Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | |
| 2 | /* JEDEC Flash Interface. |
| 3 | * This is an older type of interface for self programming flash. It is |
| 4 | * commonly use in older AMD chips and is obsolete compared with CFI. |
| 5 | * It is called JEDEC because the JEDEC association distributes the ID codes |
| 6 | * for the chips. |
| 7 | * |
| 8 | * See the AMD flash databook for information on how to operate the interface. |
| 9 | * |
| 10 | * This code does not support anything wider than 8 bit flash chips, I am |
| 11 | * not going to guess how to send commands to them, plus I expect they will |
| 12 | * all speak CFI.. |
| 13 | * |
| 14 | * $Id: jedec.c,v 1.22 2005/01/05 18:05:11 dwmw2 Exp $ |
| 15 | */ |
| 16 | |
| 17 | #include <linux/init.h> |
| 18 | #include <linux/module.h> |
| 19 | #include <linux/kernel.h> |
| 20 | #include <linux/mtd/jedec.h> |
| 21 | #include <linux/mtd/map.h> |
| 22 | #include <linux/mtd/mtd.h> |
| 23 | #include <linux/mtd/compatmac.h> |
| 24 | |
| 25 | static struct mtd_info *jedec_probe(struct map_info *); |
| 26 | static int jedec_probe8(struct map_info *map,unsigned long base, |
| 27 | struct jedec_private *priv); |
| 28 | static int jedec_probe16(struct map_info *map,unsigned long base, |
| 29 | struct jedec_private *priv); |
| 30 | static int jedec_probe32(struct map_info *map,unsigned long base, |
| 31 | struct jedec_private *priv); |
| 32 | static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start, |
| 33 | unsigned long len); |
| 34 | static int flash_erase(struct mtd_info *mtd, struct erase_info *instr); |
| 35 | static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, |
| 36 | size_t *retlen, const u_char *buf); |
| 37 | |
| 38 | static unsigned long my_bank_size; |
| 39 | |
| 40 | /* Listing of parts and sizes. We need this table to learn the sector |
| 41 | size of the chip and the total length */ |
| 42 | static const struct JEDECTable JEDEC_table[] = { |
| 43 | { |
| 44 | .jedec = 0x013D, |
| 45 | .name = "AMD Am29F017D", |
| 46 | .size = 2*1024*1024, |
| 47 | .sectorsize = 64*1024, |
| 48 | .capabilities = MTD_CAP_NORFLASH |
| 49 | }, |
| 50 | { |
| 51 | .jedec = 0x01AD, |
| 52 | .name = "AMD Am29F016", |
| 53 | .size = 2*1024*1024, |
| 54 | .sectorsize = 64*1024, |
| 55 | .capabilities = MTD_CAP_NORFLASH |
| 56 | }, |
| 57 | { |
| 58 | .jedec = 0x01D5, |
| 59 | .name = "AMD Am29F080", |
| 60 | .size = 1*1024*1024, |
| 61 | .sectorsize = 64*1024, |
| 62 | .capabilities = MTD_CAP_NORFLASH |
| 63 | }, |
| 64 | { |
| 65 | .jedec = 0x01A4, |
| 66 | .name = "AMD Am29F040", |
| 67 | .size = 512*1024, |
| 68 | .sectorsize = 64*1024, |
| 69 | .capabilities = MTD_CAP_NORFLASH |
| 70 | }, |
| 71 | { |
| 72 | .jedec = 0x20E3, |
| 73 | .name = "AMD Am29W040B", |
| 74 | .size = 512*1024, |
| 75 | .sectorsize = 64*1024, |
| 76 | .capabilities = MTD_CAP_NORFLASH |
| 77 | }, |
| 78 | { |
| 79 | .jedec = 0xC2AD, |
| 80 | .name = "Macronix MX29F016", |
| 81 | .size = 2*1024*1024, |
| 82 | .sectorsize = 64*1024, |
| 83 | .capabilities = MTD_CAP_NORFLASH |
| 84 | }, |
| 85 | { .jedec = 0x0 } |
| 86 | }; |
| 87 | |
| 88 | static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id); |
| 89 | static void jedec_sync(struct mtd_info *mtd) {}; |
| 90 | static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len, |
| 91 | size_t *retlen, u_char *buf); |
| 92 | static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len, |
| 93 | size_t *retlen, u_char *buf); |
| 94 | |
| 95 | static struct mtd_info *jedec_probe(struct map_info *map); |
| 96 | |
| 97 | |
| 98 | |
| 99 | static struct mtd_chip_driver jedec_chipdrv = { |
| 100 | .probe = jedec_probe, |
| 101 | .name = "jedec", |
| 102 | .module = THIS_MODULE |
| 103 | }; |
| 104 | |
| 105 | /* Probe entry point */ |
| 106 | |
| 107 | static struct mtd_info *jedec_probe(struct map_info *map) |
| 108 | { |
| 109 | struct mtd_info *MTD; |
| 110 | struct jedec_private *priv; |
| 111 | unsigned long Base; |
| 112 | unsigned long SectorSize; |
| 113 | unsigned count; |
| 114 | unsigned I,Uniq; |
| 115 | char Part[200]; |
| 116 | memset(&priv,0,sizeof(priv)); |
| 117 | |
| 118 | MTD = kmalloc(sizeof(struct mtd_info) + sizeof(struct jedec_private), GFP_KERNEL); |
| 119 | if (!MTD) |
| 120 | return NULL; |
| 121 | |
| 122 | memset(MTD, 0, sizeof(struct mtd_info) + sizeof(struct jedec_private)); |
| 123 | priv = (struct jedec_private *)&MTD[1]; |
| 124 | |
| 125 | my_bank_size = map->size; |
| 126 | |
| 127 | if (map->size/my_bank_size > MAX_JEDEC_CHIPS) |
| 128 | { |
| 129 | printk("mtd: Increase MAX_JEDEC_CHIPS, too many banks.\n"); |
| 130 | kfree(MTD); |
| 131 | return NULL; |
| 132 | } |
| 133 | |
| 134 | for (Base = 0; Base < map->size; Base += my_bank_size) |
| 135 | { |
| 136 | // Perhaps zero could designate all tests? |
| 137 | if (map->buswidth == 0) |
| 138 | map->buswidth = 1; |
| 139 | |
| 140 | if (map->buswidth == 1){ |
| 141 | if (jedec_probe8(map,Base,priv) == 0) { |
| 142 | printk("did recognize jedec chip\n"); |
| 143 | kfree(MTD); |
| 144 | return NULL; |
| 145 | } |
| 146 | } |
| 147 | if (map->buswidth == 2) |
| 148 | jedec_probe16(map,Base,priv); |
| 149 | if (map->buswidth == 4) |
| 150 | jedec_probe32(map,Base,priv); |
| 151 | } |
| 152 | |
| 153 | // Get the biggest sector size |
| 154 | SectorSize = 0; |
| 155 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) |
| 156 | { |
| 157 | // printk("priv->chips[%d].jedec is %x\n",I,priv->chips[I].jedec); |
| 158 | // printk("priv->chips[%d].sectorsize is %lx\n",I,priv->chips[I].sectorsize); |
| 159 | if (priv->chips[I].sectorsize > SectorSize) |
| 160 | SectorSize = priv->chips[I].sectorsize; |
| 161 | } |
| 162 | |
| 163 | // Quickly ensure that the other sector sizes are factors of the largest |
| 164 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) |
| 165 | { |
| 166 | if ((SectorSize/priv->chips[I].sectorsize)*priv->chips[I].sectorsize != SectorSize) |
| 167 | { |
| 168 | printk("mtd: Failed. Device has incompatible mixed sector sizes\n"); |
| 169 | kfree(MTD); |
| 170 | return NULL; |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | /* Generate a part name that includes the number of different chips and |
| 175 | other configuration information */ |
| 176 | count = 1; |
| 177 | strlcpy(Part,map->name,sizeof(Part)-10); |
| 178 | strcat(Part," "); |
| 179 | Uniq = 0; |
| 180 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) |
| 181 | { |
| 182 | const struct JEDECTable *JEDEC; |
| 183 | |
| 184 | if (priv->chips[I+1].jedec == priv->chips[I].jedec) |
| 185 | { |
| 186 | count++; |
| 187 | continue; |
| 188 | } |
| 189 | |
| 190 | // Locate the chip in the jedec table |
| 191 | JEDEC = jedec_idtoinf(priv->chips[I].jedec >> 8,priv->chips[I].jedec); |
| 192 | if (JEDEC == 0) |
| 193 | { |
| 194 | printk("mtd: Internal Error, JEDEC not set\n"); |
| 195 | kfree(MTD); |
| 196 | return NULL; |
| 197 | } |
| 198 | |
| 199 | if (Uniq != 0) |
| 200 | strcat(Part,","); |
| 201 | Uniq++; |
| 202 | |
| 203 | if (count != 1) |
| 204 | sprintf(Part+strlen(Part),"%x*[%s]",count,JEDEC->name); |
| 205 | else |
| 206 | sprintf(Part+strlen(Part),"%s",JEDEC->name); |
| 207 | if (strlen(Part) > sizeof(Part)*2/3) |
| 208 | break; |
| 209 | count = 1; |
| 210 | } |
| 211 | |
| 212 | /* Determine if the chips are organized in a linear fashion, or if there |
| 213 | are empty banks. Note, the last bank does not count here, only the |
| 214 | first banks are important. Holes on non-bank boundaries can not exist |
| 215 | due to the way the detection algorithm works. */ |
| 216 | if (priv->size < my_bank_size) |
| 217 | my_bank_size = priv->size; |
| 218 | priv->is_banked = 0; |
| 219 | //printk("priv->size is %x, my_bank_size is %x\n",priv->size,my_bank_size); |
| 220 | //printk("priv->bank_fill[0] is %x\n",priv->bank_fill[0]); |
| 221 | if (!priv->size) { |
| 222 | printk("priv->size is zero\n"); |
| 223 | kfree(MTD); |
| 224 | return NULL; |
| 225 | } |
| 226 | if (priv->size/my_bank_size) { |
| 227 | if (priv->size/my_bank_size == 1) { |
| 228 | priv->size = my_bank_size; |
| 229 | } |
| 230 | else { |
| 231 | for (I = 0; I != priv->size/my_bank_size - 1; I++) |
| 232 | { |
| 233 | if (priv->bank_fill[I] != my_bank_size) |
| 234 | priv->is_banked = 1; |
| 235 | |
| 236 | /* This even could be eliminated, but new de-optimized read/write |
| 237 | functions have to be written */ |
| 238 | printk("priv->bank_fill[%d] is %lx, priv->bank_fill[0] is %lx\n",I,priv->bank_fill[I],priv->bank_fill[0]); |
| 239 | if (priv->bank_fill[I] != priv->bank_fill[0]) |
| 240 | { |
| 241 | printk("mtd: Failed. Cannot handle unsymmetric banking\n"); |
| 242 | kfree(MTD); |
| 243 | return NULL; |
| 244 | } |
| 245 | } |
| 246 | } |
| 247 | } |
| 248 | if (priv->is_banked == 1) |
| 249 | strcat(Part,", banked"); |
| 250 | |
| 251 | // printk("Part: '%s'\n",Part); |
| 252 | |
| 253 | memset(MTD,0,sizeof(*MTD)); |
| 254 | // strlcpy(MTD->name,Part,sizeof(MTD->name)); |
| 255 | MTD->name = map->name; |
| 256 | MTD->type = MTD_NORFLASH; |
| 257 | MTD->flags = MTD_CAP_NORFLASH; |
| 258 | MTD->erasesize = SectorSize*(map->buswidth); |
| 259 | // printk("MTD->erasesize is %x\n",(unsigned int)MTD->erasesize); |
| 260 | MTD->size = priv->size; |
| 261 | // printk("MTD->size is %x\n",(unsigned int)MTD->size); |
| 262 | //MTD->module = THIS_MODULE; // ? Maybe this should be the low level module? |
| 263 | MTD->erase = flash_erase; |
| 264 | if (priv->is_banked == 1) |
| 265 | MTD->read = jedec_read_banked; |
| 266 | else |
| 267 | MTD->read = jedec_read; |
| 268 | MTD->write = flash_write; |
| 269 | MTD->sync = jedec_sync; |
| 270 | MTD->priv = map; |
| 271 | map->fldrv_priv = priv; |
| 272 | map->fldrv = &jedec_chipdrv; |
| 273 | __module_get(THIS_MODULE); |
| 274 | return MTD; |
| 275 | } |
| 276 | |
| 277 | /* Helper for the JEDEC function, JEDEC numbers all have odd parity */ |
| 278 | static int checkparity(u_char C) |
| 279 | { |
| 280 | u_char parity = 0; |
| 281 | while (C != 0) |
| 282 | { |
| 283 | parity ^= C & 1; |
| 284 | C >>= 1; |
| 285 | } |
| 286 | |
| 287 | return parity == 1; |
| 288 | } |
| 289 | |
| 290 | |
| 291 | /* Take an array of JEDEC numbers that represent interleved flash chips |
| 292 | and process them. Check to make sure they are good JEDEC numbers, look |
| 293 | them up and then add them to the chip list */ |
| 294 | static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count, |
| 295 | unsigned long base,struct jedec_private *priv) |
| 296 | { |
| 297 | unsigned I,J; |
| 298 | unsigned long Size; |
| 299 | unsigned long SectorSize; |
| 300 | const struct JEDECTable *JEDEC; |
| 301 | |
| 302 | // Test #2 JEDEC numbers exhibit odd parity |
| 303 | for (I = 0; I != Count; I++) |
| 304 | { |
| 305 | if (checkparity(Mfg[I]) == 0 || checkparity(Id[I]) == 0) |
| 306 | return 0; |
| 307 | } |
| 308 | |
| 309 | // Finally, just make sure all the chip sizes are the same |
| 310 | JEDEC = jedec_idtoinf(Mfg[0],Id[0]); |
| 311 | |
| 312 | if (JEDEC == 0) |
| 313 | { |
| 314 | printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]); |
| 315 | return 0; |
| 316 | } |
| 317 | |
| 318 | Size = JEDEC->size; |
| 319 | SectorSize = JEDEC->sectorsize; |
| 320 | for (I = 0; I != Count; I++) |
| 321 | { |
| 322 | JEDEC = jedec_idtoinf(Mfg[0],Id[0]); |
| 323 | if (JEDEC == 0) |
| 324 | { |
| 325 | printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]); |
| 326 | return 0; |
| 327 | } |
| 328 | |
| 329 | if (Size != JEDEC->size || SectorSize != JEDEC->sectorsize) |
| 330 | { |
| 331 | printk("mtd: Failed. Interleved flash does not have matching characteristics\n"); |
| 332 | return 0; |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | // Load the Chips |
| 337 | for (I = 0; I != MAX_JEDEC_CHIPS; I++) |
| 338 | { |
| 339 | if (priv->chips[I].jedec == 0) |
| 340 | break; |
| 341 | } |
| 342 | |
| 343 | if (I + Count > MAX_JEDEC_CHIPS) |
| 344 | { |
| 345 | printk("mtd: Device has too many chips. Increase MAX_JEDEC_CHIPS\n"); |
| 346 | return 0; |
| 347 | } |
| 348 | |
| 349 | // Add them to the table |
| 350 | for (J = 0; J != Count; J++) |
| 351 | { |
| 352 | unsigned long Bank; |
| 353 | |
| 354 | JEDEC = jedec_idtoinf(Mfg[J],Id[J]); |
| 355 | priv->chips[I].jedec = (Mfg[J] << 8) | Id[J]; |
| 356 | priv->chips[I].size = JEDEC->size; |
| 357 | priv->chips[I].sectorsize = JEDEC->sectorsize; |
| 358 | priv->chips[I].base = base + J; |
| 359 | priv->chips[I].datashift = J*8; |
| 360 | priv->chips[I].capabilities = JEDEC->capabilities; |
| 361 | priv->chips[I].offset = priv->size + J; |
| 362 | |
| 363 | // log2 n :| |
| 364 | priv->chips[I].addrshift = 0; |
| 365 | for (Bank = Count; Bank != 1; Bank >>= 1, priv->chips[I].addrshift++); |
| 366 | |
| 367 | // Determine how filled this bank is. |
| 368 | Bank = base & (~(my_bank_size-1)); |
| 369 | if (priv->bank_fill[Bank/my_bank_size] < base + |
| 370 | (JEDEC->size << priv->chips[I].addrshift) - Bank) |
| 371 | priv->bank_fill[Bank/my_bank_size] = base + (JEDEC->size << priv->chips[I].addrshift) - Bank; |
| 372 | I++; |
| 373 | } |
| 374 | |
| 375 | priv->size += priv->chips[I-1].size*Count; |
| 376 | |
| 377 | return priv->chips[I-1].size; |
| 378 | } |
| 379 | |
| 380 | /* Lookup the chip information from the JEDEC ID table. */ |
| 381 | static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id) |
| 382 | { |
| 383 | __u16 Id = (mfr << 8) | id; |
| 384 | unsigned long I = 0; |
| 385 | for (I = 0; JEDEC_table[I].jedec != 0; I++) |
| 386 | if (JEDEC_table[I].jedec == Id) |
| 387 | return JEDEC_table + I; |
| 388 | return NULL; |
| 389 | } |
| 390 | |
| 391 | // Look for flash using an 8 bit bus interface |
| 392 | static int jedec_probe8(struct map_info *map,unsigned long base, |
| 393 | struct jedec_private *priv) |
| 394 | { |
| 395 | #define flread(x) map_read8(map,base+x) |
| 396 | #define flwrite(v,x) map_write8(map,v,base+x) |
| 397 | |
| 398 | const unsigned long AutoSel1 = 0xAA; |
| 399 | const unsigned long AutoSel2 = 0x55; |
| 400 | const unsigned long AutoSel3 = 0x90; |
| 401 | const unsigned long Reset = 0xF0; |
| 402 | __u32 OldVal; |
| 403 | __u8 Mfg[1]; |
| 404 | __u8 Id[1]; |
| 405 | unsigned I; |
| 406 | unsigned long Size; |
| 407 | |
| 408 | // Wait for any write/erase operation to settle |
| 409 | OldVal = flread(base); |
| 410 | for (I = 0; OldVal != flread(base) && I < 10000; I++) |
| 411 | OldVal = flread(base); |
| 412 | |
| 413 | // Reset the chip |
| 414 | flwrite(Reset,0x555); |
| 415 | |
| 416 | // Send the sequence |
| 417 | flwrite(AutoSel1,0x555); |
| 418 | flwrite(AutoSel2,0x2AA); |
| 419 | flwrite(AutoSel3,0x555); |
| 420 | |
| 421 | // Get the JEDEC numbers |
| 422 | Mfg[0] = flread(0); |
| 423 | Id[0] = flread(1); |
| 424 | // printk("Mfg is %x, Id is %x\n",Mfg[0],Id[0]); |
| 425 | |
| 426 | Size = handle_jedecs(map,Mfg,Id,1,base,priv); |
| 427 | // printk("handle_jedecs Size is %x\n",(unsigned int)Size); |
| 428 | if (Size == 0) |
| 429 | { |
| 430 | flwrite(Reset,0x555); |
| 431 | return 0; |
| 432 | } |
| 433 | |
| 434 | |
| 435 | // Reset. |
| 436 | flwrite(Reset,0x555); |
| 437 | |
| 438 | return 1; |
| 439 | |
| 440 | #undef flread |
| 441 | #undef flwrite |
| 442 | } |
| 443 | |
| 444 | // Look for flash using a 16 bit bus interface (ie 2 8-bit chips) |
| 445 | static int jedec_probe16(struct map_info *map,unsigned long base, |
| 446 | struct jedec_private *priv) |
| 447 | { |
| 448 | return 0; |
| 449 | } |
| 450 | |
| 451 | // Look for flash using a 32 bit bus interface (ie 4 8-bit chips) |
| 452 | static int jedec_probe32(struct map_info *map,unsigned long base, |
| 453 | struct jedec_private *priv) |
| 454 | { |
| 455 | #define flread(x) map_read32(map,base+((x)<<2)) |
| 456 | #define flwrite(v,x) map_write32(map,v,base+((x)<<2)) |
| 457 | |
| 458 | const unsigned long AutoSel1 = 0xAAAAAAAA; |
| 459 | const unsigned long AutoSel2 = 0x55555555; |
| 460 | const unsigned long AutoSel3 = 0x90909090; |
| 461 | const unsigned long Reset = 0xF0F0F0F0; |
| 462 | __u32 OldVal; |
| 463 | __u8 Mfg[4]; |
| 464 | __u8 Id[4]; |
| 465 | unsigned I; |
| 466 | unsigned long Size; |
| 467 | |
| 468 | // Wait for any write/erase operation to settle |
| 469 | OldVal = flread(base); |
| 470 | for (I = 0; OldVal != flread(base) && I < 10000; I++) |
| 471 | OldVal = flread(base); |
| 472 | |
| 473 | // Reset the chip |
| 474 | flwrite(Reset,0x555); |
| 475 | |
| 476 | // Send the sequence |
| 477 | flwrite(AutoSel1,0x555); |
| 478 | flwrite(AutoSel2,0x2AA); |
| 479 | flwrite(AutoSel3,0x555); |
| 480 | |
| 481 | // Test #1, JEDEC numbers are readable from 0x??00/0x??01 |
| 482 | if (flread(0) != flread(0x100) || |
| 483 | flread(1) != flread(0x101)) |
| 484 | { |
| 485 | flwrite(Reset,0x555); |
| 486 | return 0; |
| 487 | } |
| 488 | |
| 489 | // Split up the JEDEC numbers |
| 490 | OldVal = flread(0); |
| 491 | for (I = 0; I != 4; I++) |
| 492 | Mfg[I] = (OldVal >> (I*8)); |
| 493 | OldVal = flread(1); |
| 494 | for (I = 0; I != 4; I++) |
| 495 | Id[I] = (OldVal >> (I*8)); |
| 496 | |
| 497 | Size = handle_jedecs(map,Mfg,Id,4,base,priv); |
| 498 | if (Size == 0) |
| 499 | { |
| 500 | flwrite(Reset,0x555); |
| 501 | return 0; |
| 502 | } |
| 503 | |
| 504 | /* Check if there is address wrap around within a single bank, if this |
| 505 | returns JEDEC numbers then we assume that it is wrap around. Notice |
| 506 | we call this routine with the JEDEC return still enabled, if two or |
| 507 | more flashes have a truncated address space the probe test will still |
| 508 | work */ |
| 509 | if (base + (Size<<2)+0x555 < map->size && |
| 510 | base + (Size<<2)+0x555 < (base & (~(my_bank_size-1))) + my_bank_size) |
| 511 | { |
| 512 | if (flread(base+Size) != flread(base+Size + 0x100) || |
| 513 | flread(base+Size + 1) != flread(base+Size + 0x101)) |
| 514 | { |
| 515 | jedec_probe32(map,base+Size,priv); |
| 516 | } |
| 517 | } |
| 518 | |
| 519 | // Reset. |
| 520 | flwrite(0xF0F0F0F0,0x555); |
| 521 | |
| 522 | return 1; |
| 523 | |
| 524 | #undef flread |
| 525 | #undef flwrite |
| 526 | } |
| 527 | |
| 528 | /* Linear read. */ |
| 529 | static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len, |
| 530 | size_t *retlen, u_char *buf) |
| 531 | { |
| 532 | struct map_info *map = mtd->priv; |
| 533 | |
| 534 | map_copy_from(map, buf, from, len); |
| 535 | *retlen = len; |
| 536 | return 0; |
| 537 | } |
| 538 | |
| 539 | /* Banked read. Take special care to jump past the holes in the bank |
| 540 | mapping. This version assumes symetry in the holes.. */ |
| 541 | static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len, |
| 542 | size_t *retlen, u_char *buf) |
| 543 | { |
| 544 | struct map_info *map = mtd->priv; |
| 545 | struct jedec_private *priv = map->fldrv_priv; |
| 546 | |
| 547 | *retlen = 0; |
| 548 | while (len > 0) |
| 549 | { |
| 550 | // Determine what bank and offset into that bank the first byte is |
| 551 | unsigned long bank = from & (~(priv->bank_fill[0]-1)); |
| 552 | unsigned long offset = from & (priv->bank_fill[0]-1); |
| 553 | unsigned long get = len; |
| 554 | if (priv->bank_fill[0] - offset < len) |
| 555 | get = priv->bank_fill[0] - offset; |
| 556 | |
| 557 | bank /= priv->bank_fill[0]; |
| 558 | map_copy_from(map,buf + *retlen,bank*my_bank_size + offset,get); |
| 559 | |
| 560 | len -= get; |
| 561 | *retlen += get; |
| 562 | from += get; |
| 563 | } |
| 564 | return 0; |
| 565 | } |
| 566 | |
| 567 | /* Pass the flags value that the flash return before it re-entered read |
| 568 | mode. */ |
| 569 | static void jedec_flash_failed(unsigned char code) |
| 570 | { |
| 571 | /* Bit 5 being high indicates that there was an internal device |
| 572 | failure, erasure time limits exceeded or something */ |
| 573 | if ((code & (1 << 5)) != 0) |
| 574 | { |
| 575 | printk("mtd: Internal Flash failure\n"); |
| 576 | return; |
| 577 | } |
| 578 | printk("mtd: Programming didn't take\n"); |
| 579 | } |
| 580 | |
| 581 | /* This uses the erasure function described in the AMD Flash Handbook, |
| 582 | it will work for flashes with a fixed sector size only. Flashes with |
| 583 | a selection of sector sizes (ie the AMD Am29F800B) will need a different |
| 584 | routine. This routine tries to parallize erasing multiple chips/sectors |
| 585 | where possible */ |
| 586 | static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) |
| 587 | { |
| 588 | // Does IO to the currently selected chip |
| 589 | #define flread(x) map_read8(map,chip->base+((x)<<chip->addrshift)) |
| 590 | #define flwrite(v,x) map_write8(map,v,chip->base+((x)<<chip->addrshift)) |
| 591 | |
| 592 | unsigned long Time = 0; |
| 593 | unsigned long NoTime = 0; |
| 594 | unsigned long start = instr->addr, len = instr->len; |
| 595 | unsigned int I; |
| 596 | struct map_info *map = mtd->priv; |
| 597 | struct jedec_private *priv = map->fldrv_priv; |
| 598 | |
| 599 | // Verify the arguments.. |
| 600 | if (start + len > mtd->size || |
| 601 | (start % mtd->erasesize) != 0 || |
| 602 | (len % mtd->erasesize) != 0 || |
| 603 | (len/mtd->erasesize) == 0) |
| 604 | return -EINVAL; |
| 605 | |
| 606 | jedec_flash_chip_scan(priv,start,len); |
| 607 | |
| 608 | // Start the erase sequence on each chip |
| 609 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) |
| 610 | { |
| 611 | unsigned long off; |
| 612 | struct jedec_flash_chip *chip = priv->chips + I; |
| 613 | |
| 614 | if (chip->length == 0) |
| 615 | continue; |
| 616 | |
| 617 | if (chip->start + chip->length > chip->size) |
| 618 | { |
| 619 | printk("DIE\n"); |
| 620 | return -EIO; |
| 621 | } |
| 622 | |
| 623 | flwrite(0xF0,chip->start + 0x555); |
| 624 | flwrite(0xAA,chip->start + 0x555); |
| 625 | flwrite(0x55,chip->start + 0x2AA); |
| 626 | flwrite(0x80,chip->start + 0x555); |
| 627 | flwrite(0xAA,chip->start + 0x555); |
| 628 | flwrite(0x55,chip->start + 0x2AA); |
| 629 | |
| 630 | /* Once we start selecting the erase sectors the delay between each |
| 631 | command must not exceed 50us or it will immediately start erasing |
| 632 | and ignore the other sectors */ |
| 633 | for (off = 0; off < len; off += chip->sectorsize) |
| 634 | { |
| 635 | // Check to make sure we didn't timeout |
| 636 | flwrite(0x30,chip->start + off); |
| 637 | if (off == 0) |
| 638 | continue; |
| 639 | if ((flread(chip->start + off) & (1 << 3)) != 0) |
| 640 | { |
| 641 | printk("mtd: Ack! We timed out the erase timer!\n"); |
| 642 | return -EIO; |
| 643 | } |
| 644 | } |
| 645 | } |
| 646 | |
| 647 | /* We could split this into a timer routine and return early, performing |
| 648 | background erasure.. Maybe later if the need warrents */ |
| 649 | |
| 650 | /* Poll the flash for erasure completion, specs say this can take as long |
| 651 | as 480 seconds to do all the sectors (for a 2 meg flash). |
| 652 | Erasure time is dependent on chip age, temp and wear.. */ |
| 653 | |
| 654 | /* This being a generic routine assumes a 32 bit bus. It does read32s |
| 655 | and bundles interleved chips into the same grouping. This will work |
| 656 | for all bus widths */ |
| 657 | Time = 0; |
| 658 | NoTime = 0; |
| 659 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) |
| 660 | { |
| 661 | struct jedec_flash_chip *chip = priv->chips + I; |
| 662 | unsigned long off = 0; |
| 663 | unsigned todo[4] = {0,0,0,0}; |
| 664 | unsigned todo_left = 0; |
| 665 | unsigned J; |
| 666 | |
| 667 | if (chip->length == 0) |
| 668 | continue; |
| 669 | |
| 670 | /* Find all chips in this data line, realistically this is all |
| 671 | or nothing up to the interleve count */ |
| 672 | for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++) |
| 673 | { |
| 674 | if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) == |
| 675 | (chip->base & (~((1<<chip->addrshift)-1)))) |
| 676 | { |
| 677 | todo_left++; |
| 678 | todo[priv->chips[J].base & ((1<<chip->addrshift)-1)] = 1; |
| 679 | } |
| 680 | } |
| 681 | |
| 682 | /* printk("todo: %x %x %x %x\n",(short)todo[0],(short)todo[1], |
| 683 | (short)todo[2],(short)todo[3]); |
| 684 | */ |
| 685 | while (1) |
| 686 | { |
| 687 | __u32 Last[4]; |
| 688 | unsigned long Count = 0; |
| 689 | |
| 690 | /* During erase bit 7 is held low and bit 6 toggles, we watch this, |
| 691 | should it stop toggling or go high then the erase is completed, |
| 692 | or this is not really flash ;> */ |
| 693 | switch (map->buswidth) { |
| 694 | case 1: |
| 695 | Last[0] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off); |
| 696 | Last[1] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off); |
| 697 | Last[2] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off); |
| 698 | break; |
| 699 | case 2: |
| 700 | Last[0] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off); |
| 701 | Last[1] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off); |
| 702 | Last[2] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off); |
| 703 | break; |
| 704 | case 3: |
| 705 | Last[0] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off); |
| 706 | Last[1] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off); |
| 707 | Last[2] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off); |
| 708 | break; |
| 709 | } |
| 710 | Count = 3; |
| 711 | while (todo_left != 0) |
| 712 | { |
| 713 | for (J = 0; J != 4; J++) |
| 714 | { |
| 715 | __u8 Byte1 = (Last[(Count-1)%4] >> (J*8)) & 0xFF; |
| 716 | __u8 Byte2 = (Last[(Count-2)%4] >> (J*8)) & 0xFF; |
| 717 | __u8 Byte3 = (Last[(Count-3)%4] >> (J*8)) & 0xFF; |
| 718 | if (todo[J] == 0) |
| 719 | continue; |
| 720 | |
| 721 | if ((Byte1 & (1 << 7)) == 0 && Byte1 != Byte2) |
| 722 | { |
| 723 | // printk("Check %x %x %x\n",(short)J,(short)Byte1,(short)Byte2); |
| 724 | continue; |
| 725 | } |
| 726 | |
| 727 | if (Byte1 == Byte2) |
| 728 | { |
| 729 | jedec_flash_failed(Byte3); |
| 730 | return -EIO; |
| 731 | } |
| 732 | |
| 733 | todo[J] = 0; |
| 734 | todo_left--; |
| 735 | } |
| 736 | |
| 737 | /* if (NoTime == 0) |
| 738 | Time += HZ/10 - schedule_timeout(HZ/10);*/ |
| 739 | NoTime = 0; |
| 740 | |
| 741 | switch (map->buswidth) { |
| 742 | case 1: |
| 743 | Last[Count % 4] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off); |
| 744 | break; |
| 745 | case 2: |
| 746 | Last[Count % 4] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off); |
| 747 | break; |
| 748 | case 4: |
| 749 | Last[Count % 4] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off); |
| 750 | break; |
| 751 | } |
| 752 | Count++; |
| 753 | |
| 754 | /* // Count time, max of 15s per sector (according to AMD) |
| 755 | if (Time > 15*len/mtd->erasesize*HZ) |
| 756 | { |
| 757 | printk("mtd: Flash Erase Timed out\n"); |
| 758 | return -EIO; |
| 759 | } */ |
| 760 | } |
| 761 | |
| 762 | // Skip to the next chip if we used chip erase |
| 763 | if (chip->length == chip->size) |
| 764 | off = chip->size; |
| 765 | else |
| 766 | off += chip->sectorsize; |
| 767 | |
| 768 | if (off >= chip->length) |
| 769 | break; |
| 770 | NoTime = 1; |
| 771 | } |
| 772 | |
| 773 | for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++) |
| 774 | { |
| 775 | if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) == |
| 776 | (chip->base & (~((1<<chip->addrshift)-1)))) |
| 777 | priv->chips[J].length = 0; |
| 778 | } |
| 779 | } |
| 780 | |
| 781 | //printk("done\n"); |
| 782 | instr->state = MTD_ERASE_DONE; |
| 783 | mtd_erase_callback(instr); |
| 784 | return 0; |
| 785 | |
| 786 | #undef flread |
| 787 | #undef flwrite |
| 788 | } |
| 789 | |
| 790 | /* This is the simple flash writing function. It writes to every byte, in |
| 791 | sequence. It takes care of how to properly address the flash if |
| 792 | the flash is interleved. It can only be used if all the chips in the |
| 793 | array are identical!*/ |
| 794 | static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, |
| 795 | size_t *retlen, const u_char *buf) |
| 796 | { |
| 797 | /* Does IO to the currently selected chip. It takes the bank addressing |
| 798 | base (which is divisible by the chip size) adds the necessary lower bits |
| 799 | of addrshift (interleave index) and then adds the control register index. */ |
| 800 | #define flread(x) map_read8(map,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift)) |
| 801 | #define flwrite(v,x) map_write8(map,v,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift)) |
| 802 | |
| 803 | struct map_info *map = mtd->priv; |
| 804 | struct jedec_private *priv = map->fldrv_priv; |
| 805 | unsigned long base; |
| 806 | unsigned long off; |
| 807 | size_t save_len = len; |
| 808 | |
| 809 | if (start + len > mtd->size) |
| 810 | return -EIO; |
| 811 | |
| 812 | //printk("Here"); |
| 813 | |
| 814 | //printk("flash_write: start is %x, len is %x\n",start,(unsigned long)len); |
| 815 | while (len != 0) |
| 816 | { |
| 817 | struct jedec_flash_chip *chip = priv->chips; |
| 818 | unsigned long bank; |
| 819 | unsigned long boffset; |
| 820 | |
| 821 | // Compute the base of the flash. |
| 822 | off = ((unsigned long)start) % (chip->size << chip->addrshift); |
| 823 | base = start - off; |
| 824 | |
| 825 | // Perform banked addressing translation. |
| 826 | bank = base & (~(priv->bank_fill[0]-1)); |
| 827 | boffset = base & (priv->bank_fill[0]-1); |
| 828 | bank = (bank/priv->bank_fill[0])*my_bank_size; |
| 829 | base = bank + boffset; |
| 830 | |
| 831 | // printk("Flasing %X %X %X\n",base,chip->size,len); |
| 832 | // printk("off is %x, compare with %x\n",off,chip->size << chip->addrshift); |
| 833 | |
| 834 | // Loop over this page |
| 835 | for (; off != (chip->size << chip->addrshift) && len != 0; start++, len--, off++,buf++) |
| 836 | { |
| 837 | unsigned char oldbyte = map_read8(map,base+off); |
| 838 | unsigned char Last[4]; |
| 839 | unsigned long Count = 0; |
| 840 | |
| 841 | if (oldbyte == *buf) { |
| 842 | // printk("oldbyte and *buf is %x,len is %x\n",oldbyte,len); |
| 843 | continue; |
| 844 | } |
| 845 | if (((~oldbyte) & *buf) != 0) |
| 846 | printk("mtd: warn: Trying to set a 0 to a 1\n"); |
| 847 | |
| 848 | // Write |
| 849 | flwrite(0xAA,0x555); |
| 850 | flwrite(0x55,0x2AA); |
| 851 | flwrite(0xA0,0x555); |
| 852 | map_write8(map,*buf,base + off); |
| 853 | Last[0] = map_read8(map,base + off); |
| 854 | Last[1] = map_read8(map,base + off); |
| 855 | Last[2] = map_read8(map,base + off); |
| 856 | |
| 857 | /* Wait for the flash to finish the operation. We store the last 4 |
| 858 | status bytes that have been retrieved so we can determine why |
| 859 | it failed. The toggle bits keep toggling when there is a |
| 860 | failure */ |
| 861 | for (Count = 3; Last[(Count - 1) % 4] != Last[(Count - 2) % 4] && |
| 862 | Count < 10000; Count++) |
| 863 | Last[Count % 4] = map_read8(map,base + off); |
| 864 | if (Last[(Count - 1) % 4] != *buf) |
| 865 | { |
| 866 | jedec_flash_failed(Last[(Count - 3) % 4]); |
| 867 | return -EIO; |
| 868 | } |
| 869 | } |
| 870 | } |
| 871 | *retlen = save_len; |
| 872 | return 0; |
| 873 | } |
| 874 | |
| 875 | /* This is used to enhance the speed of the erase routine, |
| 876 | when things are being done to multiple chips it is possible to |
| 877 | parallize the operations, particularly full memory erases of multi |
| 878 | chip memories benifit */ |
| 879 | static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start, |
| 880 | unsigned long len) |
| 881 | { |
| 882 | unsigned int I; |
| 883 | |
| 884 | // Zero the records |
| 885 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) |
| 886 | priv->chips[I].start = priv->chips[I].length = 0; |
| 887 | |
| 888 | // Intersect the region with each chip |
| 889 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) |
| 890 | { |
| 891 | struct jedec_flash_chip *chip = priv->chips + I; |
| 892 | unsigned long ByteStart; |
| 893 | unsigned long ChipEndByte = chip->offset + (chip->size << chip->addrshift); |
| 894 | |
| 895 | // End is before this chip or the start is after it |
| 896 | if (start+len < chip->offset || |
| 897 | ChipEndByte - (1 << chip->addrshift) < start) |
| 898 | continue; |
| 899 | |
| 900 | if (start < chip->offset) |
| 901 | { |
| 902 | ByteStart = chip->offset; |
| 903 | chip->start = 0; |
| 904 | } |
| 905 | else |
| 906 | { |
| 907 | chip->start = (start - chip->offset + (1 << chip->addrshift)-1) >> chip->addrshift; |
| 908 | ByteStart = start; |
| 909 | } |
| 910 | |
| 911 | if (start + len >= ChipEndByte) |
| 912 | chip->length = (ChipEndByte - ByteStart) >> chip->addrshift; |
| 913 | else |
| 914 | chip->length = (start + len - ByteStart + (1 << chip->addrshift)-1) >> chip->addrshift; |
| 915 | } |
| 916 | } |
| 917 | |
| 918 | int __init jedec_init(void) |
| 919 | { |
| 920 | register_mtd_chip_driver(&jedec_chipdrv); |
| 921 | return 0; |
| 922 | } |
| 923 | |
| 924 | static void __exit jedec_exit(void) |
| 925 | { |
| 926 | unregister_mtd_chip_driver(&jedec_chipdrv); |
| 927 | } |
| 928 | |
| 929 | module_init(jedec_init); |
| 930 | module_exit(jedec_exit); |
| 931 | |
| 932 | MODULE_LICENSE("GPL"); |
| 933 | MODULE_AUTHOR("Jason Gunthorpe <jgg@deltatee.com> et al."); |
| 934 | MODULE_DESCRIPTION("Old MTD chip driver for JEDEC-compliant flash chips"); |