Michael Walle | 9db33d2 | 2020-09-14 23:43:34 +0200 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * sl28cpld PWM driver |
| 4 | * |
| 5 | * Copyright (c) 2020 Michael Walle <michael@walle.cc> |
| 6 | * |
| 7 | * There is no public datasheet available for this PWM core. But it is easy |
| 8 | * enough to be briefly explained. It consists of one 8-bit counter. The PWM |
| 9 | * supports four distinct frequencies by selecting when to reset the counter. |
| 10 | * With the prescaler setting you can select which bit of the counter is used |
| 11 | * to reset it. This implies that the higher the frequency the less remaining |
| 12 | * bits are available for the actual counter. |
| 13 | * |
| 14 | * Let cnt[7:0] be the counter, clocked at 32kHz: |
| 15 | * +-----------+--------+--------------+-----------+---------------+ |
| 16 | * | prescaler | reset | counter bits | frequency | period length | |
| 17 | * +-----------+--------+--------------+-----------+---------------+ |
| 18 | * | 0 | cnt[7] | cnt[6:0] | 250 Hz | 4000000 ns | |
| 19 | * | 1 | cnt[6] | cnt[5:0] | 500 Hz | 2000000 ns | |
| 20 | * | 2 | cnt[5] | cnt[4:0] | 1 kHz | 1000000 ns | |
| 21 | * | 3 | cnt[4] | cnt[3:0] | 2 kHz | 500000 ns | |
| 22 | * +-----------+--------+--------------+-----------+---------------+ |
| 23 | * |
| 24 | * Limitations: |
| 25 | * - The hardware cannot generate a 100% duty cycle if the prescaler is 0. |
| 26 | * - The hardware cannot atomically set the prescaler and the counter value, |
| 27 | * which might lead to glitches and inconsistent states if a write fails. |
| 28 | * - The counter is not reset if you switch the prescaler which leads |
| 29 | * to glitches, too. |
| 30 | * - The duty cycle will switch immediately and not after a complete cycle. |
| 31 | * - Depending on the actual implementation, disabling the PWM might have |
| 32 | * side effects. For example, if the output pin is shared with a GPIO pin |
| 33 | * it will automatically switch back to GPIO mode. |
| 34 | */ |
| 35 | |
| 36 | #include <linux/bitfield.h> |
| 37 | #include <linux/kernel.h> |
| 38 | #include <linux/mod_devicetable.h> |
| 39 | #include <linux/module.h> |
| 40 | #include <linux/platform_device.h> |
| 41 | #include <linux/pwm.h> |
| 42 | #include <linux/regmap.h> |
| 43 | |
| 44 | /* |
| 45 | * PWM timer block registers. |
| 46 | */ |
| 47 | #define SL28CPLD_PWM_CTRL 0x00 |
| 48 | #define SL28CPLD_PWM_CTRL_ENABLE BIT(7) |
| 49 | #define SL28CPLD_PWM_CTRL_PRESCALER_MASK GENMASK(1, 0) |
| 50 | #define SL28CPLD_PWM_CYCLE 0x01 |
| 51 | #define SL28CPLD_PWM_CYCLE_MAX GENMASK(6, 0) |
| 52 | |
| 53 | #define SL28CPLD_PWM_CLK 32000 /* 32 kHz */ |
| 54 | #define SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler) (1 << (7 - (prescaler))) |
| 55 | #define SL28CPLD_PWM_PERIOD(prescaler) \ |
| 56 | (NSEC_PER_SEC / SL28CPLD_PWM_CLK * SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)) |
| 57 | |
| 58 | /* |
| 59 | * We calculate the duty cycle like this: |
| 60 | * duty_cycle_ns = pwm_cycle_reg * max_period_ns / max_duty_cycle |
| 61 | * |
| 62 | * With |
| 63 | * max_period_ns = 1 << (7 - prescaler) / SL28CPLD_PWM_CLK * NSEC_PER_SEC |
| 64 | * max_duty_cycle = 1 << (7 - prescaler) |
| 65 | * this then simplifies to: |
| 66 | * duty_cycle_ns = pwm_cycle_reg / SL28CPLD_PWM_CLK * NSEC_PER_SEC |
| 67 | * = NSEC_PER_SEC / SL28CPLD_PWM_CLK * pwm_cycle_reg |
| 68 | * |
| 69 | * NSEC_PER_SEC is a multiple of SL28CPLD_PWM_CLK, therefore we're not losing |
| 70 | * precision by doing the divison first. |
| 71 | */ |
| 72 | #define SL28CPLD_PWM_TO_DUTY_CYCLE(reg) \ |
| 73 | (NSEC_PER_SEC / SL28CPLD_PWM_CLK * (reg)) |
| 74 | #define SL28CPLD_PWM_FROM_DUTY_CYCLE(duty_cycle) \ |
| 75 | (DIV_ROUND_DOWN_ULL((duty_cycle), NSEC_PER_SEC / SL28CPLD_PWM_CLK)) |
| 76 | |
| 77 | #define sl28cpld_pwm_read(priv, reg, val) \ |
| 78 | regmap_read((priv)->regmap, (priv)->offset + (reg), (val)) |
| 79 | #define sl28cpld_pwm_write(priv, reg, val) \ |
| 80 | regmap_write((priv)->regmap, (priv)->offset + (reg), (val)) |
| 81 | |
| 82 | struct sl28cpld_pwm { |
| 83 | struct pwm_chip pwm_chip; |
| 84 | struct regmap *regmap; |
| 85 | u32 offset; |
| 86 | }; |
Uwe Kleine-König | 062c9cd | 2020-12-03 09:41:42 +0100 | [diff] [blame] | 87 | #define sl28cpld_pwm_from_chip(_chip) \ |
| 88 | container_of(_chip, struct sl28cpld_pwm, pwm_chip) |
Michael Walle | 9db33d2 | 2020-09-14 23:43:34 +0200 | [diff] [blame] | 89 | |
| 90 | static void sl28cpld_pwm_get_state(struct pwm_chip *chip, |
| 91 | struct pwm_device *pwm, |
| 92 | struct pwm_state *state) |
| 93 | { |
Uwe Kleine-König | 062c9cd | 2020-12-03 09:41:42 +0100 | [diff] [blame] | 94 | struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip); |
Michael Walle | 9db33d2 | 2020-09-14 23:43:34 +0200 | [diff] [blame] | 95 | unsigned int reg; |
| 96 | int prescaler; |
| 97 | |
| 98 | sl28cpld_pwm_read(priv, SL28CPLD_PWM_CTRL, ®); |
| 99 | |
| 100 | state->enabled = reg & SL28CPLD_PWM_CTRL_ENABLE; |
| 101 | |
| 102 | prescaler = FIELD_GET(SL28CPLD_PWM_CTRL_PRESCALER_MASK, reg); |
| 103 | state->period = SL28CPLD_PWM_PERIOD(prescaler); |
| 104 | |
| 105 | sl28cpld_pwm_read(priv, SL28CPLD_PWM_CYCLE, ®); |
| 106 | state->duty_cycle = SL28CPLD_PWM_TO_DUTY_CYCLE(reg); |
| 107 | state->polarity = PWM_POLARITY_NORMAL; |
| 108 | |
| 109 | /* |
| 110 | * Sanitize values for the PWM core. Depending on the prescaler it |
| 111 | * might happen that we calculate a duty_cycle greater than the actual |
| 112 | * period. This might happen if someone (e.g. the bootloader) sets an |
| 113 | * invalid combination of values. The behavior of the hardware is |
| 114 | * undefined in this case. But we need to report sane values back to |
| 115 | * the PWM core. |
| 116 | */ |
| 117 | state->duty_cycle = min(state->duty_cycle, state->period); |
| 118 | } |
| 119 | |
| 120 | static int sl28cpld_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, |
| 121 | const struct pwm_state *state) |
| 122 | { |
Uwe Kleine-König | 062c9cd | 2020-12-03 09:41:42 +0100 | [diff] [blame] | 123 | struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip); |
Michael Walle | 9db33d2 | 2020-09-14 23:43:34 +0200 | [diff] [blame] | 124 | unsigned int cycle, prescaler; |
| 125 | bool write_duty_cycle_first; |
| 126 | int ret; |
| 127 | u8 ctrl; |
| 128 | |
| 129 | /* Polarity inversion is not supported */ |
| 130 | if (state->polarity != PWM_POLARITY_NORMAL) |
| 131 | return -EINVAL; |
| 132 | |
| 133 | /* |
| 134 | * Calculate the prescaler. Pick the biggest period that isn't |
| 135 | * bigger than the requested period. |
| 136 | */ |
| 137 | prescaler = DIV_ROUND_UP_ULL(SL28CPLD_PWM_PERIOD(0), state->period); |
| 138 | prescaler = order_base_2(prescaler); |
| 139 | |
| 140 | if (prescaler > field_max(SL28CPLD_PWM_CTRL_PRESCALER_MASK)) |
| 141 | return -ERANGE; |
| 142 | |
| 143 | ctrl = FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, prescaler); |
| 144 | if (state->enabled) |
| 145 | ctrl |= SL28CPLD_PWM_CTRL_ENABLE; |
| 146 | |
| 147 | cycle = SL28CPLD_PWM_FROM_DUTY_CYCLE(state->duty_cycle); |
| 148 | cycle = min_t(unsigned int, cycle, SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)); |
| 149 | |
| 150 | /* |
| 151 | * Work around the hardware limitation. See also above. Trap 100% duty |
| 152 | * cycle if the prescaler is 0. Set prescaler to 1 instead. We don't |
| 153 | * care about the frequency because its "all-one" in either case. |
| 154 | * |
| 155 | * We don't need to check the actual prescaler setting, because only |
| 156 | * if the prescaler is 0 we can have this particular value. |
| 157 | */ |
| 158 | if (cycle == SL28CPLD_PWM_MAX_DUTY_CYCLE(0)) { |
| 159 | ctrl &= ~SL28CPLD_PWM_CTRL_PRESCALER_MASK; |
| 160 | ctrl |= FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, 1); |
| 161 | cycle = SL28CPLD_PWM_MAX_DUTY_CYCLE(1); |
| 162 | } |
| 163 | |
| 164 | /* |
| 165 | * To avoid glitches when we switch the prescaler, we have to make sure |
| 166 | * we have a valid duty cycle for the new mode. |
| 167 | * |
| 168 | * Take the current prescaler (or the current period length) into |
| 169 | * account to decide whether we have to write the duty cycle or the new |
| 170 | * prescaler first. If the period length is decreasing we have to |
| 171 | * write the duty cycle first. |
| 172 | */ |
| 173 | write_duty_cycle_first = pwm->state.period > state->period; |
| 174 | |
| 175 | if (write_duty_cycle_first) { |
| 176 | ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle); |
| 177 | if (ret) |
| 178 | return ret; |
| 179 | } |
| 180 | |
| 181 | ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CTRL, ctrl); |
| 182 | if (ret) |
| 183 | return ret; |
| 184 | |
| 185 | if (!write_duty_cycle_first) { |
| 186 | ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle); |
| 187 | if (ret) |
| 188 | return ret; |
| 189 | } |
| 190 | |
| 191 | return 0; |
| 192 | } |
| 193 | |
| 194 | static const struct pwm_ops sl28cpld_pwm_ops = { |
| 195 | .apply = sl28cpld_pwm_apply, |
| 196 | .get_state = sl28cpld_pwm_get_state, |
| 197 | .owner = THIS_MODULE, |
| 198 | }; |
| 199 | |
| 200 | static int sl28cpld_pwm_probe(struct platform_device *pdev) |
| 201 | { |
| 202 | struct sl28cpld_pwm *priv; |
| 203 | struct pwm_chip *chip; |
| 204 | int ret; |
| 205 | |
| 206 | if (!pdev->dev.parent) { |
| 207 | dev_err(&pdev->dev, "no parent device\n"); |
| 208 | return -ENODEV; |
| 209 | } |
| 210 | |
| 211 | priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); |
| 212 | if (!priv) |
| 213 | return -ENOMEM; |
| 214 | |
| 215 | priv->regmap = dev_get_regmap(pdev->dev.parent, NULL); |
| 216 | if (!priv->regmap) { |
| 217 | dev_err(&pdev->dev, "could not get parent regmap\n"); |
| 218 | return -ENODEV; |
| 219 | } |
| 220 | |
| 221 | ret = device_property_read_u32(&pdev->dev, "reg", &priv->offset); |
| 222 | if (ret) { |
| 223 | dev_err(&pdev->dev, "no 'reg' property found (%pe)\n", |
| 224 | ERR_PTR(ret)); |
| 225 | return -EINVAL; |
| 226 | } |
| 227 | |
| 228 | /* Initialize the pwm_chip structure */ |
| 229 | chip = &priv->pwm_chip; |
| 230 | chip->dev = &pdev->dev; |
| 231 | chip->ops = &sl28cpld_pwm_ops; |
Michael Walle | 9db33d2 | 2020-09-14 23:43:34 +0200 | [diff] [blame] | 232 | chip->npwm = 1; |
| 233 | |
Uwe Kleine-König | 02dd2e4 | 2021-07-07 18:28:16 +0200 | [diff] [blame] | 234 | ret = devm_pwmchip_add(&pdev->dev, &priv->pwm_chip); |
Michael Walle | 9db33d2 | 2020-09-14 23:43:34 +0200 | [diff] [blame] | 235 | if (ret) { |
| 236 | dev_err(&pdev->dev, "failed to add PWM chip (%pe)", |
| 237 | ERR_PTR(ret)); |
| 238 | return ret; |
| 239 | } |
| 240 | |
Michael Walle | 9db33d2 | 2020-09-14 23:43:34 +0200 | [diff] [blame] | 241 | return 0; |
| 242 | } |
| 243 | |
Michael Walle | 9db33d2 | 2020-09-14 23:43:34 +0200 | [diff] [blame] | 244 | static const struct of_device_id sl28cpld_pwm_of_match[] = { |
| 245 | { .compatible = "kontron,sl28cpld-pwm" }, |
| 246 | {} |
| 247 | }; |
| 248 | MODULE_DEVICE_TABLE(of, sl28cpld_pwm_of_match); |
| 249 | |
| 250 | static struct platform_driver sl28cpld_pwm_driver = { |
| 251 | .probe = sl28cpld_pwm_probe, |
Michael Walle | 9db33d2 | 2020-09-14 23:43:34 +0200 | [diff] [blame] | 252 | .driver = { |
| 253 | .name = "sl28cpld-pwm", |
| 254 | .of_match_table = sl28cpld_pwm_of_match, |
| 255 | }, |
| 256 | }; |
| 257 | module_platform_driver(sl28cpld_pwm_driver); |
| 258 | |
| 259 | MODULE_DESCRIPTION("sl28cpld PWM Driver"); |
| 260 | MODULE_AUTHOR("Michael Walle <michael@walle.cc>"); |
| 261 | MODULE_LICENSE("GPL"); |