include <linux/pci.h>
91#include <asm/ebus.h>
92#ifdef __sparc_v9__
93#include <asm/isa.h>
94#endif
95
96static unsigned long rtc_port;
97static int rtc_irq = PCI_IRQ_NONE;
98#endif
99
100#ifdef CONFIG_HPET_RTC_IRQ
101#undef RTC_IRQ
102#endif
103
104#ifdef RTC_IRQ
105static int rtc_has_irq = 1;
106#endif
107
108#ifndef CONFIG_HPET_EMULATE_RTC
109#define is_hpet_enabled() 0
110#define hpet_set_alarm_time(hrs, min, sec) 0
111#define hpet_set_periodic_freq(arg) 0
112#define hpet_mask_rtc_irq_bit(arg) 0
113#define hpet_set_rtc_irq_bit(arg) 0
114#define hpet_rtc_timer_init() do { } while (0)
115#define hpet_rtc_dropped_irq() 0
Jan Beulich9cef7792006-12-13 00:35:05 -0800116static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id) {return 0;}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700117#else
David Howells7d12e782006-10-05 14:55:46 +0100118extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700119#endif
120
121/*
122 * We sponge a minor off of the misc major. No need slurping
123 * up another valuable major dev number for this. If you add
124 * an ioctl, make sure you don't conflict with SPARC's RTC
125 * ioctls.
126 */
127
128static struct fasync_struct *rtc_async_queue;
129
130static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
131
132#ifdef RTC_IRQ
133static struct timer_list rtc_irq_timer;
134#endif
135
136static ssize_t rtc_read(struct file *file, char __user *buf,
137 size_t count, loff_t *ppos);
138
139static int rtc_ioctl(struct inode *inode, struct file *file,
140 unsigned int cmd, unsigned long arg);
141
142#ifdef RTC_IRQ
143static unsigned int rtc_poll(struct file *file, poll_table *wait);
144#endif
145
146static void get_rtc_alm_time (struct rtc_time *alm_tm);
147#ifdef RTC_IRQ
148static void rtc_dropped_irq(unsigned long data);
149
Takashi Iwaic3348762005-11-07 11:14:57 +0100150static void set_rtc_irq_bit_locked(unsigned char bit);
151static void mask_rtc_irq_bit_locked(unsigned char bit);
152
153static inline void set_rtc_irq_bit(unsigned char bit)
154{
155 spin_lock_irq(&rtc_lock);
156 set_rtc_irq_bit_locked(bit);
157 spin_unlock_irq(&rtc_lock);
158}
159
160static void mask_rtc_irq_bit(unsigned char bit)
161{
162 spin_lock_irq(&rtc_lock);
163 mask_rtc_irq_bit_locked(bit);
164 spin_unlock_irq(&rtc_lock);
165}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700166#endif
167
Jan Beulich9cef7792006-12-13 00:35:05 -0800168#ifdef CONFIG_PROC_FS
Linus Torvalds1da177e2005-04-16 15:20:36 -0700169static int rtc_proc_open(struct inode *inode, struct file *file);
Jan Beulich9cef7792006-12-13 00:35:05 -0800170#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700171
172/*
173 * Bits in rtc_status. (6 bits of room for future expansion)
174 */
175
176#define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
177#define RTC_TIMER_ON 0x02 /* missed irq timer active */
178
179/*
180 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
181 * protected by the big kernel lock. However, ioctl can still disable the timer
182 * in rtc_status and then with del_timer after the interrupt has read
183 * rtc_status but before mod_timer is called, which would then reenable the
184 * timer (but you would need to have an awful timing before you'd trip on it)
185 */
186static unsigned long rtc_status = 0; /* bitmapped status byte. */
187static unsigned long rtc_freq = 0; /* Current periodic IRQ rate */
188static unsigned long rtc_irq_data = 0; /* our output to the world */
189static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
190
191#ifdef RTC_IRQ
192/*
193 * rtc_task_lock nests inside rtc_lock.
194 */
195static DEFINE_SPINLOCK(rtc_task_lock);
196static rtc_task_t *rtc_callback = NULL;
197#endif
198
199/*
200 * If this driver ever becomes modularised, it will be really nice
201 * to make the epoch retain its value across module reload...
202 */
203
204static unsigned long epoch = 1900; /* year corresponding to 0x00 */
205
206static const unsigned char days_in_mo[] =
207{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
208
209/*
210 * Returns true if a clock update is in progress
211 */
212static inline unsigned char rtc_is_updating(void)
213{
Peter Zijlstra0b16f212006-09-25 16:24:23 -0700214 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700215 unsigned char uip;
216
Peter Zijlstra0b16f212006-09-25 16:24:23 -0700217 spin_lock_irqsave(&rtc_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700218 uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
Peter Zijlstra0b16f212006-09-25 16:24:23 -0700219 spin_unlock_irqrestore(&rtc_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700220 return uip;
221}
222
223#ifdef RTC_IRQ
224/*
Thomas Gleixner0f2ed4c2006-07-01 19:29:33 -0700225 * A very tiny interrupt handler. It runs with IRQF_DISABLED set,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700226 * but there is possibility of conflicting with the set_rtc_mmss()
227 * call (the rtc irq and the timer irq can easily run at the same
228 * time in two different CPUs). So we need to serialize
229 * accesses to the chip with the rtc_lock spinlock that each
230 * architecture should implement in the timer code.
231 * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
232 */
233
David Howells7d12e782006-10-05 14:55:46 +0100234irqreturn_t rtc_interrupt(int irq, void *dev_id)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700235{
236 /*
237 * Can be an alarm interrupt, update complete interrupt,
238 * or a periodic interrupt. We store the status in the
239 * low byte and the number of interrupts received since
240 * the last read in the remainder of rtc_irq_data.
241 */
242
243 spin_lock (&rtc_lock);
244 rtc_irq_data += 0x100;
245 rtc_irq_data &= ~0xff;
246 if (is_hpet_enabled()) {
247 /*
248 * In this case it is HPET RTC interrupt handler
249 * calling us, with the interrupt information
250 * passed as arg1, instead of irq.
251 */
252 rtc_irq_data |= (unsigned long)irq & 0xF0;
253 } else {
254 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
255 }
256
257 if (rtc_status & RTC_TIMER_ON)
258 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
259
260 spin_unlock (&rtc_lock);
261
262 /* Now do the rest of the actions */
263 spin_lock(&rtc_task_lock);
264 if (rtc_callback)
265 rtc_callback->func(rtc_callback->private_data);
266 spin_unlock(&rtc_task_lock);
267 wake_up_interruptible(&rtc_wait);
268
269 kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
270
271 return IRQ_HANDLED;
272}
273#endif
274
275/*
276 * sysctl-tuning infrastructure.
277 */
278static ctl_table rtc_table[] = {
279 {
280 .ctl_name = 1,
281 .procname = "max-user-freq",
282 .data = &rtc_max_user_freq,
283 .maxlen = sizeof(int),
284 .mode = 0644,
285 .proc_handler = &proc_dointvec,
286 },
287 { .ctl_name = 0 }
288};
289
290static ctl_table rtc_root[] = {
291 {
292 .ctl_name = 1,
293 .procname = "rtc",
294 .maxlen = 0,
295 .mode = 0555,
296 .child = rtc_table,
297 },
298 { .ctl_name = 0 }
299};
300
301static ctl_table dev_root[] = {
302 {
303 .ctl_name = CTL_DEV,
304 .procname = "dev",
305 .maxlen = 0,
306 .mode = 0555,
307 .child = rtc_root,
308 },
309 { .ctl_name = 0 }
310};
311
312static struct ctl_table_header *sysctl_header;
313
314static int __init init_sysctl(void)
315{
316 sysctl_header = register_sysctl_table(dev_root, 0);
317 return 0;
318}
319
320static void __exit cleanup_sysctl(void)
321{
322 unregister_sysctl_table(sysctl_header);
323}
324
325/*
326 * Now all the various file operations that we export.
327 */
328
329static ssize_t rtc_read(struct file *file, char __user *buf,
330 size_t count, loff_t *ppos)
331{
332#ifndef RTC_IRQ
333 return -EIO;
334#else
335 DECLARE_WAITQUEUE(wait, current);
336 unsigned long data;
337 ssize_t retval;
338
339 if (rtc_has_irq == 0)
340 return -EIO;
341
Maciej W. Rozycki38e0e8c2006-07-10 04:45:30 -0700342 /*
343 * Historically this function used to assume that sizeof(unsigned long)
344 * is the same in userspace and kernelspace. This lead to problems
345 * for configurations with multiple ABIs such a the MIPS o32 and 64
346 * ABIs supported on the same kernel. So now we support read of both
347 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
348 * userspace ABI.
349 */
350 if (count != sizeof(unsigned int) && count != sizeof(unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700351 return -EINVAL;
352
353 add_wait_queue(&rtc_wait, &wait);
354
355 do {
356 /* First make it right. Then make it fast. Putting this whole
357 * block within the parentheses of a while would be too
358 * confusing. And no, xchg() is not the answer. */
359
360 __set_current_state(TASK_INTERRUPTIBLE);
361
362 spin_lock_irq (&rtc_lock);
363 data = rtc_irq_data;
364 rtc_irq_data = 0;
365 spin_unlock_irq (&rtc_lock);
366
367 if (data != 0)
368 break;
369
370 if (file->f_flags & O_NONBLOCK) {
371 retval = -EAGAIN;
372 goto out;
373 }
374 if (signal_pending(current)) {
375 retval = -ERESTARTSYS;
376 goto out;
377 }
378 schedule();
379 } while (1);
380
Maciej W. Rozycki38e0e8c2006-07-10 04:45:30 -0700381 if (count == sizeof(unsigned int))
382 retval = put_user(data, (unsigned int __user *)buf) ?: sizeof(int);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700383 else
384 retval = put_user(data, (unsigned long __user *)buf) ?: sizeof(long);
Maciej W. Rozycki38e0e8c2006-07-10 04:45:30 -0700385 if (!retval)
386 retval = count;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700387 out:
388 current->state = TASK_RUNNING;
389 remove_wait_queue(&rtc_wait, &wait);
390
391 return retval;
392#endif
393}
394
395static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
396{
397 struct rtc_time wtime;
398
399#ifdef RTC_IRQ
400 if (rtc_has_irq == 0) {
401 switch (cmd) {
402 case RTC_AIE_OFF:
403 case RTC_AIE_ON:
404 case RTC_PIE_OFF:
405 case RTC_PIE_ON:
406 case RTC_UIE_OFF:
407 case RTC_UIE_ON:
408 case RTC_IRQP_READ:
409 case RTC_IRQP_SET:
410 return -EINVAL;
411 };
412 }
413#endif
414
415 switch (cmd) {
416#ifdef RTC_IRQ
417 case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
418 {
419 mask_rtc_irq_bit(RTC_AIE);
420 return 0;
421 }
422 case RTC_AIE_ON: /* Allow alarm interrupts. */
423 {
424 set_rtc_irq_bit(RTC_AIE);
425 return 0;
426 }
427 case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
428 {
Takashi Iwaic3348762005-11-07 11:14:57 +0100429 unsigned long flags; /* can be called from isr via rtc_control() */
430 spin_lock_irqsave (&rtc_lock, flags);
431 mask_rtc_irq_bit_locked(RTC_PIE);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700432 if (rtc_status & RTC_TIMER_ON) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700433 rtc_status &= ~RTC_TIMER_ON;
434 del_timer(&rtc_irq_timer);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700435 }
Takashi Iwaic3348762005-11-07 11:14:57 +0100436 spin_unlock_irqrestore (&rtc_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700437 return 0;
438 }
439 case RTC_PIE_ON: /* Allow periodic ints */
440 {
Takashi Iwaic3348762005-11-07 11:14:57 +0100441 unsigned long flags; /* can be called from isr via rtc_control() */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700442 /*
443 * We don't really want Joe User enabling more
444 * than 64Hz of interrupts on a multi-user machine.
445 */
446 if (!kernel && (rtc_freq > rtc_max_user_freq) &&
447 (!capable(CAP_SYS_RESOURCE)))
448 return -EACCES;
449
Takashi Iwaic3348762005-11-07 11:14:57 +0100450 spin_lock_irqsave (&rtc_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700451 if (!(rtc_status & RTC_TIMER_ON)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700452 rtc_irq_timer.expires = jiffies + HZ/rtc_freq + 2*HZ/100;
453 add_timer(&rtc_irq_timer);
454 rtc_status |= RTC_TIMER_ON;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700455 }
Takashi Iwaic3348762005-11-07 11:14:57 +0100456 set_rtc_irq_bit_locked(RTC_PIE);
457 spin_unlock_irqrestore (&rtc_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700458 return 0;
459 }
460 case RTC_UIE_OFF: /* Mask ints from RTC updates. */
461 {
462 mask_rtc_irq_bit(RTC_UIE);
463 return 0;
464 }
465 case RTC_UIE_ON: /* Allow ints for RTC updates. */
466 {
467 set_rtc_irq_bit(RTC_UIE);
468 return 0;
469 }
470#endif
471 case RTC_ALM_READ: /* Read the present alarm time */
472 {
473 /*
474 * This returns a struct rtc_time. Reading >= 0xc0
475 * means "don't care" or "match all". Only the tm_hour,
476 * tm_min, and tm_sec values are filled in.
477 */
478 memset(&wtime, 0, sizeof(struct rtc_time));
479 get_rtc_alm_time(&wtime);
480 break;
481 }
482 case RTC_ALM_SET: /* Store a time into the alarm */
483 {
484 /*
485 * This expects a struct rtc_time. Writing 0xff means
486 * "don't care" or "match all". Only the tm_hour,
487 * tm_min and tm_sec are used.
488 */
489 unsigned char hrs, min, sec;
490 struct rtc_time alm_tm;
491
492 if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
493 sizeof(struct rtc_time)))
494 return -EFAULT;
495
496 hrs = alm_tm.tm_hour;
497 min = alm_tm.tm_min;
498 sec = alm_tm.tm_sec;
499
500 spin_lock_irq(&rtc_lock);
501 if (hpet_set_alarm_time(hrs, min, sec)) {
502 /*
503 * Fallthru and set alarm time in CMOS too,
504 * so that we will get proper value in RTC_ALM_READ
505 */
506 }
507 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
508 RTC_ALWAYS_BCD)
509 {
510 if (sec < 60) BIN_TO_BCD(sec);
511 else sec = 0xff;
512
513 if (min < 60) BIN_TO_BCD(min);
514 else min = 0xff;
515
516 if (hrs < 24) BIN_TO_BCD(hrs);
517 else hrs = 0xff;
518 }
519 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
520 CMOS_WRITE(min, RTC_MINUTES_ALARM);
521 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
522 spin_unlock_irq(&rtc_lock);
523
524 return 0;
525 }
526 case RTC_RD_TIME: /* Read the time/date from RTC */
527 {
528 memset(&wtime, 0, sizeof(struct rtc_time));
529 rtc_get_rtc_time(&wtime);
530 break;
531 }
532 case RTC_SET_TIME: /* Set the RTC */
533 {
534 struct rtc_time rtc_tm;
535 unsigned char mon, day, hrs, min, sec, leap_yr;
536 unsigned char save_control, save_freq_select;
537 unsigned int yrs;
538#ifdef CONFIG_MACH_DECSTATION
539 unsigned int real_yrs;
540#endif
541
542 if (!capable(CAP_SYS_TIME))
543 return -EACCES;
544
545 if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
546 sizeof(struct rtc_time)))
547 return -EFAULT;
548
549 yrs = rtc_tm.tm_year + 1900;
550 mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
551 day = rtc_tm.tm_mday;
552 hrs = rtc_tm.tm_hour;
553 min = rtc_tm.tm_min;
554 sec = rtc_tm.tm_sec;
555
556 if (yrs < 1970)
557 return -EINVAL;
558
559 leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
560
561 if ((mon > 12) || (day == 0))
562 return -EINVAL;
563
564 if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
565 return -EINVAL;
566
567 if ((hrs >= 24) || (min >= 60) || (sec >= 60))
568 return -EINVAL;
569
570 if ((yrs -= epoch) > 255) /* They are unsigned */
571 return -EINVAL;
572
573 spin_lock_irq(&rtc_lock);
574#ifdef CONFIG_MACH_DECSTATION
575 real_yrs = yrs;
576 yrs = 72;
577
578 /*
579 * We want to keep the year set to 73 until March
580 * for non-leap years, so that Feb, 29th is handled
581 * correctly.
582 */
583 if (!leap_yr && mon < 3) {
584 real_yrs--;
585 yrs = 73;
586 }
587#endif
588 /* These limits and adjustments are independent of
589 * whether the chip is in binary mode or not.
590 */
591 if (yrs > 169) {
592 spin_unlock_irq(&rtc_lock);
593 return -EINVAL;
594 }
595 if (yrs >= 100)
596 yrs -= 100;
597
598 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
599 || RTC_ALWAYS_BCD) {
600 BIN_TO_BCD(sec);
601 BIN_TO_BCD(min);
602 BIN_TO_BCD(hrs);
603 BIN_TO_BCD(day);
604 BIN_TO_BCD(mon);
605 BIN_TO_BCD(yrs);
606 }
607
608 save_control = CMOS_READ(RTC_CONTROL);
609 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
610 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
611 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
612
613#ifdef CONFIG_MACH_DECSTATION
614 CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
615#endif
616 CMOS_WRITE(yrs, RTC_YEAR);
617 CMOS_WRITE(mon, RTC_MONTH);
618 CMOS_WRITE(day, RTC_DAY_OF_MONTH);
619 CMOS_WRITE(hrs, RTC_HOURS);
620 CMOS_WRITE(min, RTC_MINUTES);
621 CMOS_WRITE(sec, RTC_SECONDS);
622
623 CMOS_WRITE(save_control, RTC_CONTROL);
624 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
625
626 spin_unlock_irq(&rtc_lock);
627 return 0;
628 }
629#ifdef RTC_IRQ
630 case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
631 {
632 return put_user(rtc_freq, (unsigned long __user *)arg);
633 }
634 case RTC_IRQP_SET: /* Set periodic IRQ rate. */
635 {
636 int tmp = 0;
637 unsigned char val;
Takashi Iwaic3348762005-11-07 11:14:57 +0100638 unsigned long flags; /* can be called from isr via rtc_control() */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700639
640 /*
641 * The max we can do is 8192Hz.
642 */
643 if ((arg < 2) || (arg > 8192))
644 return -EINVAL;
645 /*
646 * We don't really want Joe User generating more
647 * than 64Hz of interrupts on a multi-user machine.
648 */
649 if (!kernel && (arg > rtc_max_user_freq) && (!capable(CAP_SYS_RESOURCE)))
650 return -EACCES;
651
652 while (arg > (1<<tmp))
653 tmp++;
654
655 /*
656 * Check that the input was really a power of 2.
657 */
658 if (arg != (1<<tmp))
659 return -EINVAL;
660
Takashi Iwaic3348762005-11-07 11:14:57 +0100661 spin_lock_irqsave(&rtc_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700662 if (hpet_set_periodic_freq(arg)) {
Takashi Iwaic3348762005-11-07 11:14:57 +0100663 spin_unlock_irqrestore(&rtc_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700664 return 0;
665 }
666 rtc_freq = arg;
667
668 val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
669 val |= (16 - tmp);
670 CMOS_WRITE(val, RTC_FREQ_SELECT);
Takashi Iwaic3348762005-11-07 11:14:57 +0100671 spin_unlock_irqrestore(&rtc_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700672 return 0;
673 }
674#endif
675 case RTC_EPOCH_READ: /* Read the epoch. */
676 {
677 return put_user (epoch, (unsigned long __user *)arg);
678 }
679 case RTC_EPOCH_SET: /* Set the epoch. */
680 {
681 /*
682 * There were no RTC clocks before 1900.
683 */
684 if (arg < 1900)
685 return -EINVAL;
686
687 if (!capable(CAP_SYS_TIME))
688 return -EACCES;
689
690 epoch = arg;
691 return 0;
692 }
693 default:
694 return -ENOTTY;
695 }
696 return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
697}
698
699static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
700 unsigned long arg)
701{
702 return rtc_do_ioctl(cmd, arg, 0);
703}
704
705/*
706 * We enforce only one user at a time here with the open/close.
707 * Also clear the previous interrupt data on an open, and clean
708 * up things on a close.
709 */
710
711/* We use rtc_lock to protect against concurrent opens. So the BKL is not
712 * needed here. Or anywhere else in this driver. */
713static int rtc_open(struct inode *inode, struct file *file)
714{
715 spin_lock_irq (&rtc_lock);
716
717 if(rtc_status & RTC_IS_OPEN)
718 goto out_busy;
719
720 rtc_status |= RTC_IS_OPEN;
721
722 rtc_irq_data = 0;
723 spin_unlock_irq (&rtc_lock);
724 return 0;
725
726out_busy:
727 spin_unlock_irq (&rtc_lock);
728 return -EBUSY;
729}
730
731static int rtc_fasync (int fd, struct file *filp, int on)
732
733{
734 return fasync_helper (fd, filp, on, &rtc_async_queue);
735}
736
737static int rtc_release(struct inode *inode, struct file *file)
738{
739#ifdef RTC_IRQ
740 unsigned char tmp;
741
742 if (rtc_has_irq == 0)
743 goto no_irq;
744
745 /*
746 * Turn off all interrupts once the device is no longer
747 * in use, and clear the data.
748 */
749
750 spin_lock_irq(&rtc_lock);
751 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
752 tmp = CMOS_READ(RTC_CONTROL);
753 tmp &= ~RTC_PIE;
754 tmp &= ~RTC_AIE;
755 tmp &= ~RTC_UIE;
756 CMOS_WRITE(tmp, RTC_CONTROL);
757 CMOS_READ(RTC_INTR_FLAGS);
758 }
759 if (rtc_status & RTC_TIMER_ON) {
760 rtc_status &= ~RTC_TIMER_ON;
761 del_timer(&rtc_irq_timer);
762 }
763 spin_unlock_irq(&rtc_lock);
764
765 if (file->f_flags & FASYNC) {
766 rtc_fasync (-1, file, 0);
767 }
768no_irq:
769#endif
770
771 spin_lock_irq (&rtc_lock);
772 rtc_irq_data = 0;
773 rtc_status &= ~RTC_IS_OPEN;
774 spin_unlock_irq (&rtc_lock);
775 return 0;
776}
777
778#ifdef RTC_IRQ
779/* Called without the kernel lock - fine */
780static unsigned int rtc_poll(struct file *file, poll_table *wait)
781{
782 unsigned long l;
783
784 if (rtc_has_irq == 0)
785 return 0;
786
787 poll_wait(file, &rtc_wait, wait);
788
789 spin_lock_irq (&rtc_lock);
790 l = rtc_irq_data;
791 spin_unlock_irq (&rtc_lock);
792
793 if (l != 0)
794 return POLLIN | POLLRDNORM;
795 return 0;
796}
797#endif
798
799/*
800 * exported stuffs
801 */
802
803EXPORT_SYMBOL(rtc_register);
804EXPORT_SYMBOL(rtc_unregister);
805EXPORT_SYMBOL(rtc_control);
806
807int rtc_register(rtc_task_t *task)
808{
809#ifndef RTC_IRQ
810 return -EIO;
811#else
812 if (task == NULL || task->func == NULL)
813 return -EINVAL;
814 spin_lock_irq(&rtc_lock);
815 if (rtc_status & RTC_IS_OPEN) {
816 spin_unlock_irq(&rtc_lock);
817 return -EBUSY;
818 }
819 spin_lock(&rtc_task_lock);
820 if (rtc_callback) {
821 spin_unlock(&rtc_task_lock);
822 spin_unlock_irq(&rtc_lock);
823 return -EBUSY;
824 }
825 rtc_status |= RTC_IS_OPEN;
826 rtc_callback = task;
827 spin_unlock(&rtc_task_lock);
828 spin_unlock_irq(&rtc_lock);
829 return 0;
830#endif
831}
832
833int rtc_unregister(rtc_task_t *task)
834{
835#ifndef RTC_IRQ
836 return -EIO;
837#else
838 unsigned char tmp;
839
840 spin_lock_irq(&rtc_lock);
841 spin_lock(&rtc_task_lock);
842 if (rtc_callback != task) {
843 spin_unlock(&rtc_task_lock);
844 spin_unlock_irq(&rtc_lock);
845 return -ENXIO;
846 }
847 rtc_callback = NULL;
848
849 /* disable controls */
850 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
851 tmp = CMOS_READ(RTC_CONTROL);
852 tmp &= ~RTC_PIE;
853 tmp &= ~RTC_AIE;
854 tmp &= ~RTC_UIE;
855 CMOS_WRITE(tmp, RTC_CONTROL);
856 CMOS_READ(RTC_INTR_FLAGS);
857 }
858 if (rtc_status & RTC_TIMER_ON) {
859 rtc_status &= ~RTC_TIMER_ON;
860 del_timer(&rtc_irq_timer);
861 }
862 rtc_status &= ~RTC_IS_OPEN;
863 spin_unlock(&rtc_task_lock);
864 spin_unlock_irq(&rtc_lock);
865 return 0;
866#endif
867}
868
869int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
870{
871#ifndef RTC_IRQ
872 return -EIO;
873#else
Takashi Iwaic3348762005-11-07 11:14:57 +0100874 unsigned long flags;
875 if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
876 return -EINVAL;
877 spin_lock_irqsave(&rtc_task_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700878 if (rtc_callback != task) {
Takashi Iwaic3348762005-11-07 11:14:57 +0100879 spin_unlock_irqrestore(&rtc_task_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700880 return -ENXIO;
881 }
Takashi Iwaic3348762005-11-07 11:14:57 +0100882 spin_unlock_irqrestore(&rtc_task_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700883 return rtc_do_ioctl(cmd, arg, 1);
884#endif
885}
886
887
888/*
889 * The various file operations we support.
890 */
891
Arjan van de Ven62322d22006-07-03 00:24:21 -0700892static const struct file_operations rtc_fops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700893 .owner = THIS_MODULE,
894 .llseek = no_llseek,
895 .read = rtc_read,
896#ifdef RTC_IRQ
897 .poll = rtc_poll,
898#endif
899 .ioctl = rtc_ioctl,
900 .open = rtc_open,
901 .release = rtc_release,
902 .fasync = rtc_fasync,
903};
904
905static struct miscdevice rtc_dev = {
906 .minor = RTC_MINOR,
907 .name = "rtc",
908 .fops = &rtc_fops,
909};
910
Jan Beulich9cef7792006-12-13 00:35:05 -0800911#ifdef CONFIG_PROC_FS
Arjan van de Ven62322d22006-07-03 00:24:21 -0700912static const struct file_operations rtc_proc_fops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700913 .owner = THIS_MODULE,
914 .open = rtc_proc_open,
915 .read = seq_read,
916 .llseek = seq_lseek,
917 .release = single_release,
918};
Linus Torvalds1da177e2005-04-16 15:20:36 -0700919#endif
920
921static int __init rtc_init(void)
922{
Jan Beulich9cef7792006-12-13 00:35:05 -0800923#ifdef CONFIG_PROC_FS
Linus Torvalds1da177e2005-04-16 15:20:36 -0700924 struct proc_dir_entry *ent;
Jan Beulich9cef7792006-12-13 00:35:05 -0800925#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700926#if defined(__alpha__) || defined(__mips__)
927 unsigned int year, ctrl;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700928 char *guess = NULL;
929#endif
930#ifdef __sparc__
931 struct linux_ebus *ebus;
932 struct linux_ebus_device *edev;
933#ifdef __sparc_v9__
934 struct sparc_isa_bridge *isa_br;
935 struct sparc_isa_device *isa_dev;
936#endif
Jan Beulich9cef7792006-12-13 00:35:05 -0800937#else
Maciej W. Rozycki38e0e8c2006-07-10 04:45:30 -0700938 void *r;
Jan Beulich9cef7792006-12-13 00:35:05 -0800939#ifdef RTC_IRQ
940 irq_handler_t rtc_int_handler_ptr;
941#endif
Maciej W. Rozycki38e0e8c2006-07-10 04:45:30 -0700942#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700943
944#ifdef __sparc__
945 for_each_ebus(ebus) {
946 for_each_ebusdev(edev, ebus) {
David S. Miller690c8fd2006-06-22 19:12:03 -0700947 if(strcmp(edev->prom_node->name, "rtc") == 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700948 rtc_port = edev->resource[0].start;
949 rtc_irq = edev->irqs[0];
950 goto found;
951 }
952 }
953 }
954#ifdef __sparc_v9__
955 for_each_isa(isa_br) {
956 for_each_isadev(isa_dev, isa_br) {
David S. Miller690c8fd2006-06-22 19:12:03 -0700957 if (strcmp(isa_dev->prom_node->name, "rtc") == 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700958 rtc_port = isa_dev->resource.start;
959 rtc_irq = isa_dev->irq;
960 goto found;
961 }
962 }
963 }
964#endif
Jan Beulichf3e92d32006-12-13 00:35:04 -0800965 rtc_has_irq = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700966 printk(KERN_ERR "rtc_init: no PC rtc found\n");
967 return -EIO;
968
969found:
970 if (rtc_irq == PCI_IRQ_NONE) {
971 rtc_has_irq = 0;
972 goto no_irq;
973 }
974
975 /*
976 * XXX Interrupt pin #7 in Espresso is shared between RTC and
David S. Miller53d0fc22005-09-05 23:33:05 -0700977 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
Linus Torvalds1da177e2005-04-16 15:20:36 -0700978 */
Thomas Gleixner0f2ed4c2006-07-01 19:29:33 -0700979 if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc", (void *)&rtc_port)) {
Jan Beulichf3e92d32006-12-13 00:35:04 -0800980 rtc_has_irq = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700981 printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
982 return -EIO;
983 }
984no_irq:
985#else
Maciej W. Rozycki38e0e8c2006-07-10 04:45:30 -0700986 if (RTC_IOMAPPED)
987 r = request_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc");
988 else
989 r = request_mem_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc");
990 if (!r) {
Jan Beulichf3e92d32006-12-13 00:35:04 -0800991#ifdef RTC_IRQ
992 rtc_has_irq = 0;
993#endif
Maciej W. Rozycki38e0e8c2006-07-10 04:45:30 -0700994 printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
995 (long)(RTC_PORT(0)));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700996 return -EIO;
997 }
998
999#ifdef RTC_IRQ
1000 if (is_hpet_enabled()) {
1001 rtc_int_handler_ptr = hpet_rtc_interrupt;
1002 } else {
1003 rtc_int_handler_ptr = rtc_interrupt;
1004 }
1005
Thomas Gleixner0f2ed4c2006-07-01 19:29:33 -07001006 if(request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED, "rtc", NULL)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001007 /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
Jan Beulichf3e92d32006-12-13 00:35:04 -08001008 rtc_has_irq = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001009 printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
Maciej W. Rozycki38e0e8c2006-07-10 04:45:30 -07001010 if (RTC_IOMAPPED)
1011 release_region(RTC_PORT(0), RTC_IO_EXTENT);
1012 else
1013 release_mem_region(RTC_PORT(0), RTC_IO_EXTENT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001014 return -EIO;
1015 }
1016 hpet_rtc_timer_init();
1017
1018#endif
1019
1020#endif /* __sparc__ vs. others */
1021
1022 if (misc_register(&rtc_dev)) {
1023#ifdef RTC_IRQ
1024 free_irq(RTC_IRQ, NULL);
Jan Beulichf3e92d32006-12-13 00:35:04 -08001025 rtc_has_irq = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001026#endif
1027 release_region(RTC_PORT(0), RTC_IO_EXTENT);
1028 return -ENODEV;
1029 }
1030
Jan Beulich9cef7792006-12-13 00:35:05 -08001031#ifdef CONFIG_PROC_FS
Linus Torvalds1da177e2005-04-16 15:20:36 -07001032 ent = create_proc_entry("driver/rtc", 0, NULL);
Jan Beulich9cef7792006-12-13 00:35:05 -08001033 if (ent)
1034 ent->proc_fops = &rtc_proc_fops;
1035 else
1036 printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001037#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001038
1039#if defined(__alpha__) || defined(__mips__)
1040 rtc_freq = HZ;
1041
1042 /* Each operating system on an Alpha uses its own epoch.
1043 Let's try to guess which one we are using now. */
1044
Linus Torvalds1da177e2005-04-16 15:20:36 -07001045 if (rtc_is_updating() != 0)
Luca Falavigna47f176f2005-06-28 20:44:42 -07001046 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001047
1048 spin_lock_irq(&rtc_lock);
1049 year = CMOS_READ(RTC_YEAR);
1050 ctrl = CMOS_READ(RTC_CONTROL);
1051 spin_unlock_irq(&rtc_lock);
1052
1053 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1054 BCD_TO_BIN(year); /* This should never happen... */
1055
1056 if (year < 20) {
1057 epoch = 2000;
1058 guess = "SRM (post-2000)";
1059 } else if (year >= 20 && year < 48) {
1060 epoch = 1980;
1061 guess = "ARC console";
1062 } else if (year >= 48 && year < 72) {
1063 epoch = 1952;
1064 guess = "Digital UNIX";
1065#if defined(__mips__)
1066 } else if (year >= 72 && year < 74) {
1067 epoch = 2000;
1068 guess = "Digital DECstation";
1069#else
1070 } else if (year >= 70) {
1071 epoch = 1900;
1072 guess = "Standard PC (1900)";
1073#endif
1074 }
1075 if (guess)
1076 printk(KERN_INFO "rtc: %s epoch (%lu) detected\n", guess, epoch);
1077#endif
1078#ifdef RTC_IRQ
1079 if (rtc_has_irq == 0)
1080 goto no_irq2;
1081
1082 init_timer(&rtc_irq_timer);
1083 rtc_irq_timer.function = rtc_dropped_irq;
1084 spin_lock_irq(&rtc_lock);
1085 rtc_freq = 1024;
1086 if (!hpet_set_periodic_freq(rtc_freq)) {
1087 /* Initialize periodic freq. to CMOS reset default, which is 1024Hz */
1088 CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT);
1089 }
1090 spin_unlock_irq(&rtc_lock);
1091no_irq2:
1092#endif
1093
1094 (void) init_sysctl();
1095
1096 printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1097
1098 return 0;
1099}
1100
1101static void __exit rtc_exit (void)
1102{
1103 cleanup_sysctl();
1104 remove_proc_entry ("driver/rtc", NULL);
1105 misc_deregister(&rtc_dev);
1106
1107#ifdef __sparc__
1108 if (rtc_has_irq)
1109 free_irq (rtc_irq, &rtc_port);
1110#else
Maciej W. Rozycki38e0e8c2006-07-10 04:45:30 -07001111 if (RTC_IOMAPPED)
1112 release_region(RTC_PORT(0), RTC_IO_EXTENT);
1113 else
1114 release_mem_region(RTC_PORT(0), RTC_IO_EXTENT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001115#ifdef RTC_IRQ
1116 if (rtc_has_irq)
1117 free_irq (RTC_IRQ, NULL);
1118#endif
1119#endif /* __sparc__ */
1120}
1121
1122module_init(rtc_init);
1123module_exit(rtc_exit);
1124
1125#ifdef RTC_IRQ
1126/*
1127 * At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1128 * (usually during an IDE disk interrupt, with IRQ unmasking off)
1129 * Since the interrupt handler doesn't get called, the IRQ status
1130 * byte doesn't get read, and the RTC stops generating interrupts.
1131 * A timer is set, and will call this function if/when that happens.
1132 * To get it out of this stalled state, we just read the status.
1133 * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1134 * (You *really* shouldn't be trying to use a non-realtime system
1135 * for something that requires a steady > 1KHz signal anyways.)
1136 */
1137
1138static void rtc_dropped_irq(unsigned long data)
1139{
1140 unsigned long freq;
1141
1142 spin_lock_irq (&rtc_lock);
1143
1144 if (hpet_rtc_dropped_irq()) {
1145 spin_unlock_irq(&rtc_lock);
1146 return;
1147 }
1148
1149 /* Just in case someone disabled the timer from behind our back... */
1150 if (rtc_status & RTC_TIMER_ON)
1151 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1152
1153 rtc_irq_data += ((rtc_freq/HZ)<<8);
1154 rtc_irq_data &= ~0xff;
1155 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */
1156
1157 freq = rtc_freq;
1158
1159 spin_unlock_irq(&rtc_lock);
1160
1161 printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", freq);
1162
1163 /* Now we have new data */
1164 wake_up_interruptible(&rtc_wait);
1165
1166 kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
1167}
1168#endif
1169
Jan Beulich9cef7792006-12-13 00:35:05 -08001170#ifdef CONFIG_PROC_FS
Linus Torvalds1da177e2005-04-16 15:20:36 -07001171/*
1172 * Info exported via "/proc/driver/rtc".
1173 */
1174
1175static int rtc_proc_show(struct seq_file *seq, void *v)
1176{
1177#define YN(bit) ((ctrl & bit) ? "yes" : "no")
1178#define NY(bit) ((ctrl & bit) ? "no" : "yes")
1179 struct rtc_time tm;
1180 unsigned char batt, ctrl;
1181 unsigned long freq;
1182
1183 spin_lock_irq(&rtc_lock);
1184 batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1185 ctrl = CMOS_READ(RTC_CONTROL);
1186 freq = rtc_freq;
1187 spin_unlock_irq(&rtc_lock);
1188
1189
1190 rtc_get_rtc_time(&tm);
1191
1192 /*
1193 * There is no way to tell if the luser has the RTC set for local
1194 * time or for Universal Standard Time (GMT). Probably local though.
1195 */
1196 seq_printf(seq,
1197 "rtc_time\t: %02d:%02d:%02d\n"
1198 "rtc_date\t: %04d-%02d-%02d\n"
1199 "rtc_epoch\t: %04lu\n",
1200 tm.tm_hour, tm.tm_min, tm.tm_sec,
1201 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1202
1203 get_rtc_alm_time(&tm);
1204
1205 /*
1206 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1207 * match any value for that particular field. Values that are
1208 * greater than a valid time, but less than 0xc0 shouldn't appear.
1209 */
1210 seq_puts(seq, "alarm\t\t: ");
1211 if (tm.tm_hour <= 24)
1212 seq_printf(seq, "%02d:", tm.tm_hour);
1213 else
1214 seq_puts(seq, "**:");
1215
1216 if (tm.tm_min <= 59)
1217 seq_printf(seq, "%02d:", tm.tm_min);
1218 else
1219 seq_puts(seq, "**:");
1220
1221 if (tm.tm_sec <= 59)
1222 seq_printf(seq, "%02d\n", tm.tm_sec);
1223 else
1224 seq_puts(seq, "**\n");
1225
1226 seq_printf(seq,
1227 "DST_enable\t: %s\n"
1228 "BCD\t\t: %s\n"
1229 "24hr\t\t: %s\n"
1230 "square_wave\t: %s\n"
1231 "alarm_IRQ\t: %s\n"
1232 "update_IRQ\t: %s\n"
1233 "periodic_IRQ\t: %s\n"
1234 "periodic_freq\t: %ld\n"
1235 "batt_status\t: %s\n",
1236 YN(RTC_DST_EN),
1237 NY(RTC_DM_BINARY),
1238 YN(RTC_24H),
1239 YN(RTC_SQWE),
1240 YN(RTC_AIE),
1241 YN(RTC_UIE),
1242 YN(RTC_PIE),
1243 freq,
1244 batt ? "okay" : "dead");
1245
1246 return 0;
1247#undef YN
1248#undef NY
1249}
1250
1251static int rtc_proc_open(struct inode *inode, struct file *file)
1252{
1253 return single_open(file, rtc_proc_show, NULL);
1254}
Jan Beulich9cef7792006-12-13 00:35:05 -08001255#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001256
1257void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1258{
Ingo Molnar0f749642006-07-12 09:03:10 -07001259 unsigned long uip_watchdog = jiffies, flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001260 unsigned char ctrl;
1261#ifdef CONFIG_MACH_DECSTATION
1262 unsigned int real_year;
1263#endif
1264
1265 /*
1266 * read RTC once any update in progress is done. The update
Luca Falavigna47f176f2005-06-28 20:44:42 -07001267 * can take just over 2ms. We wait 20ms. There is no need to
Linus Torvalds1da177e2005-04-16 15:20:36 -07001268 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1269 * If you need to know *exactly* when a second has started, enable
1270 * periodic update complete interrupts, (via ioctl) and then
1271 * immediately read /dev/rtc which will block until you get the IRQ.
1272 * Once the read clears, read the RTC time (again via ioctl). Easy.
1273 */
1274
Steven Rostedt358333a2006-09-29 01:59:04 -07001275 while (rtc_is_updating() != 0 && jiffies - uip_watchdog < 2*HZ/100)
Petr Vandrovec403fe5a2005-08-05 15:50:07 +02001276 cpu_relax();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001277
1278 /*
1279 * Only the values that we read from the RTC are set. We leave
Alan Coxb7599582006-01-11 12:17:32 -08001280 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1281 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1282 * only updated by the RTC when initially set to a non-zero value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001283 */
Ingo Molnar0f749642006-07-12 09:03:10 -07001284 spin_lock_irqsave(&rtc_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001285 rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1286 rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1287 rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1288 rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1289 rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1290 rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
Alan Coxb7599582006-01-11 12:17:32 -08001291 /* Only set from 2.6.16 onwards */
1292 rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1293
Linus Torvalds1da177e2005-04-16 15:20:36 -07001294#ifdef CONFIG_MACH_DECSTATION
1295 real_year = CMOS_READ(RTC_DEC_YEAR);
1296#endif
1297 ctrl = CMOS_READ(RTC_CONTROL);
Ingo Molnar0f749642006-07-12 09:03:10 -07001298 spin_unlock_irqrestore(&rtc_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001299
1300 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1301 {
1302 BCD_TO_BIN(rtc_tm->tm_sec);
1303 BCD_TO_BIN(rtc_tm->tm_min);
1304 BCD_TO_BIN(rtc_tm->tm_hour);
1305 BCD_TO_BIN(rtc_tm->tm_mday);
1306 BCD_TO_BIN(rtc_tm->tm_mon);
1307 BCD_TO_BIN(rtc_tm->tm_year);
Alan Coxb7599582006-01-11 12:17:32 -08001308 BCD_TO_BIN(rtc_tm->tm_wday);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001309 }
1310
1311#ifdef CONFIG_MACH_DECSTATION
1312 rtc_tm->tm_year += real_year - 72;
1313#endif
1314
1315 /*
1316 * Account for differences between how the RTC uses the values
1317 * and how they are defined in a struct rtc_time;
1318 */
1319 if ((rtc_tm->tm_year += (epoch - 1900)) <= 69)
1320 rtc_tm->tm_year += 100;
1321
1322 rtc_tm->tm_mon--;
1323}
1324
1325static void get_rtc_alm_time(struct rtc_time *alm_tm)
1326{
1327 unsigned char ctrl;
1328
1329 /*
1330 * Only the values that we read from the RTC are set. That
1331 * means only tm_hour, tm_min, and tm_sec.
1332 */
1333 spin_lock_irq(&rtc_lock);
1334 alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1335 alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1336 alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1337 ctrl = CMOS_READ(RTC_CONTROL);
1338 spin_unlock_irq(&rtc_lock);
1339
1340 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1341 {
1342 BCD_TO_BIN(alm_tm->tm_sec);
1343 BCD_TO_BIN(alm_tm->tm_min);
1344 BCD_TO_BIN(alm_tm->tm_hour);
1345 }
1346}
1347
1348#ifdef RTC_IRQ
1349/*
1350 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1351 * Rumour has it that if you frob the interrupt enable/disable
1352 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1353 * ensure you actually start getting interrupts. Probably for
1354 * compatibility with older/broken chipset RTC implementations.
1355 * We also clear out any old irq data after an ioctl() that
1356 * meddles with the interrupt enable/disable bits.
1357 */
1358
Takashi Iwaic3348762005-11-07 11:14:57 +01001359static void mask_rtc_irq_bit_locked(unsigned char bit)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001360{
1361 unsigned char val;
1362
Takashi Iwaic3348762005-11-07 11:14:57 +01001363 if (hpet_mask_rtc_irq_bit(bit))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001364 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001365 val = CMOS_READ(RTC_CONTROL);
1366 val &= ~bit;
1367 CMOS_WRITE(val, RTC_CONTROL);
1368 CMOS_READ(RTC_INTR_FLAGS);
1369
1370 rtc_irq_data = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001371}
1372
Takashi Iwaic3348762005-11-07 11:14:57 +01001373static void set_rtc_irq_bit_locked(unsigned char bit)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001374{
1375 unsigned char val;
1376
Takashi Iwaic3348762005-11-07 11:14:57 +01001377 if (hpet_set_rtc_irq_bit(bit))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001378 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001379 val = CMOS_READ(RTC_CONTROL);
1380 val |= bit;
1381 CMOS_WRITE(val, RTC_CONTROL);
1382 CMOS_READ(RTC_INTR_FLAGS);
1383
1384 rtc_irq_data = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001385}
1386#endif
1387
1388MODULE_AUTHOR("Paul Gortmaker");
1389MODULE_LICENSE("GPL");
1390MODULE_ALIAS_MISCDEV(RTC_MINOR);