blob: 4a6f567f4f80b0ef0219f12aed4a5af1ad2c4015 [file] [log] [blame]
Tomas Winkler32e2b592014-01-16 00:58:34 +02001/*
2 *
3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2013-2014, Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 */
16
17#include <linux/pci.h>
18#include <linux/jiffies.h>
19#include <linux/delay.h>
20#include <linux/kthread.h>
Stephen Rothwell4a221762014-02-21 16:38:28 +110021#include <linux/irqreturn.h>
Tomas Winkler32e2b592014-01-16 00:58:34 +020022
23#include <linux/mei.h>
24
25#include "mei_dev.h"
26#include "hw-txe.h"
27#include "client.h"
28#include "hbm.h"
29
30/**
31 * mei_txe_reg_read - Reads 32bit data from the device
32 *
33 * @base_addr: registers base address
34 * @offset: register offset
35 *
36 */
37static inline u32 mei_txe_reg_read(void __iomem *base_addr,
38 unsigned long offset)
39{
40 return ioread32(base_addr + offset);
41}
42
43/**
44 * mei_txe_reg_write - Writes 32bit data to the device
45 *
46 * @base_addr: registers base address
47 * @offset: register offset
48 * @value: the value to write
49 */
50static inline void mei_txe_reg_write(void __iomem *base_addr,
51 unsigned long offset, u32 value)
52{
53 iowrite32(value, base_addr + offset);
54}
55
56/**
57 * mei_txe_sec_reg_read_silent - Reads 32bit data from the SeC BAR
58 *
59 * @dev: the device structure
60 * @offset: register offset
61 *
62 * Doesn't check for aliveness while Reads 32bit data from the SeC BAR
63 */
64static inline u32 mei_txe_sec_reg_read_silent(struct mei_txe_hw *hw,
65 unsigned long offset)
66{
67 return mei_txe_reg_read(hw->mem_addr[SEC_BAR], offset);
68}
69
70/**
71 * mei_txe_sec_reg_read - Reads 32bit data from the SeC BAR
72 *
73 * @dev: the device structure
74 * @offset: register offset
75 *
76 * Reads 32bit data from the SeC BAR and shout loud if aliveness is not set
77 */
78static inline u32 mei_txe_sec_reg_read(struct mei_txe_hw *hw,
79 unsigned long offset)
80{
81 WARN(!hw->aliveness, "sec read: aliveness not asserted\n");
82 return mei_txe_sec_reg_read_silent(hw, offset);
83}
84/**
85 * mei_txe_sec_reg_write_silent - Writes 32bit data to the SeC BAR
86 * doesn't check for aliveness
87 *
88 * @dev: the device structure
89 * @offset: register offset
90 * @value: value to write
91 *
92 * Doesn't check for aliveness while writes 32bit data from to the SeC BAR
93 */
94static inline void mei_txe_sec_reg_write_silent(struct mei_txe_hw *hw,
95 unsigned long offset, u32 value)
96{
97 mei_txe_reg_write(hw->mem_addr[SEC_BAR], offset, value);
98}
99
100/**
101 * mei_txe_sec_reg_write - Writes 32bit data to the SeC BAR
102 *
103 * @dev: the device structure
104 * @offset: register offset
105 * @value: value to write
106 *
107 * Writes 32bit data from the SeC BAR and shout loud if aliveness is not set
108 */
109static inline void mei_txe_sec_reg_write(struct mei_txe_hw *hw,
110 unsigned long offset, u32 value)
111{
112 WARN(!hw->aliveness, "sec write: aliveness not asserted\n");
113 mei_txe_sec_reg_write_silent(hw, offset, value);
114}
115/**
116 * mei_txe_br_reg_read - Reads 32bit data from the Bridge BAR
117 *
118 * @hw: the device structure
119 * @offset: offset from which to read the data
120 *
121 */
122static inline u32 mei_txe_br_reg_read(struct mei_txe_hw *hw,
123 unsigned long offset)
124{
125 return mei_txe_reg_read(hw->mem_addr[BRIDGE_BAR], offset);
126}
127
128/**
129 * mei_txe_br_reg_write - Writes 32bit data to the Bridge BAR
130 *
131 * @hw: the device structure
132 * @offset: offset from which to write the data
133 * @value: the byte to write
134 */
135static inline void mei_txe_br_reg_write(struct mei_txe_hw *hw,
136 unsigned long offset, u32 value)
137{
138 mei_txe_reg_write(hw->mem_addr[BRIDGE_BAR], offset, value);
139}
140
141/**
142 * mei_txe_aliveness_set - request for aliveness change
143 *
144 * @dev: the device structure
145 * @req: requested aliveness value
146 *
147 * Request for aliveness change and returns true if the change is
148 * really needed and false if aliveness is already
149 * in the requested state
150 * Requires device lock to be held
151 */
152static bool mei_txe_aliveness_set(struct mei_device *dev, u32 req)
153{
154
155 struct mei_txe_hw *hw = to_txe_hw(dev);
156 bool do_req = hw->aliveness != req;
157
158 dev_dbg(&dev->pdev->dev, "Aliveness current=%d request=%d\n",
159 hw->aliveness, req);
160 if (do_req) {
Tomas Winkler964a2332014-03-18 22:51:59 +0200161 dev->pg_event = MEI_PG_EVENT_WAIT;
Tomas Winkler32e2b592014-01-16 00:58:34 +0200162 mei_txe_br_reg_write(hw, SICR_HOST_ALIVENESS_REQ_REG, req);
163 }
164 return do_req;
165}
166
167
168/**
169 * mei_txe_aliveness_req_get - get aliveness requested register value
170 *
171 * @dev: the device structure
172 *
173 * Extract HICR_HOST_ALIVENESS_RESP_ACK bit from
174 * from HICR_HOST_ALIVENESS_REQ register value
175 */
176static u32 mei_txe_aliveness_req_get(struct mei_device *dev)
177{
178 struct mei_txe_hw *hw = to_txe_hw(dev);
179 u32 reg;
180 reg = mei_txe_br_reg_read(hw, SICR_HOST_ALIVENESS_REQ_REG);
181 return reg & SICR_HOST_ALIVENESS_REQ_REQUESTED;
182}
183
184/**
185 * mei_txe_aliveness_get - get aliveness response register value
186 * @dev: the device structure
187 *
188 * Extract HICR_HOST_ALIVENESS_RESP_ACK bit
189 * from HICR_HOST_ALIVENESS_RESP register value
190 */
191static u32 mei_txe_aliveness_get(struct mei_device *dev)
192{
193 struct mei_txe_hw *hw = to_txe_hw(dev);
194 u32 reg;
195 reg = mei_txe_br_reg_read(hw, HICR_HOST_ALIVENESS_RESP_REG);
196 return reg & HICR_HOST_ALIVENESS_RESP_ACK;
197}
198
199/**
200 * mei_txe_aliveness_poll - waits for aliveness to settle
201 *
202 * @dev: the device structure
203 * @expected: expected aliveness value
204 *
205 * Polls for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
206 * returns > 0 if the expected value was received, -ETIME otherwise
207 */
208static int mei_txe_aliveness_poll(struct mei_device *dev, u32 expected)
209{
210 struct mei_txe_hw *hw = to_txe_hw(dev);
211 int t = 0;
212
213 do {
214 hw->aliveness = mei_txe_aliveness_get(dev);
215 if (hw->aliveness == expected) {
Tomas Winkler964a2332014-03-18 22:51:59 +0200216 dev->pg_event = MEI_PG_EVENT_IDLE;
Tomas Winkler32e2b592014-01-16 00:58:34 +0200217 dev_dbg(&dev->pdev->dev,
218 "aliveness settled after %d msecs\n", t);
219 return t;
220 }
221 mutex_unlock(&dev->device_lock);
222 msleep(MSEC_PER_SEC / 5);
223 mutex_lock(&dev->device_lock);
224 t += MSEC_PER_SEC / 5;
225 } while (t < SEC_ALIVENESS_WAIT_TIMEOUT);
226
Tomas Winkler964a2332014-03-18 22:51:59 +0200227 dev->pg_event = MEI_PG_EVENT_IDLE;
Tomas Winkler32e2b592014-01-16 00:58:34 +0200228 dev_err(&dev->pdev->dev, "aliveness timed out\n");
229 return -ETIME;
230}
231
232/**
233 * mei_txe_aliveness_wait - waits for aliveness to settle
234 *
235 * @dev: the device structure
236 * @expected: expected aliveness value
237 *
238 * Waits for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
239 * returns returns 0 on success and < 0 otherwise
240 */
241static int mei_txe_aliveness_wait(struct mei_device *dev, u32 expected)
242{
243 struct mei_txe_hw *hw = to_txe_hw(dev);
244 const unsigned long timeout =
245 msecs_to_jiffies(SEC_ALIVENESS_WAIT_TIMEOUT);
246 long err;
247 int ret;
248
249 hw->aliveness = mei_txe_aliveness_get(dev);
250 if (hw->aliveness == expected)
251 return 0;
252
253 mutex_unlock(&dev->device_lock);
Tomas Winkler964a2332014-03-18 22:51:59 +0200254 err = wait_event_timeout(hw->wait_aliveness_resp,
255 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
Tomas Winkler32e2b592014-01-16 00:58:34 +0200256 mutex_lock(&dev->device_lock);
257
258 hw->aliveness = mei_txe_aliveness_get(dev);
259 ret = hw->aliveness == expected ? 0 : -ETIME;
260
261 if (ret)
Tomas Winkler964a2332014-03-18 22:51:59 +0200262 dev_warn(&dev->pdev->dev, "aliveness timed out = %ld aliveness = %d event = %d\n",
263 err, hw->aliveness, dev->pg_event);
Tomas Winkler32e2b592014-01-16 00:58:34 +0200264 else
Tomas Winkler964a2332014-03-18 22:51:59 +0200265 dev_dbg(&dev->pdev->dev, "aliveness settled after = %d msec aliveness = %d event = %d\n",
266 jiffies_to_msecs(timeout - err),
267 hw->aliveness, dev->pg_event);
268
269 dev->pg_event = MEI_PG_EVENT_IDLE;
Tomas Winkler32e2b592014-01-16 00:58:34 +0200270 return ret;
271}
272
273/**
274 * mei_txe_aliveness_set_sync - sets an wait for aliveness to complete
275 *
276 * @dev: the device structure
277 *
278 * returns returns 0 on success and < 0 otherwise
279 */
280int mei_txe_aliveness_set_sync(struct mei_device *dev, u32 req)
281{
282 if (mei_txe_aliveness_set(dev, req))
283 return mei_txe_aliveness_wait(dev, req);
284 return 0;
285}
286
287/**
Tomas Winkleree7e5af2014-03-18 22:51:58 +0200288 * mei_txe_pg_is_enabled - detect if PG is supported by HW
289 *
290 * @dev: the device structure
291 *
292 * returns: true is pg supported, false otherwise
293 */
294static bool mei_txe_pg_is_enabled(struct mei_device *dev)
295{
296 return true;
297}
298
299/**
Tomas Winkler964a2332014-03-18 22:51:59 +0200300 * mei_txe_pg_state - translate aliveness register value
301 * to the mei power gating state
302 *
303 * @dev: the device structure
304 *
305 * returns: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
306 */
307static inline enum mei_pg_state mei_txe_pg_state(struct mei_device *dev)
308{
309 struct mei_txe_hw *hw = to_txe_hw(dev);
310 return hw->aliveness ? MEI_PG_OFF : MEI_PG_ON;
311}
312
313/**
Tomas Winkler32e2b592014-01-16 00:58:34 +0200314 * mei_txe_input_ready_interrupt_enable - sets the Input Ready Interrupt
315 *
316 * @dev: the device structure
317 */
318static void mei_txe_input_ready_interrupt_enable(struct mei_device *dev)
319{
320 struct mei_txe_hw *hw = to_txe_hw(dev);
321 u32 hintmsk;
322 /* Enable the SEC_IPC_HOST_INT_MASK_IN_RDY interrupt */
323 hintmsk = mei_txe_sec_reg_read(hw, SEC_IPC_HOST_INT_MASK_REG);
324 hintmsk |= SEC_IPC_HOST_INT_MASK_IN_RDY;
325 mei_txe_sec_reg_write(hw, SEC_IPC_HOST_INT_MASK_REG, hintmsk);
326}
327
328/**
329 * mei_txe_input_doorbell_set
330 * - Sets bit 0 in SEC_IPC_INPUT_DOORBELL.IPC_INPUT_DOORBELL.
331 * @dev: the device structure
332 */
333static void mei_txe_input_doorbell_set(struct mei_txe_hw *hw)
334{
335 /* Clear the interrupt cause */
336 clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause);
337 mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_DOORBELL_REG, 1);
338}
339
340/**
341 * mei_txe_output_ready_set - Sets the SICR_SEC_IPC_OUTPUT_STATUS bit to 1
342 *
343 * @dev: the device structure
344 */
345static void mei_txe_output_ready_set(struct mei_txe_hw *hw)
346{
347 mei_txe_br_reg_write(hw,
348 SICR_SEC_IPC_OUTPUT_STATUS_REG,
349 SEC_IPC_OUTPUT_STATUS_RDY);
350}
351
352/**
353 * mei_txe_is_input_ready - check if TXE is ready for receiving data
354 *
355 * @dev: the device structure
356 */
357static bool mei_txe_is_input_ready(struct mei_device *dev)
358{
359 struct mei_txe_hw *hw = to_txe_hw(dev);
360 u32 status;
361 status = mei_txe_sec_reg_read(hw, SEC_IPC_INPUT_STATUS_REG);
362 return !!(SEC_IPC_INPUT_STATUS_RDY & status);
363}
364
365/**
366 * mei_txe_intr_clear - clear all interrupts
367 *
368 * @dev: the device structure
369 */
370static inline void mei_txe_intr_clear(struct mei_device *dev)
371{
372 struct mei_txe_hw *hw = to_txe_hw(dev);
373 mei_txe_sec_reg_write_silent(hw, SEC_IPC_HOST_INT_STATUS_REG,
374 SEC_IPC_HOST_INT_STATUS_PENDING);
375 mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_STS_MSK);
376 mei_txe_br_reg_write(hw, HHISR_REG, IPC_HHIER_MSK);
377}
378
379/**
380 * mei_txe_intr_disable - disable all interrupts
381 *
382 * @dev: the device structure
383 */
384static void mei_txe_intr_disable(struct mei_device *dev)
385{
386 struct mei_txe_hw *hw = to_txe_hw(dev);
387 mei_txe_br_reg_write(hw, HHIER_REG, 0);
388 mei_txe_br_reg_write(hw, HIER_REG, 0);
389}
390/**
391 * mei_txe_intr_disable - enable all interrupts
392 *
393 * @dev: the device structure
394 */
395static void mei_txe_intr_enable(struct mei_device *dev)
396{
397 struct mei_txe_hw *hw = to_txe_hw(dev);
398 mei_txe_br_reg_write(hw, HHIER_REG, IPC_HHIER_MSK);
399 mei_txe_br_reg_write(hw, HIER_REG, HIER_INT_EN_MSK);
400}
401
402/**
403 * mei_txe_pending_interrupts - check if there are pending interrupts
404 * only Aliveness, Input ready, and output doorbell are of relevance
405 *
406 * @dev: the device structure
407 *
408 * Checks if there are pending interrupts
409 * only Aliveness, Readiness, Input ready, and Output doorbell are relevant
410 */
411static bool mei_txe_pending_interrupts(struct mei_device *dev)
412{
413
414 struct mei_txe_hw *hw = to_txe_hw(dev);
415 bool ret = (hw->intr_cause & (TXE_INTR_READINESS |
416 TXE_INTR_ALIVENESS |
417 TXE_INTR_IN_READY |
418 TXE_INTR_OUT_DB));
419
420 if (ret) {
421 dev_dbg(&dev->pdev->dev,
422 "Pending Interrupts InReady=%01d Readiness=%01d, Aliveness=%01d, OutDoor=%01d\n",
423 !!(hw->intr_cause & TXE_INTR_IN_READY),
424 !!(hw->intr_cause & TXE_INTR_READINESS),
425 !!(hw->intr_cause & TXE_INTR_ALIVENESS),
426 !!(hw->intr_cause & TXE_INTR_OUT_DB));
427 }
428 return ret;
429}
430
431/**
432 * mei_txe_input_payload_write - write a dword to the host buffer
433 * at offset idx
434 *
435 * @dev: the device structure
436 * @idx: index in the host buffer
437 * @value: value
438 */
439static void mei_txe_input_payload_write(struct mei_device *dev,
440 unsigned long idx, u32 value)
441{
442 struct mei_txe_hw *hw = to_txe_hw(dev);
443 mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_PAYLOAD_REG +
444 (idx * sizeof(u32)), value);
445}
446
447/**
448 * mei_txe_out_data_read - read dword from the device buffer
449 * at offset idx
450 *
451 * @dev: the device structure
452 * @idx: index in the device buffer
453 *
454 * returns register value at index
455 */
456static u32 mei_txe_out_data_read(const struct mei_device *dev,
457 unsigned long idx)
458{
459 struct mei_txe_hw *hw = to_txe_hw(dev);
460 return mei_txe_br_reg_read(hw,
461 BRIDGE_IPC_OUTPUT_PAYLOAD_REG + (idx * sizeof(u32)));
462}
463
464/* Readiness */
465
466/**
467 * mei_txe_readiness_set_host_rdy
468 *
469 * @dev: the device structure
470 */
471static void mei_txe_readiness_set_host_rdy(struct mei_device *dev)
472{
473 struct mei_txe_hw *hw = to_txe_hw(dev);
474 mei_txe_br_reg_write(hw,
475 SICR_HOST_IPC_READINESS_REQ_REG,
476 SICR_HOST_IPC_READINESS_HOST_RDY);
477}
478
479/**
480 * mei_txe_readiness_clear
481 *
482 * @dev: the device structure
483 */
484static void mei_txe_readiness_clear(struct mei_device *dev)
485{
486 struct mei_txe_hw *hw = to_txe_hw(dev);
487 mei_txe_br_reg_write(hw, SICR_HOST_IPC_READINESS_REQ_REG,
488 SICR_HOST_IPC_READINESS_RDY_CLR);
489}
490/**
491 * mei_txe_readiness_get - Reads and returns
492 * the HICR_SEC_IPC_READINESS register value
493 *
494 * @dev: the device structure
495 */
496static u32 mei_txe_readiness_get(struct mei_device *dev)
497{
498 struct mei_txe_hw *hw = to_txe_hw(dev);
499 return mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
500}
501
502
503/**
504 * mei_txe_readiness_is_sec_rdy - check readiness
505 * for HICR_SEC_IPC_READINESS_SEC_RDY
506 *
507 * @readiness - cached readiness state
508 */
509static inline bool mei_txe_readiness_is_sec_rdy(u32 readiness)
510{
511 return !!(readiness & HICR_SEC_IPC_READINESS_SEC_RDY);
512}
513
514/**
515 * mei_txe_hw_is_ready - check if the hw is ready
516 *
517 * @dev: the device structure
518 */
519static bool mei_txe_hw_is_ready(struct mei_device *dev)
520{
521 u32 readiness = mei_txe_readiness_get(dev);
522 return mei_txe_readiness_is_sec_rdy(readiness);
523}
524
525/**
526 * mei_txe_host_is_ready - check if the host is ready
527 *
528 * @dev: the device structure
529 */
530static inline bool mei_txe_host_is_ready(struct mei_device *dev)
531{
532 struct mei_txe_hw *hw = to_txe_hw(dev);
533 u32 reg = mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
534 return !!(reg & HICR_SEC_IPC_READINESS_HOST_RDY);
535}
536
537/**
538 * mei_txe_readiness_wait - wait till readiness settles
539 *
540 * @dev: the device structure
541 *
542 * returns 0 on success and -ETIME on timeout
543 */
544static int mei_txe_readiness_wait(struct mei_device *dev)
545{
546 if (mei_txe_hw_is_ready(dev))
547 return 0;
548
549 mutex_unlock(&dev->device_lock);
550 wait_event_timeout(dev->wait_hw_ready, dev->recvd_hw_ready,
551 msecs_to_jiffies(SEC_RESET_WAIT_TIMEOUT));
552 mutex_lock(&dev->device_lock);
553 if (!dev->recvd_hw_ready) {
554 dev_err(&dev->pdev->dev, "wait for readiness failed\n");
555 return -ETIME;
556 }
557
558 dev->recvd_hw_ready = false;
559 return 0;
560}
561
562/**
563 * mei_txe_hw_config - configure hardware at the start of the devices
564 *
565 * @dev: the device structure
566 *
567 * Configure hardware at the start of the device should be done only
568 * once at the device probe time
569 */
570static void mei_txe_hw_config(struct mei_device *dev)
571{
572
573 struct mei_txe_hw *hw = to_txe_hw(dev);
574 /* Doesn't change in runtime */
575 dev->hbuf_depth = PAYLOAD_SIZE / 4;
576
577 hw->aliveness = mei_txe_aliveness_get(dev);
578 hw->readiness = mei_txe_readiness_get(dev);
579
580 dev_dbg(&dev->pdev->dev, "aliveness_resp = 0x%08x, readiness = 0x%08x.\n",
581 hw->aliveness, hw->readiness);
582}
583
584
585/**
586 * mei_txe_write - writes a message to device.
587 *
588 * @dev: the device structure
589 * @header: header of message
590 * @buf: message buffer will be written
591 * returns 1 if success, 0 - otherwise.
592 */
593
594static int mei_txe_write(struct mei_device *dev,
595 struct mei_msg_hdr *header, unsigned char *buf)
596{
597 struct mei_txe_hw *hw = to_txe_hw(dev);
598 unsigned long rem;
599 unsigned long length;
Tomas Winkler9d098192014-02-19 17:35:48 +0200600 int slots = dev->hbuf_depth;
Tomas Winkler32e2b592014-01-16 00:58:34 +0200601 u32 *reg_buf = (u32 *)buf;
Tomas Winkler9d098192014-02-19 17:35:48 +0200602 u32 dw_cnt;
Tomas Winkler32e2b592014-01-16 00:58:34 +0200603 int i;
604
605 if (WARN_ON(!header || !buf))
606 return -EINVAL;
607
608 length = header->length;
609
610 dev_dbg(&dev->pdev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
611
Tomas Winkler9d098192014-02-19 17:35:48 +0200612 dw_cnt = mei_data2slots(length);
613 if (dw_cnt > slots)
614 return -EMSGSIZE;
Tomas Winkler32e2b592014-01-16 00:58:34 +0200615
616 if (WARN(!hw->aliveness, "txe write: aliveness not asserted\n"))
617 return -EAGAIN;
618
619 /* Enable Input Ready Interrupt. */
620 mei_txe_input_ready_interrupt_enable(dev);
621
622 if (!mei_txe_is_input_ready(dev)) {
623 dev_err(&dev->pdev->dev, "Input is not ready");
624 return -EAGAIN;
625 }
626
627 mei_txe_input_payload_write(dev, 0, *((u32 *)header));
628
629 for (i = 0; i < length / 4; i++)
630 mei_txe_input_payload_write(dev, i + 1, reg_buf[i]);
631
632 rem = length & 0x3;
633 if (rem > 0) {
634 u32 reg = 0;
635 memcpy(&reg, &buf[length - rem], rem);
636 mei_txe_input_payload_write(dev, i + 1, reg);
637 }
638
Tomas Winkler9d098192014-02-19 17:35:48 +0200639 /* after each write the whole buffer is consumed */
640 hw->slots = 0;
641
Tomas Winkler32e2b592014-01-16 00:58:34 +0200642 /* Set Input-Doorbell */
643 mei_txe_input_doorbell_set(hw);
644
645 return 0;
646}
647
648/**
649 * mei_txe_hbuf_max_len - mimics the me hbuf circular buffer
650 *
651 * @dev: the device structure
652 *
653 * returns the PAYLOAD_SIZE - 4
654 */
655static size_t mei_txe_hbuf_max_len(const struct mei_device *dev)
656{
657 return PAYLOAD_SIZE - sizeof(struct mei_msg_hdr);
658}
659
660/**
661 * mei_txe_hbuf_empty_slots - mimics the me hbuf circular buffer
662 *
663 * @dev: the device structure
664 *
665 * returns always hbuf_depth
666 */
667static int mei_txe_hbuf_empty_slots(struct mei_device *dev)
668{
Tomas Winkler9d098192014-02-19 17:35:48 +0200669 struct mei_txe_hw *hw = to_txe_hw(dev);
670 return hw->slots;
Tomas Winkler32e2b592014-01-16 00:58:34 +0200671}
672
673/**
674 * mei_txe_count_full_read_slots - mimics the me device circular buffer
675 *
676 * @dev: the device structure
677 *
678 * returns always buffer size in dwords count
679 */
680static int mei_txe_count_full_read_slots(struct mei_device *dev)
681{
682 /* read buffers has static size */
683 return PAYLOAD_SIZE / 4;
684}
685
686/**
687 * mei_txe_read_hdr - read message header which is always in 4 first bytes
688 *
689 * @dev: the device structure
690 *
691 * returns mei message header
692 */
693
694static u32 mei_txe_read_hdr(const struct mei_device *dev)
695{
696 return mei_txe_out_data_read(dev, 0);
697}
698/**
699 * mei_txe_read - reads a message from the txe device.
700 *
701 * @dev: the device structure
702 * @buf: message buffer will be written
703 * @len: message size will be read
704 *
705 * returns -EINVAL on error wrong argument and 0 on success
706 */
707static int mei_txe_read(struct mei_device *dev,
708 unsigned char *buf, unsigned long len)
709{
710
711 struct mei_txe_hw *hw = to_txe_hw(dev);
712 u32 i;
713 u32 *reg_buf = (u32 *)buf;
714 u32 rem = len & 0x3;
715
716 if (WARN_ON(!buf || !len))
717 return -EINVAL;
718
719 dev_dbg(&dev->pdev->dev,
720 "buffer-length = %lu buf[0]0x%08X\n",
721 len, mei_txe_out_data_read(dev, 0));
722
723 for (i = 0; i < len / 4; i++) {
724 /* skip header: index starts from 1 */
725 u32 reg = mei_txe_out_data_read(dev, i + 1);
726 dev_dbg(&dev->pdev->dev, "buf[%d] = 0x%08X\n", i, reg);
727 *reg_buf++ = reg;
728 }
729
730 if (rem) {
731 u32 reg = mei_txe_out_data_read(dev, i + 1);
732 memcpy(reg_buf, &reg, rem);
733 }
734
735 mei_txe_output_ready_set(hw);
736 return 0;
737}
738
739/**
740 * mei_txe_hw_reset - resets host and fw.
741 *
742 * @dev: the device structure
743 * @intr_enable: if interrupt should be enabled after reset.
744 *
745 * returns 0 on success and < 0 in case of error
746 */
747static int mei_txe_hw_reset(struct mei_device *dev, bool intr_enable)
748{
749 struct mei_txe_hw *hw = to_txe_hw(dev);
750
751 u32 aliveness_req;
752 /*
753 * read input doorbell to ensure consistency between Bridge and SeC
754 * return value might be garbage return
755 */
756 (void)mei_txe_sec_reg_read_silent(hw, SEC_IPC_INPUT_DOORBELL_REG);
757
758 aliveness_req = mei_txe_aliveness_req_get(dev);
759 hw->aliveness = mei_txe_aliveness_get(dev);
760
761 /* Disable interrupts in this stage we will poll */
762 mei_txe_intr_disable(dev);
763
764 /*
765 * If Aliveness Request and Aliveness Response are not equal then
766 * wait for them to be equal
767 * Since we might have interrupts disabled - poll for it
768 */
769 if (aliveness_req != hw->aliveness)
770 if (mei_txe_aliveness_poll(dev, aliveness_req) < 0) {
771 dev_err(&dev->pdev->dev,
772 "wait for aliveness settle failed ... bailing out\n");
773 return -EIO;
774 }
775
776 /*
777 * If Aliveness Request and Aliveness Response are set then clear them
778 */
779 if (aliveness_req) {
780 mei_txe_aliveness_set(dev, 0);
781 if (mei_txe_aliveness_poll(dev, 0) < 0) {
782 dev_err(&dev->pdev->dev,
783 "wait for aliveness failed ... bailing out\n");
784 return -EIO;
785 }
786 }
787
788 /*
789 * Set rediness RDY_CLR bit
790 */
791 mei_txe_readiness_clear(dev);
792
793 return 0;
794}
795
796/**
797 * mei_txe_hw_start - start the hardware after reset
798 *
799 * @dev: the device structure
800 *
801 * returns 0 on success and < 0 in case of error
802 */
803static int mei_txe_hw_start(struct mei_device *dev)
804{
805 struct mei_txe_hw *hw = to_txe_hw(dev);
806 int ret;
807
808 u32 hisr;
809
810 /* bring back interrupts */
811 mei_txe_intr_enable(dev);
812
813 ret = mei_txe_readiness_wait(dev);
814 if (ret < 0) {
815 dev_err(&dev->pdev->dev, "wating for readiness failed\n");
816 return ret;
817 }
818
819 /*
820 * If HISR.INT2_STS interrupt status bit is set then clear it.
821 */
822 hisr = mei_txe_br_reg_read(hw, HISR_REG);
823 if (hisr & HISR_INT_2_STS)
824 mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_2_STS);
825
826 /* Clear the interrupt cause of OutputDoorbell */
827 clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause);
828
829 ret = mei_txe_aliveness_set_sync(dev, 1);
830 if (ret < 0) {
831 dev_err(&dev->pdev->dev, "wait for aliveness failed ... bailing out\n");
832 return ret;
833 }
834
835 /* enable input ready interrupts:
836 * SEC_IPC_HOST_INT_MASK.IPC_INPUT_READY_INT_MASK
837 */
838 mei_txe_input_ready_interrupt_enable(dev);
839
840
841 /* Set the SICR_SEC_IPC_OUTPUT_STATUS.IPC_OUTPUT_READY bit */
842 mei_txe_output_ready_set(hw);
843
844 /* Set bit SICR_HOST_IPC_READINESS.HOST_RDY
845 */
846 mei_txe_readiness_set_host_rdy(dev);
847
848 return 0;
849}
850
851/**
852 * mei_txe_check_and_ack_intrs - translate multi BAR interrupt into
853 * single bit mask and acknowledge the interrupts
854 *
855 * @dev: the device structure
856 * @do_ack: acknowledge interrupts
857 */
858static bool mei_txe_check_and_ack_intrs(struct mei_device *dev, bool do_ack)
859{
860 struct mei_txe_hw *hw = to_txe_hw(dev);
861 u32 hisr;
862 u32 hhisr;
863 u32 ipc_isr;
864 u32 aliveness;
865 bool generated;
866
867 /* read interrupt registers */
868 hhisr = mei_txe_br_reg_read(hw, HHISR_REG);
869 generated = (hhisr & IPC_HHIER_MSK);
870 if (!generated)
871 goto out;
872
873 hisr = mei_txe_br_reg_read(hw, HISR_REG);
874
875 aliveness = mei_txe_aliveness_get(dev);
876 if (hhisr & IPC_HHIER_SEC && aliveness)
877 ipc_isr = mei_txe_sec_reg_read_silent(hw,
878 SEC_IPC_HOST_INT_STATUS_REG);
879 else
880 ipc_isr = 0;
881
882 generated = generated ||
883 (hisr & HISR_INT_STS_MSK) ||
884 (ipc_isr & SEC_IPC_HOST_INT_STATUS_PENDING);
885
886 if (generated && do_ack) {
887 /* Save the interrupt causes */
888 hw->intr_cause |= hisr & HISR_INT_STS_MSK;
889 if (ipc_isr & SEC_IPC_HOST_INT_STATUS_IN_RDY)
890 hw->intr_cause |= TXE_INTR_IN_READY;
891
892
893 mei_txe_intr_disable(dev);
894 /* Clear the interrupts in hierarchy:
895 * IPC and Bridge, than the High Level */
896 mei_txe_sec_reg_write_silent(hw,
897 SEC_IPC_HOST_INT_STATUS_REG, ipc_isr);
898 mei_txe_br_reg_write(hw, HISR_REG, hisr);
899 mei_txe_br_reg_write(hw, HHISR_REG, hhisr);
900 }
901
902out:
903 return generated;
904}
905
906/**
907 * mei_txe_irq_quick_handler - The ISR of the MEI device
908 *
909 * @irq: The irq number
910 * @dev_id: pointer to the device structure
911 *
912 * returns irqreturn_t
913 */
914irqreturn_t mei_txe_irq_quick_handler(int irq, void *dev_id)
915{
916 struct mei_device *dev = dev_id;
917
918 if (mei_txe_check_and_ack_intrs(dev, true))
919 return IRQ_WAKE_THREAD;
920 return IRQ_NONE;
921}
922
923
924/**
925 * mei_txe_irq_thread_handler - txe interrupt thread
926 *
927 * @irq: The irq number
928 * @dev_id: pointer to the device structure
929 *
930 * returns irqreturn_t
931 *
932 */
933irqreturn_t mei_txe_irq_thread_handler(int irq, void *dev_id)
934{
935 struct mei_device *dev = (struct mei_device *) dev_id;
936 struct mei_txe_hw *hw = to_txe_hw(dev);
937 struct mei_cl_cb complete_list;
938 s32 slots;
939 int rets = 0;
940
941 dev_dbg(&dev->pdev->dev, "irq thread: Interrupt Registers HHISR|HISR|SEC=%02X|%04X|%02X\n",
942 mei_txe_br_reg_read(hw, HHISR_REG),
943 mei_txe_br_reg_read(hw, HISR_REG),
944 mei_txe_sec_reg_read_silent(hw, SEC_IPC_HOST_INT_STATUS_REG));
945
946
947 /* initialize our complete list */
948 mutex_lock(&dev->device_lock);
949 mei_io_list_init(&complete_list);
950
951 if (pci_dev_msi_enabled(dev->pdev))
952 mei_txe_check_and_ack_intrs(dev, true);
953
954 /* show irq events */
955 mei_txe_pending_interrupts(dev);
956
957 hw->aliveness = mei_txe_aliveness_get(dev);
958 hw->readiness = mei_txe_readiness_get(dev);
959
960 /* Readiness:
961 * Detection of TXE driver going through reset
962 * or TXE driver resetting the HECI interface.
963 */
964 if (test_and_clear_bit(TXE_INTR_READINESS_BIT, &hw->intr_cause)) {
965 dev_dbg(&dev->pdev->dev, "Readiness Interrupt was received...\n");
966
967 /* Check if SeC is going through reset */
968 if (mei_txe_readiness_is_sec_rdy(hw->readiness)) {
969 dev_dbg(&dev->pdev->dev, "we need to start the dev.\n");
970 dev->recvd_hw_ready = true;
971 } else {
972 dev->recvd_hw_ready = false;
973 if (dev->dev_state != MEI_DEV_RESETTING) {
974
975 dev_warn(&dev->pdev->dev, "FW not ready: resetting.\n");
976 schedule_work(&dev->reset_work);
977 goto end;
978
979 }
980 }
981 wake_up(&dev->wait_hw_ready);
982 }
983
984 /************************************************************/
985 /* Check interrupt cause:
986 * Aliveness: Detection of SeC acknowledge of host request that
987 * it remain alive or host cancellation of that request.
988 */
989
990 if (test_and_clear_bit(TXE_INTR_ALIVENESS_BIT, &hw->intr_cause)) {
991 /* Clear the interrupt cause */
992 dev_dbg(&dev->pdev->dev,
993 "Aliveness Interrupt: Status: %d\n", hw->aliveness);
Tomas Winkler964a2332014-03-18 22:51:59 +0200994 dev->pg_event = MEI_PG_EVENT_RECEIVED;
995 if (waitqueue_active(&hw->wait_aliveness_resp))
996 wake_up(&hw->wait_aliveness_resp);
Tomas Winkler32e2b592014-01-16 00:58:34 +0200997 }
998
999
1000 /* Output Doorbell:
1001 * Detection of SeC having sent output to host
1002 */
1003 slots = mei_count_full_read_slots(dev);
1004 if (test_and_clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause)) {
1005 /* Read from TXE */
1006 rets = mei_irq_read_handler(dev, &complete_list, &slots);
1007 if (rets && dev->dev_state != MEI_DEV_RESETTING) {
1008 dev_err(&dev->pdev->dev,
1009 "mei_irq_read_handler ret = %d.\n", rets);
1010
1011 schedule_work(&dev->reset_work);
1012 goto end;
1013 }
1014 }
1015 /* Input Ready: Detection if host can write to SeC */
Tomas Winkler9d098192014-02-19 17:35:48 +02001016 if (test_and_clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause)) {
Tomas Winkler32e2b592014-01-16 00:58:34 +02001017 dev->hbuf_is_ready = true;
Tomas Winkler9d098192014-02-19 17:35:48 +02001018 hw->slots = dev->hbuf_depth;
1019 }
Tomas Winkler32e2b592014-01-16 00:58:34 +02001020
1021 if (hw->aliveness && dev->hbuf_is_ready) {
Tomas Winkler6aae48f2014-02-19 17:35:47 +02001022 /* get the real register value */
1023 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
Tomas Winkler32e2b592014-01-16 00:58:34 +02001024 rets = mei_irq_write_handler(dev, &complete_list);
Tomas Winkler6aae48f2014-02-19 17:35:47 +02001025 if (rets && rets != -EMSGSIZE)
1026 dev_err(&dev->pdev->dev, "mei_irq_write_handler ret = %d.\n",
1027 rets);
1028 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
Tomas Winkler32e2b592014-01-16 00:58:34 +02001029 }
1030
Tomas Winkler32e2b592014-01-16 00:58:34 +02001031 mei_irq_compl_handler(dev, &complete_list);
1032
1033end:
1034 dev_dbg(&dev->pdev->dev, "interrupt thread end ret = %d\n", rets);
1035
1036 mutex_unlock(&dev->device_lock);
1037
1038 mei_enable_interrupts(dev);
1039 return IRQ_HANDLED;
1040}
1041
1042static const struct mei_hw_ops mei_txe_hw_ops = {
1043
1044 .host_is_ready = mei_txe_host_is_ready,
1045
Tomas Winkler964a2332014-03-18 22:51:59 +02001046 .pg_state = mei_txe_pg_state,
1047
Tomas Winkler32e2b592014-01-16 00:58:34 +02001048 .hw_is_ready = mei_txe_hw_is_ready,
1049 .hw_reset = mei_txe_hw_reset,
1050 .hw_config = mei_txe_hw_config,
1051 .hw_start = mei_txe_hw_start,
1052
Tomas Winkleree7e5af2014-03-18 22:51:58 +02001053 .pg_is_enabled = mei_txe_pg_is_enabled,
1054
Tomas Winkler32e2b592014-01-16 00:58:34 +02001055 .intr_clear = mei_txe_intr_clear,
1056 .intr_enable = mei_txe_intr_enable,
1057 .intr_disable = mei_txe_intr_disable,
1058
1059 .hbuf_free_slots = mei_txe_hbuf_empty_slots,
1060 .hbuf_is_ready = mei_txe_is_input_ready,
1061 .hbuf_max_len = mei_txe_hbuf_max_len,
1062
1063 .write = mei_txe_write,
1064
1065 .rdbuf_full_slots = mei_txe_count_full_read_slots,
1066 .read_hdr = mei_txe_read_hdr,
1067
1068 .read = mei_txe_read,
1069
1070};
1071
1072/**
1073 * mei_txe_dev_init - allocates and initializes txe hardware specific structure
1074 *
1075 * @pdev - pci device
1076 * returns struct mei_device * on success or NULL;
1077 *
1078 */
1079struct mei_device *mei_txe_dev_init(struct pci_dev *pdev)
1080{
1081 struct mei_device *dev;
1082 struct mei_txe_hw *hw;
1083
1084 dev = kzalloc(sizeof(struct mei_device) +
1085 sizeof(struct mei_txe_hw), GFP_KERNEL);
1086 if (!dev)
1087 return NULL;
1088
1089 mei_device_init(dev);
1090
1091 hw = to_txe_hw(dev);
1092
Tomas Winkler964a2332014-03-18 22:51:59 +02001093 init_waitqueue_head(&hw->wait_aliveness_resp);
Tomas Winkler32e2b592014-01-16 00:58:34 +02001094
1095 dev->ops = &mei_txe_hw_ops;
1096
1097 dev->pdev = pdev;
1098 return dev;
1099}
1100
1101/**
1102 * mei_txe_setup_satt2 - SATT2 configuration for DMA support.
1103 *
1104 * @dev: the device structure
1105 * @addr: physical address start of the range
1106 * @range: physical range size
1107 */
1108int mei_txe_setup_satt2(struct mei_device *dev, phys_addr_t addr, u32 range)
1109{
1110 struct mei_txe_hw *hw = to_txe_hw(dev);
1111
1112 u32 lo32 = lower_32_bits(addr);
1113 u32 hi32 = upper_32_bits(addr);
1114 u32 ctrl;
1115
1116 /* SATT is limited to 36 Bits */
1117 if (hi32 & ~0xF)
1118 return -EINVAL;
1119
1120 /* SATT has to be 16Byte aligned */
1121 if (lo32 & 0xF)
1122 return -EINVAL;
1123
1124 /* SATT range has to be 4Bytes aligned */
1125 if (range & 0x4)
1126 return -EINVAL;
1127
1128 /* SATT is limited to 32 MB range*/
1129 if (range > SATT_RANGE_MAX)
1130 return -EINVAL;
1131
1132 ctrl = SATT2_CTRL_VALID_MSK;
1133 ctrl |= hi32 << SATT2_CTRL_BR_BASE_ADDR_REG_SHIFT;
1134
1135 mei_txe_br_reg_write(hw, SATT2_SAP_SIZE_REG, range);
1136 mei_txe_br_reg_write(hw, SATT2_BRG_BA_LSB_REG, lo32);
1137 mei_txe_br_reg_write(hw, SATT2_CTRL_REG, ctrl);
1138 dev_dbg(&dev->pdev->dev, "SATT2: SAP_SIZE_OFFSET=0x%08X, BRG_BA_LSB_OFFSET=0x%08X, CTRL_OFFSET=0x%08X\n",
1139 range, lo32, ctrl);
1140
1141 return 0;
1142}