Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/kernel/posix_timers.c |
| 3 | * |
| 4 | * |
| 5 | * 2002-10-15 Posix Clocks & timers |
| 6 | * by George Anzinger george@mvista.com |
| 7 | * |
| 8 | * Copyright (C) 2002 2003 by MontaVista Software. |
| 9 | * |
| 10 | * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. |
| 11 | * Copyright (C) 2004 Boris Hu |
| 12 | * |
| 13 | * This program is free software; you can redistribute it and/or modify |
| 14 | * it under the terms of the GNU General Public License as published by |
| 15 | * the Free Software Foundation; either version 2 of the License, or (at |
| 16 | * your option) any later version. |
| 17 | * |
| 18 | * This program is distributed in the hope that it will be useful, but |
| 19 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 21 | * General Public License for more details. |
| 22 | |
| 23 | * You should have received a copy of the GNU General Public License |
| 24 | * along with this program; if not, write to the Free Software |
| 25 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| 26 | * |
| 27 | * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA |
| 28 | */ |
| 29 | |
| 30 | /* These are all the functions necessary to implement |
| 31 | * POSIX clocks & timers |
| 32 | */ |
| 33 | #include <linux/mm.h> |
| 34 | #include <linux/smp_lock.h> |
| 35 | #include <linux/interrupt.h> |
| 36 | #include <linux/slab.h> |
| 37 | #include <linux/time.h> |
| 38 | |
| 39 | #include <asm/uaccess.h> |
| 40 | #include <asm/semaphore.h> |
| 41 | #include <linux/list.h> |
| 42 | #include <linux/init.h> |
| 43 | #include <linux/compiler.h> |
| 44 | #include <linux/idr.h> |
| 45 | #include <linux/posix-timers.h> |
| 46 | #include <linux/syscalls.h> |
| 47 | #include <linux/wait.h> |
| 48 | #include <linux/workqueue.h> |
| 49 | #include <linux/module.h> |
| 50 | |
| 51 | #ifndef div_long_long_rem |
| 52 | #include <asm/div64.h> |
| 53 | |
| 54 | #define div_long_long_rem(dividend,divisor,remainder) ({ \ |
| 55 | u64 result = dividend; \ |
| 56 | *remainder = do_div(result,divisor); \ |
| 57 | result; }) |
| 58 | |
| 59 | #endif |
| 60 | #define CLOCK_REALTIME_RES TICK_NSEC /* In nano seconds. */ |
| 61 | |
| 62 | static inline u64 mpy_l_X_l_ll(unsigned long mpy1,unsigned long mpy2) |
| 63 | { |
| 64 | return (u64)mpy1 * mpy2; |
| 65 | } |
| 66 | /* |
| 67 | * Management arrays for POSIX timers. Timers are kept in slab memory |
| 68 | * Timer ids are allocated by an external routine that keeps track of the |
| 69 | * id and the timer. The external interface is: |
| 70 | * |
| 71 | * void *idr_find(struct idr *idp, int id); to find timer_id <id> |
| 72 | * int idr_get_new(struct idr *idp, void *ptr); to get a new id and |
| 73 | * related it to <ptr> |
| 74 | * void idr_remove(struct idr *idp, int id); to release <id> |
| 75 | * void idr_init(struct idr *idp); to initialize <idp> |
| 76 | * which we supply. |
| 77 | * The idr_get_new *may* call slab for more memory so it must not be |
| 78 | * called under a spin lock. Likewise idr_remore may release memory |
| 79 | * (but it may be ok to do this under a lock...). |
| 80 | * idr_find is just a memory look up and is quite fast. A -1 return |
| 81 | * indicates that the requested id does not exist. |
| 82 | */ |
| 83 | |
| 84 | /* |
| 85 | * Lets keep our timers in a slab cache :-) |
| 86 | */ |
| 87 | static kmem_cache_t *posix_timers_cache; |
| 88 | static struct idr posix_timers_id; |
| 89 | static DEFINE_SPINLOCK(idr_lock); |
| 90 | |
| 91 | /* |
| 92 | * Just because the timer is not in the timer list does NOT mean it is |
| 93 | * inactive. It could be in the "fire" routine getting a new expire time. |
| 94 | */ |
| 95 | #define TIMER_INACTIVE 1 |
| 96 | |
| 97 | #ifdef CONFIG_SMP |
| 98 | # define timer_active(tmr) \ |
| 99 | ((tmr)->it.real.timer.entry.prev != (void *)TIMER_INACTIVE) |
| 100 | # define set_timer_inactive(tmr) \ |
| 101 | do { \ |
| 102 | (tmr)->it.real.timer.entry.prev = (void *)TIMER_INACTIVE; \ |
| 103 | } while (0) |
| 104 | #else |
| 105 | # define timer_active(tmr) BARFY // error to use outside of SMP |
| 106 | # define set_timer_inactive(tmr) do { } while (0) |
| 107 | #endif |
| 108 | /* |
| 109 | * we assume that the new SIGEV_THREAD_ID shares no bits with the other |
| 110 | * SIGEV values. Here we put out an error if this assumption fails. |
| 111 | */ |
| 112 | #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ |
| 113 | ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) |
| 114 | #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" |
| 115 | #endif |
| 116 | |
| 117 | |
| 118 | /* |
| 119 | * The timer ID is turned into a timer address by idr_find(). |
| 120 | * Verifying a valid ID consists of: |
| 121 | * |
| 122 | * a) checking that idr_find() returns other than -1. |
| 123 | * b) checking that the timer id matches the one in the timer itself. |
| 124 | * c) that the timer owner is in the callers thread group. |
| 125 | */ |
| 126 | |
| 127 | /* |
| 128 | * CLOCKs: The POSIX standard calls for a couple of clocks and allows us |
| 129 | * to implement others. This structure defines the various |
| 130 | * clocks and allows the possibility of adding others. We |
| 131 | * provide an interface to add clocks to the table and expect |
| 132 | * the "arch" code to add at least one clock that is high |
| 133 | * resolution. Here we define the standard CLOCK_REALTIME as a |
| 134 | * 1/HZ resolution clock. |
| 135 | * |
| 136 | * RESOLUTION: Clock resolution is used to round up timer and interval |
| 137 | * times, NOT to report clock times, which are reported with as |
| 138 | * much resolution as the system can muster. In some cases this |
| 139 | * resolution may depend on the underlying clock hardware and |
| 140 | * may not be quantifiable until run time, and only then is the |
| 141 | * necessary code is written. The standard says we should say |
| 142 | * something about this issue in the documentation... |
| 143 | * |
| 144 | * FUNCTIONS: The CLOCKs structure defines possible functions to handle |
| 145 | * various clock functions. For clocks that use the standard |
| 146 | * system timer code these entries should be NULL. This will |
| 147 | * allow dispatch without the overhead of indirect function |
| 148 | * calls. CLOCKS that depend on other sources (e.g. WWV or GPS) |
| 149 | * must supply functions here, even if the function just returns |
| 150 | * ENOSYS. The standard POSIX timer management code assumes the |
| 151 | * following: 1.) The k_itimer struct (sched.h) is used for the |
| 152 | * timer. 2.) The list, it_lock, it_clock, it_id and it_process |
| 153 | * fields are not modified by timer code. |
| 154 | * |
| 155 | * At this time all functions EXCEPT clock_nanosleep can be |
| 156 | * redirected by the CLOCKS structure. Clock_nanosleep is in |
| 157 | * there, but the code ignores it. |
| 158 | * |
| 159 | * Permissions: It is assumed that the clock_settime() function defined |
| 160 | * for each clock will take care of permission checks. Some |
| 161 | * clocks may be set able by any user (i.e. local process |
| 162 | * clocks) others not. Currently the only set able clock we |
| 163 | * have is CLOCK_REALTIME and its high res counter part, both of |
| 164 | * which we beg off on and pass to do_sys_settimeofday(). |
| 165 | */ |
| 166 | |
| 167 | static struct k_clock posix_clocks[MAX_CLOCKS]; |
| 168 | /* |
| 169 | * We only have one real clock that can be set so we need only one abs list, |
| 170 | * even if we should want to have several clocks with differing resolutions. |
| 171 | */ |
| 172 | static struct k_clock_abs abs_list = {.list = LIST_HEAD_INIT(abs_list.list), |
| 173 | .lock = SPIN_LOCK_UNLOCKED}; |
| 174 | |
| 175 | static void posix_timer_fn(unsigned long); |
| 176 | static u64 do_posix_clock_monotonic_gettime_parts( |
| 177 | struct timespec *tp, struct timespec *mo); |
| 178 | int do_posix_clock_monotonic_gettime(struct timespec *tp); |
| 179 | static int do_posix_clock_monotonic_get(clockid_t, struct timespec *tp); |
| 180 | |
| 181 | static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags); |
| 182 | |
| 183 | static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) |
| 184 | { |
| 185 | spin_unlock_irqrestore(&timr->it_lock, flags); |
| 186 | } |
| 187 | |
| 188 | /* |
| 189 | * Call the k_clock hook function if non-null, or the default function. |
| 190 | */ |
| 191 | #define CLOCK_DISPATCH(clock, call, arglist) \ |
| 192 | ((clock) < 0 ? posix_cpu_##call arglist : \ |
| 193 | (posix_clocks[clock].call != NULL \ |
| 194 | ? (*posix_clocks[clock].call) arglist : common_##call arglist)) |
| 195 | |
| 196 | /* |
| 197 | * Default clock hook functions when the struct k_clock passed |
| 198 | * to register_posix_clock leaves a function pointer null. |
| 199 | * |
| 200 | * The function common_CALL is the default implementation for |
| 201 | * the function pointer CALL in struct k_clock. |
| 202 | */ |
| 203 | |
| 204 | static inline int common_clock_getres(clockid_t which_clock, |
| 205 | struct timespec *tp) |
| 206 | { |
| 207 | tp->tv_sec = 0; |
| 208 | tp->tv_nsec = posix_clocks[which_clock].res; |
| 209 | return 0; |
| 210 | } |
| 211 | |
| 212 | static inline int common_clock_get(clockid_t which_clock, struct timespec *tp) |
| 213 | { |
| 214 | getnstimeofday(tp); |
| 215 | return 0; |
| 216 | } |
| 217 | |
| 218 | static inline int common_clock_set(clockid_t which_clock, struct timespec *tp) |
| 219 | { |
| 220 | return do_sys_settimeofday(tp, NULL); |
| 221 | } |
| 222 | |
| 223 | static inline int common_timer_create(struct k_itimer *new_timer) |
| 224 | { |
| 225 | INIT_LIST_HEAD(&new_timer->it.real.abs_timer_entry); |
| 226 | init_timer(&new_timer->it.real.timer); |
| 227 | new_timer->it.real.timer.data = (unsigned long) new_timer; |
| 228 | new_timer->it.real.timer.function = posix_timer_fn; |
| 229 | set_timer_inactive(new_timer); |
| 230 | return 0; |
| 231 | } |
| 232 | |
| 233 | /* |
| 234 | * These ones are defined below. |
| 235 | */ |
| 236 | static int common_nsleep(clockid_t, int flags, struct timespec *t); |
| 237 | static void common_timer_get(struct k_itimer *, struct itimerspec *); |
| 238 | static int common_timer_set(struct k_itimer *, int, |
| 239 | struct itimerspec *, struct itimerspec *); |
| 240 | static int common_timer_del(struct k_itimer *timer); |
| 241 | |
| 242 | /* |
| 243 | * Return nonzero iff we know a priori this clockid_t value is bogus. |
| 244 | */ |
| 245 | static inline int invalid_clockid(clockid_t which_clock) |
| 246 | { |
| 247 | if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */ |
| 248 | return 0; |
| 249 | if ((unsigned) which_clock >= MAX_CLOCKS) |
| 250 | return 1; |
| 251 | if (posix_clocks[which_clock].clock_getres != NULL) |
| 252 | return 0; |
| 253 | #ifndef CLOCK_DISPATCH_DIRECT |
| 254 | if (posix_clocks[which_clock].res != 0) |
| 255 | return 0; |
| 256 | #endif |
| 257 | return 1; |
| 258 | } |
| 259 | |
| 260 | |
| 261 | /* |
| 262 | * Initialize everything, well, just everything in Posix clocks/timers ;) |
| 263 | */ |
| 264 | static __init int init_posix_timers(void) |
| 265 | { |
| 266 | struct k_clock clock_realtime = {.res = CLOCK_REALTIME_RES, |
| 267 | .abs_struct = &abs_list |
| 268 | }; |
| 269 | struct k_clock clock_monotonic = {.res = CLOCK_REALTIME_RES, |
| 270 | .abs_struct = NULL, |
| 271 | .clock_get = do_posix_clock_monotonic_get, |
| 272 | .clock_set = do_posix_clock_nosettime |
| 273 | }; |
| 274 | |
| 275 | register_posix_clock(CLOCK_REALTIME, &clock_realtime); |
| 276 | register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic); |
| 277 | |
| 278 | posix_timers_cache = kmem_cache_create("posix_timers_cache", |
| 279 | sizeof (struct k_itimer), 0, 0, NULL, NULL); |
| 280 | idr_init(&posix_timers_id); |
| 281 | return 0; |
| 282 | } |
| 283 | |
| 284 | __initcall(init_posix_timers); |
| 285 | |
| 286 | static void tstojiffie(struct timespec *tp, int res, u64 *jiff) |
| 287 | { |
| 288 | long sec = tp->tv_sec; |
| 289 | long nsec = tp->tv_nsec + res - 1; |
| 290 | |
| 291 | if (nsec > NSEC_PER_SEC) { |
| 292 | sec++; |
| 293 | nsec -= NSEC_PER_SEC; |
| 294 | } |
| 295 | |
| 296 | /* |
| 297 | * The scaling constants are defined in <linux/time.h> |
| 298 | * The difference between there and here is that we do the |
| 299 | * res rounding and compute a 64-bit result (well so does that |
| 300 | * but it then throws away the high bits). |
| 301 | */ |
| 302 | *jiff = (mpy_l_X_l_ll(sec, SEC_CONVERSION) + |
| 303 | (mpy_l_X_l_ll(nsec, NSEC_CONVERSION) >> |
| 304 | (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; |
| 305 | } |
| 306 | |
| 307 | /* |
| 308 | * This function adjusts the timer as needed as a result of the clock |
| 309 | * being set. It should only be called for absolute timers, and then |
| 310 | * under the abs_list lock. It computes the time difference and sets |
| 311 | * the new jiffies value in the timer. It also updates the timers |
| 312 | * reference wall_to_monotonic value. It is complicated by the fact |
| 313 | * that tstojiffies() only handles positive times and it needs to work |
| 314 | * with both positive and negative times. Also, for negative offsets, |
| 315 | * we need to defeat the res round up. |
| 316 | * |
| 317 | * Return is true if there is a new time, else false. |
| 318 | */ |
| 319 | static long add_clockset_delta(struct k_itimer *timr, |
| 320 | struct timespec *new_wall_to) |
| 321 | { |
| 322 | struct timespec delta; |
| 323 | int sign = 0; |
| 324 | u64 exp; |
| 325 | |
| 326 | set_normalized_timespec(&delta, |
| 327 | new_wall_to->tv_sec - |
| 328 | timr->it.real.wall_to_prev.tv_sec, |
| 329 | new_wall_to->tv_nsec - |
| 330 | timr->it.real.wall_to_prev.tv_nsec); |
| 331 | if (likely(!(delta.tv_sec | delta.tv_nsec))) |
| 332 | return 0; |
| 333 | if (delta.tv_sec < 0) { |
| 334 | set_normalized_timespec(&delta, |
| 335 | -delta.tv_sec, |
| 336 | 1 - delta.tv_nsec - |
| 337 | posix_clocks[timr->it_clock].res); |
| 338 | sign++; |
| 339 | } |
| 340 | tstojiffie(&delta, posix_clocks[timr->it_clock].res, &exp); |
| 341 | timr->it.real.wall_to_prev = *new_wall_to; |
| 342 | timr->it.real.timer.expires += (sign ? -exp : exp); |
| 343 | return 1; |
| 344 | } |
| 345 | |
| 346 | static void remove_from_abslist(struct k_itimer *timr) |
| 347 | { |
| 348 | if (!list_empty(&timr->it.real.abs_timer_entry)) { |
| 349 | spin_lock(&abs_list.lock); |
| 350 | list_del_init(&timr->it.real.abs_timer_entry); |
| 351 | spin_unlock(&abs_list.lock); |
| 352 | } |
| 353 | } |
| 354 | |
| 355 | static void schedule_next_timer(struct k_itimer *timr) |
| 356 | { |
| 357 | struct timespec new_wall_to; |
| 358 | struct now_struct now; |
| 359 | unsigned long seq; |
| 360 | |
| 361 | /* |
| 362 | * Set up the timer for the next interval (if there is one). |
| 363 | * Note: this code uses the abs_timer_lock to protect |
| 364 | * it.real.wall_to_prev and must hold it until exp is set, not exactly |
| 365 | * obvious... |
| 366 | |
| 367 | * This function is used for CLOCK_REALTIME* and |
| 368 | * CLOCK_MONOTONIC* timers. If we ever want to handle other |
| 369 | * CLOCKs, the calling code (do_schedule_next_timer) would need |
| 370 | * to pull the "clock" info from the timer and dispatch the |
| 371 | * "other" CLOCKs "next timer" code (which, I suppose should |
| 372 | * also be added to the k_clock structure). |
| 373 | */ |
| 374 | if (!timr->it.real.incr) |
| 375 | return; |
| 376 | |
| 377 | do { |
| 378 | seq = read_seqbegin(&xtime_lock); |
| 379 | new_wall_to = wall_to_monotonic; |
| 380 | posix_get_now(&now); |
| 381 | } while (read_seqretry(&xtime_lock, seq)); |
| 382 | |
| 383 | if (!list_empty(&timr->it.real.abs_timer_entry)) { |
| 384 | spin_lock(&abs_list.lock); |
| 385 | add_clockset_delta(timr, &new_wall_to); |
| 386 | |
| 387 | posix_bump_timer(timr, now); |
| 388 | |
| 389 | spin_unlock(&abs_list.lock); |
| 390 | } else { |
| 391 | posix_bump_timer(timr, now); |
| 392 | } |
| 393 | timr->it_overrun_last = timr->it_overrun; |
| 394 | timr->it_overrun = -1; |
| 395 | ++timr->it_requeue_pending; |
| 396 | add_timer(&timr->it.real.timer); |
| 397 | } |
| 398 | |
| 399 | /* |
| 400 | * This function is exported for use by the signal deliver code. It is |
| 401 | * called just prior to the info block being released and passes that |
| 402 | * block to us. It's function is to update the overrun entry AND to |
| 403 | * restart the timer. It should only be called if the timer is to be |
| 404 | * restarted (i.e. we have flagged this in the sys_private entry of the |
| 405 | * info block). |
| 406 | * |
| 407 | * To protect aginst the timer going away while the interrupt is queued, |
| 408 | * we require that the it_requeue_pending flag be set. |
| 409 | */ |
| 410 | void do_schedule_next_timer(struct siginfo *info) |
| 411 | { |
| 412 | struct k_itimer *timr; |
| 413 | unsigned long flags; |
| 414 | |
| 415 | timr = lock_timer(info->si_tid, &flags); |
| 416 | |
| 417 | if (!timr || timr->it_requeue_pending != info->si_sys_private) |
| 418 | goto exit; |
| 419 | |
| 420 | if (timr->it_clock < 0) /* CPU clock */ |
| 421 | posix_cpu_timer_schedule(timr); |
| 422 | else |
| 423 | schedule_next_timer(timr); |
| 424 | info->si_overrun = timr->it_overrun_last; |
| 425 | exit: |
| 426 | if (timr) |
| 427 | unlock_timer(timr, flags); |
| 428 | } |
| 429 | |
| 430 | int posix_timer_event(struct k_itimer *timr,int si_private) |
| 431 | { |
| 432 | memset(&timr->sigq->info, 0, sizeof(siginfo_t)); |
| 433 | timr->sigq->info.si_sys_private = si_private; |
| 434 | /* |
| 435 | * Send signal to the process that owns this timer. |
| 436 | |
| 437 | * This code assumes that all the possible abs_lists share the |
| 438 | * same lock (there is only one list at this time). If this is |
| 439 | * not the case, the CLOCK info would need to be used to find |
| 440 | * the proper abs list lock. |
| 441 | */ |
| 442 | |
| 443 | timr->sigq->info.si_signo = timr->it_sigev_signo; |
| 444 | timr->sigq->info.si_errno = 0; |
| 445 | timr->sigq->info.si_code = SI_TIMER; |
| 446 | timr->sigq->info.si_tid = timr->it_id; |
| 447 | timr->sigq->info.si_value = timr->it_sigev_value; |
| 448 | if (timr->it_sigev_notify & SIGEV_THREAD_ID) { |
| 449 | if (unlikely(timr->it_process->flags & PF_EXITING)) { |
| 450 | timr->it_sigev_notify = SIGEV_SIGNAL; |
| 451 | put_task_struct(timr->it_process); |
| 452 | timr->it_process = timr->it_process->group_leader; |
| 453 | goto group; |
| 454 | } |
| 455 | return send_sigqueue(timr->it_sigev_signo, timr->sigq, |
| 456 | timr->it_process); |
| 457 | } |
| 458 | else { |
| 459 | group: |
| 460 | return send_group_sigqueue(timr->it_sigev_signo, timr->sigq, |
| 461 | timr->it_process); |
| 462 | } |
| 463 | } |
| 464 | EXPORT_SYMBOL_GPL(posix_timer_event); |
| 465 | |
| 466 | /* |
| 467 | * This function gets called when a POSIX.1b interval timer expires. It |
| 468 | * is used as a callback from the kernel internal timer. The |
| 469 | * run_timer_list code ALWAYS calls with interrupts on. |
| 470 | |
| 471 | * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. |
| 472 | */ |
| 473 | static void posix_timer_fn(unsigned long __data) |
| 474 | { |
| 475 | struct k_itimer *timr = (struct k_itimer *) __data; |
| 476 | unsigned long flags; |
| 477 | unsigned long seq; |
| 478 | struct timespec delta, new_wall_to; |
| 479 | u64 exp = 0; |
| 480 | int do_notify = 1; |
| 481 | |
| 482 | spin_lock_irqsave(&timr->it_lock, flags); |
| 483 | set_timer_inactive(timr); |
| 484 | if (!list_empty(&timr->it.real.abs_timer_entry)) { |
| 485 | spin_lock(&abs_list.lock); |
| 486 | do { |
| 487 | seq = read_seqbegin(&xtime_lock); |
| 488 | new_wall_to = wall_to_monotonic; |
| 489 | } while (read_seqretry(&xtime_lock, seq)); |
| 490 | set_normalized_timespec(&delta, |
| 491 | new_wall_to.tv_sec - |
| 492 | timr->it.real.wall_to_prev.tv_sec, |
| 493 | new_wall_to.tv_nsec - |
| 494 | timr->it.real.wall_to_prev.tv_nsec); |
| 495 | if (likely((delta.tv_sec | delta.tv_nsec ) == 0)) { |
| 496 | /* do nothing, timer is on time */ |
| 497 | } else if (delta.tv_sec < 0) { |
| 498 | /* do nothing, timer is already late */ |
| 499 | } else { |
| 500 | /* timer is early due to a clock set */ |
| 501 | tstojiffie(&delta, |
| 502 | posix_clocks[timr->it_clock].res, |
| 503 | &exp); |
| 504 | timr->it.real.wall_to_prev = new_wall_to; |
| 505 | timr->it.real.timer.expires += exp; |
| 506 | add_timer(&timr->it.real.timer); |
| 507 | do_notify = 0; |
| 508 | } |
| 509 | spin_unlock(&abs_list.lock); |
| 510 | |
| 511 | } |
| 512 | if (do_notify) { |
| 513 | int si_private=0; |
| 514 | |
| 515 | if (timr->it.real.incr) |
| 516 | si_private = ++timr->it_requeue_pending; |
| 517 | else { |
| 518 | remove_from_abslist(timr); |
| 519 | } |
| 520 | |
| 521 | if (posix_timer_event(timr, si_private)) |
| 522 | /* |
| 523 | * signal was not sent because of sig_ignor |
| 524 | * we will not get a call back to restart it AND |
| 525 | * it should be restarted. |
| 526 | */ |
| 527 | schedule_next_timer(timr); |
| 528 | } |
| 529 | unlock_timer(timr, flags); /* hold thru abs lock to keep irq off */ |
| 530 | } |
| 531 | |
| 532 | |
| 533 | static inline struct task_struct * good_sigevent(sigevent_t * event) |
| 534 | { |
| 535 | struct task_struct *rtn = current->group_leader; |
| 536 | |
| 537 | if ((event->sigev_notify & SIGEV_THREAD_ID ) && |
| 538 | (!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) || |
| 539 | rtn->tgid != current->tgid || |
| 540 | (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL)) |
| 541 | return NULL; |
| 542 | |
| 543 | if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) && |
| 544 | ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX))) |
| 545 | return NULL; |
| 546 | |
| 547 | return rtn; |
| 548 | } |
| 549 | |
| 550 | void register_posix_clock(clockid_t clock_id, struct k_clock *new_clock) |
| 551 | { |
| 552 | if ((unsigned) clock_id >= MAX_CLOCKS) { |
| 553 | printk("POSIX clock register failed for clock_id %d\n", |
| 554 | clock_id); |
| 555 | return; |
| 556 | } |
| 557 | |
| 558 | posix_clocks[clock_id] = *new_clock; |
| 559 | } |
| 560 | EXPORT_SYMBOL_GPL(register_posix_clock); |
| 561 | |
| 562 | static struct k_itimer * alloc_posix_timer(void) |
| 563 | { |
| 564 | struct k_itimer *tmr; |
| 565 | tmr = kmem_cache_alloc(posix_timers_cache, GFP_KERNEL); |
| 566 | if (!tmr) |
| 567 | return tmr; |
| 568 | memset(tmr, 0, sizeof (struct k_itimer)); |
| 569 | if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { |
| 570 | kmem_cache_free(posix_timers_cache, tmr); |
| 571 | tmr = NULL; |
| 572 | } |
| 573 | return tmr; |
| 574 | } |
| 575 | |
| 576 | #define IT_ID_SET 1 |
| 577 | #define IT_ID_NOT_SET 0 |
| 578 | static void release_posix_timer(struct k_itimer *tmr, int it_id_set) |
| 579 | { |
| 580 | if (it_id_set) { |
| 581 | unsigned long flags; |
| 582 | spin_lock_irqsave(&idr_lock, flags); |
| 583 | idr_remove(&posix_timers_id, tmr->it_id); |
| 584 | spin_unlock_irqrestore(&idr_lock, flags); |
| 585 | } |
| 586 | sigqueue_free(tmr->sigq); |
| 587 | if (unlikely(tmr->it_process) && |
| 588 | tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID)) |
| 589 | put_task_struct(tmr->it_process); |
| 590 | kmem_cache_free(posix_timers_cache, tmr); |
| 591 | } |
| 592 | |
| 593 | /* Create a POSIX.1b interval timer. */ |
| 594 | |
| 595 | asmlinkage long |
| 596 | sys_timer_create(clockid_t which_clock, |
| 597 | struct sigevent __user *timer_event_spec, |
| 598 | timer_t __user * created_timer_id) |
| 599 | { |
| 600 | int error = 0; |
| 601 | struct k_itimer *new_timer = NULL; |
| 602 | int new_timer_id; |
| 603 | struct task_struct *process = NULL; |
| 604 | unsigned long flags; |
| 605 | sigevent_t event; |
| 606 | int it_id_set = IT_ID_NOT_SET; |
| 607 | |
| 608 | if (invalid_clockid(which_clock)) |
| 609 | return -EINVAL; |
| 610 | |
| 611 | new_timer = alloc_posix_timer(); |
| 612 | if (unlikely(!new_timer)) |
| 613 | return -EAGAIN; |
| 614 | |
| 615 | spin_lock_init(&new_timer->it_lock); |
| 616 | retry: |
| 617 | if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) { |
| 618 | error = -EAGAIN; |
| 619 | goto out; |
| 620 | } |
| 621 | spin_lock_irq(&idr_lock); |
| 622 | error = idr_get_new(&posix_timers_id, |
| 623 | (void *) new_timer, |
| 624 | &new_timer_id); |
| 625 | spin_unlock_irq(&idr_lock); |
| 626 | if (error == -EAGAIN) |
| 627 | goto retry; |
| 628 | else if (error) { |
| 629 | /* |
| 630 | * Wierd looking, but we return EAGAIN if the IDR is |
| 631 | * full (proper POSIX return value for this) |
| 632 | */ |
| 633 | error = -EAGAIN; |
| 634 | goto out; |
| 635 | } |
| 636 | |
| 637 | it_id_set = IT_ID_SET; |
| 638 | new_timer->it_id = (timer_t) new_timer_id; |
| 639 | new_timer->it_clock = which_clock; |
| 640 | new_timer->it_overrun = -1; |
| 641 | error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer)); |
| 642 | if (error) |
| 643 | goto out; |
| 644 | |
| 645 | /* |
| 646 | * return the timer_id now. The next step is hard to |
| 647 | * back out if there is an error. |
| 648 | */ |
| 649 | if (copy_to_user(created_timer_id, |
| 650 | &new_timer_id, sizeof (new_timer_id))) { |
| 651 | error = -EFAULT; |
| 652 | goto out; |
| 653 | } |
| 654 | if (timer_event_spec) { |
| 655 | if (copy_from_user(&event, timer_event_spec, sizeof (event))) { |
| 656 | error = -EFAULT; |
| 657 | goto out; |
| 658 | } |
| 659 | new_timer->it_sigev_notify = event.sigev_notify; |
| 660 | new_timer->it_sigev_signo = event.sigev_signo; |
| 661 | new_timer->it_sigev_value = event.sigev_value; |
| 662 | |
| 663 | read_lock(&tasklist_lock); |
| 664 | if ((process = good_sigevent(&event))) { |
| 665 | /* |
| 666 | * We may be setting up this process for another |
| 667 | * thread. It may be exiting. To catch this |
| 668 | * case the we check the PF_EXITING flag. If |
| 669 | * the flag is not set, the siglock will catch |
| 670 | * him before it is too late (in exit_itimers). |
| 671 | * |
| 672 | * The exec case is a bit more invloved but easy |
| 673 | * to code. If the process is in our thread |
| 674 | * group (and it must be or we would not allow |
| 675 | * it here) and is doing an exec, it will cause |
| 676 | * us to be killed. In this case it will wait |
| 677 | * for us to die which means we can finish this |
| 678 | * linkage with our last gasp. I.e. no code :) |
| 679 | */ |
| 680 | spin_lock_irqsave(&process->sighand->siglock, flags); |
| 681 | if (!(process->flags & PF_EXITING)) { |
| 682 | new_timer->it_process = process; |
| 683 | list_add(&new_timer->list, |
| 684 | &process->signal->posix_timers); |
| 685 | spin_unlock_irqrestore(&process->sighand->siglock, flags); |
| 686 | if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID)) |
| 687 | get_task_struct(process); |
| 688 | } else { |
| 689 | spin_unlock_irqrestore(&process->sighand->siglock, flags); |
| 690 | process = NULL; |
| 691 | } |
| 692 | } |
| 693 | read_unlock(&tasklist_lock); |
| 694 | if (!process) { |
| 695 | error = -EINVAL; |
| 696 | goto out; |
| 697 | } |
| 698 | } else { |
| 699 | new_timer->it_sigev_notify = SIGEV_SIGNAL; |
| 700 | new_timer->it_sigev_signo = SIGALRM; |
| 701 | new_timer->it_sigev_value.sival_int = new_timer->it_id; |
| 702 | process = current->group_leader; |
| 703 | spin_lock_irqsave(&process->sighand->siglock, flags); |
| 704 | new_timer->it_process = process; |
| 705 | list_add(&new_timer->list, &process->signal->posix_timers); |
| 706 | spin_unlock_irqrestore(&process->sighand->siglock, flags); |
| 707 | } |
| 708 | |
| 709 | /* |
| 710 | * In the case of the timer belonging to another task, after |
| 711 | * the task is unlocked, the timer is owned by the other task |
| 712 | * and may cease to exist at any time. Don't use or modify |
| 713 | * new_timer after the unlock call. |
| 714 | */ |
| 715 | |
| 716 | out: |
| 717 | if (error) |
| 718 | release_posix_timer(new_timer, it_id_set); |
| 719 | |
| 720 | return error; |
| 721 | } |
| 722 | |
| 723 | /* |
| 724 | * good_timespec |
| 725 | * |
| 726 | * This function checks the elements of a timespec structure. |
| 727 | * |
| 728 | * Arguments: |
| 729 | * ts : Pointer to the timespec structure to check |
| 730 | * |
| 731 | * Return value: |
| 732 | * If a NULL pointer was passed in, or the tv_nsec field was less than 0 |
| 733 | * or greater than NSEC_PER_SEC, or the tv_sec field was less than 0, |
| 734 | * this function returns 0. Otherwise it returns 1. |
| 735 | */ |
| 736 | static int good_timespec(const struct timespec *ts) |
| 737 | { |
| 738 | if ((!ts) || (ts->tv_sec < 0) || |
| 739 | ((unsigned) ts->tv_nsec >= NSEC_PER_SEC)) |
| 740 | return 0; |
| 741 | return 1; |
| 742 | } |
| 743 | |
| 744 | /* |
| 745 | * Locking issues: We need to protect the result of the id look up until |
| 746 | * we get the timer locked down so it is not deleted under us. The |
| 747 | * removal is done under the idr spinlock so we use that here to bridge |
| 748 | * the find to the timer lock. To avoid a dead lock, the timer id MUST |
| 749 | * be release with out holding the timer lock. |
| 750 | */ |
| 751 | static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags) |
| 752 | { |
| 753 | struct k_itimer *timr; |
| 754 | /* |
| 755 | * Watch out here. We do a irqsave on the idr_lock and pass the |
| 756 | * flags part over to the timer lock. Must not let interrupts in |
| 757 | * while we are moving the lock. |
| 758 | */ |
| 759 | |
| 760 | spin_lock_irqsave(&idr_lock, *flags); |
| 761 | timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id); |
| 762 | if (timr) { |
| 763 | spin_lock(&timr->it_lock); |
| 764 | spin_unlock(&idr_lock); |
| 765 | |
| 766 | if ((timr->it_id != timer_id) || !(timr->it_process) || |
| 767 | timr->it_process->tgid != current->tgid) { |
| 768 | unlock_timer(timr, *flags); |
| 769 | timr = NULL; |
| 770 | } |
| 771 | } else |
| 772 | spin_unlock_irqrestore(&idr_lock, *flags); |
| 773 | |
| 774 | return timr; |
| 775 | } |
| 776 | |
| 777 | /* |
| 778 | * Get the time remaining on a POSIX.1b interval timer. This function |
| 779 | * is ALWAYS called with spin_lock_irq on the timer, thus it must not |
| 780 | * mess with irq. |
| 781 | * |
| 782 | * We have a couple of messes to clean up here. First there is the case |
| 783 | * of a timer that has a requeue pending. These timers should appear to |
| 784 | * be in the timer list with an expiry as if we were to requeue them |
| 785 | * now. |
| 786 | * |
| 787 | * The second issue is the SIGEV_NONE timer which may be active but is |
| 788 | * not really ever put in the timer list (to save system resources). |
| 789 | * This timer may be expired, and if so, we will do it here. Otherwise |
| 790 | * it is the same as a requeue pending timer WRT to what we should |
| 791 | * report. |
| 792 | */ |
| 793 | static void |
| 794 | common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) |
| 795 | { |
| 796 | unsigned long expires; |
| 797 | struct now_struct now; |
| 798 | |
| 799 | do |
| 800 | expires = timr->it.real.timer.expires; |
| 801 | while ((volatile long) (timr->it.real.timer.expires) != expires); |
| 802 | |
| 803 | posix_get_now(&now); |
| 804 | |
| 805 | if (expires && |
| 806 | ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) && |
| 807 | !timr->it.real.incr && |
| 808 | posix_time_before(&timr->it.real.timer, &now)) |
| 809 | timr->it.real.timer.expires = expires = 0; |
| 810 | if (expires) { |
| 811 | if (timr->it_requeue_pending & REQUEUE_PENDING || |
| 812 | (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { |
| 813 | posix_bump_timer(timr, now); |
| 814 | expires = timr->it.real.timer.expires; |
| 815 | } |
| 816 | else |
| 817 | if (!timer_pending(&timr->it.real.timer)) |
| 818 | expires = 0; |
| 819 | if (expires) |
| 820 | expires -= now.jiffies; |
| 821 | } |
| 822 | jiffies_to_timespec(expires, &cur_setting->it_value); |
| 823 | jiffies_to_timespec(timr->it.real.incr, &cur_setting->it_interval); |
| 824 | |
| 825 | if (cur_setting->it_value.tv_sec < 0) { |
| 826 | cur_setting->it_value.tv_nsec = 1; |
| 827 | cur_setting->it_value.tv_sec = 0; |
| 828 | } |
| 829 | } |
| 830 | |
| 831 | /* Get the time remaining on a POSIX.1b interval timer. */ |
| 832 | asmlinkage long |
| 833 | sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting) |
| 834 | { |
| 835 | struct k_itimer *timr; |
| 836 | struct itimerspec cur_setting; |
| 837 | unsigned long flags; |
| 838 | |
| 839 | timr = lock_timer(timer_id, &flags); |
| 840 | if (!timr) |
| 841 | return -EINVAL; |
| 842 | |
| 843 | CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting)); |
| 844 | |
| 845 | unlock_timer(timr, flags); |
| 846 | |
| 847 | if (copy_to_user(setting, &cur_setting, sizeof (cur_setting))) |
| 848 | return -EFAULT; |
| 849 | |
| 850 | return 0; |
| 851 | } |
| 852 | /* |
| 853 | * Get the number of overruns of a POSIX.1b interval timer. This is to |
| 854 | * be the overrun of the timer last delivered. At the same time we are |
| 855 | * accumulating overruns on the next timer. The overrun is frozen when |
| 856 | * the signal is delivered, either at the notify time (if the info block |
| 857 | * is not queued) or at the actual delivery time (as we are informed by |
| 858 | * the call back to do_schedule_next_timer(). So all we need to do is |
| 859 | * to pick up the frozen overrun. |
| 860 | */ |
| 861 | |
| 862 | asmlinkage long |
| 863 | sys_timer_getoverrun(timer_t timer_id) |
| 864 | { |
| 865 | struct k_itimer *timr; |
| 866 | int overrun; |
| 867 | long flags; |
| 868 | |
| 869 | timr = lock_timer(timer_id, &flags); |
| 870 | if (!timr) |
| 871 | return -EINVAL; |
| 872 | |
| 873 | overrun = timr->it_overrun_last; |
| 874 | unlock_timer(timr, flags); |
| 875 | |
| 876 | return overrun; |
| 877 | } |
| 878 | /* |
| 879 | * Adjust for absolute time |
| 880 | * |
| 881 | * If absolute time is given and it is not CLOCK_MONOTONIC, we need to |
| 882 | * adjust for the offset between the timer clock (CLOCK_MONOTONIC) and |
| 883 | * what ever clock he is using. |
| 884 | * |
| 885 | * If it is relative time, we need to add the current (CLOCK_MONOTONIC) |
| 886 | * time to it to get the proper time for the timer. |
| 887 | */ |
| 888 | static int adjust_abs_time(struct k_clock *clock, struct timespec *tp, |
| 889 | int abs, u64 *exp, struct timespec *wall_to) |
| 890 | { |
| 891 | struct timespec now; |
| 892 | struct timespec oc = *tp; |
| 893 | u64 jiffies_64_f; |
| 894 | int rtn =0; |
| 895 | |
| 896 | if (abs) { |
| 897 | /* |
| 898 | * The mask pick up the 4 basic clocks |
| 899 | */ |
| 900 | if (!((clock - &posix_clocks[0]) & ~CLOCKS_MASK)) { |
| 901 | jiffies_64_f = do_posix_clock_monotonic_gettime_parts( |
| 902 | &now, wall_to); |
| 903 | /* |
| 904 | * If we are doing a MONOTONIC clock |
| 905 | */ |
| 906 | if((clock - &posix_clocks[0]) & CLOCKS_MONO){ |
| 907 | now.tv_sec += wall_to->tv_sec; |
| 908 | now.tv_nsec += wall_to->tv_nsec; |
| 909 | } |
| 910 | } else { |
| 911 | /* |
| 912 | * Not one of the basic clocks |
| 913 | */ |
| 914 | clock->clock_get(clock - posix_clocks, &now); |
| 915 | jiffies_64_f = get_jiffies_64(); |
| 916 | } |
| 917 | /* |
| 918 | * Take away now to get delta |
| 919 | */ |
| 920 | oc.tv_sec -= now.tv_sec; |
| 921 | oc.tv_nsec -= now.tv_nsec; |
| 922 | /* |
| 923 | * Normalize... |
| 924 | */ |
| 925 | while ((oc.tv_nsec - NSEC_PER_SEC) >= 0) { |
| 926 | oc.tv_nsec -= NSEC_PER_SEC; |
| 927 | oc.tv_sec++; |
| 928 | } |
| 929 | while ((oc.tv_nsec) < 0) { |
| 930 | oc.tv_nsec += NSEC_PER_SEC; |
| 931 | oc.tv_sec--; |
| 932 | } |
| 933 | }else{ |
| 934 | jiffies_64_f = get_jiffies_64(); |
| 935 | } |
| 936 | /* |
| 937 | * Check if the requested time is prior to now (if so set now) |
| 938 | */ |
| 939 | if (oc.tv_sec < 0) |
| 940 | oc.tv_sec = oc.tv_nsec = 0; |
| 941 | |
| 942 | if (oc.tv_sec | oc.tv_nsec) |
| 943 | set_normalized_timespec(&oc, oc.tv_sec, |
| 944 | oc.tv_nsec + clock->res); |
| 945 | tstojiffie(&oc, clock->res, exp); |
| 946 | |
| 947 | /* |
| 948 | * Check if the requested time is more than the timer code |
| 949 | * can handle (if so we error out but return the value too). |
| 950 | */ |
| 951 | if (*exp > ((u64)MAX_JIFFY_OFFSET)) |
| 952 | /* |
| 953 | * This is a considered response, not exactly in |
| 954 | * line with the standard (in fact it is silent on |
| 955 | * possible overflows). We assume such a large |
| 956 | * value is ALMOST always a programming error and |
| 957 | * try not to compound it by setting a really dumb |
| 958 | * value. |
| 959 | */ |
| 960 | rtn = -EINVAL; |
| 961 | /* |
| 962 | * return the actual jiffies expire time, full 64 bits |
| 963 | */ |
| 964 | *exp += jiffies_64_f; |
| 965 | return rtn; |
| 966 | } |
| 967 | |
| 968 | /* Set a POSIX.1b interval timer. */ |
| 969 | /* timr->it_lock is taken. */ |
| 970 | static inline int |
| 971 | common_timer_set(struct k_itimer *timr, int flags, |
| 972 | struct itimerspec *new_setting, struct itimerspec *old_setting) |
| 973 | { |
| 974 | struct k_clock *clock = &posix_clocks[timr->it_clock]; |
| 975 | u64 expire_64; |
| 976 | |
| 977 | if (old_setting) |
| 978 | common_timer_get(timr, old_setting); |
| 979 | |
| 980 | /* disable the timer */ |
| 981 | timr->it.real.incr = 0; |
| 982 | /* |
| 983 | * careful here. If smp we could be in the "fire" routine which will |
| 984 | * be spinning as we hold the lock. But this is ONLY an SMP issue. |
| 985 | */ |
| 986 | #ifdef CONFIG_SMP |
| 987 | if (timer_active(timr) && !del_timer(&timr->it.real.timer)) |
| 988 | /* |
| 989 | * It can only be active if on an other cpu. Since |
| 990 | * we have cleared the interval stuff above, it should |
| 991 | * clear once we release the spin lock. Of course once |
| 992 | * we do that anything could happen, including the |
| 993 | * complete melt down of the timer. So return with |
| 994 | * a "retry" exit status. |
| 995 | */ |
| 996 | return TIMER_RETRY; |
| 997 | |
| 998 | set_timer_inactive(timr); |
| 999 | #else |
| 1000 | del_timer(&timr->it.real.timer); |
| 1001 | #endif |
| 1002 | remove_from_abslist(timr); |
| 1003 | |
| 1004 | timr->it_requeue_pending = (timr->it_requeue_pending + 2) & |
| 1005 | ~REQUEUE_PENDING; |
| 1006 | timr->it_overrun_last = 0; |
| 1007 | timr->it_overrun = -1; |
| 1008 | /* |
| 1009 | *switch off the timer when it_value is zero |
| 1010 | */ |
| 1011 | if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) { |
| 1012 | timr->it.real.timer.expires = 0; |
| 1013 | return 0; |
| 1014 | } |
| 1015 | |
| 1016 | if (adjust_abs_time(clock, |
| 1017 | &new_setting->it_value, flags & TIMER_ABSTIME, |
| 1018 | &expire_64, &(timr->it.real.wall_to_prev))) { |
| 1019 | return -EINVAL; |
| 1020 | } |
| 1021 | timr->it.real.timer.expires = (unsigned long)expire_64; |
| 1022 | tstojiffie(&new_setting->it_interval, clock->res, &expire_64); |
| 1023 | timr->it.real.incr = (unsigned long)expire_64; |
| 1024 | |
| 1025 | /* |
| 1026 | * We do not even queue SIGEV_NONE timers! But we do put them |
| 1027 | * in the abs list so we can do that right. |
| 1028 | */ |
| 1029 | if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)) |
| 1030 | add_timer(&timr->it.real.timer); |
| 1031 | |
| 1032 | if (flags & TIMER_ABSTIME && clock->abs_struct) { |
| 1033 | spin_lock(&clock->abs_struct->lock); |
| 1034 | list_add_tail(&(timr->it.real.abs_timer_entry), |
| 1035 | &(clock->abs_struct->list)); |
| 1036 | spin_unlock(&clock->abs_struct->lock); |
| 1037 | } |
| 1038 | return 0; |
| 1039 | } |
| 1040 | |
| 1041 | /* Set a POSIX.1b interval timer */ |
| 1042 | asmlinkage long |
| 1043 | sys_timer_settime(timer_t timer_id, int flags, |
| 1044 | const struct itimerspec __user *new_setting, |
| 1045 | struct itimerspec __user *old_setting) |
| 1046 | { |
| 1047 | struct k_itimer *timr; |
| 1048 | struct itimerspec new_spec, old_spec; |
| 1049 | int error = 0; |
| 1050 | long flag; |
| 1051 | struct itimerspec *rtn = old_setting ? &old_spec : NULL; |
| 1052 | |
| 1053 | if (!new_setting) |
| 1054 | return -EINVAL; |
| 1055 | |
| 1056 | if (copy_from_user(&new_spec, new_setting, sizeof (new_spec))) |
| 1057 | return -EFAULT; |
| 1058 | |
| 1059 | if ((!good_timespec(&new_spec.it_interval)) || |
| 1060 | (!good_timespec(&new_spec.it_value))) |
| 1061 | return -EINVAL; |
| 1062 | retry: |
| 1063 | timr = lock_timer(timer_id, &flag); |
| 1064 | if (!timr) |
| 1065 | return -EINVAL; |
| 1066 | |
| 1067 | error = CLOCK_DISPATCH(timr->it_clock, timer_set, |
| 1068 | (timr, flags, &new_spec, rtn)); |
| 1069 | |
| 1070 | unlock_timer(timr, flag); |
| 1071 | if (error == TIMER_RETRY) { |
| 1072 | rtn = NULL; // We already got the old time... |
| 1073 | goto retry; |
| 1074 | } |
| 1075 | |
| 1076 | if (old_setting && !error && copy_to_user(old_setting, |
| 1077 | &old_spec, sizeof (old_spec))) |
| 1078 | error = -EFAULT; |
| 1079 | |
| 1080 | return error; |
| 1081 | } |
| 1082 | |
| 1083 | static inline int common_timer_del(struct k_itimer *timer) |
| 1084 | { |
| 1085 | timer->it.real.incr = 0; |
| 1086 | #ifdef CONFIG_SMP |
| 1087 | if (timer_active(timer) && !del_timer(&timer->it.real.timer)) |
| 1088 | /* |
| 1089 | * It can only be active if on an other cpu. Since |
| 1090 | * we have cleared the interval stuff above, it should |
| 1091 | * clear once we release the spin lock. Of course once |
| 1092 | * we do that anything could happen, including the |
| 1093 | * complete melt down of the timer. So return with |
| 1094 | * a "retry" exit status. |
| 1095 | */ |
| 1096 | return TIMER_RETRY; |
| 1097 | #else |
| 1098 | del_timer(&timer->it.real.timer); |
| 1099 | #endif |
| 1100 | remove_from_abslist(timer); |
| 1101 | |
| 1102 | return 0; |
| 1103 | } |
| 1104 | |
| 1105 | static inline int timer_delete_hook(struct k_itimer *timer) |
| 1106 | { |
| 1107 | return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer)); |
| 1108 | } |
| 1109 | |
| 1110 | /* Delete a POSIX.1b interval timer. */ |
| 1111 | asmlinkage long |
| 1112 | sys_timer_delete(timer_t timer_id) |
| 1113 | { |
| 1114 | struct k_itimer *timer; |
| 1115 | long flags; |
| 1116 | |
| 1117 | #ifdef CONFIG_SMP |
| 1118 | int error; |
| 1119 | retry_delete: |
| 1120 | #endif |
| 1121 | timer = lock_timer(timer_id, &flags); |
| 1122 | if (!timer) |
| 1123 | return -EINVAL; |
| 1124 | |
| 1125 | #ifdef CONFIG_SMP |
| 1126 | error = timer_delete_hook(timer); |
| 1127 | |
| 1128 | if (error == TIMER_RETRY) { |
| 1129 | unlock_timer(timer, flags); |
| 1130 | goto retry_delete; |
| 1131 | } |
| 1132 | #else |
| 1133 | timer_delete_hook(timer); |
| 1134 | #endif |
| 1135 | spin_lock(¤t->sighand->siglock); |
| 1136 | list_del(&timer->list); |
| 1137 | spin_unlock(¤t->sighand->siglock); |
| 1138 | /* |
| 1139 | * This keeps any tasks waiting on the spin lock from thinking |
| 1140 | * they got something (see the lock code above). |
| 1141 | */ |
| 1142 | if (timer->it_process) { |
| 1143 | if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID)) |
| 1144 | put_task_struct(timer->it_process); |
| 1145 | timer->it_process = NULL; |
| 1146 | } |
| 1147 | unlock_timer(timer, flags); |
| 1148 | release_posix_timer(timer, IT_ID_SET); |
| 1149 | return 0; |
| 1150 | } |
| 1151 | /* |
| 1152 | * return timer owned by the process, used by exit_itimers |
| 1153 | */ |
| 1154 | static inline void itimer_delete(struct k_itimer *timer) |
| 1155 | { |
| 1156 | unsigned long flags; |
| 1157 | |
| 1158 | #ifdef CONFIG_SMP |
| 1159 | int error; |
| 1160 | retry_delete: |
| 1161 | #endif |
| 1162 | spin_lock_irqsave(&timer->it_lock, flags); |
| 1163 | |
| 1164 | #ifdef CONFIG_SMP |
| 1165 | error = timer_delete_hook(timer); |
| 1166 | |
| 1167 | if (error == TIMER_RETRY) { |
| 1168 | unlock_timer(timer, flags); |
| 1169 | goto retry_delete; |
| 1170 | } |
| 1171 | #else |
| 1172 | timer_delete_hook(timer); |
| 1173 | #endif |
| 1174 | list_del(&timer->list); |
| 1175 | /* |
| 1176 | * This keeps any tasks waiting on the spin lock from thinking |
| 1177 | * they got something (see the lock code above). |
| 1178 | */ |
| 1179 | if (timer->it_process) { |
| 1180 | if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID)) |
| 1181 | put_task_struct(timer->it_process); |
| 1182 | timer->it_process = NULL; |
| 1183 | } |
| 1184 | unlock_timer(timer, flags); |
| 1185 | release_posix_timer(timer, IT_ID_SET); |
| 1186 | } |
| 1187 | |
| 1188 | /* |
| 1189 | * This is called by __exit_signal, only when there are no more |
| 1190 | * references to the shared signal_struct. |
| 1191 | */ |
| 1192 | void exit_itimers(struct signal_struct *sig) |
| 1193 | { |
| 1194 | struct k_itimer *tmr; |
| 1195 | |
| 1196 | while (!list_empty(&sig->posix_timers)) { |
| 1197 | tmr = list_entry(sig->posix_timers.next, struct k_itimer, list); |
| 1198 | itimer_delete(tmr); |
| 1199 | } |
| 1200 | } |
| 1201 | |
| 1202 | /* |
| 1203 | * And now for the "clock" calls |
| 1204 | * |
| 1205 | * These functions are called both from timer functions (with the timer |
| 1206 | * spin_lock_irq() held and from clock calls with no locking. They must |
| 1207 | * use the save flags versions of locks. |
| 1208 | */ |
| 1209 | |
| 1210 | /* |
| 1211 | * We do ticks here to avoid the irq lock ( they take sooo long). |
| 1212 | * The seqlock is great here. Since we a reader, we don't really care |
| 1213 | * if we are interrupted since we don't take lock that will stall us or |
| 1214 | * any other cpu. Voila, no irq lock is needed. |
| 1215 | * |
| 1216 | */ |
| 1217 | |
| 1218 | static u64 do_posix_clock_monotonic_gettime_parts( |
| 1219 | struct timespec *tp, struct timespec *mo) |
| 1220 | { |
| 1221 | u64 jiff; |
| 1222 | unsigned int seq; |
| 1223 | |
| 1224 | do { |
| 1225 | seq = read_seqbegin(&xtime_lock); |
| 1226 | getnstimeofday(tp); |
| 1227 | *mo = wall_to_monotonic; |
| 1228 | jiff = jiffies_64; |
| 1229 | |
| 1230 | } while(read_seqretry(&xtime_lock, seq)); |
| 1231 | |
| 1232 | return jiff; |
| 1233 | } |
| 1234 | |
| 1235 | static int do_posix_clock_monotonic_get(clockid_t clock, struct timespec *tp) |
| 1236 | { |
| 1237 | struct timespec wall_to_mono; |
| 1238 | |
| 1239 | do_posix_clock_monotonic_gettime_parts(tp, &wall_to_mono); |
| 1240 | |
| 1241 | tp->tv_sec += wall_to_mono.tv_sec; |
| 1242 | tp->tv_nsec += wall_to_mono.tv_nsec; |
| 1243 | |
| 1244 | if ((tp->tv_nsec - NSEC_PER_SEC) > 0) { |
| 1245 | tp->tv_nsec -= NSEC_PER_SEC; |
| 1246 | tp->tv_sec++; |
| 1247 | } |
| 1248 | return 0; |
| 1249 | } |
| 1250 | |
| 1251 | int do_posix_clock_monotonic_gettime(struct timespec *tp) |
| 1252 | { |
| 1253 | return do_posix_clock_monotonic_get(CLOCK_MONOTONIC, tp); |
| 1254 | } |
| 1255 | |
| 1256 | int do_posix_clock_nosettime(clockid_t clockid, struct timespec *tp) |
| 1257 | { |
| 1258 | return -EINVAL; |
| 1259 | } |
| 1260 | EXPORT_SYMBOL_GPL(do_posix_clock_nosettime); |
| 1261 | |
| 1262 | int do_posix_clock_notimer_create(struct k_itimer *timer) |
| 1263 | { |
| 1264 | return -EINVAL; |
| 1265 | } |
| 1266 | EXPORT_SYMBOL_GPL(do_posix_clock_notimer_create); |
| 1267 | |
| 1268 | int do_posix_clock_nonanosleep(clockid_t clock, int flags, struct timespec *t) |
| 1269 | { |
| 1270 | #ifndef ENOTSUP |
| 1271 | return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */ |
| 1272 | #else /* parisc does define it separately. */ |
| 1273 | return -ENOTSUP; |
| 1274 | #endif |
| 1275 | } |
| 1276 | EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep); |
| 1277 | |
| 1278 | asmlinkage long |
| 1279 | sys_clock_settime(clockid_t which_clock, const struct timespec __user *tp) |
| 1280 | { |
| 1281 | struct timespec new_tp; |
| 1282 | |
| 1283 | if (invalid_clockid(which_clock)) |
| 1284 | return -EINVAL; |
| 1285 | if (copy_from_user(&new_tp, tp, sizeof (*tp))) |
| 1286 | return -EFAULT; |
| 1287 | |
| 1288 | return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp)); |
| 1289 | } |
| 1290 | |
| 1291 | asmlinkage long |
| 1292 | sys_clock_gettime(clockid_t which_clock, struct timespec __user *tp) |
| 1293 | { |
| 1294 | struct timespec kernel_tp; |
| 1295 | int error; |
| 1296 | |
| 1297 | if (invalid_clockid(which_clock)) |
| 1298 | return -EINVAL; |
| 1299 | error = CLOCK_DISPATCH(which_clock, clock_get, |
| 1300 | (which_clock, &kernel_tp)); |
| 1301 | if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp))) |
| 1302 | error = -EFAULT; |
| 1303 | |
| 1304 | return error; |
| 1305 | |
| 1306 | } |
| 1307 | |
| 1308 | asmlinkage long |
| 1309 | sys_clock_getres(clockid_t which_clock, struct timespec __user *tp) |
| 1310 | { |
| 1311 | struct timespec rtn_tp; |
| 1312 | int error; |
| 1313 | |
| 1314 | if (invalid_clockid(which_clock)) |
| 1315 | return -EINVAL; |
| 1316 | |
| 1317 | error = CLOCK_DISPATCH(which_clock, clock_getres, |
| 1318 | (which_clock, &rtn_tp)); |
| 1319 | |
| 1320 | if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) { |
| 1321 | error = -EFAULT; |
| 1322 | } |
| 1323 | |
| 1324 | return error; |
| 1325 | } |
| 1326 | |
| 1327 | static void nanosleep_wake_up(unsigned long __data) |
| 1328 | { |
| 1329 | struct task_struct *p = (struct task_struct *) __data; |
| 1330 | |
| 1331 | wake_up_process(p); |
| 1332 | } |
| 1333 | |
| 1334 | /* |
| 1335 | * The standard says that an absolute nanosleep call MUST wake up at |
| 1336 | * the requested time in spite of clock settings. Here is what we do: |
| 1337 | * For each nanosleep call that needs it (only absolute and not on |
| 1338 | * CLOCK_MONOTONIC* (as it can not be set)) we thread a little structure |
| 1339 | * into the "nanosleep_abs_list". All we need is the task_struct pointer. |
| 1340 | * When ever the clock is set we just wake up all those tasks. The rest |
| 1341 | * is done by the while loop in clock_nanosleep(). |
| 1342 | * |
| 1343 | * On locking, clock_was_set() is called from update_wall_clock which |
| 1344 | * holds (or has held for it) a write_lock_irq( xtime_lock) and is |
| 1345 | * called from the timer bh code. Thus we need the irq save locks. |
| 1346 | * |
| 1347 | * Also, on the call from update_wall_clock, that is done as part of a |
| 1348 | * softirq thing. We don't want to delay the system that much (possibly |
| 1349 | * long list of timers to fix), so we defer that work to keventd. |
| 1350 | */ |
| 1351 | |
| 1352 | static DECLARE_WAIT_QUEUE_HEAD(nanosleep_abs_wqueue); |
| 1353 | static DECLARE_WORK(clock_was_set_work, (void(*)(void*))clock_was_set, NULL); |
| 1354 | |
| 1355 | static DECLARE_MUTEX(clock_was_set_lock); |
| 1356 | |
| 1357 | void clock_was_set(void) |
| 1358 | { |
| 1359 | struct k_itimer *timr; |
| 1360 | struct timespec new_wall_to; |
| 1361 | LIST_HEAD(cws_list); |
| 1362 | unsigned long seq; |
| 1363 | |
| 1364 | |
| 1365 | if (unlikely(in_interrupt())) { |
| 1366 | schedule_work(&clock_was_set_work); |
| 1367 | return; |
| 1368 | } |
| 1369 | wake_up_all(&nanosleep_abs_wqueue); |
| 1370 | |
| 1371 | /* |
| 1372 | * Check if there exist TIMER_ABSTIME timers to correct. |
| 1373 | * |
| 1374 | * Notes on locking: This code is run in task context with irq |
| 1375 | * on. We CAN be interrupted! All other usage of the abs list |
| 1376 | * lock is under the timer lock which holds the irq lock as |
| 1377 | * well. We REALLY don't want to scan the whole list with the |
| 1378 | * interrupt system off, AND we would like a sequence lock on |
| 1379 | * this code as well. Since we assume that the clock will not |
| 1380 | * be set often, it seems ok to take and release the irq lock |
| 1381 | * for each timer. In fact add_timer will do this, so this is |
| 1382 | * not an issue. So we know when we are done, we will move the |
| 1383 | * whole list to a new location. Then as we process each entry, |
| 1384 | * we will move it to the actual list again. This way, when our |
| 1385 | * copy is empty, we are done. We are not all that concerned |
| 1386 | * about preemption so we will use a semaphore lock to protect |
| 1387 | * aginst reentry. This way we will not stall another |
| 1388 | * processor. It is possible that this may delay some timers |
| 1389 | * that should have expired, given the new clock, but even this |
| 1390 | * will be minimal as we will always update to the current time, |
| 1391 | * even if it was set by a task that is waiting for entry to |
| 1392 | * this code. Timers that expire too early will be caught by |
| 1393 | * the expire code and restarted. |
| 1394 | |
| 1395 | * Absolute timers that repeat are left in the abs list while |
| 1396 | * waiting for the task to pick up the signal. This means we |
| 1397 | * may find timers that are not in the "add_timer" list, but are |
| 1398 | * in the abs list. We do the same thing for these, save |
| 1399 | * putting them back in the "add_timer" list. (Note, these are |
| 1400 | * left in the abs list mainly to indicate that they are |
| 1401 | * ABSOLUTE timers, a fact that is used by the re-arm code, and |
| 1402 | * for which we have no other flag.) |
| 1403 | |
| 1404 | */ |
| 1405 | |
| 1406 | down(&clock_was_set_lock); |
| 1407 | spin_lock_irq(&abs_list.lock); |
| 1408 | list_splice_init(&abs_list.list, &cws_list); |
| 1409 | spin_unlock_irq(&abs_list.lock); |
| 1410 | do { |
| 1411 | do { |
| 1412 | seq = read_seqbegin(&xtime_lock); |
| 1413 | new_wall_to = wall_to_monotonic; |
| 1414 | } while (read_seqretry(&xtime_lock, seq)); |
| 1415 | |
| 1416 | spin_lock_irq(&abs_list.lock); |
| 1417 | if (list_empty(&cws_list)) { |
| 1418 | spin_unlock_irq(&abs_list.lock); |
| 1419 | break; |
| 1420 | } |
| 1421 | timr = list_entry(cws_list.next, struct k_itimer, |
| 1422 | it.real.abs_timer_entry); |
| 1423 | |
| 1424 | list_del_init(&timr->it.real.abs_timer_entry); |
| 1425 | if (add_clockset_delta(timr, &new_wall_to) && |
| 1426 | del_timer(&timr->it.real.timer)) /* timer run yet? */ |
| 1427 | add_timer(&timr->it.real.timer); |
| 1428 | list_add(&timr->it.real.abs_timer_entry, &abs_list.list); |
| 1429 | spin_unlock_irq(&abs_list.lock); |
| 1430 | } while (1); |
| 1431 | |
| 1432 | up(&clock_was_set_lock); |
| 1433 | } |
| 1434 | |
| 1435 | long clock_nanosleep_restart(struct restart_block *restart_block); |
| 1436 | |
| 1437 | asmlinkage long |
| 1438 | sys_clock_nanosleep(clockid_t which_clock, int flags, |
| 1439 | const struct timespec __user *rqtp, |
| 1440 | struct timespec __user *rmtp) |
| 1441 | { |
| 1442 | struct timespec t; |
| 1443 | struct restart_block *restart_block = |
| 1444 | &(current_thread_info()->restart_block); |
| 1445 | int ret; |
| 1446 | |
| 1447 | if (invalid_clockid(which_clock)) |
| 1448 | return -EINVAL; |
| 1449 | |
| 1450 | if (copy_from_user(&t, rqtp, sizeof (struct timespec))) |
| 1451 | return -EFAULT; |
| 1452 | |
| 1453 | if ((unsigned) t.tv_nsec >= NSEC_PER_SEC || t.tv_sec < 0) |
| 1454 | return -EINVAL; |
| 1455 | |
| 1456 | /* |
| 1457 | * Do this here as nsleep function does not have the real address. |
| 1458 | */ |
| 1459 | restart_block->arg1 = (unsigned long)rmtp; |
| 1460 | |
| 1461 | ret = CLOCK_DISPATCH(which_clock, nsleep, (which_clock, flags, &t)); |
| 1462 | |
| 1463 | if ((ret == -ERESTART_RESTARTBLOCK) && rmtp && |
| 1464 | copy_to_user(rmtp, &t, sizeof (t))) |
| 1465 | return -EFAULT; |
| 1466 | return ret; |
| 1467 | } |
| 1468 | |
| 1469 | |
| 1470 | static int common_nsleep(clockid_t which_clock, |
| 1471 | int flags, struct timespec *tsave) |
| 1472 | { |
| 1473 | struct timespec t, dum; |
| 1474 | struct timer_list new_timer; |
| 1475 | DECLARE_WAITQUEUE(abs_wqueue, current); |
| 1476 | u64 rq_time = (u64)0; |
| 1477 | s64 left; |
| 1478 | int abs; |
| 1479 | struct restart_block *restart_block = |
| 1480 | ¤t_thread_info()->restart_block; |
| 1481 | |
| 1482 | abs_wqueue.flags = 0; |
| 1483 | init_timer(&new_timer); |
| 1484 | new_timer.expires = 0; |
| 1485 | new_timer.data = (unsigned long) current; |
| 1486 | new_timer.function = nanosleep_wake_up; |
| 1487 | abs = flags & TIMER_ABSTIME; |
| 1488 | |
| 1489 | if (restart_block->fn == clock_nanosleep_restart) { |
| 1490 | /* |
| 1491 | * Interrupted by a non-delivered signal, pick up remaining |
| 1492 | * time and continue. Remaining time is in arg2 & 3. |
| 1493 | */ |
| 1494 | restart_block->fn = do_no_restart_syscall; |
| 1495 | |
| 1496 | rq_time = restart_block->arg3; |
| 1497 | rq_time = (rq_time << 32) + restart_block->arg2; |
| 1498 | if (!rq_time) |
| 1499 | return -EINTR; |
| 1500 | left = rq_time - get_jiffies_64(); |
| 1501 | if (left <= (s64)0) |
| 1502 | return 0; /* Already passed */ |
| 1503 | } |
| 1504 | |
| 1505 | if (abs && (posix_clocks[which_clock].clock_get != |
| 1506 | posix_clocks[CLOCK_MONOTONIC].clock_get)) |
| 1507 | add_wait_queue(&nanosleep_abs_wqueue, &abs_wqueue); |
| 1508 | |
| 1509 | do { |
| 1510 | t = *tsave; |
| 1511 | if (abs || !rq_time) { |
| 1512 | adjust_abs_time(&posix_clocks[which_clock], &t, abs, |
| 1513 | &rq_time, &dum); |
| 1514 | } |
| 1515 | |
| 1516 | left = rq_time - get_jiffies_64(); |
| 1517 | if (left >= (s64)MAX_JIFFY_OFFSET) |
| 1518 | left = (s64)MAX_JIFFY_OFFSET; |
| 1519 | if (left < (s64)0) |
| 1520 | break; |
| 1521 | |
| 1522 | new_timer.expires = jiffies + left; |
| 1523 | __set_current_state(TASK_INTERRUPTIBLE); |
| 1524 | add_timer(&new_timer); |
| 1525 | |
| 1526 | schedule(); |
| 1527 | |
| 1528 | del_timer_sync(&new_timer); |
| 1529 | left = rq_time - get_jiffies_64(); |
| 1530 | } while (left > (s64)0 && !test_thread_flag(TIF_SIGPENDING)); |
| 1531 | |
| 1532 | if (abs_wqueue.task_list.next) |
| 1533 | finish_wait(&nanosleep_abs_wqueue, &abs_wqueue); |
| 1534 | |
| 1535 | if (left > (s64)0) { |
| 1536 | |
| 1537 | /* |
| 1538 | * Always restart abs calls from scratch to pick up any |
| 1539 | * clock shifting that happened while we are away. |
| 1540 | */ |
| 1541 | if (abs) |
| 1542 | return -ERESTARTNOHAND; |
| 1543 | |
| 1544 | left *= TICK_NSEC; |
| 1545 | tsave->tv_sec = div_long_long_rem(left, |
| 1546 | NSEC_PER_SEC, |
| 1547 | &tsave->tv_nsec); |
| 1548 | /* |
| 1549 | * Restart works by saving the time remaing in |
| 1550 | * arg2 & 3 (it is 64-bits of jiffies). The other |
| 1551 | * info we need is the clock_id (saved in arg0). |
| 1552 | * The sys_call interface needs the users |
| 1553 | * timespec return address which _it_ saves in arg1. |
| 1554 | * Since we have cast the nanosleep call to a clock_nanosleep |
| 1555 | * both can be restarted with the same code. |
| 1556 | */ |
| 1557 | restart_block->fn = clock_nanosleep_restart; |
| 1558 | restart_block->arg0 = which_clock; |
| 1559 | /* |
| 1560 | * Caller sets arg1 |
| 1561 | */ |
| 1562 | restart_block->arg2 = rq_time & 0xffffffffLL; |
| 1563 | restart_block->arg3 = rq_time >> 32; |
| 1564 | |
| 1565 | return -ERESTART_RESTARTBLOCK; |
| 1566 | } |
| 1567 | |
| 1568 | return 0; |
| 1569 | } |
| 1570 | /* |
| 1571 | * This will restart clock_nanosleep. |
| 1572 | */ |
| 1573 | long |
| 1574 | clock_nanosleep_restart(struct restart_block *restart_block) |
| 1575 | { |
| 1576 | struct timespec t; |
| 1577 | int ret = common_nsleep(restart_block->arg0, 0, &t); |
| 1578 | |
| 1579 | if ((ret == -ERESTART_RESTARTBLOCK) && restart_block->arg1 && |
| 1580 | copy_to_user((struct timespec __user *)(restart_block->arg1), &t, |
| 1581 | sizeof (t))) |
| 1582 | return -EFAULT; |
| 1583 | return ret; |
| 1584 | } |