Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/kernel/signal.c |
| 3 | * |
| 4 | * Copyright (C) 1991, 1992 Linus Torvalds |
| 5 | * |
| 6 | * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson |
| 7 | * |
| 8 | * 2003-06-02 Jim Houston - Concurrent Computer Corp. |
| 9 | * Changes to use preallocated sigqueue structures |
| 10 | * to allow signals to be sent reliably. |
| 11 | */ |
| 12 | |
| 13 | #include <linux/config.h> |
| 14 | #include <linux/slab.h> |
| 15 | #include <linux/module.h> |
| 16 | #include <linux/smp_lock.h> |
| 17 | #include <linux/init.h> |
| 18 | #include <linux/sched.h> |
| 19 | #include <linux/fs.h> |
| 20 | #include <linux/tty.h> |
| 21 | #include <linux/binfmts.h> |
| 22 | #include <linux/security.h> |
| 23 | #include <linux/syscalls.h> |
| 24 | #include <linux/ptrace.h> |
| 25 | #include <linux/posix-timers.h> |
| 26 | #include <asm/param.h> |
| 27 | #include <asm/uaccess.h> |
| 28 | #include <asm/unistd.h> |
| 29 | #include <asm/siginfo.h> |
| 30 | |
| 31 | /* |
| 32 | * SLAB caches for signal bits. |
| 33 | */ |
| 34 | |
| 35 | static kmem_cache_t *sigqueue_cachep; |
| 36 | |
| 37 | /* |
| 38 | * In POSIX a signal is sent either to a specific thread (Linux task) |
| 39 | * or to the process as a whole (Linux thread group). How the signal |
| 40 | * is sent determines whether it's to one thread or the whole group, |
| 41 | * which determines which signal mask(s) are involved in blocking it |
| 42 | * from being delivered until later. When the signal is delivered, |
| 43 | * either it's caught or ignored by a user handler or it has a default |
| 44 | * effect that applies to the whole thread group (POSIX process). |
| 45 | * |
| 46 | * The possible effects an unblocked signal set to SIG_DFL can have are: |
| 47 | * ignore - Nothing Happens |
| 48 | * terminate - kill the process, i.e. all threads in the group, |
| 49 | * similar to exit_group. The group leader (only) reports |
| 50 | * WIFSIGNALED status to its parent. |
| 51 | * coredump - write a core dump file describing all threads using |
| 52 | * the same mm and then kill all those threads |
| 53 | * stop - stop all the threads in the group, i.e. TASK_STOPPED state |
| 54 | * |
| 55 | * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored. |
| 56 | * Other signals when not blocked and set to SIG_DFL behaves as follows. |
| 57 | * The job control signals also have other special effects. |
| 58 | * |
| 59 | * +--------------------+------------------+ |
| 60 | * | POSIX signal | default action | |
| 61 | * +--------------------+------------------+ |
| 62 | * | SIGHUP | terminate | |
| 63 | * | SIGINT | terminate | |
| 64 | * | SIGQUIT | coredump | |
| 65 | * | SIGILL | coredump | |
| 66 | * | SIGTRAP | coredump | |
| 67 | * | SIGABRT/SIGIOT | coredump | |
| 68 | * | SIGBUS | coredump | |
| 69 | * | SIGFPE | coredump | |
| 70 | * | SIGKILL | terminate(+) | |
| 71 | * | SIGUSR1 | terminate | |
| 72 | * | SIGSEGV | coredump | |
| 73 | * | SIGUSR2 | terminate | |
| 74 | * | SIGPIPE | terminate | |
| 75 | * | SIGALRM | terminate | |
| 76 | * | SIGTERM | terminate | |
| 77 | * | SIGCHLD | ignore | |
| 78 | * | SIGCONT | ignore(*) | |
| 79 | * | SIGSTOP | stop(*)(+) | |
| 80 | * | SIGTSTP | stop(*) | |
| 81 | * | SIGTTIN | stop(*) | |
| 82 | * | SIGTTOU | stop(*) | |
| 83 | * | SIGURG | ignore | |
| 84 | * | SIGXCPU | coredump | |
| 85 | * | SIGXFSZ | coredump | |
| 86 | * | SIGVTALRM | terminate | |
| 87 | * | SIGPROF | terminate | |
| 88 | * | SIGPOLL/SIGIO | terminate | |
| 89 | * | SIGSYS/SIGUNUSED | coredump | |
| 90 | * | SIGSTKFLT | terminate | |
| 91 | * | SIGWINCH | ignore | |
| 92 | * | SIGPWR | terminate | |
| 93 | * | SIGRTMIN-SIGRTMAX | terminate | |
| 94 | * +--------------------+------------------+ |
| 95 | * | non-POSIX signal | default action | |
| 96 | * +--------------------+------------------+ |
| 97 | * | SIGEMT | coredump | |
| 98 | * +--------------------+------------------+ |
| 99 | * |
| 100 | * (+) For SIGKILL and SIGSTOP the action is "always", not just "default". |
| 101 | * (*) Special job control effects: |
| 102 | * When SIGCONT is sent, it resumes the process (all threads in the group) |
| 103 | * from TASK_STOPPED state and also clears any pending/queued stop signals |
| 104 | * (any of those marked with "stop(*)"). This happens regardless of blocking, |
| 105 | * catching, or ignoring SIGCONT. When any stop signal is sent, it clears |
| 106 | * any pending/queued SIGCONT signals; this happens regardless of blocking, |
| 107 | * catching, or ignored the stop signal, though (except for SIGSTOP) the |
| 108 | * default action of stopping the process may happen later or never. |
| 109 | */ |
| 110 | |
| 111 | #ifdef SIGEMT |
| 112 | #define M_SIGEMT M(SIGEMT) |
| 113 | #else |
| 114 | #define M_SIGEMT 0 |
| 115 | #endif |
| 116 | |
| 117 | #if SIGRTMIN > BITS_PER_LONG |
| 118 | #define M(sig) (1ULL << ((sig)-1)) |
| 119 | #else |
| 120 | #define M(sig) (1UL << ((sig)-1)) |
| 121 | #endif |
| 122 | #define T(sig, mask) (M(sig) & (mask)) |
| 123 | |
| 124 | #define SIG_KERNEL_ONLY_MASK (\ |
| 125 | M(SIGKILL) | M(SIGSTOP) ) |
| 126 | |
| 127 | #define SIG_KERNEL_STOP_MASK (\ |
| 128 | M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) ) |
| 129 | |
| 130 | #define SIG_KERNEL_COREDUMP_MASK (\ |
| 131 | M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \ |
| 132 | M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \ |
| 133 | M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT ) |
| 134 | |
| 135 | #define SIG_KERNEL_IGNORE_MASK (\ |
| 136 | M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) ) |
| 137 | |
| 138 | #define sig_kernel_only(sig) \ |
| 139 | (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK)) |
| 140 | #define sig_kernel_coredump(sig) \ |
| 141 | (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK)) |
| 142 | #define sig_kernel_ignore(sig) \ |
| 143 | (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK)) |
| 144 | #define sig_kernel_stop(sig) \ |
| 145 | (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK)) |
| 146 | |
| 147 | #define sig_user_defined(t, signr) \ |
| 148 | (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \ |
| 149 | ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN)) |
| 150 | |
| 151 | #define sig_fatal(t, signr) \ |
| 152 | (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \ |
| 153 | (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL) |
| 154 | |
| 155 | static int sig_ignored(struct task_struct *t, int sig) |
| 156 | { |
| 157 | void __user * handler; |
| 158 | |
| 159 | /* |
| 160 | * Tracers always want to know about signals.. |
| 161 | */ |
| 162 | if (t->ptrace & PT_PTRACED) |
| 163 | return 0; |
| 164 | |
| 165 | /* |
| 166 | * Blocked signals are never ignored, since the |
| 167 | * signal handler may change by the time it is |
| 168 | * unblocked. |
| 169 | */ |
| 170 | if (sigismember(&t->blocked, sig)) |
| 171 | return 0; |
| 172 | |
| 173 | /* Is it explicitly or implicitly ignored? */ |
| 174 | handler = t->sighand->action[sig-1].sa.sa_handler; |
| 175 | return handler == SIG_IGN || |
| 176 | (handler == SIG_DFL && sig_kernel_ignore(sig)); |
| 177 | } |
| 178 | |
| 179 | /* |
| 180 | * Re-calculate pending state from the set of locally pending |
| 181 | * signals, globally pending signals, and blocked signals. |
| 182 | */ |
| 183 | static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) |
| 184 | { |
| 185 | unsigned long ready; |
| 186 | long i; |
| 187 | |
| 188 | switch (_NSIG_WORDS) { |
| 189 | default: |
| 190 | for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) |
| 191 | ready |= signal->sig[i] &~ blocked->sig[i]; |
| 192 | break; |
| 193 | |
| 194 | case 4: ready = signal->sig[3] &~ blocked->sig[3]; |
| 195 | ready |= signal->sig[2] &~ blocked->sig[2]; |
| 196 | ready |= signal->sig[1] &~ blocked->sig[1]; |
| 197 | ready |= signal->sig[0] &~ blocked->sig[0]; |
| 198 | break; |
| 199 | |
| 200 | case 2: ready = signal->sig[1] &~ blocked->sig[1]; |
| 201 | ready |= signal->sig[0] &~ blocked->sig[0]; |
| 202 | break; |
| 203 | |
| 204 | case 1: ready = signal->sig[0] &~ blocked->sig[0]; |
| 205 | } |
| 206 | return ready != 0; |
| 207 | } |
| 208 | |
| 209 | #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) |
| 210 | |
| 211 | fastcall void recalc_sigpending_tsk(struct task_struct *t) |
| 212 | { |
| 213 | if (t->signal->group_stop_count > 0 || |
| 214 | PENDING(&t->pending, &t->blocked) || |
| 215 | PENDING(&t->signal->shared_pending, &t->blocked)) |
| 216 | set_tsk_thread_flag(t, TIF_SIGPENDING); |
| 217 | else |
| 218 | clear_tsk_thread_flag(t, TIF_SIGPENDING); |
| 219 | } |
| 220 | |
| 221 | void recalc_sigpending(void) |
| 222 | { |
| 223 | recalc_sigpending_tsk(current); |
| 224 | } |
| 225 | |
| 226 | /* Given the mask, find the first available signal that should be serviced. */ |
| 227 | |
| 228 | static int |
| 229 | next_signal(struct sigpending *pending, sigset_t *mask) |
| 230 | { |
| 231 | unsigned long i, *s, *m, x; |
| 232 | int sig = 0; |
| 233 | |
| 234 | s = pending->signal.sig; |
| 235 | m = mask->sig; |
| 236 | switch (_NSIG_WORDS) { |
| 237 | default: |
| 238 | for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) |
| 239 | if ((x = *s &~ *m) != 0) { |
| 240 | sig = ffz(~x) + i*_NSIG_BPW + 1; |
| 241 | break; |
| 242 | } |
| 243 | break; |
| 244 | |
| 245 | case 2: if ((x = s[0] &~ m[0]) != 0) |
| 246 | sig = 1; |
| 247 | else if ((x = s[1] &~ m[1]) != 0) |
| 248 | sig = _NSIG_BPW + 1; |
| 249 | else |
| 250 | break; |
| 251 | sig += ffz(~x); |
| 252 | break; |
| 253 | |
| 254 | case 1: if ((x = *s &~ *m) != 0) |
| 255 | sig = ffz(~x) + 1; |
| 256 | break; |
| 257 | } |
| 258 | |
| 259 | return sig; |
| 260 | } |
| 261 | |
| 262 | static struct sigqueue *__sigqueue_alloc(struct task_struct *t, unsigned int __nocast flags, |
| 263 | int override_rlimit) |
| 264 | { |
| 265 | struct sigqueue *q = NULL; |
| 266 | |
| 267 | atomic_inc(&t->user->sigpending); |
| 268 | if (override_rlimit || |
| 269 | atomic_read(&t->user->sigpending) <= |
| 270 | t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) |
| 271 | q = kmem_cache_alloc(sigqueue_cachep, flags); |
| 272 | if (unlikely(q == NULL)) { |
| 273 | atomic_dec(&t->user->sigpending); |
| 274 | } else { |
| 275 | INIT_LIST_HEAD(&q->list); |
| 276 | q->flags = 0; |
| 277 | q->lock = NULL; |
| 278 | q->user = get_uid(t->user); |
| 279 | } |
| 280 | return(q); |
| 281 | } |
| 282 | |
| 283 | static inline void __sigqueue_free(struct sigqueue *q) |
| 284 | { |
| 285 | if (q->flags & SIGQUEUE_PREALLOC) |
| 286 | return; |
| 287 | atomic_dec(&q->user->sigpending); |
| 288 | free_uid(q->user); |
| 289 | kmem_cache_free(sigqueue_cachep, q); |
| 290 | } |
| 291 | |
| 292 | static void flush_sigqueue(struct sigpending *queue) |
| 293 | { |
| 294 | struct sigqueue *q; |
| 295 | |
| 296 | sigemptyset(&queue->signal); |
| 297 | while (!list_empty(&queue->list)) { |
| 298 | q = list_entry(queue->list.next, struct sigqueue , list); |
| 299 | list_del_init(&q->list); |
| 300 | __sigqueue_free(q); |
| 301 | } |
| 302 | } |
| 303 | |
| 304 | /* |
| 305 | * Flush all pending signals for a task. |
| 306 | */ |
| 307 | |
| 308 | void |
| 309 | flush_signals(struct task_struct *t) |
| 310 | { |
| 311 | unsigned long flags; |
| 312 | |
| 313 | spin_lock_irqsave(&t->sighand->siglock, flags); |
| 314 | clear_tsk_thread_flag(t,TIF_SIGPENDING); |
| 315 | flush_sigqueue(&t->pending); |
| 316 | flush_sigqueue(&t->signal->shared_pending); |
| 317 | spin_unlock_irqrestore(&t->sighand->siglock, flags); |
| 318 | } |
| 319 | |
| 320 | /* |
| 321 | * This function expects the tasklist_lock write-locked. |
| 322 | */ |
| 323 | void __exit_sighand(struct task_struct *tsk) |
| 324 | { |
| 325 | struct sighand_struct * sighand = tsk->sighand; |
| 326 | |
| 327 | /* Ok, we're done with the signal handlers */ |
| 328 | tsk->sighand = NULL; |
| 329 | if (atomic_dec_and_test(&sighand->count)) |
| 330 | kmem_cache_free(sighand_cachep, sighand); |
| 331 | } |
| 332 | |
| 333 | void exit_sighand(struct task_struct *tsk) |
| 334 | { |
| 335 | write_lock_irq(&tasklist_lock); |
| 336 | __exit_sighand(tsk); |
| 337 | write_unlock_irq(&tasklist_lock); |
| 338 | } |
| 339 | |
| 340 | /* |
| 341 | * This function expects the tasklist_lock write-locked. |
| 342 | */ |
| 343 | void __exit_signal(struct task_struct *tsk) |
| 344 | { |
| 345 | struct signal_struct * sig = tsk->signal; |
| 346 | struct sighand_struct * sighand = tsk->sighand; |
| 347 | |
| 348 | if (!sig) |
| 349 | BUG(); |
| 350 | if (!atomic_read(&sig->count)) |
| 351 | BUG(); |
| 352 | spin_lock(&sighand->siglock); |
| 353 | posix_cpu_timers_exit(tsk); |
| 354 | if (atomic_dec_and_test(&sig->count)) { |
| 355 | posix_cpu_timers_exit_group(tsk); |
| 356 | if (tsk == sig->curr_target) |
| 357 | sig->curr_target = next_thread(tsk); |
| 358 | tsk->signal = NULL; |
| 359 | spin_unlock(&sighand->siglock); |
| 360 | flush_sigqueue(&sig->shared_pending); |
| 361 | } else { |
| 362 | /* |
| 363 | * If there is any task waiting for the group exit |
| 364 | * then notify it: |
| 365 | */ |
| 366 | if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) { |
| 367 | wake_up_process(sig->group_exit_task); |
| 368 | sig->group_exit_task = NULL; |
| 369 | } |
| 370 | if (tsk == sig->curr_target) |
| 371 | sig->curr_target = next_thread(tsk); |
| 372 | tsk->signal = NULL; |
| 373 | /* |
| 374 | * Accumulate here the counters for all threads but the |
| 375 | * group leader as they die, so they can be added into |
| 376 | * the process-wide totals when those are taken. |
| 377 | * The group leader stays around as a zombie as long |
| 378 | * as there are other threads. When it gets reaped, |
| 379 | * the exit.c code will add its counts into these totals. |
| 380 | * We won't ever get here for the group leader, since it |
| 381 | * will have been the last reference on the signal_struct. |
| 382 | */ |
| 383 | sig->utime = cputime_add(sig->utime, tsk->utime); |
| 384 | sig->stime = cputime_add(sig->stime, tsk->stime); |
| 385 | sig->min_flt += tsk->min_flt; |
| 386 | sig->maj_flt += tsk->maj_flt; |
| 387 | sig->nvcsw += tsk->nvcsw; |
| 388 | sig->nivcsw += tsk->nivcsw; |
| 389 | sig->sched_time += tsk->sched_time; |
| 390 | spin_unlock(&sighand->siglock); |
| 391 | sig = NULL; /* Marker for below. */ |
| 392 | } |
| 393 | clear_tsk_thread_flag(tsk,TIF_SIGPENDING); |
| 394 | flush_sigqueue(&tsk->pending); |
| 395 | if (sig) { |
| 396 | /* |
| 397 | * We are cleaning up the signal_struct here. We delayed |
| 398 | * calling exit_itimers until after flush_sigqueue, just in |
| 399 | * case our thread-local pending queue contained a queued |
| 400 | * timer signal that would have been cleared in |
| 401 | * exit_itimers. When that called sigqueue_free, it would |
| 402 | * attempt to re-take the tasklist_lock and deadlock. This |
| 403 | * can never happen if we ensure that all queues the |
| 404 | * timer's signal might be queued on have been flushed |
| 405 | * first. The shared_pending queue, and our own pending |
| 406 | * queue are the only queues the timer could be on, since |
| 407 | * there are no other threads left in the group and timer |
| 408 | * signals are constrained to threads inside the group. |
| 409 | */ |
| 410 | exit_itimers(sig); |
| 411 | exit_thread_group_keys(sig); |
| 412 | kmem_cache_free(signal_cachep, sig); |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | void exit_signal(struct task_struct *tsk) |
| 417 | { |
| 418 | write_lock_irq(&tasklist_lock); |
| 419 | __exit_signal(tsk); |
| 420 | write_unlock_irq(&tasklist_lock); |
| 421 | } |
| 422 | |
| 423 | /* |
| 424 | * Flush all handlers for a task. |
| 425 | */ |
| 426 | |
| 427 | void |
| 428 | flush_signal_handlers(struct task_struct *t, int force_default) |
| 429 | { |
| 430 | int i; |
| 431 | struct k_sigaction *ka = &t->sighand->action[0]; |
| 432 | for (i = _NSIG ; i != 0 ; i--) { |
| 433 | if (force_default || ka->sa.sa_handler != SIG_IGN) |
| 434 | ka->sa.sa_handler = SIG_DFL; |
| 435 | ka->sa.sa_flags = 0; |
| 436 | sigemptyset(&ka->sa.sa_mask); |
| 437 | ka++; |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | |
| 442 | /* Notify the system that a driver wants to block all signals for this |
| 443 | * process, and wants to be notified if any signals at all were to be |
| 444 | * sent/acted upon. If the notifier routine returns non-zero, then the |
| 445 | * signal will be acted upon after all. If the notifier routine returns 0, |
| 446 | * then then signal will be blocked. Only one block per process is |
| 447 | * allowed. priv is a pointer to private data that the notifier routine |
| 448 | * can use to determine if the signal should be blocked or not. */ |
| 449 | |
| 450 | void |
| 451 | block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) |
| 452 | { |
| 453 | unsigned long flags; |
| 454 | |
| 455 | spin_lock_irqsave(¤t->sighand->siglock, flags); |
| 456 | current->notifier_mask = mask; |
| 457 | current->notifier_data = priv; |
| 458 | current->notifier = notifier; |
| 459 | spin_unlock_irqrestore(¤t->sighand->siglock, flags); |
| 460 | } |
| 461 | |
| 462 | /* Notify the system that blocking has ended. */ |
| 463 | |
| 464 | void |
| 465 | unblock_all_signals(void) |
| 466 | { |
| 467 | unsigned long flags; |
| 468 | |
| 469 | spin_lock_irqsave(¤t->sighand->siglock, flags); |
| 470 | current->notifier = NULL; |
| 471 | current->notifier_data = NULL; |
| 472 | recalc_sigpending(); |
| 473 | spin_unlock_irqrestore(¤t->sighand->siglock, flags); |
| 474 | } |
| 475 | |
| 476 | static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info) |
| 477 | { |
| 478 | struct sigqueue *q, *first = NULL; |
| 479 | int still_pending = 0; |
| 480 | |
| 481 | if (unlikely(!sigismember(&list->signal, sig))) |
| 482 | return 0; |
| 483 | |
| 484 | /* |
| 485 | * Collect the siginfo appropriate to this signal. Check if |
| 486 | * there is another siginfo for the same signal. |
| 487 | */ |
| 488 | list_for_each_entry(q, &list->list, list) { |
| 489 | if (q->info.si_signo == sig) { |
| 490 | if (first) { |
| 491 | still_pending = 1; |
| 492 | break; |
| 493 | } |
| 494 | first = q; |
| 495 | } |
| 496 | } |
| 497 | if (first) { |
| 498 | list_del_init(&first->list); |
| 499 | copy_siginfo(info, &first->info); |
| 500 | __sigqueue_free(first); |
| 501 | if (!still_pending) |
| 502 | sigdelset(&list->signal, sig); |
| 503 | } else { |
| 504 | |
| 505 | /* Ok, it wasn't in the queue. This must be |
| 506 | a fast-pathed signal or we must have been |
| 507 | out of queue space. So zero out the info. |
| 508 | */ |
| 509 | sigdelset(&list->signal, sig); |
| 510 | info->si_signo = sig; |
| 511 | info->si_errno = 0; |
| 512 | info->si_code = 0; |
| 513 | info->si_pid = 0; |
| 514 | info->si_uid = 0; |
| 515 | } |
| 516 | return 1; |
| 517 | } |
| 518 | |
| 519 | static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, |
| 520 | siginfo_t *info) |
| 521 | { |
| 522 | int sig = 0; |
| 523 | |
| 524 | sig = next_signal(pending, mask); |
| 525 | if (sig) { |
| 526 | if (current->notifier) { |
| 527 | if (sigismember(current->notifier_mask, sig)) { |
| 528 | if (!(current->notifier)(current->notifier_data)) { |
| 529 | clear_thread_flag(TIF_SIGPENDING); |
| 530 | return 0; |
| 531 | } |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | if (!collect_signal(sig, pending, info)) |
| 536 | sig = 0; |
| 537 | |
| 538 | } |
| 539 | recalc_sigpending(); |
| 540 | |
| 541 | return sig; |
| 542 | } |
| 543 | |
| 544 | /* |
| 545 | * Dequeue a signal and return the element to the caller, which is |
| 546 | * expected to free it. |
| 547 | * |
| 548 | * All callers have to hold the siglock. |
| 549 | */ |
| 550 | int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) |
| 551 | { |
| 552 | int signr = __dequeue_signal(&tsk->pending, mask, info); |
| 553 | if (!signr) |
| 554 | signr = __dequeue_signal(&tsk->signal->shared_pending, |
| 555 | mask, info); |
| 556 | if (signr && unlikely(sig_kernel_stop(signr))) { |
| 557 | /* |
| 558 | * Set a marker that we have dequeued a stop signal. Our |
| 559 | * caller might release the siglock and then the pending |
| 560 | * stop signal it is about to process is no longer in the |
| 561 | * pending bitmasks, but must still be cleared by a SIGCONT |
| 562 | * (and overruled by a SIGKILL). So those cases clear this |
| 563 | * shared flag after we've set it. Note that this flag may |
| 564 | * remain set after the signal we return is ignored or |
| 565 | * handled. That doesn't matter because its only purpose |
| 566 | * is to alert stop-signal processing code when another |
| 567 | * processor has come along and cleared the flag. |
| 568 | */ |
| 569 | tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; |
| 570 | } |
| 571 | if ( signr && |
| 572 | ((info->si_code & __SI_MASK) == __SI_TIMER) && |
| 573 | info->si_sys_private){ |
| 574 | /* |
| 575 | * Release the siglock to ensure proper locking order |
| 576 | * of timer locks outside of siglocks. Note, we leave |
| 577 | * irqs disabled here, since the posix-timers code is |
| 578 | * about to disable them again anyway. |
| 579 | */ |
| 580 | spin_unlock(&tsk->sighand->siglock); |
| 581 | do_schedule_next_timer(info); |
| 582 | spin_lock(&tsk->sighand->siglock); |
| 583 | } |
| 584 | return signr; |
| 585 | } |
| 586 | |
| 587 | /* |
| 588 | * Tell a process that it has a new active signal.. |
| 589 | * |
| 590 | * NOTE! we rely on the previous spin_lock to |
| 591 | * lock interrupts for us! We can only be called with |
| 592 | * "siglock" held, and the local interrupt must |
| 593 | * have been disabled when that got acquired! |
| 594 | * |
| 595 | * No need to set need_resched since signal event passing |
| 596 | * goes through ->blocked |
| 597 | */ |
| 598 | void signal_wake_up(struct task_struct *t, int resume) |
| 599 | { |
| 600 | unsigned int mask; |
| 601 | |
| 602 | set_tsk_thread_flag(t, TIF_SIGPENDING); |
| 603 | |
| 604 | /* |
| 605 | * For SIGKILL, we want to wake it up in the stopped/traced case. |
| 606 | * We don't check t->state here because there is a race with it |
| 607 | * executing another processor and just now entering stopped state. |
| 608 | * By using wake_up_state, we ensure the process will wake up and |
| 609 | * handle its death signal. |
| 610 | */ |
| 611 | mask = TASK_INTERRUPTIBLE; |
| 612 | if (resume) |
| 613 | mask |= TASK_STOPPED | TASK_TRACED; |
| 614 | if (!wake_up_state(t, mask)) |
| 615 | kick_process(t); |
| 616 | } |
| 617 | |
| 618 | /* |
| 619 | * Remove signals in mask from the pending set and queue. |
| 620 | * Returns 1 if any signals were found. |
| 621 | * |
| 622 | * All callers must be holding the siglock. |
| 623 | */ |
| 624 | static int rm_from_queue(unsigned long mask, struct sigpending *s) |
| 625 | { |
| 626 | struct sigqueue *q, *n; |
| 627 | |
| 628 | if (!sigtestsetmask(&s->signal, mask)) |
| 629 | return 0; |
| 630 | |
| 631 | sigdelsetmask(&s->signal, mask); |
| 632 | list_for_each_entry_safe(q, n, &s->list, list) { |
| 633 | if (q->info.si_signo < SIGRTMIN && |
| 634 | (mask & sigmask(q->info.si_signo))) { |
| 635 | list_del_init(&q->list); |
| 636 | __sigqueue_free(q); |
| 637 | } |
| 638 | } |
| 639 | return 1; |
| 640 | } |
| 641 | |
| 642 | /* |
| 643 | * Bad permissions for sending the signal |
| 644 | */ |
| 645 | static int check_kill_permission(int sig, struct siginfo *info, |
| 646 | struct task_struct *t) |
| 647 | { |
| 648 | int error = -EINVAL; |
| 649 | if (sig < 0 || sig > _NSIG) |
| 650 | return error; |
| 651 | error = -EPERM; |
| 652 | if ((!info || ((unsigned long)info != 1 && |
| 653 | (unsigned long)info != 2 && SI_FROMUSER(info))) |
| 654 | && ((sig != SIGCONT) || |
| 655 | (current->signal->session != t->signal->session)) |
| 656 | && (current->euid ^ t->suid) && (current->euid ^ t->uid) |
| 657 | && (current->uid ^ t->suid) && (current->uid ^ t->uid) |
| 658 | && !capable(CAP_KILL)) |
| 659 | return error; |
| 660 | return security_task_kill(t, info, sig); |
| 661 | } |
| 662 | |
| 663 | /* forward decl */ |
| 664 | static void do_notify_parent_cldstop(struct task_struct *tsk, |
| 665 | struct task_struct *parent, |
| 666 | int why); |
| 667 | |
| 668 | /* |
| 669 | * Handle magic process-wide effects of stop/continue signals. |
| 670 | * Unlike the signal actions, these happen immediately at signal-generation |
| 671 | * time regardless of blocking, ignoring, or handling. This does the |
| 672 | * actual continuing for SIGCONT, but not the actual stopping for stop |
| 673 | * signals. The process stop is done as a signal action for SIG_DFL. |
| 674 | */ |
| 675 | static void handle_stop_signal(int sig, struct task_struct *p) |
| 676 | { |
| 677 | struct task_struct *t; |
| 678 | |
| 679 | if (p->flags & SIGNAL_GROUP_EXIT) |
| 680 | /* |
| 681 | * The process is in the middle of dying already. |
| 682 | */ |
| 683 | return; |
| 684 | |
| 685 | if (sig_kernel_stop(sig)) { |
| 686 | /* |
| 687 | * This is a stop signal. Remove SIGCONT from all queues. |
| 688 | */ |
| 689 | rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending); |
| 690 | t = p; |
| 691 | do { |
| 692 | rm_from_queue(sigmask(SIGCONT), &t->pending); |
| 693 | t = next_thread(t); |
| 694 | } while (t != p); |
| 695 | } else if (sig == SIGCONT) { |
| 696 | /* |
| 697 | * Remove all stop signals from all queues, |
| 698 | * and wake all threads. |
| 699 | */ |
| 700 | if (unlikely(p->signal->group_stop_count > 0)) { |
| 701 | /* |
| 702 | * There was a group stop in progress. We'll |
| 703 | * pretend it finished before we got here. We are |
| 704 | * obliged to report it to the parent: if the |
| 705 | * SIGSTOP happened "after" this SIGCONT, then it |
| 706 | * would have cleared this pending SIGCONT. If it |
| 707 | * happened "before" this SIGCONT, then the parent |
| 708 | * got the SIGCHLD about the stop finishing before |
| 709 | * the continue happened. We do the notification |
| 710 | * now, and it's as if the stop had finished and |
| 711 | * the SIGCHLD was pending on entry to this kill. |
| 712 | */ |
| 713 | p->signal->group_stop_count = 0; |
| 714 | p->signal->flags = SIGNAL_STOP_CONTINUED; |
| 715 | spin_unlock(&p->sighand->siglock); |
| 716 | if (p->ptrace & PT_PTRACED) |
| 717 | do_notify_parent_cldstop(p, p->parent, |
| 718 | CLD_STOPPED); |
| 719 | else |
| 720 | do_notify_parent_cldstop( |
| 721 | p->group_leader, |
| 722 | p->group_leader->real_parent, |
| 723 | CLD_STOPPED); |
| 724 | spin_lock(&p->sighand->siglock); |
| 725 | } |
| 726 | rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); |
| 727 | t = p; |
| 728 | do { |
| 729 | unsigned int state; |
| 730 | rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); |
| 731 | |
| 732 | /* |
| 733 | * If there is a handler for SIGCONT, we must make |
| 734 | * sure that no thread returns to user mode before |
| 735 | * we post the signal, in case it was the only |
| 736 | * thread eligible to run the signal handler--then |
| 737 | * it must not do anything between resuming and |
| 738 | * running the handler. With the TIF_SIGPENDING |
| 739 | * flag set, the thread will pause and acquire the |
| 740 | * siglock that we hold now and until we've queued |
| 741 | * the pending signal. |
| 742 | * |
| 743 | * Wake up the stopped thread _after_ setting |
| 744 | * TIF_SIGPENDING |
| 745 | */ |
| 746 | state = TASK_STOPPED; |
| 747 | if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { |
| 748 | set_tsk_thread_flag(t, TIF_SIGPENDING); |
| 749 | state |= TASK_INTERRUPTIBLE; |
| 750 | } |
| 751 | wake_up_state(t, state); |
| 752 | |
| 753 | t = next_thread(t); |
| 754 | } while (t != p); |
| 755 | |
| 756 | if (p->signal->flags & SIGNAL_STOP_STOPPED) { |
| 757 | /* |
| 758 | * We were in fact stopped, and are now continued. |
| 759 | * Notify the parent with CLD_CONTINUED. |
| 760 | */ |
| 761 | p->signal->flags = SIGNAL_STOP_CONTINUED; |
| 762 | p->signal->group_exit_code = 0; |
| 763 | spin_unlock(&p->sighand->siglock); |
| 764 | if (p->ptrace & PT_PTRACED) |
| 765 | do_notify_parent_cldstop(p, p->parent, |
| 766 | CLD_CONTINUED); |
| 767 | else |
| 768 | do_notify_parent_cldstop( |
| 769 | p->group_leader, |
| 770 | p->group_leader->real_parent, |
| 771 | CLD_CONTINUED); |
| 772 | spin_lock(&p->sighand->siglock); |
| 773 | } else { |
| 774 | /* |
| 775 | * We are not stopped, but there could be a stop |
| 776 | * signal in the middle of being processed after |
| 777 | * being removed from the queue. Clear that too. |
| 778 | */ |
| 779 | p->signal->flags = 0; |
| 780 | } |
| 781 | } else if (sig == SIGKILL) { |
| 782 | /* |
| 783 | * Make sure that any pending stop signal already dequeued |
| 784 | * is undone by the wakeup for SIGKILL. |
| 785 | */ |
| 786 | p->signal->flags = 0; |
| 787 | } |
| 788 | } |
| 789 | |
| 790 | static int send_signal(int sig, struct siginfo *info, struct task_struct *t, |
| 791 | struct sigpending *signals) |
| 792 | { |
| 793 | struct sigqueue * q = NULL; |
| 794 | int ret = 0; |
| 795 | |
| 796 | /* |
| 797 | * fast-pathed signals for kernel-internal things like SIGSTOP |
| 798 | * or SIGKILL. |
| 799 | */ |
| 800 | if ((unsigned long)info == 2) |
| 801 | goto out_set; |
| 802 | |
| 803 | /* Real-time signals must be queued if sent by sigqueue, or |
| 804 | some other real-time mechanism. It is implementation |
| 805 | defined whether kill() does so. We attempt to do so, on |
| 806 | the principle of least surprise, but since kill is not |
| 807 | allowed to fail with EAGAIN when low on memory we just |
| 808 | make sure at least one signal gets delivered and don't |
| 809 | pass on the info struct. */ |
| 810 | |
| 811 | q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN && |
| 812 | ((unsigned long) info < 2 || |
| 813 | info->si_code >= 0))); |
| 814 | if (q) { |
| 815 | list_add_tail(&q->list, &signals->list); |
| 816 | switch ((unsigned long) info) { |
| 817 | case 0: |
| 818 | q->info.si_signo = sig; |
| 819 | q->info.si_errno = 0; |
| 820 | q->info.si_code = SI_USER; |
| 821 | q->info.si_pid = current->pid; |
| 822 | q->info.si_uid = current->uid; |
| 823 | break; |
| 824 | case 1: |
| 825 | q->info.si_signo = sig; |
| 826 | q->info.si_errno = 0; |
| 827 | q->info.si_code = SI_KERNEL; |
| 828 | q->info.si_pid = 0; |
| 829 | q->info.si_uid = 0; |
| 830 | break; |
| 831 | default: |
| 832 | copy_siginfo(&q->info, info); |
| 833 | break; |
| 834 | } |
| 835 | } else { |
| 836 | if (sig >= SIGRTMIN && info && (unsigned long)info != 1 |
| 837 | && info->si_code != SI_USER) |
| 838 | /* |
| 839 | * Queue overflow, abort. We may abort if the signal was rt |
| 840 | * and sent by user using something other than kill(). |
| 841 | */ |
| 842 | return -EAGAIN; |
| 843 | if (((unsigned long)info > 1) && (info->si_code == SI_TIMER)) |
| 844 | /* |
| 845 | * Set up a return to indicate that we dropped |
| 846 | * the signal. |
| 847 | */ |
| 848 | ret = info->si_sys_private; |
| 849 | } |
| 850 | |
| 851 | out_set: |
| 852 | sigaddset(&signals->signal, sig); |
| 853 | return ret; |
| 854 | } |
| 855 | |
| 856 | #define LEGACY_QUEUE(sigptr, sig) \ |
| 857 | (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig))) |
| 858 | |
| 859 | |
| 860 | static int |
| 861 | specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) |
| 862 | { |
| 863 | int ret = 0; |
| 864 | |
| 865 | if (!irqs_disabled()) |
| 866 | BUG(); |
| 867 | assert_spin_locked(&t->sighand->siglock); |
| 868 | |
| 869 | if (((unsigned long)info > 2) && (info->si_code == SI_TIMER)) |
| 870 | /* |
| 871 | * Set up a return to indicate that we dropped the signal. |
| 872 | */ |
| 873 | ret = info->si_sys_private; |
| 874 | |
| 875 | /* Short-circuit ignored signals. */ |
| 876 | if (sig_ignored(t, sig)) |
| 877 | goto out; |
| 878 | |
| 879 | /* Support queueing exactly one non-rt signal, so that we |
| 880 | can get more detailed information about the cause of |
| 881 | the signal. */ |
| 882 | if (LEGACY_QUEUE(&t->pending, sig)) |
| 883 | goto out; |
| 884 | |
| 885 | ret = send_signal(sig, info, t, &t->pending); |
| 886 | if (!ret && !sigismember(&t->blocked, sig)) |
| 887 | signal_wake_up(t, sig == SIGKILL); |
| 888 | out: |
| 889 | return ret; |
| 890 | } |
| 891 | |
| 892 | /* |
| 893 | * Force a signal that the process can't ignore: if necessary |
| 894 | * we unblock the signal and change any SIG_IGN to SIG_DFL. |
| 895 | */ |
| 896 | |
| 897 | int |
| 898 | force_sig_info(int sig, struct siginfo *info, struct task_struct *t) |
| 899 | { |
| 900 | unsigned long int flags; |
| 901 | int ret; |
| 902 | |
| 903 | spin_lock_irqsave(&t->sighand->siglock, flags); |
| 904 | if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) { |
| 905 | t->sighand->action[sig-1].sa.sa_handler = SIG_DFL; |
| 906 | sigdelset(&t->blocked, sig); |
| 907 | recalc_sigpending_tsk(t); |
| 908 | } |
| 909 | ret = specific_send_sig_info(sig, info, t); |
| 910 | spin_unlock_irqrestore(&t->sighand->siglock, flags); |
| 911 | |
| 912 | return ret; |
| 913 | } |
| 914 | |
| 915 | void |
| 916 | force_sig_specific(int sig, struct task_struct *t) |
| 917 | { |
| 918 | unsigned long int flags; |
| 919 | |
| 920 | spin_lock_irqsave(&t->sighand->siglock, flags); |
| 921 | if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) |
| 922 | t->sighand->action[sig-1].sa.sa_handler = SIG_DFL; |
| 923 | sigdelset(&t->blocked, sig); |
| 924 | recalc_sigpending_tsk(t); |
| 925 | specific_send_sig_info(sig, (void *)2, t); |
| 926 | spin_unlock_irqrestore(&t->sighand->siglock, flags); |
| 927 | } |
| 928 | |
| 929 | /* |
| 930 | * Test if P wants to take SIG. After we've checked all threads with this, |
| 931 | * it's equivalent to finding no threads not blocking SIG. Any threads not |
| 932 | * blocking SIG were ruled out because they are not running and already |
| 933 | * have pending signals. Such threads will dequeue from the shared queue |
| 934 | * as soon as they're available, so putting the signal on the shared queue |
| 935 | * will be equivalent to sending it to one such thread. |
| 936 | */ |
| 937 | #define wants_signal(sig, p, mask) \ |
| 938 | (!sigismember(&(p)->blocked, sig) \ |
| 939 | && !((p)->state & mask) \ |
| 940 | && !((p)->flags & PF_EXITING) \ |
| 941 | && (task_curr(p) || !signal_pending(p))) |
| 942 | |
| 943 | |
| 944 | static void |
| 945 | __group_complete_signal(int sig, struct task_struct *p) |
| 946 | { |
| 947 | unsigned int mask; |
| 948 | struct task_struct *t; |
| 949 | |
| 950 | /* |
| 951 | * Don't bother traced and stopped tasks (but |
| 952 | * SIGKILL will punch through that). |
| 953 | */ |
| 954 | mask = TASK_STOPPED | TASK_TRACED; |
| 955 | if (sig == SIGKILL) |
| 956 | mask = 0; |
| 957 | |
| 958 | /* |
| 959 | * Now find a thread we can wake up to take the signal off the queue. |
| 960 | * |
| 961 | * If the main thread wants the signal, it gets first crack. |
| 962 | * Probably the least surprising to the average bear. |
| 963 | */ |
| 964 | if (wants_signal(sig, p, mask)) |
| 965 | t = p; |
| 966 | else if (thread_group_empty(p)) |
| 967 | /* |
| 968 | * There is just one thread and it does not need to be woken. |
| 969 | * It will dequeue unblocked signals before it runs again. |
| 970 | */ |
| 971 | return; |
| 972 | else { |
| 973 | /* |
| 974 | * Otherwise try to find a suitable thread. |
| 975 | */ |
| 976 | t = p->signal->curr_target; |
| 977 | if (t == NULL) |
| 978 | /* restart balancing at this thread */ |
| 979 | t = p->signal->curr_target = p; |
| 980 | BUG_ON(t->tgid != p->tgid); |
| 981 | |
| 982 | while (!wants_signal(sig, t, mask)) { |
| 983 | t = next_thread(t); |
| 984 | if (t == p->signal->curr_target) |
| 985 | /* |
| 986 | * No thread needs to be woken. |
| 987 | * Any eligible threads will see |
| 988 | * the signal in the queue soon. |
| 989 | */ |
| 990 | return; |
| 991 | } |
| 992 | p->signal->curr_target = t; |
| 993 | } |
| 994 | |
| 995 | /* |
| 996 | * Found a killable thread. If the signal will be fatal, |
| 997 | * then start taking the whole group down immediately. |
| 998 | */ |
| 999 | if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) && |
| 1000 | !sigismember(&t->real_blocked, sig) && |
| 1001 | (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) { |
| 1002 | /* |
| 1003 | * This signal will be fatal to the whole group. |
| 1004 | */ |
| 1005 | if (!sig_kernel_coredump(sig)) { |
| 1006 | /* |
| 1007 | * Start a group exit and wake everybody up. |
| 1008 | * This way we don't have other threads |
| 1009 | * running and doing things after a slower |
| 1010 | * thread has the fatal signal pending. |
| 1011 | */ |
| 1012 | p->signal->flags = SIGNAL_GROUP_EXIT; |
| 1013 | p->signal->group_exit_code = sig; |
| 1014 | p->signal->group_stop_count = 0; |
| 1015 | t = p; |
| 1016 | do { |
| 1017 | sigaddset(&t->pending.signal, SIGKILL); |
| 1018 | signal_wake_up(t, 1); |
| 1019 | t = next_thread(t); |
| 1020 | } while (t != p); |
| 1021 | return; |
| 1022 | } |
| 1023 | |
| 1024 | /* |
| 1025 | * There will be a core dump. We make all threads other |
| 1026 | * than the chosen one go into a group stop so that nothing |
| 1027 | * happens until it gets scheduled, takes the signal off |
| 1028 | * the shared queue, and does the core dump. This is a |
| 1029 | * little more complicated than strictly necessary, but it |
| 1030 | * keeps the signal state that winds up in the core dump |
| 1031 | * unchanged from the death state, e.g. which thread had |
| 1032 | * the core-dump signal unblocked. |
| 1033 | */ |
| 1034 | rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); |
| 1035 | rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); |
| 1036 | p->signal->group_stop_count = 0; |
| 1037 | p->signal->group_exit_task = t; |
| 1038 | t = p; |
| 1039 | do { |
| 1040 | p->signal->group_stop_count++; |
| 1041 | signal_wake_up(t, 0); |
| 1042 | t = next_thread(t); |
| 1043 | } while (t != p); |
| 1044 | wake_up_process(p->signal->group_exit_task); |
| 1045 | return; |
| 1046 | } |
| 1047 | |
| 1048 | /* |
| 1049 | * The signal is already in the shared-pending queue. |
| 1050 | * Tell the chosen thread to wake up and dequeue it. |
| 1051 | */ |
| 1052 | signal_wake_up(t, sig == SIGKILL); |
| 1053 | return; |
| 1054 | } |
| 1055 | |
| 1056 | int |
| 1057 | __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) |
| 1058 | { |
| 1059 | int ret = 0; |
| 1060 | |
| 1061 | assert_spin_locked(&p->sighand->siglock); |
| 1062 | handle_stop_signal(sig, p); |
| 1063 | |
| 1064 | if (((unsigned long)info > 2) && (info->si_code == SI_TIMER)) |
| 1065 | /* |
| 1066 | * Set up a return to indicate that we dropped the signal. |
| 1067 | */ |
| 1068 | ret = info->si_sys_private; |
| 1069 | |
| 1070 | /* Short-circuit ignored signals. */ |
| 1071 | if (sig_ignored(p, sig)) |
| 1072 | return ret; |
| 1073 | |
| 1074 | if (LEGACY_QUEUE(&p->signal->shared_pending, sig)) |
| 1075 | /* This is a non-RT signal and we already have one queued. */ |
| 1076 | return ret; |
| 1077 | |
| 1078 | /* |
| 1079 | * Put this signal on the shared-pending queue, or fail with EAGAIN. |
| 1080 | * We always use the shared queue for process-wide signals, |
| 1081 | * to avoid several races. |
| 1082 | */ |
| 1083 | ret = send_signal(sig, info, p, &p->signal->shared_pending); |
| 1084 | if (unlikely(ret)) |
| 1085 | return ret; |
| 1086 | |
| 1087 | __group_complete_signal(sig, p); |
| 1088 | return 0; |
| 1089 | } |
| 1090 | |
| 1091 | /* |
| 1092 | * Nuke all other threads in the group. |
| 1093 | */ |
| 1094 | void zap_other_threads(struct task_struct *p) |
| 1095 | { |
| 1096 | struct task_struct *t; |
| 1097 | |
| 1098 | p->signal->flags = SIGNAL_GROUP_EXIT; |
| 1099 | p->signal->group_stop_count = 0; |
| 1100 | |
| 1101 | if (thread_group_empty(p)) |
| 1102 | return; |
| 1103 | |
| 1104 | for (t = next_thread(p); t != p; t = next_thread(t)) { |
| 1105 | /* |
| 1106 | * Don't bother with already dead threads |
| 1107 | */ |
| 1108 | if (t->exit_state) |
| 1109 | continue; |
| 1110 | |
| 1111 | /* |
| 1112 | * We don't want to notify the parent, since we are |
| 1113 | * killed as part of a thread group due to another |
| 1114 | * thread doing an execve() or similar. So set the |
| 1115 | * exit signal to -1 to allow immediate reaping of |
| 1116 | * the process. But don't detach the thread group |
| 1117 | * leader. |
| 1118 | */ |
| 1119 | if (t != p->group_leader) |
| 1120 | t->exit_signal = -1; |
| 1121 | |
| 1122 | sigaddset(&t->pending.signal, SIGKILL); |
| 1123 | rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); |
| 1124 | signal_wake_up(t, 1); |
| 1125 | } |
| 1126 | } |
| 1127 | |
| 1128 | /* |
| 1129 | * Must be called with the tasklist_lock held for reading! |
| 1130 | */ |
| 1131 | int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) |
| 1132 | { |
| 1133 | unsigned long flags; |
| 1134 | int ret; |
| 1135 | |
| 1136 | ret = check_kill_permission(sig, info, p); |
| 1137 | if (!ret && sig && p->sighand) { |
| 1138 | spin_lock_irqsave(&p->sighand->siglock, flags); |
| 1139 | ret = __group_send_sig_info(sig, info, p); |
| 1140 | spin_unlock_irqrestore(&p->sighand->siglock, flags); |
| 1141 | } |
| 1142 | |
| 1143 | return ret; |
| 1144 | } |
| 1145 | |
| 1146 | /* |
| 1147 | * kill_pg_info() sends a signal to a process group: this is what the tty |
| 1148 | * control characters do (^C, ^Z etc) |
| 1149 | */ |
| 1150 | |
| 1151 | int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp) |
| 1152 | { |
| 1153 | struct task_struct *p = NULL; |
| 1154 | int retval, success; |
| 1155 | |
| 1156 | if (pgrp <= 0) |
| 1157 | return -EINVAL; |
| 1158 | |
| 1159 | success = 0; |
| 1160 | retval = -ESRCH; |
| 1161 | do_each_task_pid(pgrp, PIDTYPE_PGID, p) { |
| 1162 | int err = group_send_sig_info(sig, info, p); |
| 1163 | success |= !err; |
| 1164 | retval = err; |
| 1165 | } while_each_task_pid(pgrp, PIDTYPE_PGID, p); |
| 1166 | return success ? 0 : retval; |
| 1167 | } |
| 1168 | |
| 1169 | int |
| 1170 | kill_pg_info(int sig, struct siginfo *info, pid_t pgrp) |
| 1171 | { |
| 1172 | int retval; |
| 1173 | |
| 1174 | read_lock(&tasklist_lock); |
| 1175 | retval = __kill_pg_info(sig, info, pgrp); |
| 1176 | read_unlock(&tasklist_lock); |
| 1177 | |
| 1178 | return retval; |
| 1179 | } |
| 1180 | |
| 1181 | int |
| 1182 | kill_proc_info(int sig, struct siginfo *info, pid_t pid) |
| 1183 | { |
| 1184 | int error; |
| 1185 | struct task_struct *p; |
| 1186 | |
| 1187 | read_lock(&tasklist_lock); |
| 1188 | p = find_task_by_pid(pid); |
| 1189 | error = -ESRCH; |
| 1190 | if (p) |
| 1191 | error = group_send_sig_info(sig, info, p); |
| 1192 | read_unlock(&tasklist_lock); |
| 1193 | return error; |
| 1194 | } |
| 1195 | |
| 1196 | |
| 1197 | /* |
| 1198 | * kill_something_info() interprets pid in interesting ways just like kill(2). |
| 1199 | * |
| 1200 | * POSIX specifies that kill(-1,sig) is unspecified, but what we have |
| 1201 | * is probably wrong. Should make it like BSD or SYSV. |
| 1202 | */ |
| 1203 | |
| 1204 | static int kill_something_info(int sig, struct siginfo *info, int pid) |
| 1205 | { |
| 1206 | if (!pid) { |
| 1207 | return kill_pg_info(sig, info, process_group(current)); |
| 1208 | } else if (pid == -1) { |
| 1209 | int retval = 0, count = 0; |
| 1210 | struct task_struct * p; |
| 1211 | |
| 1212 | read_lock(&tasklist_lock); |
| 1213 | for_each_process(p) { |
| 1214 | if (p->pid > 1 && p->tgid != current->tgid) { |
| 1215 | int err = group_send_sig_info(sig, info, p); |
| 1216 | ++count; |
| 1217 | if (err != -EPERM) |
| 1218 | retval = err; |
| 1219 | } |
| 1220 | } |
| 1221 | read_unlock(&tasklist_lock); |
| 1222 | return count ? retval : -ESRCH; |
| 1223 | } else if (pid < 0) { |
| 1224 | return kill_pg_info(sig, info, -pid); |
| 1225 | } else { |
| 1226 | return kill_proc_info(sig, info, pid); |
| 1227 | } |
| 1228 | } |
| 1229 | |
| 1230 | /* |
| 1231 | * These are for backward compatibility with the rest of the kernel source. |
| 1232 | */ |
| 1233 | |
| 1234 | /* |
| 1235 | * These two are the most common entry points. They send a signal |
| 1236 | * just to the specific thread. |
| 1237 | */ |
| 1238 | int |
| 1239 | send_sig_info(int sig, struct siginfo *info, struct task_struct *p) |
| 1240 | { |
| 1241 | int ret; |
| 1242 | unsigned long flags; |
| 1243 | |
| 1244 | /* |
| 1245 | * Make sure legacy kernel users don't send in bad values |
| 1246 | * (normal paths check this in check_kill_permission). |
| 1247 | */ |
| 1248 | if (sig < 0 || sig > _NSIG) |
| 1249 | return -EINVAL; |
| 1250 | |
| 1251 | /* |
| 1252 | * We need the tasklist lock even for the specific |
| 1253 | * thread case (when we don't need to follow the group |
| 1254 | * lists) in order to avoid races with "p->sighand" |
| 1255 | * going away or changing from under us. |
| 1256 | */ |
| 1257 | read_lock(&tasklist_lock); |
| 1258 | spin_lock_irqsave(&p->sighand->siglock, flags); |
| 1259 | ret = specific_send_sig_info(sig, info, p); |
| 1260 | spin_unlock_irqrestore(&p->sighand->siglock, flags); |
| 1261 | read_unlock(&tasklist_lock); |
| 1262 | return ret; |
| 1263 | } |
| 1264 | |
| 1265 | int |
| 1266 | send_sig(int sig, struct task_struct *p, int priv) |
| 1267 | { |
| 1268 | return send_sig_info(sig, (void*)(long)(priv != 0), p); |
| 1269 | } |
| 1270 | |
| 1271 | /* |
| 1272 | * This is the entry point for "process-wide" signals. |
| 1273 | * They will go to an appropriate thread in the thread group. |
| 1274 | */ |
| 1275 | int |
| 1276 | send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p) |
| 1277 | { |
| 1278 | int ret; |
| 1279 | read_lock(&tasklist_lock); |
| 1280 | ret = group_send_sig_info(sig, info, p); |
| 1281 | read_unlock(&tasklist_lock); |
| 1282 | return ret; |
| 1283 | } |
| 1284 | |
| 1285 | void |
| 1286 | force_sig(int sig, struct task_struct *p) |
| 1287 | { |
| 1288 | force_sig_info(sig, (void*)1L, p); |
| 1289 | } |
| 1290 | |
| 1291 | /* |
| 1292 | * When things go south during signal handling, we |
| 1293 | * will force a SIGSEGV. And if the signal that caused |
| 1294 | * the problem was already a SIGSEGV, we'll want to |
| 1295 | * make sure we don't even try to deliver the signal.. |
| 1296 | */ |
| 1297 | int |
| 1298 | force_sigsegv(int sig, struct task_struct *p) |
| 1299 | { |
| 1300 | if (sig == SIGSEGV) { |
| 1301 | unsigned long flags; |
| 1302 | spin_lock_irqsave(&p->sighand->siglock, flags); |
| 1303 | p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; |
| 1304 | spin_unlock_irqrestore(&p->sighand->siglock, flags); |
| 1305 | } |
| 1306 | force_sig(SIGSEGV, p); |
| 1307 | return 0; |
| 1308 | } |
| 1309 | |
| 1310 | int |
| 1311 | kill_pg(pid_t pgrp, int sig, int priv) |
| 1312 | { |
| 1313 | return kill_pg_info(sig, (void *)(long)(priv != 0), pgrp); |
| 1314 | } |
| 1315 | |
| 1316 | int |
| 1317 | kill_proc(pid_t pid, int sig, int priv) |
| 1318 | { |
| 1319 | return kill_proc_info(sig, (void *)(long)(priv != 0), pid); |
| 1320 | } |
| 1321 | |
| 1322 | /* |
| 1323 | * These functions support sending signals using preallocated sigqueue |
| 1324 | * structures. This is needed "because realtime applications cannot |
| 1325 | * afford to lose notifications of asynchronous events, like timer |
| 1326 | * expirations or I/O completions". In the case of Posix Timers |
| 1327 | * we allocate the sigqueue structure from the timer_create. If this |
| 1328 | * allocation fails we are able to report the failure to the application |
| 1329 | * with an EAGAIN error. |
| 1330 | */ |
| 1331 | |
| 1332 | struct sigqueue *sigqueue_alloc(void) |
| 1333 | { |
| 1334 | struct sigqueue *q; |
| 1335 | |
| 1336 | if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) |
| 1337 | q->flags |= SIGQUEUE_PREALLOC; |
| 1338 | return(q); |
| 1339 | } |
| 1340 | |
| 1341 | void sigqueue_free(struct sigqueue *q) |
| 1342 | { |
| 1343 | unsigned long flags; |
| 1344 | BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); |
| 1345 | /* |
| 1346 | * If the signal is still pending remove it from the |
| 1347 | * pending queue. |
| 1348 | */ |
| 1349 | if (unlikely(!list_empty(&q->list))) { |
| 1350 | read_lock(&tasklist_lock); |
| 1351 | spin_lock_irqsave(q->lock, flags); |
| 1352 | if (!list_empty(&q->list)) |
| 1353 | list_del_init(&q->list); |
| 1354 | spin_unlock_irqrestore(q->lock, flags); |
| 1355 | read_unlock(&tasklist_lock); |
| 1356 | } |
| 1357 | q->flags &= ~SIGQUEUE_PREALLOC; |
| 1358 | __sigqueue_free(q); |
| 1359 | } |
| 1360 | |
| 1361 | int |
| 1362 | send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) |
| 1363 | { |
| 1364 | unsigned long flags; |
| 1365 | int ret = 0; |
| 1366 | |
| 1367 | /* |
| 1368 | * We need the tasklist lock even for the specific |
| 1369 | * thread case (when we don't need to follow the group |
| 1370 | * lists) in order to avoid races with "p->sighand" |
| 1371 | * going away or changing from under us. |
| 1372 | */ |
| 1373 | BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); |
| 1374 | read_lock(&tasklist_lock); |
| 1375 | spin_lock_irqsave(&p->sighand->siglock, flags); |
| 1376 | |
| 1377 | if (unlikely(!list_empty(&q->list))) { |
| 1378 | /* |
| 1379 | * If an SI_TIMER entry is already queue just increment |
| 1380 | * the overrun count. |
| 1381 | */ |
| 1382 | if (q->info.si_code != SI_TIMER) |
| 1383 | BUG(); |
| 1384 | q->info.si_overrun++; |
| 1385 | goto out; |
| 1386 | } |
| 1387 | /* Short-circuit ignored signals. */ |
| 1388 | if (sig_ignored(p, sig)) { |
| 1389 | ret = 1; |
| 1390 | goto out; |
| 1391 | } |
| 1392 | |
| 1393 | q->lock = &p->sighand->siglock; |
| 1394 | list_add_tail(&q->list, &p->pending.list); |
| 1395 | sigaddset(&p->pending.signal, sig); |
| 1396 | if (!sigismember(&p->blocked, sig)) |
| 1397 | signal_wake_up(p, sig == SIGKILL); |
| 1398 | |
| 1399 | out: |
| 1400 | spin_unlock_irqrestore(&p->sighand->siglock, flags); |
| 1401 | read_unlock(&tasklist_lock); |
| 1402 | return(ret); |
| 1403 | } |
| 1404 | |
| 1405 | int |
| 1406 | send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) |
| 1407 | { |
| 1408 | unsigned long flags; |
| 1409 | int ret = 0; |
| 1410 | |
| 1411 | BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); |
| 1412 | read_lock(&tasklist_lock); |
| 1413 | spin_lock_irqsave(&p->sighand->siglock, flags); |
| 1414 | handle_stop_signal(sig, p); |
| 1415 | |
| 1416 | /* Short-circuit ignored signals. */ |
| 1417 | if (sig_ignored(p, sig)) { |
| 1418 | ret = 1; |
| 1419 | goto out; |
| 1420 | } |
| 1421 | |
| 1422 | if (unlikely(!list_empty(&q->list))) { |
| 1423 | /* |
| 1424 | * If an SI_TIMER entry is already queue just increment |
| 1425 | * the overrun count. Other uses should not try to |
| 1426 | * send the signal multiple times. |
| 1427 | */ |
| 1428 | if (q->info.si_code != SI_TIMER) |
| 1429 | BUG(); |
| 1430 | q->info.si_overrun++; |
| 1431 | goto out; |
| 1432 | } |
| 1433 | |
| 1434 | /* |
| 1435 | * Put this signal on the shared-pending queue. |
| 1436 | * We always use the shared queue for process-wide signals, |
| 1437 | * to avoid several races. |
| 1438 | */ |
| 1439 | q->lock = &p->sighand->siglock; |
| 1440 | list_add_tail(&q->list, &p->signal->shared_pending.list); |
| 1441 | sigaddset(&p->signal->shared_pending.signal, sig); |
| 1442 | |
| 1443 | __group_complete_signal(sig, p); |
| 1444 | out: |
| 1445 | spin_unlock_irqrestore(&p->sighand->siglock, flags); |
| 1446 | read_unlock(&tasklist_lock); |
| 1447 | return(ret); |
| 1448 | } |
| 1449 | |
| 1450 | /* |
| 1451 | * Wake up any threads in the parent blocked in wait* syscalls. |
| 1452 | */ |
| 1453 | static inline void __wake_up_parent(struct task_struct *p, |
| 1454 | struct task_struct *parent) |
| 1455 | { |
| 1456 | wake_up_interruptible_sync(&parent->signal->wait_chldexit); |
| 1457 | } |
| 1458 | |
| 1459 | /* |
| 1460 | * Let a parent know about the death of a child. |
| 1461 | * For a stopped/continued status change, use do_notify_parent_cldstop instead. |
| 1462 | */ |
| 1463 | |
| 1464 | void do_notify_parent(struct task_struct *tsk, int sig) |
| 1465 | { |
| 1466 | struct siginfo info; |
| 1467 | unsigned long flags; |
| 1468 | struct sighand_struct *psig; |
| 1469 | |
| 1470 | BUG_ON(sig == -1); |
| 1471 | |
| 1472 | /* do_notify_parent_cldstop should have been called instead. */ |
| 1473 | BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED)); |
| 1474 | |
| 1475 | BUG_ON(!tsk->ptrace && |
| 1476 | (tsk->group_leader != tsk || !thread_group_empty(tsk))); |
| 1477 | |
| 1478 | info.si_signo = sig; |
| 1479 | info.si_errno = 0; |
| 1480 | info.si_pid = tsk->pid; |
| 1481 | info.si_uid = tsk->uid; |
| 1482 | |
| 1483 | /* FIXME: find out whether or not this is supposed to be c*time. */ |
| 1484 | info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime, |
| 1485 | tsk->signal->utime)); |
| 1486 | info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime, |
| 1487 | tsk->signal->stime)); |
| 1488 | |
| 1489 | info.si_status = tsk->exit_code & 0x7f; |
| 1490 | if (tsk->exit_code & 0x80) |
| 1491 | info.si_code = CLD_DUMPED; |
| 1492 | else if (tsk->exit_code & 0x7f) |
| 1493 | info.si_code = CLD_KILLED; |
| 1494 | else { |
| 1495 | info.si_code = CLD_EXITED; |
| 1496 | info.si_status = tsk->exit_code >> 8; |
| 1497 | } |
| 1498 | |
| 1499 | psig = tsk->parent->sighand; |
| 1500 | spin_lock_irqsave(&psig->siglock, flags); |
| 1501 | if (sig == SIGCHLD && |
| 1502 | (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || |
| 1503 | (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { |
| 1504 | /* |
| 1505 | * We are exiting and our parent doesn't care. POSIX.1 |
| 1506 | * defines special semantics for setting SIGCHLD to SIG_IGN |
| 1507 | * or setting the SA_NOCLDWAIT flag: we should be reaped |
| 1508 | * automatically and not left for our parent's wait4 call. |
| 1509 | * Rather than having the parent do it as a magic kind of |
| 1510 | * signal handler, we just set this to tell do_exit that we |
| 1511 | * can be cleaned up without becoming a zombie. Note that |
| 1512 | * we still call __wake_up_parent in this case, because a |
| 1513 | * blocked sys_wait4 might now return -ECHILD. |
| 1514 | * |
| 1515 | * Whether we send SIGCHLD or not for SA_NOCLDWAIT |
| 1516 | * is implementation-defined: we do (if you don't want |
| 1517 | * it, just use SIG_IGN instead). |
| 1518 | */ |
| 1519 | tsk->exit_signal = -1; |
| 1520 | if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) |
| 1521 | sig = 0; |
| 1522 | } |
| 1523 | if (sig > 0 && sig <= _NSIG) |
| 1524 | __group_send_sig_info(sig, &info, tsk->parent); |
| 1525 | __wake_up_parent(tsk, tsk->parent); |
| 1526 | spin_unlock_irqrestore(&psig->siglock, flags); |
| 1527 | } |
| 1528 | |
| 1529 | static void |
| 1530 | do_notify_parent_cldstop(struct task_struct *tsk, struct task_struct *parent, |
| 1531 | int why) |
| 1532 | { |
| 1533 | struct siginfo info; |
| 1534 | unsigned long flags; |
| 1535 | struct sighand_struct *sighand; |
| 1536 | |
| 1537 | info.si_signo = SIGCHLD; |
| 1538 | info.si_errno = 0; |
| 1539 | info.si_pid = tsk->pid; |
| 1540 | info.si_uid = tsk->uid; |
| 1541 | |
| 1542 | /* FIXME: find out whether or not this is supposed to be c*time. */ |
| 1543 | info.si_utime = cputime_to_jiffies(tsk->utime); |
| 1544 | info.si_stime = cputime_to_jiffies(tsk->stime); |
| 1545 | |
| 1546 | info.si_code = why; |
| 1547 | switch (why) { |
| 1548 | case CLD_CONTINUED: |
| 1549 | info.si_status = SIGCONT; |
| 1550 | break; |
| 1551 | case CLD_STOPPED: |
| 1552 | info.si_status = tsk->signal->group_exit_code & 0x7f; |
| 1553 | break; |
| 1554 | case CLD_TRAPPED: |
| 1555 | info.si_status = tsk->exit_code & 0x7f; |
| 1556 | break; |
| 1557 | default: |
| 1558 | BUG(); |
| 1559 | } |
| 1560 | |
| 1561 | sighand = parent->sighand; |
| 1562 | spin_lock_irqsave(&sighand->siglock, flags); |
| 1563 | if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && |
| 1564 | !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) |
| 1565 | __group_send_sig_info(SIGCHLD, &info, parent); |
| 1566 | /* |
| 1567 | * Even if SIGCHLD is not generated, we must wake up wait4 calls. |
| 1568 | */ |
| 1569 | __wake_up_parent(tsk, parent); |
| 1570 | spin_unlock_irqrestore(&sighand->siglock, flags); |
| 1571 | } |
| 1572 | |
| 1573 | /* |
| 1574 | * This must be called with current->sighand->siglock held. |
| 1575 | * |
| 1576 | * This should be the path for all ptrace stops. |
| 1577 | * We always set current->last_siginfo while stopped here. |
| 1578 | * That makes it a way to test a stopped process for |
| 1579 | * being ptrace-stopped vs being job-control-stopped. |
| 1580 | * |
| 1581 | * If we actually decide not to stop at all because the tracer is gone, |
| 1582 | * we leave nostop_code in current->exit_code. |
| 1583 | */ |
| 1584 | static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info) |
| 1585 | { |
| 1586 | /* |
| 1587 | * If there is a group stop in progress, |
| 1588 | * we must participate in the bookkeeping. |
| 1589 | */ |
| 1590 | if (current->signal->group_stop_count > 0) |
| 1591 | --current->signal->group_stop_count; |
| 1592 | |
| 1593 | current->last_siginfo = info; |
| 1594 | current->exit_code = exit_code; |
| 1595 | |
| 1596 | /* Let the debugger run. */ |
| 1597 | set_current_state(TASK_TRACED); |
| 1598 | spin_unlock_irq(¤t->sighand->siglock); |
| 1599 | read_lock(&tasklist_lock); |
| 1600 | if (likely(current->ptrace & PT_PTRACED) && |
| 1601 | likely(current->parent != current->real_parent || |
| 1602 | !(current->ptrace & PT_ATTACHED)) && |
| 1603 | (likely(current->parent->signal != current->signal) || |
| 1604 | !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) { |
| 1605 | do_notify_parent_cldstop(current, current->parent, |
| 1606 | CLD_TRAPPED); |
| 1607 | read_unlock(&tasklist_lock); |
| 1608 | schedule(); |
| 1609 | } else { |
| 1610 | /* |
| 1611 | * By the time we got the lock, our tracer went away. |
| 1612 | * Don't stop here. |
| 1613 | */ |
| 1614 | read_unlock(&tasklist_lock); |
| 1615 | set_current_state(TASK_RUNNING); |
| 1616 | current->exit_code = nostop_code; |
| 1617 | } |
| 1618 | |
| 1619 | /* |
| 1620 | * We are back. Now reacquire the siglock before touching |
| 1621 | * last_siginfo, so that we are sure to have synchronized with |
| 1622 | * any signal-sending on another CPU that wants to examine it. |
| 1623 | */ |
| 1624 | spin_lock_irq(¤t->sighand->siglock); |
| 1625 | current->last_siginfo = NULL; |
| 1626 | |
| 1627 | /* |
| 1628 | * Queued signals ignored us while we were stopped for tracing. |
| 1629 | * So check for any that we should take before resuming user mode. |
| 1630 | */ |
| 1631 | recalc_sigpending(); |
| 1632 | } |
| 1633 | |
| 1634 | void ptrace_notify(int exit_code) |
| 1635 | { |
| 1636 | siginfo_t info; |
| 1637 | |
| 1638 | BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); |
| 1639 | |
| 1640 | memset(&info, 0, sizeof info); |
| 1641 | info.si_signo = SIGTRAP; |
| 1642 | info.si_code = exit_code; |
| 1643 | info.si_pid = current->pid; |
| 1644 | info.si_uid = current->uid; |
| 1645 | |
| 1646 | /* Let the debugger run. */ |
| 1647 | spin_lock_irq(¤t->sighand->siglock); |
| 1648 | ptrace_stop(exit_code, 0, &info); |
| 1649 | spin_unlock_irq(¤t->sighand->siglock); |
| 1650 | } |
| 1651 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1652 | static void |
| 1653 | finish_stop(int stop_count) |
| 1654 | { |
| 1655 | /* |
| 1656 | * If there are no other threads in the group, or if there is |
| 1657 | * a group stop in progress and we are the last to stop, |
| 1658 | * report to the parent. When ptraced, every thread reports itself. |
| 1659 | */ |
| 1660 | if (stop_count < 0 || (current->ptrace & PT_PTRACED)) { |
| 1661 | read_lock(&tasklist_lock); |
| 1662 | do_notify_parent_cldstop(current, current->parent, |
| 1663 | CLD_STOPPED); |
| 1664 | read_unlock(&tasklist_lock); |
| 1665 | } |
| 1666 | else if (stop_count == 0) { |
| 1667 | read_lock(&tasklist_lock); |
| 1668 | do_notify_parent_cldstop(current->group_leader, |
| 1669 | current->group_leader->real_parent, |
| 1670 | CLD_STOPPED); |
| 1671 | read_unlock(&tasklist_lock); |
| 1672 | } |
| 1673 | |
| 1674 | schedule(); |
| 1675 | /* |
| 1676 | * Now we don't run again until continued. |
| 1677 | */ |
| 1678 | current->exit_code = 0; |
| 1679 | } |
| 1680 | |
| 1681 | /* |
| 1682 | * This performs the stopping for SIGSTOP and other stop signals. |
| 1683 | * We have to stop all threads in the thread group. |
| 1684 | * Returns nonzero if we've actually stopped and released the siglock. |
| 1685 | * Returns zero if we didn't stop and still hold the siglock. |
| 1686 | */ |
| 1687 | static int |
| 1688 | do_signal_stop(int signr) |
| 1689 | { |
| 1690 | struct signal_struct *sig = current->signal; |
| 1691 | struct sighand_struct *sighand = current->sighand; |
| 1692 | int stop_count = -1; |
| 1693 | |
| 1694 | if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) |
| 1695 | return 0; |
| 1696 | |
| 1697 | if (sig->group_stop_count > 0) { |
| 1698 | /* |
| 1699 | * There is a group stop in progress. We don't need to |
| 1700 | * start another one. |
| 1701 | */ |
| 1702 | signr = sig->group_exit_code; |
| 1703 | stop_count = --sig->group_stop_count; |
| 1704 | current->exit_code = signr; |
| 1705 | set_current_state(TASK_STOPPED); |
| 1706 | if (stop_count == 0) |
| 1707 | sig->flags = SIGNAL_STOP_STOPPED; |
| 1708 | spin_unlock_irq(&sighand->siglock); |
| 1709 | } |
| 1710 | else if (thread_group_empty(current)) { |
| 1711 | /* |
| 1712 | * Lock must be held through transition to stopped state. |
| 1713 | */ |
| 1714 | current->exit_code = current->signal->group_exit_code = signr; |
| 1715 | set_current_state(TASK_STOPPED); |
| 1716 | sig->flags = SIGNAL_STOP_STOPPED; |
| 1717 | spin_unlock_irq(&sighand->siglock); |
| 1718 | } |
| 1719 | else { |
| 1720 | /* |
| 1721 | * There is no group stop already in progress. |
| 1722 | * We must initiate one now, but that requires |
| 1723 | * dropping siglock to get both the tasklist lock |
| 1724 | * and siglock again in the proper order. Note that |
| 1725 | * this allows an intervening SIGCONT to be posted. |
| 1726 | * We need to check for that and bail out if necessary. |
| 1727 | */ |
| 1728 | struct task_struct *t; |
| 1729 | |
| 1730 | spin_unlock_irq(&sighand->siglock); |
| 1731 | |
| 1732 | /* signals can be posted during this window */ |
| 1733 | |
| 1734 | read_lock(&tasklist_lock); |
| 1735 | spin_lock_irq(&sighand->siglock); |
| 1736 | |
| 1737 | if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) { |
| 1738 | /* |
| 1739 | * Another stop or continue happened while we |
| 1740 | * didn't have the lock. We can just swallow this |
| 1741 | * signal now. If we raced with a SIGCONT, that |
| 1742 | * should have just cleared it now. If we raced |
| 1743 | * with another processor delivering a stop signal, |
| 1744 | * then the SIGCONT that wakes us up should clear it. |
| 1745 | */ |
| 1746 | read_unlock(&tasklist_lock); |
| 1747 | return 0; |
| 1748 | } |
| 1749 | |
| 1750 | if (sig->group_stop_count == 0) { |
| 1751 | sig->group_exit_code = signr; |
| 1752 | stop_count = 0; |
| 1753 | for (t = next_thread(current); t != current; |
| 1754 | t = next_thread(t)) |
| 1755 | /* |
| 1756 | * Setting state to TASK_STOPPED for a group |
| 1757 | * stop is always done with the siglock held, |
| 1758 | * so this check has no races. |
| 1759 | */ |
| 1760 | if (t->state < TASK_STOPPED) { |
| 1761 | stop_count++; |
| 1762 | signal_wake_up(t, 0); |
| 1763 | } |
| 1764 | sig->group_stop_count = stop_count; |
| 1765 | } |
| 1766 | else { |
| 1767 | /* A race with another thread while unlocked. */ |
| 1768 | signr = sig->group_exit_code; |
| 1769 | stop_count = --sig->group_stop_count; |
| 1770 | } |
| 1771 | |
| 1772 | current->exit_code = signr; |
| 1773 | set_current_state(TASK_STOPPED); |
| 1774 | if (stop_count == 0) |
| 1775 | sig->flags = SIGNAL_STOP_STOPPED; |
| 1776 | |
| 1777 | spin_unlock_irq(&sighand->siglock); |
| 1778 | read_unlock(&tasklist_lock); |
| 1779 | } |
| 1780 | |
| 1781 | finish_stop(stop_count); |
| 1782 | return 1; |
| 1783 | } |
| 1784 | |
| 1785 | /* |
| 1786 | * Do appropriate magic when group_stop_count > 0. |
| 1787 | * We return nonzero if we stopped, after releasing the siglock. |
| 1788 | * We return zero if we still hold the siglock and should look |
| 1789 | * for another signal without checking group_stop_count again. |
| 1790 | */ |
| 1791 | static inline int handle_group_stop(void) |
| 1792 | { |
| 1793 | int stop_count; |
| 1794 | |
| 1795 | if (current->signal->group_exit_task == current) { |
| 1796 | /* |
| 1797 | * Group stop is so we can do a core dump, |
| 1798 | * We are the initiating thread, so get on with it. |
| 1799 | */ |
| 1800 | current->signal->group_exit_task = NULL; |
| 1801 | return 0; |
| 1802 | } |
| 1803 | |
| 1804 | if (current->signal->flags & SIGNAL_GROUP_EXIT) |
| 1805 | /* |
| 1806 | * Group stop is so another thread can do a core dump, |
| 1807 | * or else we are racing against a death signal. |
| 1808 | * Just punt the stop so we can get the next signal. |
| 1809 | */ |
| 1810 | return 0; |
| 1811 | |
| 1812 | /* |
| 1813 | * There is a group stop in progress. We stop |
| 1814 | * without any associated signal being in our queue. |
| 1815 | */ |
| 1816 | stop_count = --current->signal->group_stop_count; |
| 1817 | if (stop_count == 0) |
| 1818 | current->signal->flags = SIGNAL_STOP_STOPPED; |
| 1819 | current->exit_code = current->signal->group_exit_code; |
| 1820 | set_current_state(TASK_STOPPED); |
| 1821 | spin_unlock_irq(¤t->sighand->siglock); |
| 1822 | finish_stop(stop_count); |
| 1823 | return 1; |
| 1824 | } |
| 1825 | |
| 1826 | int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, |
| 1827 | struct pt_regs *regs, void *cookie) |
| 1828 | { |
| 1829 | sigset_t *mask = ¤t->blocked; |
| 1830 | int signr = 0; |
| 1831 | |
| 1832 | relock: |
| 1833 | spin_lock_irq(¤t->sighand->siglock); |
| 1834 | for (;;) { |
| 1835 | struct k_sigaction *ka; |
| 1836 | |
| 1837 | if (unlikely(current->signal->group_stop_count > 0) && |
| 1838 | handle_group_stop()) |
| 1839 | goto relock; |
| 1840 | |
| 1841 | signr = dequeue_signal(current, mask, info); |
| 1842 | |
| 1843 | if (!signr) |
| 1844 | break; /* will return 0 */ |
| 1845 | |
| 1846 | if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) { |
| 1847 | ptrace_signal_deliver(regs, cookie); |
| 1848 | |
| 1849 | /* Let the debugger run. */ |
| 1850 | ptrace_stop(signr, signr, info); |
| 1851 | |
| 1852 | /* We're back. Did the debugger cancel the sig? */ |
| 1853 | signr = current->exit_code; |
| 1854 | if (signr == 0) |
| 1855 | continue; |
| 1856 | |
| 1857 | current->exit_code = 0; |
| 1858 | |
| 1859 | /* Update the siginfo structure if the signal has |
| 1860 | changed. If the debugger wanted something |
| 1861 | specific in the siginfo structure then it should |
| 1862 | have updated *info via PTRACE_SETSIGINFO. */ |
| 1863 | if (signr != info->si_signo) { |
| 1864 | info->si_signo = signr; |
| 1865 | info->si_errno = 0; |
| 1866 | info->si_code = SI_USER; |
| 1867 | info->si_pid = current->parent->pid; |
| 1868 | info->si_uid = current->parent->uid; |
| 1869 | } |
| 1870 | |
| 1871 | /* If the (new) signal is now blocked, requeue it. */ |
| 1872 | if (sigismember(¤t->blocked, signr)) { |
| 1873 | specific_send_sig_info(signr, info, current); |
| 1874 | continue; |
| 1875 | } |
| 1876 | } |
| 1877 | |
| 1878 | ka = ¤t->sighand->action[signr-1]; |
| 1879 | if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ |
| 1880 | continue; |
| 1881 | if (ka->sa.sa_handler != SIG_DFL) { |
| 1882 | /* Run the handler. */ |
| 1883 | *return_ka = *ka; |
| 1884 | |
| 1885 | if (ka->sa.sa_flags & SA_ONESHOT) |
| 1886 | ka->sa.sa_handler = SIG_DFL; |
| 1887 | |
| 1888 | break; /* will return non-zero "signr" value */ |
| 1889 | } |
| 1890 | |
| 1891 | /* |
| 1892 | * Now we are doing the default action for this signal. |
| 1893 | */ |
| 1894 | if (sig_kernel_ignore(signr)) /* Default is nothing. */ |
| 1895 | continue; |
| 1896 | |
| 1897 | /* Init gets no signals it doesn't want. */ |
| 1898 | if (current->pid == 1) |
| 1899 | continue; |
| 1900 | |
| 1901 | if (sig_kernel_stop(signr)) { |
| 1902 | /* |
| 1903 | * The default action is to stop all threads in |
| 1904 | * the thread group. The job control signals |
| 1905 | * do nothing in an orphaned pgrp, but SIGSTOP |
| 1906 | * always works. Note that siglock needs to be |
| 1907 | * dropped during the call to is_orphaned_pgrp() |
| 1908 | * because of lock ordering with tasklist_lock. |
| 1909 | * This allows an intervening SIGCONT to be posted. |
| 1910 | * We need to check for that and bail out if necessary. |
| 1911 | */ |
| 1912 | if (signr != SIGSTOP) { |
| 1913 | spin_unlock_irq(¤t->sighand->siglock); |
| 1914 | |
| 1915 | /* signals can be posted during this window */ |
| 1916 | |
| 1917 | if (is_orphaned_pgrp(process_group(current))) |
| 1918 | goto relock; |
| 1919 | |
| 1920 | spin_lock_irq(¤t->sighand->siglock); |
| 1921 | } |
| 1922 | |
| 1923 | if (likely(do_signal_stop(signr))) { |
| 1924 | /* It released the siglock. */ |
| 1925 | goto relock; |
| 1926 | } |
| 1927 | |
| 1928 | /* |
| 1929 | * We didn't actually stop, due to a race |
| 1930 | * with SIGCONT or something like that. |
| 1931 | */ |
| 1932 | continue; |
| 1933 | } |
| 1934 | |
| 1935 | spin_unlock_irq(¤t->sighand->siglock); |
| 1936 | |
| 1937 | /* |
| 1938 | * Anything else is fatal, maybe with a core dump. |
| 1939 | */ |
| 1940 | current->flags |= PF_SIGNALED; |
| 1941 | if (sig_kernel_coredump(signr)) { |
| 1942 | /* |
| 1943 | * If it was able to dump core, this kills all |
| 1944 | * other threads in the group and synchronizes with |
| 1945 | * their demise. If we lost the race with another |
| 1946 | * thread getting here, it set group_exit_code |
| 1947 | * first and our do_group_exit call below will use |
| 1948 | * that value and ignore the one we pass it. |
| 1949 | */ |
| 1950 | do_coredump((long)signr, signr, regs); |
| 1951 | } |
| 1952 | |
| 1953 | /* |
| 1954 | * Death signals, no core dump. |
| 1955 | */ |
| 1956 | do_group_exit(signr); |
| 1957 | /* NOTREACHED */ |
| 1958 | } |
| 1959 | spin_unlock_irq(¤t->sighand->siglock); |
| 1960 | return signr; |
| 1961 | } |
| 1962 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1963 | EXPORT_SYMBOL(recalc_sigpending); |
| 1964 | EXPORT_SYMBOL_GPL(dequeue_signal); |
| 1965 | EXPORT_SYMBOL(flush_signals); |
| 1966 | EXPORT_SYMBOL(force_sig); |
| 1967 | EXPORT_SYMBOL(kill_pg); |
| 1968 | EXPORT_SYMBOL(kill_proc); |
| 1969 | EXPORT_SYMBOL(ptrace_notify); |
| 1970 | EXPORT_SYMBOL(send_sig); |
| 1971 | EXPORT_SYMBOL(send_sig_info); |
| 1972 | EXPORT_SYMBOL(sigprocmask); |
| 1973 | EXPORT_SYMBOL(block_all_signals); |
| 1974 | EXPORT_SYMBOL(unblock_all_signals); |
| 1975 | |
| 1976 | |
| 1977 | /* |
| 1978 | * System call entry points. |
| 1979 | */ |
| 1980 | |
| 1981 | asmlinkage long sys_restart_syscall(void) |
| 1982 | { |
| 1983 | struct restart_block *restart = ¤t_thread_info()->restart_block; |
| 1984 | return restart->fn(restart); |
| 1985 | } |
| 1986 | |
| 1987 | long do_no_restart_syscall(struct restart_block *param) |
| 1988 | { |
| 1989 | return -EINTR; |
| 1990 | } |
| 1991 | |
| 1992 | /* |
| 1993 | * We don't need to get the kernel lock - this is all local to this |
| 1994 | * particular thread.. (and that's good, because this is _heavily_ |
| 1995 | * used by various programs) |
| 1996 | */ |
| 1997 | |
| 1998 | /* |
| 1999 | * This is also useful for kernel threads that want to temporarily |
| 2000 | * (or permanently) block certain signals. |
| 2001 | * |
| 2002 | * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel |
| 2003 | * interface happily blocks "unblockable" signals like SIGKILL |
| 2004 | * and friends. |
| 2005 | */ |
| 2006 | int sigprocmask(int how, sigset_t *set, sigset_t *oldset) |
| 2007 | { |
| 2008 | int error; |
| 2009 | sigset_t old_block; |
| 2010 | |
| 2011 | spin_lock_irq(¤t->sighand->siglock); |
| 2012 | old_block = current->blocked; |
| 2013 | error = 0; |
| 2014 | switch (how) { |
| 2015 | case SIG_BLOCK: |
| 2016 | sigorsets(¤t->blocked, ¤t->blocked, set); |
| 2017 | break; |
| 2018 | case SIG_UNBLOCK: |
| 2019 | signandsets(¤t->blocked, ¤t->blocked, set); |
| 2020 | break; |
| 2021 | case SIG_SETMASK: |
| 2022 | current->blocked = *set; |
| 2023 | break; |
| 2024 | default: |
| 2025 | error = -EINVAL; |
| 2026 | } |
| 2027 | recalc_sigpending(); |
| 2028 | spin_unlock_irq(¤t->sighand->siglock); |
| 2029 | if (oldset) |
| 2030 | *oldset = old_block; |
| 2031 | return error; |
| 2032 | } |
| 2033 | |
| 2034 | asmlinkage long |
| 2035 | sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize) |
| 2036 | { |
| 2037 | int error = -EINVAL; |
| 2038 | sigset_t old_set, new_set; |
| 2039 | |
| 2040 | /* XXX: Don't preclude handling different sized sigset_t's. */ |
| 2041 | if (sigsetsize != sizeof(sigset_t)) |
| 2042 | goto out; |
| 2043 | |
| 2044 | if (set) { |
| 2045 | error = -EFAULT; |
| 2046 | if (copy_from_user(&new_set, set, sizeof(*set))) |
| 2047 | goto out; |
| 2048 | sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); |
| 2049 | |
| 2050 | error = sigprocmask(how, &new_set, &old_set); |
| 2051 | if (error) |
| 2052 | goto out; |
| 2053 | if (oset) |
| 2054 | goto set_old; |
| 2055 | } else if (oset) { |
| 2056 | spin_lock_irq(¤t->sighand->siglock); |
| 2057 | old_set = current->blocked; |
| 2058 | spin_unlock_irq(¤t->sighand->siglock); |
| 2059 | |
| 2060 | set_old: |
| 2061 | error = -EFAULT; |
| 2062 | if (copy_to_user(oset, &old_set, sizeof(*oset))) |
| 2063 | goto out; |
| 2064 | } |
| 2065 | error = 0; |
| 2066 | out: |
| 2067 | return error; |
| 2068 | } |
| 2069 | |
| 2070 | long do_sigpending(void __user *set, unsigned long sigsetsize) |
| 2071 | { |
| 2072 | long error = -EINVAL; |
| 2073 | sigset_t pending; |
| 2074 | |
| 2075 | if (sigsetsize > sizeof(sigset_t)) |
| 2076 | goto out; |
| 2077 | |
| 2078 | spin_lock_irq(¤t->sighand->siglock); |
| 2079 | sigorsets(&pending, ¤t->pending.signal, |
| 2080 | ¤t->signal->shared_pending.signal); |
| 2081 | spin_unlock_irq(¤t->sighand->siglock); |
| 2082 | |
| 2083 | /* Outside the lock because only this thread touches it. */ |
| 2084 | sigandsets(&pending, ¤t->blocked, &pending); |
| 2085 | |
| 2086 | error = -EFAULT; |
| 2087 | if (!copy_to_user(set, &pending, sigsetsize)) |
| 2088 | error = 0; |
| 2089 | |
| 2090 | out: |
| 2091 | return error; |
| 2092 | } |
| 2093 | |
| 2094 | asmlinkage long |
| 2095 | sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize) |
| 2096 | { |
| 2097 | return do_sigpending(set, sigsetsize); |
| 2098 | } |
| 2099 | |
| 2100 | #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER |
| 2101 | |
| 2102 | int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) |
| 2103 | { |
| 2104 | int err; |
| 2105 | |
| 2106 | if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) |
| 2107 | return -EFAULT; |
| 2108 | if (from->si_code < 0) |
| 2109 | return __copy_to_user(to, from, sizeof(siginfo_t)) |
| 2110 | ? -EFAULT : 0; |
| 2111 | /* |
| 2112 | * If you change siginfo_t structure, please be sure |
| 2113 | * this code is fixed accordingly. |
| 2114 | * It should never copy any pad contained in the structure |
| 2115 | * to avoid security leaks, but must copy the generic |
| 2116 | * 3 ints plus the relevant union member. |
| 2117 | */ |
| 2118 | err = __put_user(from->si_signo, &to->si_signo); |
| 2119 | err |= __put_user(from->si_errno, &to->si_errno); |
| 2120 | err |= __put_user((short)from->si_code, &to->si_code); |
| 2121 | switch (from->si_code & __SI_MASK) { |
| 2122 | case __SI_KILL: |
| 2123 | err |= __put_user(from->si_pid, &to->si_pid); |
| 2124 | err |= __put_user(from->si_uid, &to->si_uid); |
| 2125 | break; |
| 2126 | case __SI_TIMER: |
| 2127 | err |= __put_user(from->si_tid, &to->si_tid); |
| 2128 | err |= __put_user(from->si_overrun, &to->si_overrun); |
| 2129 | err |= __put_user(from->si_ptr, &to->si_ptr); |
| 2130 | break; |
| 2131 | case __SI_POLL: |
| 2132 | err |= __put_user(from->si_band, &to->si_band); |
| 2133 | err |= __put_user(from->si_fd, &to->si_fd); |
| 2134 | break; |
| 2135 | case __SI_FAULT: |
| 2136 | err |= __put_user(from->si_addr, &to->si_addr); |
| 2137 | #ifdef __ARCH_SI_TRAPNO |
| 2138 | err |= __put_user(from->si_trapno, &to->si_trapno); |
| 2139 | #endif |
| 2140 | break; |
| 2141 | case __SI_CHLD: |
| 2142 | err |= __put_user(from->si_pid, &to->si_pid); |
| 2143 | err |= __put_user(from->si_uid, &to->si_uid); |
| 2144 | err |= __put_user(from->si_status, &to->si_status); |
| 2145 | err |= __put_user(from->si_utime, &to->si_utime); |
| 2146 | err |= __put_user(from->si_stime, &to->si_stime); |
| 2147 | break; |
| 2148 | case __SI_RT: /* This is not generated by the kernel as of now. */ |
| 2149 | case __SI_MESGQ: /* But this is */ |
| 2150 | err |= __put_user(from->si_pid, &to->si_pid); |
| 2151 | err |= __put_user(from->si_uid, &to->si_uid); |
| 2152 | err |= __put_user(from->si_ptr, &to->si_ptr); |
| 2153 | break; |
| 2154 | default: /* this is just in case for now ... */ |
| 2155 | err |= __put_user(from->si_pid, &to->si_pid); |
| 2156 | err |= __put_user(from->si_uid, &to->si_uid); |
| 2157 | break; |
| 2158 | } |
| 2159 | return err; |
| 2160 | } |
| 2161 | |
| 2162 | #endif |
| 2163 | |
| 2164 | asmlinkage long |
| 2165 | sys_rt_sigtimedwait(const sigset_t __user *uthese, |
| 2166 | siginfo_t __user *uinfo, |
| 2167 | const struct timespec __user *uts, |
| 2168 | size_t sigsetsize) |
| 2169 | { |
| 2170 | int ret, sig; |
| 2171 | sigset_t these; |
| 2172 | struct timespec ts; |
| 2173 | siginfo_t info; |
| 2174 | long timeout = 0; |
| 2175 | |
| 2176 | /* XXX: Don't preclude handling different sized sigset_t's. */ |
| 2177 | if (sigsetsize != sizeof(sigset_t)) |
| 2178 | return -EINVAL; |
| 2179 | |
| 2180 | if (copy_from_user(&these, uthese, sizeof(these))) |
| 2181 | return -EFAULT; |
| 2182 | |
| 2183 | /* |
| 2184 | * Invert the set of allowed signals to get those we |
| 2185 | * want to block. |
| 2186 | */ |
| 2187 | sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); |
| 2188 | signotset(&these); |
| 2189 | |
| 2190 | if (uts) { |
| 2191 | if (copy_from_user(&ts, uts, sizeof(ts))) |
| 2192 | return -EFAULT; |
| 2193 | if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 |
| 2194 | || ts.tv_sec < 0) |
| 2195 | return -EINVAL; |
| 2196 | } |
| 2197 | |
| 2198 | spin_lock_irq(¤t->sighand->siglock); |
| 2199 | sig = dequeue_signal(current, &these, &info); |
| 2200 | if (!sig) { |
| 2201 | timeout = MAX_SCHEDULE_TIMEOUT; |
| 2202 | if (uts) |
| 2203 | timeout = (timespec_to_jiffies(&ts) |
| 2204 | + (ts.tv_sec || ts.tv_nsec)); |
| 2205 | |
| 2206 | if (timeout) { |
| 2207 | /* None ready -- temporarily unblock those we're |
| 2208 | * interested while we are sleeping in so that we'll |
| 2209 | * be awakened when they arrive. */ |
| 2210 | current->real_blocked = current->blocked; |
| 2211 | sigandsets(¤t->blocked, ¤t->blocked, &these); |
| 2212 | recalc_sigpending(); |
| 2213 | spin_unlock_irq(¤t->sighand->siglock); |
| 2214 | |
| 2215 | current->state = TASK_INTERRUPTIBLE; |
| 2216 | timeout = schedule_timeout(timeout); |
| 2217 | |
| 2218 | if (current->flags & PF_FREEZE) |
| 2219 | refrigerator(PF_FREEZE); |
| 2220 | spin_lock_irq(¤t->sighand->siglock); |
| 2221 | sig = dequeue_signal(current, &these, &info); |
| 2222 | current->blocked = current->real_blocked; |
| 2223 | siginitset(¤t->real_blocked, 0); |
| 2224 | recalc_sigpending(); |
| 2225 | } |
| 2226 | } |
| 2227 | spin_unlock_irq(¤t->sighand->siglock); |
| 2228 | |
| 2229 | if (sig) { |
| 2230 | ret = sig; |
| 2231 | if (uinfo) { |
| 2232 | if (copy_siginfo_to_user(uinfo, &info)) |
| 2233 | ret = -EFAULT; |
| 2234 | } |
| 2235 | } else { |
| 2236 | ret = -EAGAIN; |
| 2237 | if (timeout) |
| 2238 | ret = -EINTR; |
| 2239 | } |
| 2240 | |
| 2241 | return ret; |
| 2242 | } |
| 2243 | |
| 2244 | asmlinkage long |
| 2245 | sys_kill(int pid, int sig) |
| 2246 | { |
| 2247 | struct siginfo info; |
| 2248 | |
| 2249 | info.si_signo = sig; |
| 2250 | info.si_errno = 0; |
| 2251 | info.si_code = SI_USER; |
| 2252 | info.si_pid = current->tgid; |
| 2253 | info.si_uid = current->uid; |
| 2254 | |
| 2255 | return kill_something_info(sig, &info, pid); |
| 2256 | } |
| 2257 | |
| 2258 | /** |
| 2259 | * sys_tgkill - send signal to one specific thread |
| 2260 | * @tgid: the thread group ID of the thread |
| 2261 | * @pid: the PID of the thread |
| 2262 | * @sig: signal to be sent |
| 2263 | * |
| 2264 | * This syscall also checks the tgid and returns -ESRCH even if the PID |
| 2265 | * exists but it's not belonging to the target process anymore. This |
| 2266 | * method solves the problem of threads exiting and PIDs getting reused. |
| 2267 | */ |
| 2268 | asmlinkage long sys_tgkill(int tgid, int pid, int sig) |
| 2269 | { |
| 2270 | struct siginfo info; |
| 2271 | int error; |
| 2272 | struct task_struct *p; |
| 2273 | |
| 2274 | /* This is only valid for single tasks */ |
| 2275 | if (pid <= 0 || tgid <= 0) |
| 2276 | return -EINVAL; |
| 2277 | |
| 2278 | info.si_signo = sig; |
| 2279 | info.si_errno = 0; |
| 2280 | info.si_code = SI_TKILL; |
| 2281 | info.si_pid = current->tgid; |
| 2282 | info.si_uid = current->uid; |
| 2283 | |
| 2284 | read_lock(&tasklist_lock); |
| 2285 | p = find_task_by_pid(pid); |
| 2286 | error = -ESRCH; |
| 2287 | if (p && (p->tgid == tgid)) { |
| 2288 | error = check_kill_permission(sig, &info, p); |
| 2289 | /* |
| 2290 | * The null signal is a permissions and process existence |
| 2291 | * probe. No signal is actually delivered. |
| 2292 | */ |
| 2293 | if (!error && sig && p->sighand) { |
| 2294 | spin_lock_irq(&p->sighand->siglock); |
| 2295 | handle_stop_signal(sig, p); |
| 2296 | error = specific_send_sig_info(sig, &info, p); |
| 2297 | spin_unlock_irq(&p->sighand->siglock); |
| 2298 | } |
| 2299 | } |
| 2300 | read_unlock(&tasklist_lock); |
| 2301 | return error; |
| 2302 | } |
| 2303 | |
| 2304 | /* |
| 2305 | * Send a signal to only one task, even if it's a CLONE_THREAD task. |
| 2306 | */ |
| 2307 | asmlinkage long |
| 2308 | sys_tkill(int pid, int sig) |
| 2309 | { |
| 2310 | struct siginfo info; |
| 2311 | int error; |
| 2312 | struct task_struct *p; |
| 2313 | |
| 2314 | /* This is only valid for single tasks */ |
| 2315 | if (pid <= 0) |
| 2316 | return -EINVAL; |
| 2317 | |
| 2318 | info.si_signo = sig; |
| 2319 | info.si_errno = 0; |
| 2320 | info.si_code = SI_TKILL; |
| 2321 | info.si_pid = current->tgid; |
| 2322 | info.si_uid = current->uid; |
| 2323 | |
| 2324 | read_lock(&tasklist_lock); |
| 2325 | p = find_task_by_pid(pid); |
| 2326 | error = -ESRCH; |
| 2327 | if (p) { |
| 2328 | error = check_kill_permission(sig, &info, p); |
| 2329 | /* |
| 2330 | * The null signal is a permissions and process existence |
| 2331 | * probe. No signal is actually delivered. |
| 2332 | */ |
| 2333 | if (!error && sig && p->sighand) { |
| 2334 | spin_lock_irq(&p->sighand->siglock); |
| 2335 | handle_stop_signal(sig, p); |
| 2336 | error = specific_send_sig_info(sig, &info, p); |
| 2337 | spin_unlock_irq(&p->sighand->siglock); |
| 2338 | } |
| 2339 | } |
| 2340 | read_unlock(&tasklist_lock); |
| 2341 | return error; |
| 2342 | } |
| 2343 | |
| 2344 | asmlinkage long |
| 2345 | sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo) |
| 2346 | { |
| 2347 | siginfo_t info; |
| 2348 | |
| 2349 | if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) |
| 2350 | return -EFAULT; |
| 2351 | |
| 2352 | /* Not even root can pretend to send signals from the kernel. |
| 2353 | Nor can they impersonate a kill(), which adds source info. */ |
| 2354 | if (info.si_code >= 0) |
| 2355 | return -EPERM; |
| 2356 | info.si_signo = sig; |
| 2357 | |
| 2358 | /* POSIX.1b doesn't mention process groups. */ |
| 2359 | return kill_proc_info(sig, &info, pid); |
| 2360 | } |
| 2361 | |
| 2362 | int |
| 2363 | do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact) |
| 2364 | { |
| 2365 | struct k_sigaction *k; |
| 2366 | |
| 2367 | if (sig < 1 || sig > _NSIG || (act && sig_kernel_only(sig))) |
| 2368 | return -EINVAL; |
| 2369 | |
| 2370 | k = ¤t->sighand->action[sig-1]; |
| 2371 | |
| 2372 | spin_lock_irq(¤t->sighand->siglock); |
| 2373 | if (signal_pending(current)) { |
| 2374 | /* |
| 2375 | * If there might be a fatal signal pending on multiple |
| 2376 | * threads, make sure we take it before changing the action. |
| 2377 | */ |
| 2378 | spin_unlock_irq(¤t->sighand->siglock); |
| 2379 | return -ERESTARTNOINTR; |
| 2380 | } |
| 2381 | |
| 2382 | if (oact) |
| 2383 | *oact = *k; |
| 2384 | |
| 2385 | if (act) { |
| 2386 | /* |
| 2387 | * POSIX 3.3.1.3: |
| 2388 | * "Setting a signal action to SIG_IGN for a signal that is |
| 2389 | * pending shall cause the pending signal to be discarded, |
| 2390 | * whether or not it is blocked." |
| 2391 | * |
| 2392 | * "Setting a signal action to SIG_DFL for a signal that is |
| 2393 | * pending and whose default action is to ignore the signal |
| 2394 | * (for example, SIGCHLD), shall cause the pending signal to |
| 2395 | * be discarded, whether or not it is blocked" |
| 2396 | */ |
| 2397 | if (act->sa.sa_handler == SIG_IGN || |
| 2398 | (act->sa.sa_handler == SIG_DFL && |
| 2399 | sig_kernel_ignore(sig))) { |
| 2400 | /* |
| 2401 | * This is a fairly rare case, so we only take the |
| 2402 | * tasklist_lock once we're sure we'll need it. |
| 2403 | * Now we must do this little unlock and relock |
| 2404 | * dance to maintain the lock hierarchy. |
| 2405 | */ |
| 2406 | struct task_struct *t = current; |
| 2407 | spin_unlock_irq(&t->sighand->siglock); |
| 2408 | read_lock(&tasklist_lock); |
| 2409 | spin_lock_irq(&t->sighand->siglock); |
| 2410 | *k = *act; |
| 2411 | sigdelsetmask(&k->sa.sa_mask, |
| 2412 | sigmask(SIGKILL) | sigmask(SIGSTOP)); |
| 2413 | rm_from_queue(sigmask(sig), &t->signal->shared_pending); |
| 2414 | do { |
| 2415 | rm_from_queue(sigmask(sig), &t->pending); |
| 2416 | recalc_sigpending_tsk(t); |
| 2417 | t = next_thread(t); |
| 2418 | } while (t != current); |
| 2419 | spin_unlock_irq(¤t->sighand->siglock); |
| 2420 | read_unlock(&tasklist_lock); |
| 2421 | return 0; |
| 2422 | } |
| 2423 | |
| 2424 | *k = *act; |
| 2425 | sigdelsetmask(&k->sa.sa_mask, |
| 2426 | sigmask(SIGKILL) | sigmask(SIGSTOP)); |
| 2427 | } |
| 2428 | |
| 2429 | spin_unlock_irq(¤t->sighand->siglock); |
| 2430 | return 0; |
| 2431 | } |
| 2432 | |
| 2433 | int |
| 2434 | do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) |
| 2435 | { |
| 2436 | stack_t oss; |
| 2437 | int error; |
| 2438 | |
| 2439 | if (uoss) { |
| 2440 | oss.ss_sp = (void __user *) current->sas_ss_sp; |
| 2441 | oss.ss_size = current->sas_ss_size; |
| 2442 | oss.ss_flags = sas_ss_flags(sp); |
| 2443 | } |
| 2444 | |
| 2445 | if (uss) { |
| 2446 | void __user *ss_sp; |
| 2447 | size_t ss_size; |
| 2448 | int ss_flags; |
| 2449 | |
| 2450 | error = -EFAULT; |
| 2451 | if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) |
| 2452 | || __get_user(ss_sp, &uss->ss_sp) |
| 2453 | || __get_user(ss_flags, &uss->ss_flags) |
| 2454 | || __get_user(ss_size, &uss->ss_size)) |
| 2455 | goto out; |
| 2456 | |
| 2457 | error = -EPERM; |
| 2458 | if (on_sig_stack(sp)) |
| 2459 | goto out; |
| 2460 | |
| 2461 | error = -EINVAL; |
| 2462 | /* |
| 2463 | * |
| 2464 | * Note - this code used to test ss_flags incorrectly |
| 2465 | * old code may have been written using ss_flags==0 |
| 2466 | * to mean ss_flags==SS_ONSTACK (as this was the only |
| 2467 | * way that worked) - this fix preserves that older |
| 2468 | * mechanism |
| 2469 | */ |
| 2470 | if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) |
| 2471 | goto out; |
| 2472 | |
| 2473 | if (ss_flags == SS_DISABLE) { |
| 2474 | ss_size = 0; |
| 2475 | ss_sp = NULL; |
| 2476 | } else { |
| 2477 | error = -ENOMEM; |
| 2478 | if (ss_size < MINSIGSTKSZ) |
| 2479 | goto out; |
| 2480 | } |
| 2481 | |
| 2482 | current->sas_ss_sp = (unsigned long) ss_sp; |
| 2483 | current->sas_ss_size = ss_size; |
| 2484 | } |
| 2485 | |
| 2486 | if (uoss) { |
| 2487 | error = -EFAULT; |
| 2488 | if (copy_to_user(uoss, &oss, sizeof(oss))) |
| 2489 | goto out; |
| 2490 | } |
| 2491 | |
| 2492 | error = 0; |
| 2493 | out: |
| 2494 | return error; |
| 2495 | } |
| 2496 | |
| 2497 | #ifdef __ARCH_WANT_SYS_SIGPENDING |
| 2498 | |
| 2499 | asmlinkage long |
| 2500 | sys_sigpending(old_sigset_t __user *set) |
| 2501 | { |
| 2502 | return do_sigpending(set, sizeof(*set)); |
| 2503 | } |
| 2504 | |
| 2505 | #endif |
| 2506 | |
| 2507 | #ifdef __ARCH_WANT_SYS_SIGPROCMASK |
| 2508 | /* Some platforms have their own version with special arguments others |
| 2509 | support only sys_rt_sigprocmask. */ |
| 2510 | |
| 2511 | asmlinkage long |
| 2512 | sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset) |
| 2513 | { |
| 2514 | int error; |
| 2515 | old_sigset_t old_set, new_set; |
| 2516 | |
| 2517 | if (set) { |
| 2518 | error = -EFAULT; |
| 2519 | if (copy_from_user(&new_set, set, sizeof(*set))) |
| 2520 | goto out; |
| 2521 | new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); |
| 2522 | |
| 2523 | spin_lock_irq(¤t->sighand->siglock); |
| 2524 | old_set = current->blocked.sig[0]; |
| 2525 | |
| 2526 | error = 0; |
| 2527 | switch (how) { |
| 2528 | default: |
| 2529 | error = -EINVAL; |
| 2530 | break; |
| 2531 | case SIG_BLOCK: |
| 2532 | sigaddsetmask(¤t->blocked, new_set); |
| 2533 | break; |
| 2534 | case SIG_UNBLOCK: |
| 2535 | sigdelsetmask(¤t->blocked, new_set); |
| 2536 | break; |
| 2537 | case SIG_SETMASK: |
| 2538 | current->blocked.sig[0] = new_set; |
| 2539 | break; |
| 2540 | } |
| 2541 | |
| 2542 | recalc_sigpending(); |
| 2543 | spin_unlock_irq(¤t->sighand->siglock); |
| 2544 | if (error) |
| 2545 | goto out; |
| 2546 | if (oset) |
| 2547 | goto set_old; |
| 2548 | } else if (oset) { |
| 2549 | old_set = current->blocked.sig[0]; |
| 2550 | set_old: |
| 2551 | error = -EFAULT; |
| 2552 | if (copy_to_user(oset, &old_set, sizeof(*oset))) |
| 2553 | goto out; |
| 2554 | } |
| 2555 | error = 0; |
| 2556 | out: |
| 2557 | return error; |
| 2558 | } |
| 2559 | #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ |
| 2560 | |
| 2561 | #ifdef __ARCH_WANT_SYS_RT_SIGACTION |
| 2562 | asmlinkage long |
| 2563 | sys_rt_sigaction(int sig, |
| 2564 | const struct sigaction __user *act, |
| 2565 | struct sigaction __user *oact, |
| 2566 | size_t sigsetsize) |
| 2567 | { |
| 2568 | struct k_sigaction new_sa, old_sa; |
| 2569 | int ret = -EINVAL; |
| 2570 | |
| 2571 | /* XXX: Don't preclude handling different sized sigset_t's. */ |
| 2572 | if (sigsetsize != sizeof(sigset_t)) |
| 2573 | goto out; |
| 2574 | |
| 2575 | if (act) { |
| 2576 | if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) |
| 2577 | return -EFAULT; |
| 2578 | } |
| 2579 | |
| 2580 | ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); |
| 2581 | |
| 2582 | if (!ret && oact) { |
| 2583 | if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) |
| 2584 | return -EFAULT; |
| 2585 | } |
| 2586 | out: |
| 2587 | return ret; |
| 2588 | } |
| 2589 | #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ |
| 2590 | |
| 2591 | #ifdef __ARCH_WANT_SYS_SGETMASK |
| 2592 | |
| 2593 | /* |
| 2594 | * For backwards compatibility. Functionality superseded by sigprocmask. |
| 2595 | */ |
| 2596 | asmlinkage long |
| 2597 | sys_sgetmask(void) |
| 2598 | { |
| 2599 | /* SMP safe */ |
| 2600 | return current->blocked.sig[0]; |
| 2601 | } |
| 2602 | |
| 2603 | asmlinkage long |
| 2604 | sys_ssetmask(int newmask) |
| 2605 | { |
| 2606 | int old; |
| 2607 | |
| 2608 | spin_lock_irq(¤t->sighand->siglock); |
| 2609 | old = current->blocked.sig[0]; |
| 2610 | |
| 2611 | siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| |
| 2612 | sigmask(SIGSTOP))); |
| 2613 | recalc_sigpending(); |
| 2614 | spin_unlock_irq(¤t->sighand->siglock); |
| 2615 | |
| 2616 | return old; |
| 2617 | } |
| 2618 | #endif /* __ARCH_WANT_SGETMASK */ |
| 2619 | |
| 2620 | #ifdef __ARCH_WANT_SYS_SIGNAL |
| 2621 | /* |
| 2622 | * For backwards compatibility. Functionality superseded by sigaction. |
| 2623 | */ |
| 2624 | asmlinkage unsigned long |
| 2625 | sys_signal(int sig, __sighandler_t handler) |
| 2626 | { |
| 2627 | struct k_sigaction new_sa, old_sa; |
| 2628 | int ret; |
| 2629 | |
| 2630 | new_sa.sa.sa_handler = handler; |
| 2631 | new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; |
| 2632 | |
| 2633 | ret = do_sigaction(sig, &new_sa, &old_sa); |
| 2634 | |
| 2635 | return ret ? ret : (unsigned long)old_sa.sa.sa_handler; |
| 2636 | } |
| 2637 | #endif /* __ARCH_WANT_SYS_SIGNAL */ |
| 2638 | |
| 2639 | #ifdef __ARCH_WANT_SYS_PAUSE |
| 2640 | |
| 2641 | asmlinkage long |
| 2642 | sys_pause(void) |
| 2643 | { |
| 2644 | current->state = TASK_INTERRUPTIBLE; |
| 2645 | schedule(); |
| 2646 | return -ERESTARTNOHAND; |
| 2647 | } |
| 2648 | |
| 2649 | #endif |
| 2650 | |
| 2651 | void __init signals_init(void) |
| 2652 | { |
| 2653 | sigqueue_cachep = |
| 2654 | kmem_cache_create("sigqueue", |
| 2655 | sizeof(struct sigqueue), |
| 2656 | __alignof__(struct sigqueue), |
| 2657 | SLAB_PANIC, NULL, NULL); |
| 2658 | } |