Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | #ifndef _ASM_IA64_BITOPS_H |
| 2 | #define _ASM_IA64_BITOPS_H |
| 3 | |
| 4 | /* |
| 5 | * Copyright (C) 1998-2003 Hewlett-Packard Co |
| 6 | * David Mosberger-Tang <davidm@hpl.hp.com> |
| 7 | * |
| 8 | * 02/06/02 find_next_bit() and find_first_bit() added from Erich Focht's ia64 O(1) |
| 9 | * scheduler patch |
| 10 | */ |
| 11 | |
| 12 | #include <linux/compiler.h> |
| 13 | #include <linux/types.h> |
| 14 | #include <asm/bitops.h> |
| 15 | #include <asm/intrinsics.h> |
| 16 | |
| 17 | /** |
| 18 | * set_bit - Atomically set a bit in memory |
| 19 | * @nr: the bit to set |
| 20 | * @addr: the address to start counting from |
| 21 | * |
| 22 | * This function is atomic and may not be reordered. See __set_bit() |
| 23 | * if you do not require the atomic guarantees. |
| 24 | * Note that @nr may be almost arbitrarily large; this function is not |
| 25 | * restricted to acting on a single-word quantity. |
| 26 | * |
| 27 | * The address must be (at least) "long" aligned. |
| 28 | * Note that there are driver (e.g., eepro100) which use these operations to operate on |
| 29 | * hw-defined data-structures, so we can't easily change these operations to force a |
| 30 | * bigger alignment. |
| 31 | * |
| 32 | * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). |
| 33 | */ |
| 34 | static __inline__ void |
| 35 | set_bit (int nr, volatile void *addr) |
| 36 | { |
| 37 | __u32 bit, old, new; |
| 38 | volatile __u32 *m; |
| 39 | CMPXCHG_BUGCHECK_DECL |
| 40 | |
| 41 | m = (volatile __u32 *) addr + (nr >> 5); |
| 42 | bit = 1 << (nr & 31); |
| 43 | do { |
| 44 | CMPXCHG_BUGCHECK(m); |
| 45 | old = *m; |
| 46 | new = old | bit; |
| 47 | } while (cmpxchg_acq(m, old, new) != old); |
| 48 | } |
| 49 | |
| 50 | /** |
| 51 | * __set_bit - Set a bit in memory |
| 52 | * @nr: the bit to set |
| 53 | * @addr: the address to start counting from |
| 54 | * |
| 55 | * Unlike set_bit(), this function is non-atomic and may be reordered. |
| 56 | * If it's called on the same region of memory simultaneously, the effect |
| 57 | * may be that only one operation succeeds. |
| 58 | */ |
| 59 | static __inline__ void |
| 60 | __set_bit (int nr, volatile void *addr) |
| 61 | { |
| 62 | *((__u32 *) addr + (nr >> 5)) |= (1 << (nr & 31)); |
| 63 | } |
| 64 | |
| 65 | /* |
| 66 | * clear_bit() has "acquire" semantics. |
| 67 | */ |
| 68 | #define smp_mb__before_clear_bit() smp_mb() |
| 69 | #define smp_mb__after_clear_bit() do { /* skip */; } while (0) |
| 70 | |
| 71 | /** |
| 72 | * clear_bit - Clears a bit in memory |
| 73 | * @nr: Bit to clear |
| 74 | * @addr: Address to start counting from |
| 75 | * |
| 76 | * clear_bit() is atomic and may not be reordered. However, it does |
| 77 | * not contain a memory barrier, so if it is used for locking purposes, |
| 78 | * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() |
| 79 | * in order to ensure changes are visible on other processors. |
| 80 | */ |
| 81 | static __inline__ void |
| 82 | clear_bit (int nr, volatile void *addr) |
| 83 | { |
| 84 | __u32 mask, old, new; |
| 85 | volatile __u32 *m; |
| 86 | CMPXCHG_BUGCHECK_DECL |
| 87 | |
| 88 | m = (volatile __u32 *) addr + (nr >> 5); |
| 89 | mask = ~(1 << (nr & 31)); |
| 90 | do { |
| 91 | CMPXCHG_BUGCHECK(m); |
| 92 | old = *m; |
| 93 | new = old & mask; |
| 94 | } while (cmpxchg_acq(m, old, new) != old); |
| 95 | } |
| 96 | |
| 97 | /** |
| 98 | * __clear_bit - Clears a bit in memory (non-atomic version) |
| 99 | */ |
| 100 | static __inline__ void |
| 101 | __clear_bit (int nr, volatile void *addr) |
| 102 | { |
| 103 | volatile __u32 *p = (__u32 *) addr + (nr >> 5); |
| 104 | __u32 m = 1 << (nr & 31); |
| 105 | *p &= ~m; |
| 106 | } |
| 107 | |
| 108 | /** |
| 109 | * change_bit - Toggle a bit in memory |
| 110 | * @nr: Bit to clear |
| 111 | * @addr: Address to start counting from |
| 112 | * |
| 113 | * change_bit() is atomic and may not be reordered. |
| 114 | * Note that @nr may be almost arbitrarily large; this function is not |
| 115 | * restricted to acting on a single-word quantity. |
| 116 | */ |
| 117 | static __inline__ void |
| 118 | change_bit (int nr, volatile void *addr) |
| 119 | { |
| 120 | __u32 bit, old, new; |
| 121 | volatile __u32 *m; |
| 122 | CMPXCHG_BUGCHECK_DECL |
| 123 | |
| 124 | m = (volatile __u32 *) addr + (nr >> 5); |
| 125 | bit = (1 << (nr & 31)); |
| 126 | do { |
| 127 | CMPXCHG_BUGCHECK(m); |
| 128 | old = *m; |
| 129 | new = old ^ bit; |
| 130 | } while (cmpxchg_acq(m, old, new) != old); |
| 131 | } |
| 132 | |
| 133 | /** |
| 134 | * __change_bit - Toggle a bit in memory |
| 135 | * @nr: the bit to set |
| 136 | * @addr: the address to start counting from |
| 137 | * |
| 138 | * Unlike change_bit(), this function is non-atomic and may be reordered. |
| 139 | * If it's called on the same region of memory simultaneously, the effect |
| 140 | * may be that only one operation succeeds. |
| 141 | */ |
| 142 | static __inline__ void |
| 143 | __change_bit (int nr, volatile void *addr) |
| 144 | { |
| 145 | *((__u32 *) addr + (nr >> 5)) ^= (1 << (nr & 31)); |
| 146 | } |
| 147 | |
| 148 | /** |
| 149 | * test_and_set_bit - Set a bit and return its old value |
| 150 | * @nr: Bit to set |
| 151 | * @addr: Address to count from |
| 152 | * |
| 153 | * This operation is atomic and cannot be reordered. |
| 154 | * It also implies a memory barrier. |
| 155 | */ |
| 156 | static __inline__ int |
| 157 | test_and_set_bit (int nr, volatile void *addr) |
| 158 | { |
| 159 | __u32 bit, old, new; |
| 160 | volatile __u32 *m; |
| 161 | CMPXCHG_BUGCHECK_DECL |
| 162 | |
| 163 | m = (volatile __u32 *) addr + (nr >> 5); |
| 164 | bit = 1 << (nr & 31); |
| 165 | do { |
| 166 | CMPXCHG_BUGCHECK(m); |
| 167 | old = *m; |
| 168 | new = old | bit; |
| 169 | } while (cmpxchg_acq(m, old, new) != old); |
| 170 | return (old & bit) != 0; |
| 171 | } |
| 172 | |
| 173 | /** |
| 174 | * __test_and_set_bit - Set a bit and return its old value |
| 175 | * @nr: Bit to set |
| 176 | * @addr: Address to count from |
| 177 | * |
| 178 | * This operation is non-atomic and can be reordered. |
| 179 | * If two examples of this operation race, one can appear to succeed |
| 180 | * but actually fail. You must protect multiple accesses with a lock. |
| 181 | */ |
| 182 | static __inline__ int |
| 183 | __test_and_set_bit (int nr, volatile void *addr) |
| 184 | { |
| 185 | __u32 *p = (__u32 *) addr + (nr >> 5); |
| 186 | __u32 m = 1 << (nr & 31); |
| 187 | int oldbitset = (*p & m) != 0; |
| 188 | |
| 189 | *p |= m; |
| 190 | return oldbitset; |
| 191 | } |
| 192 | |
| 193 | /** |
| 194 | * test_and_clear_bit - Clear a bit and return its old value |
| 195 | * @nr: Bit to set |
| 196 | * @addr: Address to count from |
| 197 | * |
| 198 | * This operation is atomic and cannot be reordered. |
| 199 | * It also implies a memory barrier. |
| 200 | */ |
| 201 | static __inline__ int |
| 202 | test_and_clear_bit (int nr, volatile void *addr) |
| 203 | { |
| 204 | __u32 mask, old, new; |
| 205 | volatile __u32 *m; |
| 206 | CMPXCHG_BUGCHECK_DECL |
| 207 | |
| 208 | m = (volatile __u32 *) addr + (nr >> 5); |
| 209 | mask = ~(1 << (nr & 31)); |
| 210 | do { |
| 211 | CMPXCHG_BUGCHECK(m); |
| 212 | old = *m; |
| 213 | new = old & mask; |
| 214 | } while (cmpxchg_acq(m, old, new) != old); |
| 215 | return (old & ~mask) != 0; |
| 216 | } |
| 217 | |
| 218 | /** |
| 219 | * __test_and_clear_bit - Clear a bit and return its old value |
| 220 | * @nr: Bit to set |
| 221 | * @addr: Address to count from |
| 222 | * |
| 223 | * This operation is non-atomic and can be reordered. |
| 224 | * If two examples of this operation race, one can appear to succeed |
| 225 | * but actually fail. You must protect multiple accesses with a lock. |
| 226 | */ |
| 227 | static __inline__ int |
| 228 | __test_and_clear_bit(int nr, volatile void * addr) |
| 229 | { |
| 230 | __u32 *p = (__u32 *) addr + (nr >> 5); |
| 231 | __u32 m = 1 << (nr & 31); |
| 232 | int oldbitset = *p & m; |
| 233 | |
| 234 | *p &= ~m; |
| 235 | return oldbitset; |
| 236 | } |
| 237 | |
| 238 | /** |
| 239 | * test_and_change_bit - Change a bit and return its old value |
| 240 | * @nr: Bit to set |
| 241 | * @addr: Address to count from |
| 242 | * |
| 243 | * This operation is atomic and cannot be reordered. |
| 244 | * It also implies a memory barrier. |
| 245 | */ |
| 246 | static __inline__ int |
| 247 | test_and_change_bit (int nr, volatile void *addr) |
| 248 | { |
| 249 | __u32 bit, old, new; |
| 250 | volatile __u32 *m; |
| 251 | CMPXCHG_BUGCHECK_DECL |
| 252 | |
| 253 | m = (volatile __u32 *) addr + (nr >> 5); |
| 254 | bit = (1 << (nr & 31)); |
| 255 | do { |
| 256 | CMPXCHG_BUGCHECK(m); |
| 257 | old = *m; |
| 258 | new = old ^ bit; |
| 259 | } while (cmpxchg_acq(m, old, new) != old); |
| 260 | return (old & bit) != 0; |
| 261 | } |
| 262 | |
| 263 | /* |
| 264 | * WARNING: non atomic version. |
| 265 | */ |
| 266 | static __inline__ int |
| 267 | __test_and_change_bit (int nr, void *addr) |
| 268 | { |
| 269 | __u32 old, bit = (1 << (nr & 31)); |
| 270 | __u32 *m = (__u32 *) addr + (nr >> 5); |
| 271 | |
| 272 | old = *m; |
| 273 | *m = old ^ bit; |
| 274 | return (old & bit) != 0; |
| 275 | } |
| 276 | |
| 277 | static __inline__ int |
| 278 | test_bit (int nr, const volatile void *addr) |
| 279 | { |
| 280 | return 1 & (((const volatile __u32 *) addr)[nr >> 5] >> (nr & 31)); |
| 281 | } |
| 282 | |
| 283 | /** |
| 284 | * ffz - find the first zero bit in a long word |
| 285 | * @x: The long word to find the bit in |
| 286 | * |
| 287 | * Returns the bit-number (0..63) of the first (least significant) zero bit. Undefined if |
| 288 | * no zero exists, so code should check against ~0UL first... |
| 289 | */ |
| 290 | static inline unsigned long |
| 291 | ffz (unsigned long x) |
| 292 | { |
| 293 | unsigned long result; |
| 294 | |
| 295 | result = ia64_popcnt(x & (~x - 1)); |
| 296 | return result; |
| 297 | } |
| 298 | |
| 299 | /** |
| 300 | * __ffs - find first bit in word. |
| 301 | * @x: The word to search |
| 302 | * |
| 303 | * Undefined if no bit exists, so code should check against 0 first. |
| 304 | */ |
| 305 | static __inline__ unsigned long |
| 306 | __ffs (unsigned long x) |
| 307 | { |
| 308 | unsigned long result; |
| 309 | |
| 310 | result = ia64_popcnt((x-1) & ~x); |
| 311 | return result; |
| 312 | } |
| 313 | |
| 314 | #ifdef __KERNEL__ |
| 315 | |
| 316 | /* |
David Mosberger-Tang | 821376b | 2005-04-21 11:07:59 -0700 | [diff] [blame] | 317 | * Return bit number of last (most-significant) bit set. Undefined |
| 318 | * for x==0. Bits are numbered from 0..63 (e.g., ia64_fls(9) == 3). |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 319 | */ |
| 320 | static inline unsigned long |
| 321 | ia64_fls (unsigned long x) |
| 322 | { |
| 323 | long double d = x; |
| 324 | long exp; |
| 325 | |
| 326 | exp = ia64_getf_exp(d); |
| 327 | return exp - 0xffff; |
| 328 | } |
| 329 | |
David Mosberger-Tang | 821376b | 2005-04-21 11:07:59 -0700 | [diff] [blame] | 330 | /* |
| 331 | * Find the last (most significant) bit set. Returns 0 for x==0 and |
| 332 | * bits are numbered from 1..32 (e.g., fls(9) == 4). |
| 333 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 334 | static inline int |
David Mosberger-Tang | 821376b | 2005-04-21 11:07:59 -0700 | [diff] [blame] | 335 | fls (int t) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 336 | { |
David Mosberger-Tang | 821376b | 2005-04-21 11:07:59 -0700 | [diff] [blame] | 337 | unsigned long x = t & 0xffffffffu; |
| 338 | |
| 339 | if (!x) |
| 340 | return 0; |
| 341 | x |= x >> 1; |
| 342 | x |= x >> 2; |
| 343 | x |= x >> 4; |
| 344 | x |= x >> 8; |
| 345 | x |= x >> 16; |
| 346 | return ia64_popcnt(x); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 347 | } |
| 348 | |
| 349 | /* |
| 350 | * ffs: find first bit set. This is defined the same way as the libc and compiler builtin |
| 351 | * ffs routines, therefore differs in spirit from the above ffz (man ffs): it operates on |
| 352 | * "int" values only and the result value is the bit number + 1. ffs(0) is defined to |
| 353 | * return zero. |
| 354 | */ |
| 355 | #define ffs(x) __builtin_ffs(x) |
| 356 | |
| 357 | /* |
| 358 | * hweightN: returns the hamming weight (i.e. the number |
| 359 | * of bits set) of a N-bit word |
| 360 | */ |
| 361 | static __inline__ unsigned long |
| 362 | hweight64 (unsigned long x) |
| 363 | { |
| 364 | unsigned long result; |
| 365 | result = ia64_popcnt(x); |
| 366 | return result; |
| 367 | } |
| 368 | |
| 369 | #define hweight32(x) (unsigned int) hweight64((x) & 0xfffffffful) |
| 370 | #define hweight16(x) (unsigned int) hweight64((x) & 0xfffful) |
| 371 | #define hweight8(x) (unsigned int) hweight64((x) & 0xfful) |
| 372 | |
| 373 | #endif /* __KERNEL__ */ |
| 374 | |
| 375 | extern int __find_next_zero_bit (const void *addr, unsigned long size, |
| 376 | unsigned long offset); |
| 377 | extern int __find_next_bit(const void *addr, unsigned long size, |
| 378 | unsigned long offset); |
| 379 | |
| 380 | #define find_next_zero_bit(addr, size, offset) \ |
| 381 | __find_next_zero_bit((addr), (size), (offset)) |
| 382 | #define find_next_bit(addr, size, offset) \ |
| 383 | __find_next_bit((addr), (size), (offset)) |
| 384 | |
| 385 | /* |
| 386 | * The optimizer actually does good code for this case.. |
| 387 | */ |
| 388 | #define find_first_zero_bit(addr, size) find_next_zero_bit((addr), (size), 0) |
| 389 | |
| 390 | #define find_first_bit(addr, size) find_next_bit((addr), (size), 0) |
| 391 | |
| 392 | #ifdef __KERNEL__ |
| 393 | |
| 394 | #define __clear_bit(nr, addr) clear_bit(nr, addr) |
| 395 | |
| 396 | #define ext2_set_bit test_and_set_bit |
| 397 | #define ext2_set_bit_atomic(l,n,a) test_and_set_bit(n,a) |
| 398 | #define ext2_clear_bit test_and_clear_bit |
| 399 | #define ext2_clear_bit_atomic(l,n,a) test_and_clear_bit(n,a) |
| 400 | #define ext2_test_bit test_bit |
| 401 | #define ext2_find_first_zero_bit find_first_zero_bit |
| 402 | #define ext2_find_next_zero_bit find_next_zero_bit |
| 403 | |
| 404 | /* Bitmap functions for the minix filesystem. */ |
| 405 | #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) |
| 406 | #define minix_set_bit(nr,addr) set_bit(nr,addr) |
| 407 | #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) |
| 408 | #define minix_test_bit(nr,addr) test_bit(nr,addr) |
| 409 | #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) |
| 410 | |
| 411 | static inline int |
| 412 | sched_find_first_bit (unsigned long *b) |
| 413 | { |
| 414 | if (unlikely(b[0])) |
| 415 | return __ffs(b[0]); |
| 416 | if (unlikely(b[1])) |
| 417 | return 64 + __ffs(b[1]); |
| 418 | return __ffs(b[2]) + 128; |
| 419 | } |
| 420 | |
| 421 | #endif /* __KERNEL__ */ |
| 422 | |
| 423 | #endif /* _ASM_IA64_BITOPS_H */ |