Dave Watson | 99c195f | 2017-06-14 11:37:51 -0700 | [diff] [blame^] | 1 | Overview |
| 2 | ======== |
| 3 | |
| 4 | Transport Layer Security (TLS) is a Upper Layer Protocol (ULP) that runs over |
| 5 | TCP. TLS provides end-to-end data integrity and confidentiality. |
| 6 | |
| 7 | User interface |
| 8 | ============== |
| 9 | |
| 10 | Creating a TLS connection |
| 11 | ------------------------- |
| 12 | |
| 13 | First create a new TCP socket and set the TLS ULP. |
| 14 | |
| 15 | sock = socket(AF_INET, SOCK_STREAM, 0); |
| 16 | setsockopt(sock, SOL_TCP, TCP_ULP, "tls", sizeof("tls")); |
| 17 | |
| 18 | Setting the TLS ULP allows us to set/get TLS socket options. Currently |
| 19 | only the symmetric encryption is handled in the kernel. After the TLS |
| 20 | handshake is complete, we have all the parameters required to move the |
| 21 | data-path to the kernel. There is a separate socket option for moving |
| 22 | the transmit and the receive into the kernel. |
| 23 | |
| 24 | /* From linux/tls.h */ |
| 25 | struct tls_crypto_info { |
| 26 | unsigned short version; |
| 27 | unsigned short cipher_type; |
| 28 | }; |
| 29 | |
| 30 | struct tls12_crypto_info_aes_gcm_128 { |
| 31 | struct tls_crypto_info info; |
| 32 | unsigned char iv[TLS_CIPHER_AES_GCM_128_IV_SIZE]; |
| 33 | unsigned char key[TLS_CIPHER_AES_GCM_128_KEY_SIZE]; |
| 34 | unsigned char salt[TLS_CIPHER_AES_GCM_128_SALT_SIZE]; |
| 35 | unsigned char rec_seq[TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE]; |
| 36 | }; |
| 37 | |
| 38 | |
| 39 | struct tls12_crypto_info_aes_gcm_128 crypto_info; |
| 40 | |
| 41 | crypto_info.info.version = TLS_1_2_VERSION; |
| 42 | crypto_info.info.cipher_type = TLS_CIPHER_AES_GCM_128; |
| 43 | memcpy(crypto_info.iv, iv_write, TLS_CIPHER_AES_GCM_128_IV_SIZE); |
| 44 | memcpy(crypto_info.rec_seq, seq_number_write, |
| 45 | TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); |
| 46 | memcpy(crypto_info.key, cipher_key_write, TLS_CIPHER_AES_GCM_128_KEY_SIZE); |
| 47 | memcpy(crypto_info.salt, implicit_iv_write, TLS_CIPHER_AES_GCM_128_SALT_SIZE); |
| 48 | |
| 49 | setsockopt(sock, SOL_TLS, TLS_TX, &crypto_info, sizeof(crypto_info)); |
| 50 | |
| 51 | Sending TLS application data |
| 52 | ---------------------------- |
| 53 | |
| 54 | After setting the TLS_TX socket option all application data sent over this |
| 55 | socket is encrypted using TLS and the parameters provided in the socket option. |
| 56 | For example, we can send an encrypted hello world record as follows: |
| 57 | |
| 58 | const char *msg = "hello world\n"; |
| 59 | send(sock, msg, strlen(msg)); |
| 60 | |
| 61 | send() data is directly encrypted from the userspace buffer provided |
| 62 | to the encrypted kernel send buffer if possible. |
| 63 | |
| 64 | The sendfile system call will send the file's data over TLS records of maximum |
| 65 | length (2^14). |
| 66 | |
| 67 | file = open(filename, O_RDONLY); |
| 68 | fstat(file, &stat); |
| 69 | sendfile(sock, file, &offset, stat.st_size); |
| 70 | |
| 71 | TLS records are created and sent after each send() call, unless |
| 72 | MSG_MORE is passed. MSG_MORE will delay creation of a record until |
| 73 | MSG_MORE is not passed, or the maximum record size is reached. |
| 74 | |
| 75 | The kernel will need to allocate a buffer for the encrypted data. |
| 76 | This buffer is allocated at the time send() is called, such that |
| 77 | either the entire send() call will return -ENOMEM (or block waiting |
| 78 | for memory), or the encryption will always succeed. If send() returns |
| 79 | -ENOMEM and some data was left on the socket buffer from a previous |
| 80 | call using MSG_MORE, the MSG_MORE data is left on the socket buffer. |
| 81 | |
| 82 | Send TLS control messages |
| 83 | ------------------------- |
| 84 | |
| 85 | Other than application data, TLS has control messages such as alert |
| 86 | messages (record type 21) and handshake messages (record type 22), etc. |
| 87 | These messages can be sent over the socket by providing the TLS record type |
| 88 | via a CMSG. For example the following function sends @data of @length bytes |
| 89 | using a record of type @record_type. |
| 90 | |
| 91 | /* send TLS control message using record_type */ |
| 92 | static int klts_send_ctrl_message(int sock, unsigned char record_type, |
| 93 | void *data, size_t length) |
| 94 | { |
| 95 | struct msghdr msg = {0}; |
| 96 | int cmsg_len = sizeof(record_type); |
| 97 | struct cmsghdr *cmsg; |
| 98 | char buf[CMSG_SPACE(cmsg_len)]; |
| 99 | struct iovec msg_iov; /* Vector of data to send/receive into. */ |
| 100 | |
| 101 | msg.msg_control = buf; |
| 102 | msg.msg_controllen = sizeof(buf); |
| 103 | cmsg = CMSG_FIRSTHDR(&msg); |
| 104 | cmsg->cmsg_level = SOL_TLS; |
| 105 | cmsg->cmsg_type = TLS_SET_RECORD_TYPE; |
| 106 | cmsg->cmsg_len = CMSG_LEN(cmsg_len); |
| 107 | *CMSG_DATA(cmsg) = record_type; |
| 108 | msg.msg_controllen = cmsg->cmsg_len; |
| 109 | |
| 110 | msg_iov.iov_base = data; |
| 111 | msg_iov.iov_len = length; |
| 112 | msg.msg_iov = &msg_iov; |
| 113 | msg.msg_iovlen = 1; |
| 114 | |
| 115 | return sendmsg(sock, &msg, 0); |
| 116 | } |
| 117 | |
| 118 | Control message data should be provided unencrypted, and will be |
| 119 | encrypted by the kernel. |
| 120 | |
| 121 | Integrating in to userspace TLS library |
| 122 | --------------------------------------- |
| 123 | |
| 124 | At a high level, the kernel TLS ULP is a replacement for the record |
| 125 | layer of a userspace TLS library. |
| 126 | |
| 127 | A patchset to OpenSSL to use ktls as the record layer is here: |
| 128 | |
| 129 | https://github.com/Mellanox/tls-openssl |
| 130 | |
| 131 | An example of calling send directly after a handshake using |
| 132 | gnutls. Since it doesn't implement a full record layer, control |
| 133 | messages are not supported: |
| 134 | |
| 135 | https://github.com/Mellanox/tls-af_ktls_tool |